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Fast Subspace Tracking and Neural Network
Learning by a Novel Information Criterion

Yongfeng Miao and Yingbo Hua, Senior Member, IEEE

Abstract— We introduce a novel information criterion (NIC)
for searching for the optimum weights of a two-layer linear
neural network (NN). The NIC exhibits a single global maximum
attained if and only if the weights span the (desired) principal
subspace of a covariance matrix. The other stationary points of
the NIC are (unstable) saddle points. We develop an adaptive
algorithm based on the NIC for estimating and tracking the
principal subspace of a vector sequence. The NIC algorithm
provides a fast on-line learning of the optimum weights for the
two-layer linear NN. We establish the connections between the
NIC algorithm and the conventional mean-square-error (MSE)
based algorithms such as Oja’s algorithm, LMSER, PAST, APEX,
and GHA. The NIC algorithm has several key advantages such
as faster convergence, which is illustrated through analysis and
simulation.

I. INTRODUCTION

I
T IS KNOWN that there is a close relationship between a

class of linear neural networks (NN’s) and the concept of

principal subspace [1], [2]. The concept of principal subspace

is often referred to as principal subspace analysis (PSA) in the

context of statistical analysis. When we are interested in the

orthonormal eigenvectors spanning a principal subspace, the

so-called principal component analysis (PCA) is then referred

to. Both PSA and PCA also represent the desired function of

a class of linear NN’s when the weights of the NN’s span a

principal subspace. The process of finding the proper weights

is called “learning.”

A class of learning algorithms such as Oja’s subspace

algorithm [24], the symmetric error correction algorithm [5],

and the symmetric version of the back propagation algorithm

[6] were developed in the past based on some heuristic

reasoning. However, the work in [2] showed that all these

algorithms turn out to be identical. This class of algorithms

will be referred to as Oja’s algorithm. The convergence

property of Oja’s algorithm remained as a mystery for some

time until the analyses done in [8]–[10], [32]. An improved

version of Oja’s algorithm, called the least mean square

error reconstruction (LMSER) algorithm, was developed in

[7], where the well-known concept of gradient searching was

applied to minimize a mean squared error (MSE). Unlike

Oja’s algorithm, the LMSER algorithm could be claimed
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to be globally convergent since the global minimum of the

MSE is only achieved by the principal subspace, and all

the other stationary points of the MSE are saddle points.

The MSE criterion has also led to many other algorithms,

which include the projection approximation subspace tracking

(PAST) algorithm [16], the conjugate gradient method [17],

and the Gauss–Newton method [18]. It is clear that a properly

chosen criterion is a very important part in developing any

learning algorithm.

In this paper, we introduce a novel information criterion

(NIC) for searching for the optimum weights of a two-layer

linear NN [see Fig. 2(a)]. The NIC exhibits a single global

maximum attained if and only if the weights span the (desired)

principal subspace of a covariance matrix. The other stationary

points of the NIC are (unstable) saddle points. Unlike the MSE,

the NIC is nonquadratic and has a steep landscape along the

trajectory from a small weight matrix to the optimum one.

Applying gradient ascent searching to the NIC yields the NIC

algorithm, which is globally convergent and fast.

The rest of this paper is organized as follows. Section II

lists some notational symbols and introduces the conventional

quadratic PSA formulation. In Section III, we propose the

NIC formulation for PSA and depicts its landscape picture.

Comparisons are made to the conventional formulation and

the mutual information criterion (MIC). The NIC algorithm is

derived in Section IV with comparisons to a number of ex-

isting PCA/PSA algorithms and some batch-mode eigenvalue

decomposition (EVD) algorithms. Section V deals with the

asymptotic global convergence analysis of the NIC algorithm

using the Lyapunov function approach. In Section VI, we

investigate various potential applications of the NIC algorithm,

which include two-layer linear NN learning, signal subspace

tracking, and adaptive direction of arrival (DOA) estimation

and tracking. Performance of the NIC algorithm and other

algorithms is demonstrated and compared through simulation

examples. Conclusions are drawn in Section VII.

II. PRELIMINARIES

A. Notations and Acronyms

Some notational symbols and acronyms are listed below.

Set of all real matrices -

dimensional real vectors).

Transpose of a matrix .

tr Trace of .

rank Rank of .

1053–587X/98$10.00  1998 IEEE
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vec Vector formed by stacking columns of

one beneath the other.

Natural logarithm of a symmetric posi-

tive definite matrix .

Determinant of .

Frobenius norm of .

Euclidean norm of .

Kronecker product of two matrices.

Difference matrix is positive

(nonnegative) definite.

identity matrix.

Null matrix or vector.

diag Diagonal matrix with diagonal elements

.

commutation matrix such that

.

Expectation, differential, partial differ-

ential, gradient, and Hessian operators,

respectively.

We use the follwing acronyms in this paper.

APEX adaptive principal component extraction;

EVD eigenvalue decomposition;

MIC mutual information criterion;

NIC novel information criterion;

PAST projection approximation subspace tracking.

B. Conventional PSA Formulation

Suppose that the vector sequence is a sta-

tionary stochastic process with zero-mean and the covariance

matrix Let and

denote the eigenvalues and the corresponding orthonormal

eigenvectors of We shall arrange the orthonormal eigen-

vectors in such a way that the corresponding

eigenvalues are in a nonascending order:

Note that we do not constrain

to be nonsingular.

In some applications, may be composed of independent

signal components embedded in an -dimensional noise with

For example, in array processing, is often composed

of narrowband signal waves impinging on an -element

antenna array with white receiver noise [3]. In this case, the

last eigenvalues of are caused by noise that must be

separated from the signal. The data may also represent

a sequence of image or speech phonemes, and we may be

interested in storing them using a minimum amount of memory

[15]. The PCA or PSA produces an optimal solution to these

applications in the sense that it minimizes the MSE between

and its reconstruction or maximizes the variance of

defined by the linear transformation

(1)

where denotes the optimal weight matrix

whose columns span the same space as ,

which is commonly referred to as the principal subspace,

and is the low-dimensional representation of If

, then (1) performs the true PCA.

In other cases when the columns of do not necessarily

yield the exact principal eigenvectors, the PSA is sufficient to

yield the optimal solution by an arbitrary orthonormal base

vectors spanning the principal subspace.

Conventionally, the PSA is formulated into either of the

following two optimization frameworks [7], [11]:

• Maximize the variance of with an orthonormality

constraint on , i.e.,

tr

subject to (2)

• Minimize the MSE reconstruction of from , i.e.,

tr tr (3)

It is shown in [7] that the stationary points of

satisfy Therefore, by imposing the constraint

on (3), it can be seen that the two frameworks are

in fact equivalent. The landscape of has been shown

to have a global minimum at the principal subspace with all the

other stationary points being saddles [7], [16]. Based on this

fact, the LMSER algorithm was derived by following the exact

gradient descent rule to minimize Oja’s subspace

algorithm can also be derived as an approximate gradient algo-

rithm from the LMSER [11], [12]. Although both algorithms

are able to converge to the principal subspace solution, their

convergence speed is slow due to the slow convergence of

gradient searching of quadratic criteria. The nonquadratic NIC

formulation shown next has a better defined landscape for

PSA, which improves the convergence of gradient searching.

III. NOVEL INFORMATION CRITERION FORMULATION FOR PSA

Various nonquadratic generalizations of the above quadratic

formulation have been proposed [11], which generally yield

robust PCA/PSA solutions that are totally different from the

standard ones. In contrast, the following NIC formulation not

only retains the standard PSA solution but also results in a fast

PSA algorithm with some attractive properties.

A. NIC Formulation for PSA

Given in the domain , we propose the

following framework for PSA:

tr tr (4)

where the matrix logarithm is defined in [4]. This criterion is

referred to as the NIC because it is different from all existing

PSA criteria and is also closely related to the mutual infor-

mation criterion (MIC) shown in [10] and [19]. Nevertheless,

it is worth noting that despite their similar appearance, the

NIC and the MIC are in fact very different, as will be shown

later in this section. The landscape of NIC is depicted by the

following two theorems. Since the matrix differential method

will be used extensively in deriving derivatives, we present

some useful facts of the method in Appendix A. Interested

readers may refer to [20] for details.
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Given that the eigenvalues of are in the nonascending

order, we denote its EVD as

(5)

where , and

diag If the eigenvalues of are

allowed to be in an arbitrary order instead of the nonascending

order, the EVD can also be represented by

(6)

where

diag , and

is an arbitrary permutation matrix. In other words,

consists of any distinct orthonormal eigenvectors of

with diag containing the corresponding

eigenvalues. contains the rest of the orthonormal

eigenvectors, and diag contains the

corresponding eigenvalues.

Theorem 3.1: is a stationary point of in the

domain if and only if , where

contains any distinct orthonormal eigenvectors

of , and is an arbitrary orthogonal matrix.

Proof: Since is positive definite, it is invertible.

Thus, the gradient of with respect to exists and

is given by (see Appendix A)

(7)

If , where is an arbitrary orthogonal matrix, it is

easy to show that Conversely, by definition,

the stationary point of satisfies ,

which yields

(8)

Premultiplying both sides of (8) by , we obtain

, which implies that the columns of are orthonormal at

any stationary point of Let be

the EVD, where is an orthogonal matrix. Substituting this

into (8), we have , where with

Since is a diagonal matrix and has full

rank, and must be the same as and in (6).

Theorem 3.1 establishes the property of all the stationary

points of The next theorem further distinguishes

the global maximum attained by spanning the principal

subspace from any other stationary points, which are saddle

points.

Theorem 3.2: In the domain

has a global maximum that is attained when and only when

with an permutation matrix and

an arbitrary orthogonal matrix. All the other stationary

points are saddle points of At this global maximum,

Proof: Let be the Hessian matrix of

with respect to the -dimensional vector

vec From Appendix A, we

have

(9)

where is the commutation matrix, which has the

property Since any matrices

and satisfy

(10)

it is easy to verify that yields a symmetric

matrix [20]. Simplifying (9), using (8), and then evaluating

at the stationary points , we obtain

(11)

Now, substituting the EVD (6) into (11), we have

(12)

Applying (10) to the second term on the right-hand side of

(12) yields

(13)

where is symmetric and orthogonal, i.e.,

Hence, it has the following EVD

(14)

where is an orthogonal matrix, and

diag Since tr must

have multiple “1” and multiple “ ”

on the diagonal. Furthermore, it is noted that can be

decomposed as

(15)

Inserting (13)–(15) into (12) and after some rearrangements,

we obtain the EVD of as

(16)

where , and ,

whose diagonal elements represent the eigenvalues of

It follows that the eigenvalues of are “0” with the

multiplicity , “ ” with the multiplicity ,

and the rest of the eigenvalues are given by

(17)
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where is a permutation of

It is obvious from (16) that if and only if

This condition is

satisfied if and only if diag , where and

are and permutation matrices,

repsectively. It then follows from (5) and (6) that

and Therefore,

is a local maximum, where is the arbitrary matrix as defined

in Theorem 3.1. Furthermore, since is unbounded

from below as or , this local

maximum is also the global one. Except for ,

it is easy to verify that all other stationary points result

in being indefinite (having both positive and negative

eigenvalues) and, thus, are saddle points. Finally, substituting

into (4), we obtain the maximum value of

to be

(18)

which concludes the proof of Theorem 3.2.

B. Remarks and Comparisons

In the following, we make some remarks on the NIC and

compare it with the conventional formulation, the MIC, and a

determinant maximization framework.

1) From the above theorems, it is seen that the maxi-

mization of automatically orthonormalizes the

columns of Therefore, we need not impose any

explicit constraints on This is similar to the MSE

framework (3) but in contrast to the constrained variance

maximization (2) in which the explicit orthonormaliza-

tion of is needed [24]. It should be further noted

that although the NIC and the MSE both yield

with orthonormal columns, their corresponding gradient

algorithms have different convergence properties. One

of the attractive properties of the NIC is that or-

thonormalizes itself at a constant rate independent of

the eigenstructure of (refer to Lemma 5.1). This is

not the case for the MSE.

2) At the maximum of only yields an

arbitrary orthonormal basis of the principal subspace but

not the true eigenvectors, hence, the reference as a PSA

criterion. This fact is indicated by the orthogonal matrix

as well as the zero eigenvalues of However,

is always uniquely determined, which

is the orthogonal projection onto the principal subspace

of For the special case when

yields the true eigenvectors because

produces the required partial EVD of In other

cases, the true principal eigenvectors can be obtained

from the principal subspace as follows. First, compute

the EVD to obtain ; then, from

, obtain up to a permutation matrix Note

that can have a much smaller dimension than

In addition, note that for the special case as ,

(4) also represents a PCA criterion, and yields the

first principal eigenvector of

3) Similar to the MSE landscape depicted in [7], [16], the

NIC has a global maximum and no local ones. Thus, iter-

ative methods like the gradient ascent search method are

guaranteed to globally converge to the desired principal

subspace for proper initializations of (see the domain

of attraction identified in Section V). The presence of

saddle points does not cause any problem of convergence

because they are avoided through random perturbations

of in practice. Furthermore, it should be noted that

different landscapes of the NIC and the MSE determine

different convergence speed of their corresponding gra-

dient searching algorithms. To illustrate this, we plot in

Fig. 1(a) and (b) the three-dimensional (3-D) surface for

the special case when diag , and Note

that the global extrema of and are located

at the points , which form the principal

eigenvectors of As visually shown in Fig. 1(a) and

(b), the surface of NIC is steeper than that of the MSE

along the trajectory from a small to the optimum

(which spans the principal subspace). Note that the

NIC has a steep slope in the region where is small

because of the logarithm in the first term of (4). Hence,

the gradient search of the NIC is expected to converge

faster than that of the MSE. This is actually implemented

by an adaptive step size of the NIC algorithm, which will

be seen in the next section.

4) Under the condition that is a multivariate Gaussian

signal corrupted by an uncorrelated Guassian noise with

equal variance , the principal subspace maximizes the

following MIC [19]:

tr tr

(19)

If , (19) appears almost the same as ,

except for the logarithm in the second term. However,

they are quite different behind their appearance. We

note that although the principal subspace maximizes

the MIC, the maximum value of the MIC may not be

achieved only by the orthonormal principal subspace.

This can be seen from the landscape of shown

in Fig. 1(c) for the special case when diag ,

and Note that any point at with

maximizes , but it does not immediately yield

the normalized principal eigenvectors. In other words,

the orthonormality constraint has to be

explicitly imposed on maximization of to

make it an effective PSA criterion.

Furthermore, for any positive definite , we

have tr [10]. Therefore, the

NIC in (4) can be rewritten as

tr

(20)

which is in contrast with the determinant maximization

However, it is important to

note that the NIC maximization is unconstrained, except
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(a)

(b)

(c)

Fig. 1. Surface plots of three functions for RRR = diag (2; 1): (a) MSE. (b)
NIC. (c) MIC.

for the “soft constraint” term tr , but the deter-

minant maximization requires the hard orthonormality

constaint

IV. NIC LEARNING ALGORITHM

At time instant , we have available and are

interested in estimating recursively. Our objective here is

to develop a fast adaptive algorithm that calculates an estimate

of the principal subspace at time instant from the estimate

at and the newly observed sample We will apply the

gradient ascent searching to the unconstrained maximization

of

A. Batch Implementation

Given the gradient of with respect to in (7),

we have the following gradient ascent rule for updating :

(21)

where denotes the learning step size. In what follows,

we will use to denote all the constant step sizes with

the understanding that they may assume different values for

different algorithms. Since the exact covariance matrix is

often unknown a priori, we use its estimate at time denoted

by This estimate can be obtained as

(22)

where denotes the forgetting factor. If all training

samples come from a stationary process, we choose ,

and thus, (22) calculates the sample average of For a

large number of training samples, will converge to the

true principal subspace of as converges to On the

other hand, if are from a nonstationary process, should be

chosen in the range (0, 1) to implement an effective window

of size This effective window ensures that the past

data samples are less significantly weighted than the recent

ones. The exact value for depends on specific applications.

Generally speaking, for slow time-varying is chosen

near one to implement a large effective window, whereas

for fast time-varying inputs, the effective window should be

relatively small, and should be chosen near zero [13].

Equation (21) represents a batch implementation of the NIC

algorithm where each update of is in alignment with the

rank-1 update of the covariance matrix. To compare it with

the batch implementation of Oja’s algorithm and that of the

LMSER algorithm, we first apply the gradient descent rule to

(3) and obtain the batch-mode LMSER algorithm [7]

(23)

Since, for a small tends to a matrix with orthonormal

columns as [7], the batch Oja’s algorithm can be ob-

tained from (23) by making the approximation

(24)

Note that (21) can be rewritten as

(25)

Comparing (24) and (25), we see that the NIC algorithm

actually extends Oja’s algorithm by introducing a mechanism

to adaptively adjust the step size at each time step. This

becomes even more obvious in the case of PCA, when

represents the principal eigenvector of , and

is a scalar. In this case, the NIC as a PCA algorithm turns out

to be an extended Oja’s single-neuron rule with a time-varying

step size of instead of the constant ,
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which brings about a greatly improved convergence speed, as

will be demonstrated by our simulations.

The batch NIC algorithm (21) has a computational com-

plexity of flops per update. This complexity

is cheaper than of the conjugate gradient

eigenstructure tracking algorithm 1 (CGET1) in [17] and

of the Gauss–Newton algorithm in [18]. The

operations involved in (21) are simple matrix addition, multi-

plication, and inversion, which are easy for the systolic array

implementation [13]. This batch implementation, however, is

mainly suitable for adaptive subspace estimation and tracking,

where the covariance matrix is explicitly invovled in

computations. For the on-line learning of NN’s, it is expected

that the network should learn the principal subspace directly

from the input data sequence Such a learning algorithm

is derived below.

B. Recursive Least-Squares (RLS) Implementation

Let us first assume that , which is the projection

of onto the column space of , can be approximated

by for all Note that in doing so,

becomes immediately available at any time instant given

the weight estimate for (Without this

approximation, would only be available at time ,

when is obtained.) Substituting (22) into (21), we have

(26)

Note that the difference between and is small

within an effective window if is small. The above projection

approximation has been utilized in [16] to modify the MSE

criterion so that the standard RLS technique can be applicable

in order to derive the so-called PAST algorithm.

Now, we define and

Applying the matrix inversion lemma

[4] to , we obtain

(27)

where is the gain vector. It

is easy to verify by using (27) that Then, we

can write

(28)

(a)

(b)

Fig. 2. (a) Two-layer linear neural network. (b) Block diagram of the
two-layer linear NN learning using the NIC algorithm.

where the property that

has been used. Now, we have shown that

can be estimated recursively from and the new data

sample given Summarizing the above

derivations, we obtain the RLS implementation of the NIC

algorithm shown below.

Initializations:

is a small positive number

a small random matrix

Update equations:

(29)

(30)

(31)

(32)

(33)

The update equations (29)–(33) yield an on-line learning

algorithm for the two-layer linear NN with inputs, hidden

neurons, and outputs [see Fig. 2(a)]. denotes the weight

matrix of the input-to-hidden layer and that of the hidden-

to-output layer at time instant Learning of the two-layer
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linear NN is carried out by first adjusting according

to (32) and then adjusting by (33). Equations (30) and

(31) calculate , which adaptively adjusts the step size at

time instant , as will be shown next. Equation (29) and

the calculation of the reconstruction simply

form the forward feeding path of the network. Fig. 2(b) shows

the block diagram of this learning process, where we use the

symbols as defined in [13, p. 809]. It should be noted from the

analysis in Section V that as tends to , so does

The initialization of this data-driven NIC algorithm is sim-

ilar to that of the standard RLS algorithm [13]. The initial

values for and shall be set properly to ensure

convergence. Since the covariance matrix of is positive

definite, must be initialized as a symmetric positive definite

matrix. A simple choice is The choice of shall

be such that has full column rank and will not evolve

into any of the saddle points of In other words,

no column vector of should be a linear combination of

only This can be satisfied with probability

1 when is randomly chosen. Clearly, is a

natural choice. In the next section, we will formally establish

the required initial conditions by identifying the domain of

attraction around the principal subspace for the NIC algorithm.

C. Comparisons with Other Algorithms

The stochastic LMSER algorithm was obtained by replacing

in (23) with its instantaneous estimate [7]

(34)

where For stationary signals, it is expected

that will converge to a matrix with orthonormal columns

when as Otherwise, for a constant

but small enough will tend to a matrix with nearly

orthonormal columns. When is approximated by

, (34) is simplified to the stochastic Oja’s algorithm [24]

(35)

In this sense, Oja’s algorithm is derived as an approximate

stochastic gradient rule to minimize the MSE.

The convergence of these two algorithms are slow because

they both hinge on the standard gradient searching with the

quadratic cost function and a constant step size. The PAST

algorithm [16] overcomes this problem by modifying the MSE

criterion so that it permits direct application of the standard

RLS technique. Compared with all those algorithms, the NIC

algorithm has the following distinctive characteristics:

1) Although both Oja’s algorithm and the LMSER al-

gorithm need to use a small constant step size, the

NIC algorithm employs a mechanism to adaptively ad-

just the “actual” step size. This was discussed in the

case of batch-mode implementation. The same can be

seen for the RLS implementation if we write

and substitute it into (32). By doing

so, we obtain a set of updating equations corresponding

to the columns of At time instant , the th

column of is updated with the time-varying step size

Since are very likely different from

one another, their corresponding eigenvectors need to

be treated differently to ensure a fast overall global con-

vergence. The NIC algorithm implements this strategy

through , resulting in a convergence speed superior to

both Oja’s and the LMSER algorithm.

2) It is similar to the contrast between the standard least

mean-squares (LMS) and RLS algorithms for adaptive

filtering [13] that Oja’s algorithm and the LMSER

algorithm only use the instantaneous estimate

, whereas the NIC algorithm uses all data samples

available up to time instant to estimate the covariance

matrix. For the special case when , we can obtain

the stochastic NIC algorithm by replacing with

in (25) as

(36)

where We note that (36) extends

the stochastic Oja’s single-neuron rule [23] by using

an adaptive step size of Since this instan-

taneous estimate of does not directly apply to

is not invertible for ,

and we estimate using (22) and obtain the above

RLS type NIC algorithm. The advantage of sample

averaging is that the steady-state error of the principal

subspace estimate will be much smaller than that of the

instantaneous estimate. Actually, the NIC will converge

to an orthonormal basis of the true principal subspace

for any constant as for large

samples. However, for a constant , the stochastic Oja’s

and the LMSER algorithms will always have a bias for

the subspace estimate. This bias can only vanish if one

imposes that as , which for practical

tracking purposes is not realistic [15].

3) Note that the PAST algorithm is a special case of the

NIC algorithm when goes to one. For the NIC, is in

principle allowed to be any value within the interval (0,

1). This is also in contrast with Oja’s algorithm for which

the proper value of depends on both and [27].

The NIC algorithm with a small has the advantage that

it will approximate the associated ODE, as will be given

in Section V. From the ODE, we can formally show the

asymptotic global convergence of the NIC algorithm.

On the other hand, a large will render a fast tracking

capability to the NIC algorithm. It should be noted that

in practice, the choice of represents a tradeoff between

accuracy and tracking capability. This is common for

any adaptive algorithm [13].

It is also interesting to observe that (21) and (33)

resemble the leaky LMS algorithm [13, p. 668] with

a leakage factor The leaky factor increases

robustness and stabilizes the digital implementation of

the LMS algorithm [13]. For the NIC, the update of

by (21) or (33) serves a similar purpose to the original

PAST algorithm. In this sense, the NIC essentially

represents a robust improvement of the PAST. This can

be understood from the fact that the batch implemen-
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tation of the PAST algorithm is, in fact, unstable. As

an example, we consider the special covariance matrix

diag and We choose

and calculate by using (21) with for all

It turns out that always alternates from

to but never converges to the correct solution

However, by simply using an ,

(21) always converges to the right solution for the NIC

algorithm. The same needs to be investigated between

the data-driven PAST and NIC algorithms, which is

beyond the scope of the current paper.

4) Although derived primarily for extracting the principal

subspace of dimension , the NIC algorithm can be

easily adapted to extract the individual principal eigen-

vectors when used in conjunction with the deflation

technique [15]. As we have noticed earlier, for the first

principal eigenvector, the NIC algorithm improves Oja’s

single-neuron rule by utilizing a well-defined adaptive

step size. This adaptive step size is

in the batch implementation (25), in the stochastic

case (36), and for the RLS implemen-

tation (29)–(33), where Once again, this RLS

implementation of the NIC algorithm generalizes the

existing RLS-type PCA algorithm [14], [15] as

For the rest of the principal eigenvectors, all the above

implementations of the NIC algorithm can be readily

applied to the “deflated” covariance matrix or the data

samples. This has profound implications for a large

number of other PCA algorithms like, for example,

the adaptive principal component extraction (APEX)

algorithm [15] and the generalized Hebbian algorithm

(GHA) [26], which are extensions of Oja’s single-neuron

rule with some deflation mechanisms. The NIC will

therefore provide some potential improvements over the

APEX and the GHA because of a well-defined adaptive

step size. Furthermore, since the NIC corresponds to an

exact gradient rule while Oja’s rule does not, the global

convergence of the PCA algorithms based on the NIC

will be easy to establish.

V. GLOBAL CONVERGENCE ANALYSIS

We now study a convergence property of the NIC algorithm

by considering the gradient rule (21). Under the condition

that is from a stationary process and the step size is

small enough, the discrete-time difference equation (21) ap-

proximates the continuous-time ordinary differential equation

(ODE)

(37)

where By analyzing the global convergence prop-

erties of (37), we will establish the condition for the global

convergence of (21) as well as that of the RLS based NIC al-

gorithm (29)–(33). In particular, we will answer the following

questions based on the Lyapunov function approach [21].

• Is the dynamical system described by (37) able to globally

converge to the principal subspace solution?

• What is the domain of attraction around the equilibrium

attained at the principal subspace, or equivalently, what

is the initial condition to ensure the global convergence?

Denote It defines a Lyapunov func-

tion for the ODE (37). To show this, let us define a region

Within this

region, is continuous and has a continuous first-order

derivative. It has a global minimum at (see

Theorem 3.2). Since all the other stationary points of

are saddles and, thus, are unstable, we need only to consider

the stability at this global minimum. By the chain rule, we have

tr (38)

By substituting (7) and (37) into (38), it is easy to show that

for any Therefore, the equilibrium

at is stable. Since if and only

if is singular, the above also means that is

in if is in . To further establish the asymptotic

stability and, equivalently, the global convergence property

at , we construct

tr tr (39)

where is the best (least-squares) rank-

approximation of The following lemma paves the way for

our proof of as a Lyapunov function.

Lemma 5.1: Let be the solution of the ODE (37) and

Then, for all , we have

(40)

Proof: From (37), satisfies the following

ODE:

(41)

Since it is linear in , this ODE admits the explicit

solution

(42)

which gives (40) directly.

This lemma establishes the constant convergence rate of

to the identity matrix from any initial

satisfying The conclusion is in sharp

contrast to the convergence rate at which the weight matrix

orthonormalizes itself in Oja’s subspace algorithm. As discov-

ered in [9], that rate depends on both the initial value

and the smallest nonzero eigenvalue of In addition, from

(42), the following relationships hold for all :

rank rank

rank rank (43)
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Theorem 5.1: is a Lyapunov function for the ODE

(37), which identifies the domain of attraction for convergence

of to as

(44)

where is an arbitrary orthogonal matrix. For any

globally converges along the trajectory of (37) to an

arbitrary orthonormal basis of the principal subspace.

Proof: See Appendix B.

Corollary 5.1: Let be a solution of the ODE (37). If

then for all

Proof: From Theorem 5.1, is a nonincreasing

function of within the domain , which implies that

cannot be singular if [Otherwise,

would be infinitely large.] Thus, we must have

for all

We know that for is nonsingular,

and hence, no column of should be orthogonal to the

principal subspace spanned by the columns of This is a

natural requirement for any gradient-based subspace algorithm

to converge. For a full rank , Corollary 5.1 implies

that the solution of the ODE (37) would get stuck at some

saddle points of Therefore, Theorem 5.1 identifies

the largest domain of attraction for the ODE to converge to

the principal subspace solution. A randomly selected

satisfies (44) almost surely. Another point worth noting is

about the singularity of , as mentioned earlier in Section II.

In the worst case, when all the last eigenvalues of are

zero, becomes the same as However, it follows from

Corollary 5.1 that as long as will remain

within along the trajectory of (37) and will converge to the

principal subspace solution.

VI. APPLICATION EXAMPLES

The potential applications of the NIC algorithm are broad.

For applications such as frequency estimation in array pro-

cessing [3], optimal feature extraction in pattern recognition

[25], data compression in image processing [28], and shape

and motion estimation in computer vision [29], the NIC

algorithm provides a fast adaptive method to estimate the

principal subspace of data. Some examples are presented in

the following simulations.

A. Learning of Two-Layer Linear NN

We generate a random vector sequence from an ideal

covariance matrix with these eigenvalues:

and

The three learning algorithms—the NIC (29)–(33), the

LMSER (34), and Oja’s subspace algorithm (35)—are run

for the same random with and

respectively. The reason why a small is used for the LMSER

and Oja’s algorithms will be explained later. For the NIC

and the PAST algorithms, The error of the

estimated principal subspace at time is measured by the

“learning curve”

dist

(a)

(b)

Fig. 3. (a) Learning curves for subspace distance of the NIC algorithm, the
LMSER algorithm, and Oja’s algorithm. (b) Learning curves for the subspace
distance of the NIC algorithm and the PAST algorithm.

where is the number of Monte Carlo runs, and

contains the first three principal eigenvectors of the covariance

matrix based on 500 samples. The learning curves dist

of the three algorithms are shown in Fig. 3(a). Fig. 3(b)

depicts the learning curves of the NIC for different choices

of and that of the PAST algorithm with

[In this special case, must be chosen as a random matrix

instead of zero by (33)].

It is observed that the NIC algorithm outperforms the others

in both the convergence speed and the estimation accuracy. It

converges to the true principal subspace as for any

However, due to stochastic approximation of the

covariance matrix, any particular run of Oja’s subspace or

the LMSER algorithm cannot converge to but must fluctuate

around the true principal subspace. Furthermore, the proper

step size for these two algorithms is difficult to determine

because it is dependent on both and The step size

was chosen by trial and error to be almost optimal.

It is also observed from Fig. 3(b) that for some ,

the NIC algorithm demonstrates faster convergence and better
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accuracy than the PAST algorithm. This verifies Remark 3 we

made in Section IV-C.

B. Signal Subspace Tracking

To study the tracking capability of the NIC algorithm,

we use the example given by Comon and Golub in their

survey paper for comparing tracking capabilities of various

subspace algorithms [3]. Two random signals are generated

using moving-average models of order 2 driven by indepen-

dent Gaussian white noise. Let denote the vector formed

by all zeros with one at the th position. At , a sudden

change of the signal subspace is introduced by rotating the

principal eigenvectors 90 . Thus, the observed data at time

instant are given by

for

for

where and are two zero-mean signals with

and is a vector white

noise with and ; and the dimension

of observation is

The batch NIC algorithm (21) is simulated to compare

against the batch Oja’s algorithm as well as the simulation

results in [3]. The subspace tracking error of each algorithm is

measured using the set of principal angles [4, p. 584] between

the subspace spanned by columns of and that obtained

from the EVD applied directly to (22) at each time instant.

The principal angles are zero if the subspaces compared

are identical. Thus, the subspace tracking capability of an

algorithm is fully tested by enforcing a maximal abrupt change

in the principal subspace. In Fig. 4(a), the subspace tracking

error of the NIC and that of Oja’s algorithm are depicted,

and the estimated principal eigenvalues are shown in Fig. 4(b)

against those obtained by the direct EVD.

We note that both the principal angles and the estimated

eigenvalues of the NIC follow the true values by EVD

almost immediately, demonstrating very good tracking capa-

bility of the NIC algorithm. In contrast, very bad convergence

properties of some standard gradient-based algorithms such

as the LMSER and Oja’s algorithm or some variants are

demonstrated in [3] and by Fig. 4(a) and (b) for the same

data. More importantly, the NIC algorithm not only has

a tracking capability comparable with the direct EVD but

also permits analog neural network realization of the ODE

(37), which could achieve much faster speed than the digital

implementation [30].

C. DOA Estimation and Tracking

This test shows the applicability of the NIC algorithm (21)

for adaptive DOA estimation and tracking in array processing.

Consider the scenario where two equipower incoherent plane

waves impinge on a uniform linear array with eight sensors

from the directions 9 and 12 . The receiver noise is spatially

white (possibly after a prewhitening process) with the unit

variance and the signal-to-noise ratio is 20 dB. The

NIC algorithm is initiated by choosing

and After is obtained at each time instant

(a)

(b)

Fig. 4. (a) Subspace tracking errors of the NIC algorithm and Oja’s algo-
rithm after a 90

� rotation of the principal subspace at k = 10: (b) Two
principal eigenvalues obtained from the NIC and Oja’s algorithm against the
true values by EVD. Note that the eigenvalue curves by the NIC coincide
with those by the EVD.

, the ROOT-MUSIC estimator [13] is used to get the DOA

estimates. (Better methods such as matrix pencil or ESPRIT

[31] could also be used.) Twenty independent simulations of

the problem are performed. Fig. 5(a) shows the DOA learning

curves of the NIC algorithm in comparison with those of the

direct EVD applied to (22), where the two true DOA’s (9

and 12 ) are shown in dotted lines. It is noted that the NIC

is able to track the EVD almost immediately after the start-

up transient and attains an accurate DOA estimate in about

30 time steps. By contrast, the gradient-based algorithms as

shown in [22] took more than 200 samples to get a satisfactory

estimate.

To further test the tracking ability of the NIC algorithm,

we consider the above scenario where two signal waves have

linearly time-varying frequency tracks. The two DOA’s start

at 6 and 12 , cross at 9 , and finish at 12 and 6 over

a span of 1000 samples. The NIC algorithm is executed for

ten independent runs based on the same initial condition and

parameters shown previously, and the forgetting factor is
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(a)

(b)

Fig. 5. (a) DOA learning curves of the NIC algorithm in comparison
with EVD using ROOT-MUSIC estimator. (b) DOA tracks of slowly
time-varying signal waves of the NIC algorithm in comparison with EVD
using ROOT-MUSIC estimator. Note that the DOA tracks by the NIC
coincide with those of the EVD.

The estimated DOA tracks by the NIC and the EVD are

shown in Fig. 5(b) with the dotted lines representing the true

DOA tracks. It is seen that the NIC algorithm demonstrates

a very good capability for tracking time-varying DOA’s and

attains good DOA estimates in a very short transient time. It

also maintains an accurate direction estimate, even though the

number of signals drops from 2 to 1 at the crossing.

VII. CONCLUSIONS

The NIC maximization is a novel nonquadratic formula-

tion of the PSA and has some significant advantages over

the conventional formulation. Among these advantages, the

global maximum at the principal subspace and all the other

stationary points being saddles enable us to directly apply the

gradient-based searching technique to the NIC maximization

problem. It is important to note that due to the nonquadratic

property of the NIC, the resultant NIC algorithm brings

about some attractive properties. In particular, it overcomes

the slow convergence of Oja’s subspace algorithm and the

LMSER algorithm and is able to globally converge to the

PSA solution for almost all weight initializations. The NIC

also generalizes some well-known PSA/PCA algorithms by

introducing a well-defined adaptive step size for learning,

which provides potential improvements of a number of other

PCA algorithms based on Oja’s single-neuron rule. The global

analysis using the Lyapunov function approach has identified

the largest domain of attraction for the equilibrium attained

at the principal subspace. The NIC algorithm is clearly useful

in real-time signal processing applications where fast adaptive

subspace estimation is required. Issues such as the explicit

convergence rate of the NIC algorithm, the connections be-

tween the iterative equation (21) and the classical orthogonal

iteration technique [4], and the effect of step size of the NIC

are currently under further investigation.

APPENDIX A

SOME FACTS OF THE MATRIX DIFFERENTIAL METHOD

We briefly explain the procedure of using the matrix differ-

ential method to compute the derivative of a function of matrix.

Since the computation of differentials is relatively easy, the

computation of derivatives can be performed simply based on

the following lemma [20].

Lemma A.1: Let be a twice differentiable real-valued

function of an matrix Then, the following relation-

ships hold

tr (A.1)

tr

(A.2)

tr

(A.3)

where denotes the differential, and and are matrices,

each of which may be a function of The gradient of with

respect to and the Hessian matrix of at are defined as

and

vec vec
(A.4)

where vec is the vector operator.

Based on this Lemma, we are ready to derive the gradient

and Hessian matrix of From (4) and after some

calculations, we have

tr tr

(A.5)

Applying (A.1) to (A.5) gives the gradient of with

respect to , as shown in (7). From (A.5), we calculate the
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second-order differential

tr tr

tr

tr tr

tr

tr (A.6)

The Hessian matrix (9) follows directly from the superposition

principle on (A.2), (A.3), and (A.6).

APPENDIX B

PROOF OF THEOREM 5.1

We will follow the Lyapunov function approach

to prove Theorem 5.1. Consider (39), and define

For any with a norm bounded by

the inequality in (43), if and only if

is singular. Thus, we obtain

(A.7)

It is obvious that within this region, is continuous and

has the following continuous derivative:

(A.8)

Differentiating (39) with respect to and using (37) and (A.8),

we have

tr

(A.9)

It is clear from [21] that we now only need to establish

for any

and for For convenience, we

have dropped the dependence of on in equations.

Based on the EVD given by (5), we rewrite (A.9) as

tr

(A.10)

where , and From

must be invertible. Therefore, there exists a matrix

such that Equation (A.10) can then

be simplified as

tr

(A.11)

Now on one hand, if , we have from Lemma

5.1 that

tr tr

tr

(A.12)

Applying (A.12) to (A.11), we have

tr tr

(A.13)

where and denote the

positive eigenvalues of for On the other

hand, if , (A.11) becomes

tr tr (A.14)

Obviously, if and only if , and

all eigenvalues of are constant 1 or 1, which indicates

must be an orthogonal matrix. Denote this orthogonal

matrix by It turns out that For all other

cases when , it is seen from (A.13) and (A.14) that

Therefore, the equilibrium is

asymptotically stable with the domain of attraction This

is equivalent to say that for any , the solution of

(37) globally converges to an arbitrary orthonormal basis of

the principal subspace.
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