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Fast Subpixel Mapping Algorithms for Subpixel

Resolution Change Detection
Qunming Wang, Peter M. Atkinson, and Wenzhong Shi

Abstract—Due to rapid changes on the Earth’s surface, it is
important to perform land cover change detection (CD) at a
fine spatial and fine temporal resolution. However, remote sens-
ing images with both fine spatial and temporal resolutions are
commonly not available or, where available, may be expensive to
obtain. This paper attempts to achieve fine spatial and temporal
resolution land cover CD with a new computer technology based
on subpixel mapping (SPM): The fine spatial resolution land cover
maps (FRMs) are first predicted through SPM of the coarse
spatial but fine temporal resolution images, and then, subpixel
resolution CD is performed by comparison of class labels in the
SPM results. For the first time, five fast SPM algorithms, including
bilinear interpolation, bicubic interpolation, subpixel/pixel spatial
attraction model, Kriging, and radial basis function interpolation
methods, are proposed for subpixel resolution CD. The auxiliary
information from the known FRM on one date is incorporated in
SPM of coarse images on other dates to increase the CD accuracy.
Based on the five fast SPM algorithms and the availability of the
FRM, subpixels for each class are predicted by comparison of
the estimated soft class values at the target fine spatial resolution
and borrowing information from the FRM. Experiments demon-
strate the feasibility of the five SPM algorithms using FRM in
subpixel resolution CD. They are fast methods to achieve subpixel
resolution CD.

Index Terms—Change detection (CD), remote sensing, subpixel
mapping (SPM), superresolution mapping.

NOMENCLATURE

CD Change detection.

FRM Fine spatial resolution land cover map.

HC Pixel-based hard classification.

MERIS Medium Resolution Imaging Spectrometer.

MODIS Moderate Resolution Imaging Spectroradiometer.

OA Overall accuracy.

PSA Pixel swapping algorithm.

RBF Radial basis function.

SPM Subpixel mapping.
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SPSAM Subpixel/pixel spatial attraction model.

STARFM Spatial and temporal adaptive reflectance fusion

model.

STHSPM Soft-then-hard SPM.

UOC Class allocation method that allocates classes for

subpixels in units of classes.

I. INTRODUCTION

CHANGE detection (CD) in remote sensing is a process

in which multitemporal datasets are used to analyze and

quantify temporal changes in Earth surface properties [1], [2].

Since remote sensing data can cover the same scene period-

ically and the digital format is suitable for further computer

processing, they are a major source of information for CD. As

one of the most important objectives in remote sensing, CD is

applied in ecosystem monitoring, damage assessment, disaster

monitoring, urban expansion, planning, and land management

[1]. Further details of CD applications using remote sensing

technologies and existing CD methods can be found in reviews

in [1]–[5].

With increasing change on the Earth’s surface (particularly

due to land cover, in highly developed areas, and as a function

of changes in climate), timely CD is becoming increasingly

important. Sensors such as the MODIS can cover the same

area on a daily basis and have been in operation for over ten

years. However, a problem is that MODIS provides images with

coarse spatial resolutions only, ranging from 250 to 1000 m. It is

usually desirable to monitor changes at a fine spatial resolution

to provide as much detailed information as possible. There is

always a tradeoff between spatial resolution and temporal reso-

lution. For example, although the Landsat sensors can provide

remote sensing images at a finer spatial resolution (30 m) than

MODIS, it can only revisit the same area every 16 days. Note

that some satellites are able to capture fine spatial resolution im-

ages with relatively short revisit time (on a daily basis), such as

WorldView and GeoEye, but the high budget and narrow swath

hamper their application in timely CD to some extent, particu-

larly for large areas. Therefore, it is of great interest to apply CD

at both fine spatial and temporal resolutions (such as at Landsat

spatial resolution and MODIS temporal resolution) with com-

puter technologies, which is the objective of this paper. Note

that, in this paper, we considered the Landsat spatial resolution

(30 m) as “fine” relative to the MODIS spatial resolution (250

to 1000 m) and not in the absolute sense. This paper presents a

framework of fast subpixel mapping (SPM) algorithms for CD,

which borrows information from an available FRM. The rest of

the introduction section follows the line of techniques related to

subpixel resolution CD: existing spatiotemporal fusion, spectral

unmixing-based CD, SPM-based CD, and the proposed fast

SPM-based CD.
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A. Spatiotemporal Fusion

Spatiotemporal fusion techniques [6]–[10] have been de-

veloped to blend fine spatial but coarse temporal resolution

images with coarse spatial but fine temporal resolution images

to generate an image with both fine spatial and temporal resolu-

tions. Gao et al. [6] proposed STARFM to blend fine temporal

resolution information from a MODIS image and fine spatial

resolution information from a Landsat image. To enhance the

performance of STARFM for heterogeneous landscapes, an

enhanced STARFM was developed in [7]. For mapping forest

disturbance, STARFM was extended with a spatial and tem-

poral adaptive algorithm for mapping reflectance change that

uses multiple Landsat images and a temporally dense stack of

spatially coincident MODIS images [8]. In [9], sparse repre-

sentation was applied to characterize the corresponding rela-

tionship between structures in the known fine spatial resolution

Landsat images and the corresponding coarse spatial resolution

MODIS images, and the unknown fine spatial resolution image

was reconstructed through sparse coding. Song and Huang [10]

superresolved a coarse spatial resolution MODIS image with

sparse representation first, which was then fused with a known

Landsat image by high-pass modulation to obtain a Landsat

image on the prediction date.

The outputs of spatiotemporal fusion are remote sensing

images in units of reflectance, which can act as an intermediate

step toward CD: the resulting fused images can be further pro-

cessed by existing CD techniques in [1]–[5] to monitor changes

at a fine spatial and temporal resolution. Nevertheless, these

spatiotemporal fusion models are usually built under different

assumptions or for particular applications (e.g., mapping forest

disturbance in [8]). They are performed with the hypothesis

that there is fixed correspondence between the known fine

spatial resolution image and the corresponding coarse spatial

resolution image in the same area, and such correspondence

is used to predict the unknown fine resolution image on other

days. However, because of differences in the weather, atmo-

sphere, and some other factors (e.g., uncertain natural changes

and human activities) during data acquisition, it is sometimes

difficult to obtain a reliable relationship between the fine and

coarse resolution images, and in other cases, the relationship

may not be constant over a long period (i.e., is temporally

nonstationary).

B. Spectral Unmixing-Based CD

For the coarse spatial resolution image, each pixel covers a

large area and generally contains more than one type of land

cover class, that is, constitutes a mixed pixel. Mixed pixels

are a common problem caused by limited spatial resolution.

Mixed pixel analysis techniques, such as spectral unmixing

[11], have been studied for decades to extract land cover infor-

mation within mixed pixels. Spectral unmixing is a technique

to estimate the proportions of land cover classes within each

mixed pixel, and it has already been applied to CD [12]–

[14]. With spectral unmixing, the proportions of each class

in the coarse spatial but fine temporal resolution images can

be estimated. The unmixing outputs derived from time-series

images can inform users of by how much the proportion of each

land cover class increases or decreases during a given period

[15]. Employing spectral unmixing straightforwardly for CD,

however, one can only obtain quantitative information about the

changes at the pixel level (i.e., coarse spatial resolution) and

cannot determine detailed change information at a finer spatial

resolution, that is, changes in the subpixel classes.

Note that, with the availability of fine spatial resolution land-

use database LGN5, Zurita-Milla et al. [16] introduced an

unmixing-based data fusion approach to produce images with

the temporal resolution of MERIS and the spatial resolution of

Landsat. Different from the standard spectral unmixing, how-

ever, the objective of such unmixing is to estimate endmembers

(with the spectral resolution of MERIS) for each Landsat pixel,

which can be assumed to be pure. This unmixing-based fusion

produces fine spatial resolution images in units of reflectance,

and it is essentially a type of spatiotemporal fusion technique.

C. SPM-Based CD

This paper focuses on subpixel resolution CD algorithms,

which provide fine spatial resolution thematic maps of land

cover changes. The framework of these algorithms is based on

SPM. SPM (also termed superresolution mapping in remote

sensing) is a technique to predict a hard-classified land cover

map at a finer spatial resolution than that of the input coarse spa-

tial resolution image [17], [18]. It can be achieved through the

postprocessing of spectral unmixing: each coarse spatial reso-

lution pixel is divided into multiple subpixels, and their class

labels are predicted under the coherence constraint imposed by

the outputs of spectral unmixing (i.e., coarse resolution land

cover proportions).

SPM is often performed based on the spatial dependence

assumption; the land cover is deemed to be spatially dependent

both within and between pixels [17]. This hard classification

(but at the subpixel resolution) technique has received in-

creasing attention over the past decades, and many algorithms

have been developed. Some SPM algorithms involve iterative

optimization, including genetic algorithms [19], particle swarm

optimization [20], PSA [21]–[26], Hopfield neural networks

[27]–[30], and maximum a posteriori models [31]. They re-

quire several iterations and some time to approach a satisfactory

result. Recently, a new type of SPM algorithm, named the

soft-then-hard SPM (STHSPM) algorithm, has been introduced

and summarized in [32]. The STHSPM algorithm consists of

two steps: soft class value (between 0 and 1 for each class)

estimation and hard class (0 or 1 for each class) allocation for

each subpixel. Commonly used STHSPM algorithms include

the SPSAM [33], [34], back-propagation neural networks [35]–

[38], Kriging [39], indicator co-Kriging [40]–[42], and bilinear

and bicubic interpolation-based methods [43], [44]. This type

of SPM algorithm is noniterative (the iterations in the training

process in a back-propagation neural network are not consid-

ered, as the training process is always offline). Therefore, SPM

can be realized relatively quickly using STHSPM algorithms. In

addition, SPM can be also achieved by a contouring [45]–[47]

method and by a one-stage method that takes the raw image

in units of reflectance as input and does not rely on spectral

unmixing [48]–[51].

SPM is a promising technique for CD as it enables land

cover changes between coarse spatial but fine temporal res-

olution images to be monitored at a finer spatial resolution

and, thus, enables CD to be performed at both fine spatial and

temporal resolutions. In recent years, several studies have been
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conducted on this topic. Foody and Doan [52] studied forest

cover changes in Brazil at 30 m Landsat spatial resolution,

using two MERIS-like images (300 m). With the aid of a

former FRM, Ling et al. [53] utilized a PSA to predict the land

cover change at the subpixel resolution between bitemporal

images. However, as aforementioned, both the Hopfield neural

network and the PSA are optimization-based algorithms, which

are iterative and time consuming. Using bitemporal Landsat

and MODIS images, Li et al. [54] proposed a new Markov

random field model for subpixel resolution CD of forests in

the Brazilian Amazon basin. In this model, a temporal energy

function characterized by transition probabilities during the

studied period was added to the original Markov random field

for SPM [48], [49]. This model is also iterative, and moreover,

determination of the weights for the spatial and temporal energy

functions is an open problem. Thus, there is a need for the

development of real-time SPM algorithms for subpixel resolu-

tion CD in practical applications (e.g., CD at Landsat spatial

resolution and MODIS temporal resolution). The objective of

this paper was to develop fast SPM algorithms for subpixel

resolution CD.

D. Proposed Fast STHSPM-Based CD With a Fine Resolution

Map (FRM)

In this paper, for the first time, five fast STHSPM algorithms,

including bilinear interpolation-, bicubic interpolation-,

SPSAM-, Kriging-, and the recently developed RBF

interpolation-based SPM [55] methods, are proposed for

fine spatial and temporal resolution CD. In addition to the

low computational burden, these five algorithms also have the

advantage of not requiring prior class information on spatial

structure.

Similar to spatiotemporal fusion, in this paper, the afore-

mentioned five fast STHSPM algorithms for subpixel CD are

developed based on the availability of fine spatial but coarse

temporal resolution information. Unlike spatiotemporal fusion,

however, the objective of the five STHSPM algorithms was to

generate fine spatial resolution subpixel land cover maps, which

were then compared with observed land cover changes at both

fine spatial and temporal resolutions. We consider borrowing

information from the thematic land cover map of the known

fine spatial resolution image (i.e., FRM [53]), to decrease the

uncertainty in SPM of coarse resolution images and further

increase the accuracy of CD.

The main contributions of this paper are summarized as

follows.

1) A framework of fast STHSPM algorithms is proposed

for subpixel resolution CD. The fast STHSPM algorithm

uses fine spatial resolution thematic information from an

FRM for SPM of coarse images.

2) Different from [53] that only used FRM in the “former

FRM and latter coarse image” case, the FRM is also

considered in the “former coarse image and latter FRM”

case and subpixel resolution CD between coarse images.

The remainder of this paper is organized as follows.

Section II details the proposed five fast subpixel resolution CD

methods, including how to incorporate an FRM in SPM to

decrease the uncertainty in CD and the detailed methodology.

Section III provides experimental results for three types of

image, and Section IV further discusses the proposed methods.

Section V concludes this paper.

II. METHODS

A. Incorporating an FRM in SPM and Subpixel Resolution CD

As was done in [52], the subpixel resolution CD can be real-

ized straightforwardly by SPM of multitemporal coarse spatial

resolution images of the same area first and then comparing

the generated subpixel maps with observed changes. However,

the SPM problem is always underdetermined, with many mul-

tiple plausible solutions that can lead to an equally coherent

recreation of the input coarse proportion image. Applying SPM

to CD without any auxiliary information will result in many

errors in the form of noise. In fact, for SPM of a single-date

image, the accuracy can be enhanced by borrowing information

from images before it and after it in time [18]. Such a scheme

would be helpful to separate real changes from noise. Some

studies demonstrated how to borrow information from coarse

spatial resolution time-series images to enhance SPM [56]–

[58]. Those studies, however, focused on enhancing SPM and

were conducted with the assumption that there are no changes

between the utilized coarse spatial resolution images.

Ling et al. [53] presented a method on using FRM to enhance

subpixel resolution CD. In that study, however, only the histor-

ical FRM case was considered, and the subpixel resolution CD

was implemented between different spatial resolution images

(e.g., former Landsat and latter MODIS images). More im-

portantly, different from the iterative PSA in [53], noniterative

and fast subpixel resolution CD algorithms are proposed in this

paper.

This paper extends the utilization of FRM to the following

two cases.

1) The data acquisition date of the FRM is after that of the

coarse spatial resolution image. Sometimes, users want to

detect changes from a date earlier than that of the FRM,

and only a coarse spatial resolution image is available on

that date. It is, therefore, necessary to develop methods

for SPM of former coarse spatial resolution images with

the aid of a latter FRM.

2) Subpixel resolution CD is implemented between images

with the same coarse spatial resolution, and the SPM

results of both coarse images are obtained with the aid of

the FRM. For CD during a certain period, on both the start

and end days, there may be only coarse spatial resolution

images. To detect changes at fine spatial resolution during

that period necessitates the construction of SPM methods

for those coarse resolution images.

The core idea of enhancing subpixel resolution CD with an

FRM is to use the spatial distribution of subpixel classes in the

FRM to modify the SPM results of coarse spatial resolution

images on other dates. Specifically, the spectral unmixing-

derived class proportion of each class within each coarse pixel

is compared with the corresponding one (obtained by degra-

dation) in the available FRM. According to the differences

in the proportions, some locations at subpixel resolution are

determined to be changed or unchanged for the class, and

correspondingly, some subpixels are considered to belong or

not belong to the class.
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Fig. 1. Illustration of incorporating an FRM in SPM, where a single coarse
pixel and class k is considered.

Suppose Pj (j = 1, 2, . . . ,M , M is the number of pixels in

the coarse image) is a coarse pixel and Fk(Pj) is the coarse

proportion of class k (k = 1, 2, . . . ,K, K is the number of land

cover classes in the studied area) for pixel Pj . Let S (S > 1) be

the spatial resolution ratio between the coarse image and the

FRM. The steps of incorporating the FRM in SPM are given

in the following. Meanwhile, an example is provided in Fig. 1

to facilitate the illustration. In Fig. 1, a single coarse pixel and

land cover information for class k is considered.

1) The FRM is degraded via an S by S mean filter (i.e.,

every S by S fine pixels are degraded to a coarse pixel)

to synthesize the K coarse proportion images and the

proportion for class k at pixel Pj , denoted by Fk_H(Pj).
2) The differences in proportions ∆k(Pj) are calculated

∆k(Pj) = Fk(Pj)− Fk_H(Pj). (1)

3) The changed and unchanged subpixel locations for each

class are determined. The following three cases are taken

into consideration.

a) If ∆k(Pj) = 0, there is no change for class k, and the

spatial distribution of class k within Pj in the coarse

image is the same as that in FRM (e.g., the gray area

in Fig. 1).

b) If ∆k(Pj) > 0, the locations of fine pixels for class

k in the FRM (e.g., the gray area in Fig. 1) are still

assigned to class k in the coarse image, and some

subpixels at the remaining locations are changed to

class k.

c) If ∆k(Pj) < 0, all subpixels for class k in the coarse

image are within the area for class k in the FRM, and

some subpixels within that area are changed to other

classes.

4) The aforementioned steps are implemented for all M
coarse pixels and all K classes in the coarse image to

generate the SPM result.

As shown in Fig. 1 and the steps aforementioned, the avail-

able FRM can be applied to SPM of the coarse image that is

acquired either before or after the FRM. Moreover, the FRM

Fig. 2. CD between multitemporal coarse images with FRM.

can be used for SPM of multitemporal coarse images (see

Fig. 2). Finally, the generated SPM results can be compared

for the purpose of fine spatial and temporal resolution CD.

The critical step in utilizing an FRM in SPM is to determine

which subpixels at the remaining locations are changed to class

k (k = 1, 2, . . . ,K) when ∆k(Pj) > 0 and which subpixels

that are within the area for class k in the FRM are changed to

other classes when ∆k(Pj) < 0. In this paper, those subpixels

are found using the five fast STHSPM algorithms.

B. Fast STHSPM Algorithms

The STHSPM algorithm is a type of SPM algorithm that

first estimates the soft class values and then allocates a hard

class to each subpixel. This paper focuses on five noniterative

and fast STHSPM algorithms: bilinear interpolation, bicubic

interpolation, SPSAM, Kriging, and the recently developed

RBF interpolation methods [55].

Similar to that in Section II-A, S denotes the zoom factor

for SPM (i.e., each coarse pixel is divided into S by S sub-

pixels). Suppose pj,i is the subpixel within coarse pixel Pj and

Fk(pj,i) (0 ≤ Fk(pj,i) ≤ 1) is the soft class value for class k
at subpixel pj,i. With the coarse proportion images as input, the

task of soft class value estimation is to estimate {Fk(pj,i)|i =
1, 2, . . . , S2; j = 1, 2, . . . ,M ; k = 1, 2, . . . ,K} at the target

fine spatial resolution. The soft class values are estimated based

on the assumption of spatial dependence as described above for

the STHSPM algorithms. The bilinear and bicubic interpolation

methods are widely available in packages like MATLAB, R,

IDL, and some publicly available programming libraries. Here,

the principles of SPSAM, Kriging, and RBF interpolation for

soft class value estimation are introduced briefly.

SPSAM assumes that, for the same class, spatial attraction

exists between subpixels and their neighboring coarse pixels.

The soft attribute value is calculated in terms of attraction

Fk(pj,i) =
1

N

N
∑

n=1

Fk(Pn)

d(Pn, pj,i)
(2)
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where N is the number of neighboring coarse pixels, d(Pn, pj,i)
is the Euclidean distance between the centroids of pixel Pn and

subpixel pj,i, and Fk(Pn) is the coarse proportion of class k at

neighboring pixel Pn.

In Kriging-based SPM, the soft attribute value is a weighted

linear combination of N observed values, i.e.,

Fk(pj,i) =
N
∑

n=1

βnFk(Pn) (3)

where βn is a weight that is estimated by solving the Kriging

system [59].

The soft class value predicted by RBF interpolation is

Fk(pj,i) =

N
∑

n=1

λk(Pn)φ(Pn, pj,i) (4)

in which φ(Pn, pj,i) is a basis function that reflects the spatial

relation between subpixel pj,i and pixel Pn, and λk(Pn) is the

coefficient of class k for coarse pixel Pn. The basis function

takes the Gaussian form

φ(Pn, pj,i) = e−d2(Pn,pj,i)/a
2

(5)

where a is a parameter. The coefficients λk(P1), λk(P2), . . . ,
λk(PN ) are calculated by
⎡

⎢

⎣

φ(P1, P1) φ(P2, P1) · · · φ(PN , P1)
φ(P1, P2) φ(P2, P2) · · · φ(PN , P2)

· · · · · · · · · · · ·
φ(P1, PN ) φ(P2, PN ) · · · φ(PN , PN )

⎤

⎥

⎦

×

⎡

⎢

⎢

⎣

λk(P1)
λk(P2)

...

λk(PN )

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

Fk(P1)
Fk(P2)

...

Fk(PN )

⎤

⎥

⎥

⎦

(6)

where the elements in the first matrix are calculated in the same

way as for (5). The preliminary soft attribute values obtained in

(2)–(4) are normalized to fall within [0, 1].

Let Bk(pj,i) be the binary class value

Bk(pj,i) =

{

1, if subpixel pj,i belongs to class k
0, otherwise.

(7)

For a particular coarse pixel, for example, Pj , the number of

subpixels for class k, i.e., Ek(Pj), is calculated by

Ek(Pj) = round
(

Fk(Pj)S
2
)

(8)

where round(•) is a function that takes the integer nearest to

•. The sum of the numbers of subpixels for all K classes

is S2. The hard class allocation step of the STHSPM algo-

rithm aims to predict {Bk(pj,i)|i = 1, 2, . . . , S2; j = 1, 2, . . . ,
M ; k = 1, 2, . . . ,K}, according to the soft class values and

class proportions constraint in (8).

This paper employs a recently developed approach that allo-

cates classes for subpixels in units of classes (UOC) [32]. UOC

is processed on the fine spatial resolution soft class value map

of each class in turn and has the unique advantage of taking the

intraclass spatial dependence into consideration while allocat-

ing classes. This class allocation method is fast and reproduces

exactly the coarse proportion data. Specifically, a visiting order

of all classes is specified by comparing the Moran’s I of all K
classes, and the classes with larger indices are visited first, as

proposed in [32]. For each class, the index can be estimated

Fig. 3. Example to illustrate the adjustment (adjustment I) of soft class values
to avoid class allocation conflict between classes. (a) FRM for the blue and
red classes. (b) Class allocation result for the red class without adjustment I.
(c) Class allocation result for the red class with adjustment I.

directly by using the proportion image of the given class.

According to the visiting order of classes, the subpixels for the

visited class are selected by comparing the soft class values for

this class, and the subpixel with the largest soft class value is

selected before those with smaller soft class values. The process

for this class is repeated until all subpixels for it [the number

is calculated by (8)] are completely exhausted. The remaining

subpixels are then used for the allocation of the next class.

C. STHSPM-Algorithm-Based CD With an FRM

For the UOC-based class allocation method in the STHSPM

algorithm, a subpixel map of each class is generated in turn, and

these maps are integrated to produce the SPM result. Suppose

that the soft class values have been already estimated by the

STHSPM algorithms. Using an FRM as auxiliary information

in STHSPM, for class k (k = 1, 2, . . . ,K), the subpixel map

is predicted by comparison of the soft class values at the

remaining locations (e.g., outside the gray area in Fig. 1) when

∆k(Pj) > 0 and the soft class values within the area for class k
in the FRM (e.g., the gray area in Fig. 1) when ∆k(Pj) < 0.

Subpixels with larger soft class values for class k are more

likely to be allocated to class k. During the process, two

constraints inherently imposed by the SPM problem need to be

satisfied.

1) Each subpixel should be assigned to only one class.

2) The number of subpixels for each class should be consis-

tent with the coarse proportion data [see (8)].

To meet the aforementioned constraints, two adjustments,

both of which are essential for UOC-based class allocation

when using an FRM, are presented.

Adjustment I: Within a coarse pixel, in addition to ∆k(Pj) >
0, sometimes there are other classes (e.g., class k′) with

∆k′(Pj) ≥ 0. Similarly, the corresponding locations in the

FRM for class k′ should still be assigned to this class in

the coarse image. For the ∆k(Pj) > 0 case, at the remaining

locations, the subpixels with the largest soft class values for

class k may be those that should be assigned to class k′. Fig. 3

gives an example to illustrate this issue. Let us consider two

classes (i.e., red and blue) within a single coarse pixel, and

∆Red = 4/36, and ∆Blue > 0. The red class is assumed to

be visited before the blue class. Fig. 3(a) is the FRM for the

two classes. By zooming with S = 6, four subpixels should be

allocated to the red class outside the red area when using the

FRM. According to the soft class values in Fig. 3(b), the four

subpixels with the largest values (marked in red) are assigned

to the red class. As ∆Blue > 0, however, all six blue subpixels
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Fig. 4. Example to illustrate the adjustment (adjustment II) of visiting order
of classes. (a) FRM for the blue and red classes. (b) Class allocation result for
the red class without adjustment II. (c) Class allocation result for the red class
with adjustment II.

should not change and should still be retained for the blue class

during class allocation for the red class. In this case, the two

subpixels with values 0.9 and 0.95 should not be assigned to

the red class. To avoid such conflict, adjustment I is applied:

the soft class values for the red class in the blue area need to

be suppressed to be a very small value (any value less than 0)

to ensure that the blue subpixels will not be allocated to the red

class during class allocation. Meanwhile, the soft class values

for the red class in the red area can be also modified to a very

large value (any value greater than 1). After the adjustment, as

shown in Fig. 3(c), no blue pixels are allocated to the red class,

but another two subpixels with values 0.65 and 0.6 (marked in

red) are allocated instead.

Adjustment II: Another example is provided in Fig. 4 to

facilitate description. Again, the red and blue classes within

a single coarse pixel are considered, and ∆Red = 4/36, and

∆Blue = −1/36. Assume that the calculated Moran index of

the red class is larger than that of the blue class and that

the red class should be visited before the blue class. With

S = 6, four subpixels should be allocated to the red class

outside the red area in Fig. 4(a). Fig. 4(b) marks the four

soft class values of the four added subpixels for the red class.

However, ∆Blue = −1/36 means that, of the six blue subpixels,

five of them should still belong to the blue class. Therefore,

at least one of the two subpixels with values 0.9 and 0.95

should not be assigned to the red class. To address this issue,

adjustment II is applied: any class (e.g., class k′) with

∆k′(Pj) < 0 needs to be visited before the class (e.g., class k)

with ∆k(Pj) ≥ 0. Fig. 4(c) shows the class allocation result for

the red class, where the subpixel with a value of 0.95 is assumed

not to belong to the blue class (according to the soft class values

for the blue class), and the four added subpixels for the red class

are marked in red.

The implementation steps of the proposed STHSPM-based

algorithm for CD with an FRM are given here. Let us first take

the former FRM (at t0) and latter coarse image (at t1) case as

an example.

Step 1) Spectral unmixing is conducted on the coarse image

at t1, and the outputs are a set of coarse propor-

tion images of classes (i.e., {Fk(Pj)|j=1, 2, . . . ,
M ; k = 1, 2, . . . ,K}).

Step 2) The coarse proportion images are downscaled with

any of the five STHSPM algorithms, and the out-

puts are soft class values at the target fine spa-

tial resolution (i.e., {Fk(pj,i)|i = 1, 2, . . . , S2; j =
1, 2, . . . ,M ; k = 1, 2, . . . ,K}).

Fig. 5. Example of the whole flowchart of incorporating an FRM in STHSPM,
where the deep pink subpixels are those not allocated to the green or yellow class.

Step 3) Using the available FRM, UOC-based class alloca-

tion for the STHSPM algorithm is implemented to

produce an SPM result at t1, where adjustment I and

adjustment II are essential.

Step 4) The predicted SPM result at t1 is compared with the

FRM at t0 in terms of class labels for CD analysis.

For the former coarse image (at t0) and latter FRM (at

t1) case, the steps are the same as listed above. With respect

to the subpixel resolution CD between coarse images at, for

example, t1 and t2, the FRM at another time (e.g., t0) is used

for SPM of both coarse images independently, according to the

aforementioned steps. The generated SPM results at t1 and t2
are finally compared for CD, as shown in Fig. 2. Fig. 5 exhibits

an example of the whole flowchart of the proposed STHSPM

algorithm with an FRM. The whole process does not involve

any iteration.

III. EXPERIMENTS

Three datasets were used in three experiments for validation

of the proposed five subpixel resolution CD methods. For

the SPSAM and Kriging methods, the window sizes of the

neighborhood were set to 3 and 5, as suggested by the repeated

test and relevant literature [32], [41]. The parameters of the

RBF method were set according to the parameter analysis in

[55]: the parameter a in the basis function [see (5)] was set to

10, and the window size of the neighborhood was set to 5.

A. Experiment on Synthetic Coarse Proportion Images

1) Dataset: To control the analysis, a synthetic dataset was

used in this experiment to test the proposed five STHSPM-

algorithm-based CD methods with an FRM. Specifically, three

Landsat images with 30 m spatial resolution acquired on three

different days were classified to produce three 30 m land cover

maps. One of the maps was used as the FRM. The coarse pro-

portion images were created by degrading the other two 30 m
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Fig. 6. Three Landsat images in Shenzhen, China, on three dates. (Left
to right) t0 on November 20, 2001, t1 on November 7, 2002, and t2 on
November 23, 2005. (Line 1) Color image (bands 3, 2 and 1 as RGB).
(Line 2) Hard-classified land cover maps.

Fig. 7. Reference change maps. (a) From t0 to t1. (b) From t1 to t2.

classified maps via an S by S mean filter. SPM methods

were implemented to recreate the 30 m land cover maps, by

zooming in the proportion images with a zoom factor S. The

generated SPM results were compared with the FRM, or they

were mutually compared for CD analysis. The advantages of

using synthetic coarse images are that the input proportions are

error free and represent greater control in the test. Although this

scheme does not represent a sufficiently real test of SPM and

CD algorithms, the reference map is known perfectly and can

be used to assess the accuracy of SPM prediction and CD. The

test is directed at the SPM algorithm itself, which is appropriate

at the method development stage [17].

The three 30 m Landsat images cover an area in Shenzhen,

China. Registration and relative radiometric correction were

conducted on the Landsat images. The selected study area is

a heterogeneous region with 250 × 250 pixels and mainly

covers four land cover classes: vegetation, forest, urban, and

water. The three images were acquired on November 20, 2001

(t0), November 7, 2002 (t1), and November 23, 2005 (t2),
respectively. The images were classified with a supervised

neural network to generate the 30 m reference land cover maps

(provided by Dr. Y. Xu). The classification accuracy for all t0,

t1, and t2 reference maps was over 90%. Fig. 6 shows the three

images and their corresponding classified land cover maps used

as reference. The reference change maps from t0 to t1 and from

t1 to t2 are shown in Fig. 7, in which “CA to CB” means that

the pixel belongs to class A at the former time but changes to

class B at the latter time.

2) Benefits of Using an FRM in CD: The changes from t0
to t1 were tested here. The 30 m reference land cover map at t0
was used as an FRM, and the reference map at t1 was degraded

to synthesize coarse proportion images at t1. The 30 m map at

t1 was degraded with five mean filters, namely, 5 × 5, 8 × 8,

Fig. 8. Proportion images of the four classes at t1. (a) Vegetation. (b) Forest.
(c) Urban. (d) Water.

Fig. 9. SPM and CD results of the five STHSPM algorithms (from t0 to t1,
with the t0 reference map as the FRM (S = 8)).

10 × 10, 12 × 12, and 15 × 15 pixels, to simulate proportion

images with spatial resolutions of 150, 240, 300, 360, and

450 m. The five STHSPM algorithms were applied to restore

the 30 m land cover map and then compared with the t0
reference map for CD.

Fig. 8 shows the proportion images of four classes at 240 m

spatial resolution, comparable with the spatial resolution of

medium spatial resolution systems such as MODIS. As can be

observed, the land cover information presented in these 240 m

images is limited and insufficient for CD analysis. With these

images as input and a zoom factor S = 8, the five STHSPM

algorithms were implemented. The results are given in Fig. 9,

where results of both the original version (i.e., without an FRM)

and new version (i.e., with an FRM) algorithms are provided.

The CD map for each method is also exhibited. For the five

original STHSPM algorithms without FRM, there are many
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TABLE I
SPM ACCURACY (%) OF t1 IMAGE (t0 REFERENCE MAP AS THE FRM) FOR THE FIVE STHSPM ALGORITHMS

Fig. 10. CD accuracy of the five STHSPM algorithms (from t0 to t1, with the
t0 reference map as the FRM).

linear artifacts and isolated pixels in the generated 30 m land

cover maps, particularly for the forest and urban classes. Conse-

quently, many pixels are incorrectly identified as changed pixels

when compared with the 30 m map at t0 time, as shown in the

CD results in the second column in Fig. 9. Focusing on the maps

of the new version STHSPM algorithms in the third column,

however, we can see with the aid of the FRM that the generated

SPM results are much closer to the reference map at t1 in Fig. 6.

The elongated features of urban class are well restored, and

the boundaries of each class are smoother than those for the

original STHSPM algorithms. Correspondingly, while referring

to Fig. 7(a), the CD maps of STHSPM algorithms with an FRM

in the fourth column are found to be very close to the reference

CD map (see, for example, the distribution of the “vegetation to

urban” and “water to vegetation” classes). Visual comparison

confirms the benefit of using an FRM in STHSPM-algorithm-

based CD.

Table I gives the SPM accuracy of the five STHSPM algo-

rithms for all five zoom factors. The pure coarse resolution

pixels in Fig. 8 were ignored in the accuracy statistics as

pure pixels increase the accuracy without providing any useful

information on the performance of the SPM methods [19], [32].

As concluded from the table, using an FRM, the SPM accuracy

increases noticeably. For example, the SPM accuracy of the five

STHSPM algorithms increases by around 4% for S = 5 and

around 9% for S = 15.

The OA of CD was calculated from the full transition error

matrix and is provided in Fig. 10. From this figure, three ob-

servations can be made. First, for all five zoom factors, greater

CD accuracy is produced when the FRM is incorporated in the

STHSPM algorithms. This is attributed to the fact that the FRM

decreases the inherent uncertainty in SPM, as shown in Table I.

Second, as S increases, no matter whether the FRM is used or

not, the CD accuracy of the five STHSPM algorithms decreases.

This is because the complexity of the SPM task increases when

S becomes larger, which propagates to the post CD analysis.

Third, the accuracy gain of using the FRM increases as S
increases. More precisely, the accuracy gain increases stably

from 2% for S = 5 to 8% for S = 15. Through the above

experiments, it was shown that using an FRM can increase SPM

Fig. 11. CD accuracy of the five STHSPM algorithms (from t0 to t2, with the
t0 reference map as the FRM).

Fig. 12. CD accuracy gain by using FRM for t0 to t1 and t0 to t2 cases (with
the t0 reference map as the FRM).

accuracy and the subpixel CD accuracy for all five STHSPM

algorithms.

3) CD for a Long Period: Here, the changes from t0 to t2
are tested for a longer period (i.e., four years) than from t0 to

t1. The 30 m t0 reference map was used as the FRM, and the

coarse proportion images at t2 were synthesized by degrading

the 30 m t2 reference map. Again, five zoom factors were

analyzed: S = 5, 8, 10, 12, and 15. The CD accuracy of the

five STHSPM algorithms without an FRM and with an FRM

is shown in Fig. 11. Similarly, with an FRM, the STHSPM

algorithms were able to produce greater CD accuracy for all

zoom factors. The accuracy of all ten methods decreases as

S increases, but the five methods without an FRM decreases

more rapidly. The accuracy gain by using an FRM in this

experiment was compared with that in the last experiment. As

shown in Fig. 12, for each zoom factor, the accuracy gains for

all five STHSPM algorithms from t0 to t2 are, as expected,

smaller than for t0 to t1. For example, for S = 5, with the

aid of the FRM, for CD from t0 to t2, the accuracy increases

by less than 1%, whereas for CD from t0 to t1, the accuracy

increases by over 2%. For larger zoom factors, the differences

between the two periods are even larger, and when S = 15, the

differences are greater than 2%. As changes in land cover can be

complicated, the uncertainty in CD increases for longer periods

correspondingly. The results in this experiment reveal that the

FRM imparts greater benefits for SPM of coarse images that are

acquired on temporally proximate days.

4) CD for the Former Coarse Image and Latter FRM Case:

In the previous two experiments, the acquisition date of the

FRM precedes that of the coarse images. As mentioned in

Section II-A, it is necessary to develop SPM methods for a

preceding coarse spatial resolution image (i.e., no fine spatial
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Fig. 13. CD accuracy of the five STHSPM algorithms (from t0 to t1, with the
t1 reference map as the FRM).

resolution images are available at the former time) with the aid

of a latter FRM. In this experiment, we test the case where

the FRM was acquired after the coarse images. The changes

from t0 to t1 were tested in this experiment, but the 30 m

t1 reference map was used as the FRM. The former coarse

proportion images at t0 time were synthesized by degrading

the 30 m t0 reference map. Five zoom factors, namely, 5, 8, 10,

12, and 15, were tested. The generated SPM results of the five

STHSPM algorithms were than compared with the latter 30 m

t1 map for CD.

The CD accuracy for all cases (i.e., two versions of five

STHSPM algorithms with five zoom factors) is given in Fig. 13.

It can be observed that, for all STHSPM algorithms with the

FRM at a latter time, greater accuracy can still be obtained for

each zoom factor. This illustrates that the data acquisition date

order of coarse images and the FRM is not restricted for enhanc-

ing subpixel resolution CD, and the proposed five STHSPM-

algorithm-based CD methods with an FRM are also applicable

to an earlier coarse resolution image and latter FRM case.

It is worth noting that the accuracy of all cases with FRM in

Fig. 13 is lower than the corresponding cases in Fig. 10, where

the CD accuracy from t0 to t1 is also presented. For S = 5,

with FRM, the accuracy of each STHSPM algorithm in Fig. 13

is around 1.5% lower than that in Fig. 10, whereas for S = 15,

the difference is around 2%. The reason for this phenomenon

is that SPM of the t0 coarse images is conducted in Fig. 13,

whereas SPM of the t1 coarse images is conducted in Fig. 10.

As shown in the 30 m t0 and t1 reference maps in Fig. 6, in

some areas (such as the center area), there are small blocky

features for the forest class in the t0 reference map, but they

changed to vegetation pixels in the t1 reference map. In the

t1 coarse image, coarse pixels in these areas are pure pixels,

but mixed pixels in the t0 coarse image. Using the t1 map as

the FRM for SPM of the t0 coarse images, the SPM results

for the mixed pixels are still the same as those without the

FRM. Therefore, pure pixels in the degraded FRM cannot help

to increase the accuracy of SPM of the corresponding mixed

pixels in other coarse resolution images.

5) CD Between Coarse Images: From Section III-A2–A4,

CD was carried out between fine and coarse spatial resolution

images, for the case where a fine spatial resolution image is

available on either the start or the end day during the studied

period. Different from those three experiments, the subpixel

resolution CD here was implemented between coarse resolution

images, for the case where there is no fine spatial resolution

image on the start or the end day during the studied period.

Specifically, the 30 m t1 and t2 reference maps were degraded

to synthesize the coarse proportion images at t1 and t2. Five

zoom factors (i.e., S = 5, 8, 10, 12, and 15) were considered.

The t0 reference map was used as the FRM for the SPM of

both the t1 and t2 coarse resolution images. Finally, changes

between t1 and t2 were detected.

Fig. 14. CD results of the RBF interpolation-based SPM algorithm (from t1
to t2, with the t0 reference map as the FRM).

Fig. 15. CD accuracy of the five STHSPM algorithms (from t1 to t2, with the
t0 reference map as the FRM).

Fig. 14 shows the 30 m CD results of one of the five

STHSPM algorithms (i.e., RBF interpolation-based SPM).

Comparing the CD results in Fig. 14 with the reference in

Fig. 7(b), we can clearly observe that without the FRM, the

results contain many errors propagated from the SPM results

of the t1 and t2 coarse images. Particularly, for a large zoom

factor (e.g., S = 15), many changed pixels in the CD result

appear incorrectly as circular features. Using an FRM for both

the t1 and t2 coarse images, the generated CD results seem

more accurate while referring to Fig. 7(b), and the advantages

become more obvious as S increases. A quantitative evaluation

for all five STHSPM algorithms is provided in Fig. 15. Con-

sistent with visual assessment, the FRM can help to increase

the CD accuracy, and the increase is also obvious for the other

four STHSPM algorithms. More precisely, the accuracy gain of

using an FRM for the five STHSPM algorithms increases from

about 2% for S = 5 to 8% for S = 15. This subsection, thus,

demonstrates that it is helpful to use an FRM in CD between

coarse images.

6) Comparison With Other Methods: The proposed five

STHSPM algorithms with an FRM were compared with the

PSA-based CD with an FRM [53]. To illustrate the accuracy

gain of subpixel resolution CD, a conventional pixel-based

CD method was compared with the proposed algorithms, in

which SPM results were produced by a pixel-based classifica-

tion (HC), and CD was performed by comparing the former

and latter fine spatial resolution maps. In the HC method, all

subpixels within a coarse pixel were assigned to the class with

the largest proportion. The changes from t0 to t1 (with the

t0 reference map as the FRM) and from t1 to t2 (with the t0
reference map as the FRM) were tested for comparison of the

total of seven CD methods.

The CD accuracy of the seven methods is exhibited in

Fig. 16. Obviously, the accuracy of the six SPM algorithms
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Fig. 16. CD OA (%) of the six SPM algorithms with an FRM (with the t0
reference map as the FRM) and the conventional pixel-based HC approach.
(a) From t0 to t1. (b) From t1 to t2.

Fig. 17. Computing time (in seconds) of the six SPM algorithms with an FRM
(with the t0 reference map as the FRM). (a) From t0 to t1. (b) From t1 to t2.

is higher than that of the HC-based CD method. Generally,

with an FRM, all five STHSPM algorithms were found to

have very close accuracy for each zoom factor (see the two

subfigures). From the bar charts in Fig. 16(a), it can be seen that

PSA tends to achieve higher accuracy than the five STHSPM

algorithms for S = 5, but for larger zoom factors, there are

minor differences between the six methods. With respect to the

CD accuracy for t1 to t2 in Fig. 16(b), PSA produces slightly

lower accuracy than the five STHSPM algorithms.

Fig. 17 shows the computing time of the six SPM methods.

All methods were tested on an Intel Core 2 processor (1.80-GHz

Duo central processing unit, 2.00-GB random access memory)

with MATLAB version 7.1. For CD from t0 to t1, SPM was

conducted only on the t1 coarse images, whereas from t1 to t2,

SPM was conducted on both the t1 and t2 coarse images. Thus,

the computing time in Fig. 17(b) doubles that in Fig. 17(a) in

general. Note that the computing time of PSA decreases as

S increases. This is because PSA swaps subpixels within the

coarse pixel and it is implemented in units of coarse pixels.

The computing efficiency of PSA is mainly related to the

size of coarse image and not affected much by the number

of subpixels within each coarse pixel. For S = 5, 8, 10, 12,

and 15 in the experiments, the size of the coarse images (by

degradation of the 250 × 250 pixel reference maps) are 50 ×
50, 31 × 31, 25 × 25, 20 × 20, and 16 × 16, respectively.

The decreasing size leads to the decreasing computing time

of PSA as a result. Examining the results in Fig. 17, we find

that the five STHSPM algorithms are faster than PSA and that

the bilinear, bicubic, and SPSAM methods are much faster. All

five STHSPM algorithms require less than 10 s for CD from

t0 to t1 and less than 20 s for CD from t1 to t2. With respect

to the bilinear, bicubic, and SPSAM methods, less than 5 s is

required in all cases in Fig. 17. The high efficiency of the five

STHSPM algorithms is attributed to their noniterative character.

This validates that the five STHSPM algorithms with an FRM

are fast for subpixel CD applications.

Fig. 18. Two Landsat images covering the same area in Liaoning, China.
(a) False color image (bands 4, 3, and 2 as RGB) in August 2001 (t0). (b) False
color image (bands 4, 3, and 2 as RGB) in August 2002 (t1). (c) Hard-classified
land cover map at t0 time, where blue, red, yellow, and green denote classes C1,
C2, C3, and C4, respectively. (d) CD reference map from t0 to t1.

B. Experiment on Degraded Multispectral Images

1) Dataset: The data used in this experiment are two 30 m

multispectral Landsat images. This experiment is designed to

consider the inevitable uncertainty in spectral unmixing, which

can propagate to the post SPM and CD processes. One 30 m

multispectral Landsat image was degraded band by band via an

S by S mean filter to simulate a coarse multispectral image.

Spectral unmixing was then conducted on the coarse images to

generate proportion images, which were used as the input of

SPM. With the zoom factor S, SPM was performed to predict

the 30 m fine spatial resolution map. The hard-classified land

cover map of the other 30 m multispectral Landsat image was

used as the FRM. With respect to the reference change map, it

was obtained by comparison of the two hard-classified maps of

the corresponding 30 m multispectral images.

The two 30 m multispectral images were acquired by the

Landsat-7 enhanced thematic mapper plus sensor in August

2001 (t0) and August 2002 (t1) in the Liaoning Province

of China. The t0 image was registered to the t1 image, and

then, the histogram matching method was implemented for the

relative radiometric correction [60]. The studied area covers

200 × 200 pixels, and four land cover classes can be identified,

which are denoted by C1, C2, C3, and C4. The two images are

shown in Fig. 18(a) and (b), respectively. A supervised neural

network was applied to the two Landsat images to generate the

30 m reference land cover maps. The classification accuracy for

the two reference maps was over 90%. The t0 and t1 reference

maps and the reference change map (produced by comparing

t0 and t1 reference maps) are shown in Fig. 18(c) and (d),

respectively.

2) Results: The t1 30 m multispectral Landsat image was

degraded with an 8 × 8 pixel mean filter to produce a 240 m

MODIS-like image. Fully constrained least squares linear spec-

tral mixture analysis [61] has a simple physical meaning and is

convenient in application. Thus, it was employed for spectral

unmixing in the experiments. The generated proportion images

of the four classes are exhibited in Fig. 19. The five STHSPM

algorithms were implemented to recreate the 30 m land cover

map at t1. In the experiments, the t0 reference map in Fig. 18(c)

was used as the FRM.

Fig. 20 gives the SPM and CD results of the RBF method.

To illustrate the influence of spectral unmixing, the results for

the degraded land cover map (the experimental procedure is the

same as in Section III-A) are also presented in Fig. 20 for visual

comparison. Checking the results in this figure, we see that, due
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Fig. 19. Proportion images of the four classes at t1. (a) C1. (b) C2. (c) C3.
(d) C4.

Fig. 20. SPM and CD results of the RBF interpolation-based SPM algorithm.
(Line 1) Degraded Landsat image. (Line 2) Degraded land cover map.

TABLE II
CD ACCURACY (%) (WITH THE t0 REFERENCE

MAP AS THE FRM) IN EXPERIMENT 2

to the errors imposed by spectral unmixing, some scattering

of pixels exists in the SPM results and the corresponding CD

maps contain some noise. Using the FRM, for both cases, the

produced SPM results seem more continuous, and more linear

features are restored, particularly for class C2 (in red), and the

CD results are closer to those in Fig. 18(d). Table II lists the OA

of CD (calculated from the full transition error matrix) of all

five STHSPM algorithms for both the degraded multispectral

image and degraded land cover map cases. As shown in the

table, because of the errors from spectral unmixing, when

compared with the degraded land cover map case, the CD

accuracy for the degraded multispectral image case decreases

by around 15%. Nevertheless, for both cases, using the FRM,

the proposed five STHSPM algorithms are able to produce

greater CD accuracy. Particularly, for the degraded multispec-

tral image case, the CD accuracy of five STHSPM algorithms

increased from 77.1% to 78.1%. The experiment here suggests

that FRM is also helpful for the subpixel resolution CD case

where inherent uncertainty in spectral unmixing exists.

Fig. 21. Landsat–MODIS images (bands 4, 3, and 2 as RGB). (a) Landsat
image acquired in July 1988. (b) Landsat image acquired in July 2005.
(c) MODIS image acquired in July 2005.

TABLE III
CD ACCURACY (%) FOR THE REAL LANDSAT–MODIS IMAGES

C. Experiment on Real Landsat–MODIS Images

In this experiment, a set of Landsat–MODIS images, includ-

ing two Landsat images and one MODIS image, was used to

test the proposed subpixel resolution CD algorithms for a real

case. The study area is a 67.5 km × 67.5 km tropical forest

area in Brazil. One Landsat image acquired in July 1988 (t0)
was used as the source of the FRM, and the other Landsat

image acquired in July 2005 (t1) was used as the reference.

The five STHSPM algorithms were implemented on the one

single eight-day surface reflectance MODIS image acquired in

July 2005 to predict the SPM result with the Landsat spatial

resolution (i.e., 30 m) at t1 time. The SPM result at t1 time was

compared with the former FRM for CD from t0 to t1.

The original MODIS image has a spatial resolution of 463 m

and was reprojected into the Universal Transverse Mercator

coordinate system and then resampled to a spatial resolution of

450 m using the nearest neighbor algorithm [13]. Registration

was conducted on the two Landsat images, and the errors were

less than 0.5 pixel. The zoom factor of SPM for the MODIS

image was set to 15 to predict a land cover map at 30 m spatial

resolution. The spatial size of the MODIS image is 150 × 150

pixels, and the Landsat image is 2250 × 2250 pixels. Fig. 21

shows the three images.

The MODIS image was unmixed with fully constrained least

squares linear spectral mixture analysis [61]. For the studied

tropical forest area, proportion images of two main classes,

i.e., forest and nonforest, were used as input to the SPM. For

each 30 m Landsat image, the pixels were supposed to be

pure materials, and an unsupervised k-means classifier was

employed to generate the 30 m fine spatial resolution thematic

map. The 30 m t0 map was used as the FRM in this experiment,

and the reference change map was produced by comparing the

30 m t0 and t1 reference maps.

Table III gives the CD accuracy for the five STHSPM algo-

rithms. As shown in the table, without FRM, the CD accuracy

of each STHSPM algorithm is around 72.2%. Incorporating

FRM in SPM, all five algorithms produce greater accuracy,

and the accuracy gains are around 1.3%. To study the effect

of errors from spectral unmixing and the reference, the 30 m

t1 reference map was degraded with a factor of 15 to simulate

the spectral unmixing result at 450 m spatial resolution. The

CD accuracy of the five STHSPM algorithms resulting from
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such a design is over 95%, regardless of the use of FRM. For

the test of real Landsat–MODIS images in this experiment, due

to the uncertainty in spectral unmixing (originating from the

point spread function of the MODIS sensor and the unmixing

algorithm itself, etc.) and the reference maps (both the FRM

and the t1 reference map), the CD accuracy of the proposed

algorithms decreases by 23%.

IV. DISCUSSION

A. Differences Between the Proposed Methods and

Spatiotemporal Fusion Techniques

As mentioned in the introduction, a major difference be-

tween the proposed methods and spatiotemporal fusion is that

the five STHSPM algorithms yield subpixel maps, whereas

spatiotemporal fusion yields images in units of reflectance.

The objective of spatiotemporal fusion is to produce new

multispectral images, which can be used for various goals,

including monitoring changes in environmental variables and

vegetation phenology. Some spatiotemporal fusion approaches

were developed based on the strict assumption that there are no

land cover changes during the studied period [16]. Specifically,

all coarse images (e.g., MERIS images) in the studied period

are assumed to have the same land cover distribution, which

can be obtained from an FRM (e.g., LGN5). The FRM is

degraded to provide the coarse proportions, and the ultimate

task is to estimate the reflectance for each fine pixel, given the

input MERIS reflectance. The reflectance of the fine spatial

resolution time-series images can be compared to monitor

the vegetation dynamics, surface temperature and surface soil

moisture, and other environmental variables. Some other spa-

tiotemporal fusion approaches relax the strong assumption that

there are zero land cover changes during the studied period.

Alternatively, they extract correspondence between the known

fine and coarse spatial resolution images, to guide the prediction

of fine spatial resolution images on other dates. It would be very

promising to apply standard land cover CD techniques to the

outputs of this type of spatiotemporal fusion, although very few

studies (to the best of our knowledge) have been directed at this

problem. For simplicity, we denote the latter spatiotemporal fu-

sion as image pair-based spatiotemporal fusion. Consequently,

the proposed methods are constructed to detect land cover

changes, whereas spatiotemporal fusion techniques (e.g., im-

age pair-based spatiotemporal fusion) are capable of detecting

changes of both land cover and reflectance of fine pixels.

The image pair-based spatiotemporal fusion has potential in

subpixel resolution CD. This necessitates a discussion about the

differences between it and the proposed methods. An important

difference is the restriction on the acquisition date of the known

fine spatial resolution image. For image pair-based spatiotem-

poral fusion, at least one pair of fine–coarse spatial resolution

(e.g., Landsat–MODIS) images of the same area is required.

They have to be acquired on very close dates to ensure that

there are almost zero changes between the scene covered by the

two different spatial resolution images. This is because image

pair-based spatiotemporal fusion techniques need to exploit the

correspondence between the known fine and coarse spatial res-

olution images. For example, in the experiment in Section III-C,

if implementing image pair-based spatiotemporal fusion, the

MODIS image acquired on a date closer to that in Fig. 21(a) is

required. However, due to cloud contamination, time inconsis-

tency of image acquisitions, and some other reasons [10], high-

quality image pairs cannot always be guaranteed. By contrast, it

is not the case for the five STHSPM algorithms using an FRM,

as they do not necessarily need a pair of fine–coarse spatial

resolution images.

B. Uncertainties in FRM

An FRM is required in the proposed method to aid the

SPM process applied to coarse resolution images and increase

CD accuracy. It is necessary to consider the reliability of

the FRM. In this paper, the FRMs were obtained by hard

classification of the fine spatial resolution multispectral image.

Specifically, the supervised neural network was employed in the

first two experiments, and the unsupervised k-means classifier

was employed in the third experiment to classify the Landsat

images. The stochastic processes, such as random initialization

of the connection weightings between neurons in the neural

network and cluster centers in the k-means classifier, may bring

uncertainties in the produced FRM.

It is known that mixed pixels exist inevitably in remote

sensing images [62], and such a means of producing the

FRM involves inherent uncertainties. Nevertheless, it should

be noted that the source of FRM (i.e., fine spatial resolution

multispectral image) is generally selected according to the

desired spatial resolution (defined by investigators) for SPM

and CD. For example, given a 250 m spatial resolution MODIS

image at t1, if the desired spatial resolution of SPM and

subpixel CD is 30 m (zoom factor S = 8), we can seek a 30 m

Landsat image for the source of FRM at t0; if the desired

spatial resolution is 10 m (S = 25), a 10 m SPOT image can

be considered as the source of FRM at t0.

When defining 30 m as the desired target spatial resolution

for SPM of a 250 m MODIS image at t1, if there are no 30 m

Landsat images at t0, a finer spatial resolution image (if avail-

able), such as a WorldView or a QuickBird image, would be an

effective alternative for the source of FRM at t0. In this case,

the approximate 1 m FRM needs to be upscaled to 30 m to

meet the required spatial resolution of SPM at t1. Since a 1 m

FRM is available, an arising question is whether it is feasible

to conduct SPM and subpixel resolution CD directly at a 1 m

spatial resolution to obtain more detailed land cover informa-

tion. For this issue, two factors are worthy of consideration:

the zoom factor for SPM and the reliability of the FRM. First,

it is suggested that the zoom factor S for SPM should not be

too large, as within each coarse pixel the number of variables

for SPM is S2 and the uncertainty in SPM increases with

increasing S. Second, classification accuracy often decreases

with increasing spatial resolution, because smaller pixels may

resolve within-class variation that leads to confusion between

classes [63]. For example, for soil patches within a field of

cereals, investigators may wish the whole field to be classified

as cereals [63]. Therefore, by hard classification of very fine

spatial resolution (e.g., 1 m) images, the derived FRM at t0
may contain some scattering of pixels within large objects and

result in an SPM result at t1 with significant noise.

C. Limitations to the Method of Using an FRM

There are several limitations to the method of using an FRM.

First, as indicated in Section III-A4, for SPM of the mixed
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Fig. 22. Example for illustration of the land cover changes (deep pink pixels)
during a long period (t0 to tn), where the land cover proportion of the blue
class is fixed from t0 to tn.

pixels in coarse resolution images, the corresponding pure

pixels in the degraded FRM cannot provide useful additional

information. This case can occur where, for example, from the

time of FRM to the time of the coarse image for SPM, there

are new classes in those coarse pixels or even the whole studied

area. For example, we suppose that there are four classes (i.e.,

vegetation, forest, urban, and water) in the FRM at t0 and five

classes (i.e., soil, vegetation, forest, urban, and water) in the

coarse image for SPM at t1. That is, the new class soil is

produced from t0 to t1. As shown in Fig. 1, no information

can be borrowed from the FRM for SPM of the new class soil,

because all coarse soil proportions in the FRM are zero (i.e.,

no “gray area” for the soil class in the FRM). Therefore, the

proposed method of using an FRM cannot enhance SPM of the

new classes during the studied period of CD, but can enhance

SPM of the other classes.

Second, the results in Section III-A3 show that the FRM

tends to be more helpful for CD during a short period. This

is explained by an example in Fig. 22. Suppose that, in a coarse

pixel, the proportion of the blue class during a long period

from t0 to tn does not change (i.e., ∆ = 0), but in the real-

world case, the distribution of fine spatial resolution blue pixels

gradually evolves. Eventually, at tn time, the distribution of

those fine pixels is quite different from that at the beginning

t0 time. This conflicts with the assumption that, if for the blue

class ∆ = 0, there is no change for blue fine pixels and the

spatial distribution of the blue class in the FRM can be copied

directly to the coarse pixel at other times. Nevertheless, as

observed from the changes (deep pink pixels) in Fig. 22, for

a time close to t0 (such as t1), the changes are very small when

compared with t0. Therefore, we can conclude that the rules in

Fig. 1 and Section II-A of using FRM may be more appropriate

for coarse images acquired on dates that are sufficiently close

to that for the FRM. The sufficiently close dates can also ensure

fewer new classes, as discussed above.

D. Future Research

Future research will be directed at two aspects: developing

new STHSPM-based algorithms for CD with an FRM and

seeking new approaches to acquire a reliable FRM.

Through the experiments, the proposed five STHSPM algo-

rithms (i.e., bilinear, bicubic, SPSAM, Kriging, and RBF meth-

ods) were shown to be effective in using an FRM for subpixel

resolution CD. As shown in Section II-C, any STHSPM algo-

rithm has potential for subpixel resolution CD by incorporating

an FRM. Apart from the mentioned five STHSPM algorithms

introduced in this paper, there exist some other STHSPM

algorithms, such as the learning-based back-propagation neural

network and indicator co-Kriging. They generally need prior

spatial structure information (or some other alternatives [64])

on the land cover classes. With the availability of such informa-

tion, they can be also applied for subpixel resolution CD.

The FRM information cannot only be derived directly from

a multispectral image but also from some other data. Aplin

and Atkinson [65] used land-line digital vector data to develop

two per-field classification-based SPM approaches. Recently,

Mahmood et al. [66] have developed another per-field

classification-based SPM method, where a segmentation map

generated from a fine spatial resolution color image was em-

ployed in the same way as the land-line digital vector data in

[65]. Robin et al. [67] also utilized ancillary fine spatial resolu-

tion structural information in the form of a segmentation map

for SPM, based on Bayes’ rule and the maximum a posteriori

criterion. All these types of fine spatial resolution boundary

information associated with the coarse image are probably

able to produce a reliable FRM for CD. How to acquire such

information and convert it to a reliable FRM seems to be a

promising avenue for future research.

V. CONCLUSION

In this paper, based on the availability of a land cover map

obtained from an available fine spatial resolution image (i.e.,

the FRM), five noniterative and fast STHSPM algorithms (i.e.,

bilinear-, bicubic-, SPSAM-, Kriging-, and RBF-based SPM

methods) were proposed for subpixel resolution land cover CD.

The FRM was taken into account not only in the case of a

former FRM and latter coarse image but also in the case of a

former coarse image and latter FRM, as well as the case of CD

between coarse images. The STHSPM algorithms determined

the subpixels for each class by comparing the soft class values

and referring to the hard class values (at the subpixel level) in

the FRM. The FRM can help to reduce the solution space of

SPM and thus decrease the uncertainty in SPM and increase

the subpixel resolution CD accuracy. The proposed methods

provide a promising avenue for fine spatial and temporal

resolution CD.

Experimental results demonstrated the five STHSPM algo-

rithms to be effective in subpixel resolution CD, and with the

information from the FRM, they can increase CD accuracy.

Compared with the PSA-based subpixel resolution CD with

an FRM, the proposed methods are able to achieve at least

comparable CD accuracy, but need much less computing time,

and hence provide new options for real-time applications. In

future research, more STHSPM algorithms will be explored for

subpixel resolution CD, and new ways of obtaining the required

FRM will be studied.
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