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Abstract

Computing with functions on the rotation group is a task found in various areas of appli-
cation. When it comes to approximation kernel based methods are a suitable tool to handle
these functions. In this paper we present an algorithm which allows us to evaluate linear
combinations of functions on the rotation group as well as an truly fast algorithm to sum up
radial functions on the rotation group. These approaches based on nonequispaced FFTs on
SO(3) take O(M + N) arithmetic operations for M and N arbitrarily distributed source
and target nodes, respectively. We investigate a selection of radial functions and give ex-
plicit theoretical error bounds along with numerical examples on their approximation errors.
Moreover we provide an application of our method, namely the kernel density estimation
from electron back scattering diffraction (EBSD) data, a problem relevant in texture analy-
sis.

1 Introduction
Functions defined on the rotational group SO(3), i.e., on the group of all rotations of the three
dimensional Euclidean space R3 are of central importance in numerous fields like texture anal-
ysis (Bunge, 1982), or protein docking (Kovacs et al., 2003). Recently, fast Fourier techniques
have been applied to functions on SO(3) (cf. Kostelec and Rockmore, 2006, 2008; Potts et al.,
2009). From the approximation theory point of view kernel based methods have proved to be
a suitable tool for solving a large class of problems on the rotation group, e.g. interpolation,
least squares approximation, clustering or principle component analysis (Gutzmer, 1996; Yer-
shova and LaValle, ICRA 2004; Filbir and Schmid, 2008; v.d. Boogaart et al., 2007). Let
ψ ∈ L2(SO(3)) be a so called kernel function, g1, . . . ,gM ∈ SO(3) a set of source nodes,
and cm ∈ C, m = 1, . . . ,M , complex numbers. Then the evaluation of the sum

M∑
m=1

cmψ(qng
−1
m ) = f(qn) (1)
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at arbitrary target nodes q1, . . . ,qN ∈ SO(3) is a central task in all kernel based methods. A real
world example where the computation of the sum (1) is required for a huge number of source
and target nodes is orientation density estimation from individual orientation measurements, e.g.
from EBSD data (cf. Adams et al., 1993). In this case the source nodes are the measured individ-
ual orientations, the function ψ is the kernel used for kernel density estimation and the function
f represents the estimated orientation density function.

The numerical complexity of a naive algorithm computing the sum (1) at N rotations is
O(MN) which is too large for the applications we have in mind. In this paper we introduce an
approximative algorithm for the evaluation of the sum (1) with numerical complexityO(M+N).

For this aim we use the Fourier partial sum SLψ : SO(3)→ C of the kernel function ψ,

SLψ =
L∑
`=0

∑̀
k,k′=−`

ψ̂k,k
′

` Dk,k′

`

where Dk,k′

` are the so called Wigner-D functions on SO(3) and ψ̂k,k
′

` , ` ∈ N0, k, k′ = −`, . . . , `
are the Fourier coefficients of ψ. With this definition the Fourier coefficients of the function
f up to the order L can be computed by an adjoint Fourier transform of the coefficients cm,
m = 1, . . . ,M , followed by a multiplication with the Fourier coefficients ψ̂k,k

′

` , ` = 0, . . . , L,
k, k′ = −`, . . . , `. Now, evaluating the Fourier partial sum SLf at the nodes qn, n = 1, . . . , N is
a discrete Fourier transform on SO(3).

Several techniques have been proposed for the fast evaluation of discrete Fourier transforms
on SO(3). Among them is an approach (cf. Potts et al., 2009) which uses a fast polynomial
transform based on three-term recurrence formulae. It converts the SO(3) Fourier sums as a
whole into standard Fourier sums on the three-dimensional torus, thus reducing the computa-
tional complexity toO(L4 +M) steps or even toO(L3 log2 L+M) if you omit the stabilization
scheme. Moreover, a forthcoming paper will use an approach that replaces the fast polynomial
transform scheme with a different approximate technique, based on semiseparable matrices. It
has a complexity of only O(L3 logL+M) steps.

On the other hand, the multiplication with the Fourier coefficients ψ̂k,k
′

` has the numerical
complexity O(L4). Hence, the algorithms proposed in this paper have the total complexity of
O(M +N + L4). But they have the potential to become algorithms of complexity O(M +N +
L3 log2 L) or even O(M + N + L3 logL) in case of a radial basis function ψ where ψ(g) =
ψ(qgq−1) for all g,q ∈ SO(3).

In addition to the approximation error of the nonequispaced fast SO(3) Fourier transform the
accuracy of our algorithm depends on the polynomial cutoff of the kernel function ψ. In our
paper we prove error bounds for some of the most important kernel functions like the Abel–
Poisson kernel, the de la Vallée Poussin kernel and others and justify the theoretic error bounds
by numerical experiments. Finally, we demonstrate the performance of our algorithm at the
practical example of the determination of an orientation density function from electron back
scattering diffraction (EBSD) data by kernel density estimation.

Fast radial basis function algorithms that utilize fast Fourier techniques to find an Fourier
approximation of the function f which then can be evaluated at arbitrary nodes are well estab-
lished in the Euclidean and the spherical case. They have been discussed in (Potts and Steidl,
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2003; Keiner et al., 2006). There they come off well compared to other algorithms like Moving
Squares, Thin Plate Splines, partition of unity, or fast multipole (cf. Fasshauer, 2007).

2 Preliminaries

2.1 The Rotation Group
A rotation in R3 can be identified with an orthogonal matrix g ∈ R3×3 having determinant
det(g) = 1 making it an orientation-preserving orthogonal transformation. The set of all such
matrices {g ∈ R3×3 | det(g) = 1 and gT = g−1} constitutes the special orthogonal group
SO(3). There are various ways to parameterize an element g ∈ SO(3) (see Varshalovich et al.,
1988, Sect. 1.4). In this paper we are going to use the well known Euler angles as specified
below.

Definition 1. Let α, γ ∈ [0, 2π), β ∈ [0, π] and let the rotation g(α, β, γ) be defined as

g(α, β, γ) = gZ(α)gY(β)gZ(γ)

where

gZ(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 , gY(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


denote rotations about the z- and y-axis, respectively. Then the angles α, β and γ are called
Euler angles of the rotation g(α, β, γ).

For sake of simplicity, we will denote functions f : SO(3)→ C by f(α, β, γ) = f(g(α, β, γ))
when given by their Euler angles.

Instead of splitting a rotation into three consecutive rotations about defined axes one can also
describe it by a single axis and an angle denoting how much an object is rotated about the axis.
This rotational angle is well defined and defines a metric on the rotational group SO(3).

Definition 2. The rotational angle of a rotation g ∈ SO(3) is defined as

|g| = arccos
1

2
(Tr g − 1),

where Tr g denotes the trace of the matrix g.
Furthermore, we define the distance between two rotations g1,g2 ∈ SO(3) as the rotational

angle of the rotation g2g
−1
1 that transforms g1 into g2, i.e.,

d(g1,g2) =
∣∣g2g

−1
1

∣∣ .
Remark 3. In terms of Euler angles the rotational angle of a rotation g = g(α, β, γ) ∈ SO(3)
reads as

|g(α, β, γ)| = 2 arccos

(
cos

β

2
cos

α + γ

2

)
.
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2.2 Harmonic Functions on the Rotation Group
Let µ denote the Haar measure on SO(3). We consider the Hilbert space L2(SO(3)) with the
inner product

〈f1, f2〉L2(SO(3)) =

∫
SO(3)

f1(g)f2(g) dµ(g)

=

∫ 2π

0

∫ π

0

∫ 2π

0

f1(α, β, γ)f2(α, β, γ) sin β dα dβ dγ,

of two functions f1, f2 ∈ L2(SO(3)).
Related to this inner product we are going to define an orthogonal system in L2(SO(3)).

Definition 4. Let ` ∈ N0 and k, k′ = −`, . . . , `,. Then the functions

Dk,k′

` (g(α, β, γ)) = Dk,k′

` (α, β, γ) = e−ikαe−ik′γdk,k
′

` (cos β), (2)

with

dk,k
′

` (x) =
(−1)`−k

2`

√
(`+ k)!

(`− k′)!(`+ k′)!(`− k)!

√
(1− x)k′−k

(1 + x)k+k′
d`−k

dx`−k
(1 + x)k

′+`

(1− x)k′−`
. (3)

are called Wigner–D functions or generalized spherical harmonics and the functions dk,k
′

` are
called Wigner-d functions or generalized associated Legendre functions.

The Wigner-D functions can be characterized as the matrix elements of the left regular rep-
resentation of the group SO(3) in L2(S2), i.e., they satisfy the representation property

Dk,k′

` (gq) =
∑̀
j=−`

Dk,j
` (g)Dj,k′

` (q). (4)

As a consequence, we have by the Peter–Weyl Theorem (cf. Vilenkin, 1968, Sect. 3.3) the
orthogonality conditions∫

SO(3)

D
k1k′1
`1

(g)D
k2k′2
`2

(g) dµ(g) =
8π2

2`+ 1
δk1k2δk′1k′2δ`1`2 . (5)

Furthermore, the Wigner-D functions form a complete orthogonal system of L2(SO(3)), i.e., the
harmonic spaces

Harm`(SO(3)) = span
{
Dk,k′

` | k, k′ = −`, . . . , `
}

spanned by the Wigner-D functions satisfy

L2(SO(3)) = closL2

∞⊕
`=0

Harm`(SO(3)).
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In particular, the Wigner-D functions {Dk,k′

` | ` ∈ N0, k, k
′ = −`, . . . , `} form a orthogonal

basis of L2(SO(3)).
As a consequence a function f ∈ L2(SO(3)) has a unique series expansion in terms of the

Wigner-D functions

f =
∞∑
`=0

∑̀
k=−`

∑̀
k′=−`

f̂k,k
′

` Dk,k′

` (6)

with Fourier coefficients f̂k,k
′

` given by the integral

f̂k,k
′

` =
2`+ 1

8π2
〈f,Dk,k′

` 〉L2(SO(3)). (7)

2.3 Nonequispaced Discrete Fourier Transform on the Rotation Group
For any L ∈ N0 we consider the space of polynomials of maximum degree L

ΠL =
L⊕
`=0

Harm`(SO(3)) ⊂ L2(SO(3))

and define the index set

JL = {(`, k, k′) | ` = 0, . . . , L; k, k′ = −`, . . . , `} (8)

consisting of all admissible indices (`, k, k′) corresponding to polynomials in ΠL. The function
spaces ΠL have the dimension

dim(ΠL) = |JL| =
L∑
`=0

(2`+ 1)2 =
1

3
(L+ 1)(2L+ 1)(2L+ 3).

Definition 5. Let GM = (g1, . . . ,gM), gm ∈ SO(3) be a finite sequence of rotations. Then the
operator

DL,GM : CJL → CM ,
[
DL,GM f̂

]
m

= f(gm) =
L∑
`=0

∑̀
k=−`

∑̀
k′=−`

f̂k,k
′

` Dk,k′

` (gm), m = 1, . . . ,M,

(9)

that evaluates a polynomial f ∈ ΠL at the nodes g1, . . . ,gM given its Fourier coefficients f̂ =
(f̂k,k

′

` )(`,k,k′)∈JL is called nonequispaced discrete SO(3) Fourier transform (NDSOFT).

In matrix-vector notation, the NDSOFT reads

f = DL,GM f̂

with the vectors f = (f(gm))m=1,...,M , f̂ = (f̂k,k
′

` )(`,k,k′)∈JL and the Fourier matrix

DL,GM =
(
Dk,k′

` (gm)
)
m=1,...,M ; (`,k,k′)∈JL

. (10)
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The application of the adjoint operator DH
L,GM

: CM → CJL is called adjoint NDSOFT. Let
W = diag(wm)m=1,...,M . Then

f̃ = DH
L,GM

W f

may be rewritten as

f̃k,k
′

` =
M∑
m=1

wm f(gm) D̃k,k′

` (gm) (`, k, k′) ∈ JL. (11)

which for suitable weights wm, m = 1, . . . ,M , can be interpreted as a quadrature rule for the
calculation of the Fourier coefficients of f , i.e., f̃ ≈ f̂ .

If implemented directly, the computation of (9) and (11) takesO(ML3) operations. However,
as we already mentioned in the introduction there are fast algorithms that perform this computa-
tion. In our numerical study, we used the approximate algorithm called the nonequispaced fast
SO(3) Fourier transform (NFSOFT) described in (Potts et al., 2009). It computes the sums (9)
and (11) inO(M+L4) steps. Hence the input nodes only contribute additively to the complexity.

2.4 Radial Functions on the Rotation Group
Using the distance measure from Definition 2 we define radial functions on SO(3).

Definition 6. We call a function f : SO(3) → C a radial function with center g0 ∈ SO(3) if it
depends only on the rotational distance to g0 ∈ SO(3), i.e., f(g1) = f(g2) for all g1,g2 ∈ SO(3)
with d(g1,g0) = d(g2,g0).

The class of square integrable radial functions on SO(3) may also be characterized by the
following property of their Fourier coefficients (cf. Hielscher, 2007).

Lemma 7. Let f ∈ L2(SO(3)). Then f is a radial function with center g0 ∈ SO(3) if and only
if there is a sequence of coefficients (f̂`) ∈ `2(N0) such that

f̂k,k
′

` = f̂`D
k,k′

` (g0), ` ∈ N0, k, k
′ = −`, . . . , `.

In particular,

f(g) ∼
∞∑
`=0

f̂`
∑̀

k,k′=−`
Dk,k′

` (g0)D
k,k′

` (g) ∼
∞∑
`=0

f̂` U2`

(
cos

d(g0,g)

2

)
,

where

U`(cosω) =
sin(`+ 1)ω

sinω
, ` ∈ N0, ω ∈ (0, π)

denote the Chebyshev polynomials of second kind with U`(1) = `+1 and U`(−1) = (−1)`(`+1).

Let us conclude with some radial functions on SO(3) on which we will elaborate further in
our numerical tests.
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The Generating Function The generating function of the Chebyshev polynomials of second
kind is given by (cf. Askey, 1975, Sec. 7)

∞∑
`=0

κ`U`(t) =
1

1− 2κt+ κ2
, t ∈ [−1, 1], κ ∈ (0, 1). (12)

We fit into the framework of Lemma 7 by symmetrizing the generating function using U`(t) =
(−1)`U`(−t). For any κ ∈ (0, 1) we define a radial basis function ψ : SO(3)→ R by

ψ(g) =
∞∑
`=0

κ2`U2`

(
cos
|g|
2

)
=

1
2

1− 2κ cos |g|
2

+ κ2
+

1
2

1 + 2κ cos |g|
2

+ κ2
, g ∈ SO(3).

In particular, ψ defines a positive, monotonously decreasing radial function on SO(3). The
parameter κ determines the sharpness of the peak of ψ and we have ψ(Id)→∞ as κ→ 1.

The Abel–Poisson Kernel By differentiating (12) with respect to κ a second summation for-
mula for the Chebyshev polynomials is obtained

∞∑
`=0

(2`+ 1)κ`U`(t) =
1− κ2

(1− 2κt+ κ2)2
, t ∈ [−1, 1], κ ∈ (0, 1). (13)

Again, by symmetrization we derive the well known Abel–Poisson kernel on SO(3) (Matthies
et al., 1987, Sec. 17)

ψ(g) =
∞∑
`=0

(2`+ 1)κ2`U2`

(
cos
|g|
2

)

=
1

2

(
1− κ2

(1− 2κ cos |g|
2

+ κ2)2
+

1− κ2

(1 + 2κ cos |g|
2

+ κ2)2

)
, g ∈ SO(3).

The de la Vallée Poussin Kernel A radial function combining such nice features as non-
negativity, monotonicity and finite Fourier-Chebyshev expansion is the de la Vallée Poussin ker-
nel. For any κ ∈ N it is defined as

ψ(g) =
(2κ+ 1)22κ(

2κ+1
κ

) cos2κ |g|
2

=

(
2k + 1

k

)−1 κ∑
`=0

(2`+ 1)

(
2κ+ 1

κ− `

)
U2`

(
cos
|g|
2

)
.

For proofs of the above properties as well as of the summing formula we refer to (Berens and
Xu, 1991).
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The von Mises–Fisher Kernel For any κ > 0 the von Mises–Fisher kernel on SO(3) is defined
as (cf. Hielscher, 2007)

ψ(g) =
∞∑
`=0

I`(κ)− I`+1(κ)

I0(κ)− I1(κ)
U2`

(
cos
|g|
2

)
=

1

I0(κ)− I1(κ)
eκ cos|g|, g ∈ SO(3), (14)

where In, n ∈ N0 denote the modified Bessel functions of first kind

In(κ) =
1

π

∫ π

0

eκ cosω cosnω dω.

The Gauss-Weierstrass Kernel For κ > 0 the Gauss-Weierstrass kernel on SO(3) is defined
by its Fourier series

ψ(g) =
∞∑
`=0

(2`+ 1)e−`(`+1)κ U2`

(
cos
|g|
2

)
.

Non-negativity and monotonicity of this kernel function are a consequence of the Bochner
theorem (cf Bochner, 1954).

3 Fast Summation
Let GM = (g1, . . . ,gM), gm ∈ SO(3) and QN = (q1, . . . ,qM), qn ∈ SO(3) be a list of
rotations, ψ : SO(3) → C a pointwise given function, and c = (c1, . . . , cM) ∈ CM a coefficient
vector. We are concerned with evaluating the sum

f(qn) =
M∑
m=1

cmψ(qng
−1
m ), n = 1, . . . , N, (15)

for all rotations qn ∈ QN . We will call the rotations gm ∈ GM source nodes and the rotations
qn ∈ QN target nodes.

Let us first assume that the function ψ : SO(3) → C in the sum (15) is a radial function. In
this case our approach is almost identical to the fast summation algorithm for radial functions on
the sphere (Keiner et al., 2006). We approximate the function ψ by its truncated Fourier series
expansion (cf. Lemma 7)

SLψ(qg−1) =
L∑
`=0

∑̀
k,k′=−`

ψ̂(`)Dk,k′

` (q)Dk,k′

` (g), g,q ∈ SO(3), (16)

with a fixed cut off degree L ∈ N0 and substitute it into the sum (1). This leads to a separation
of the source nodes gm, m = 1, . . . ,M , and the target nodes qn, n = 1, . . . , N ,

f(qn) ≈ SLf(qn) =
L∑
`=0

∑̀
k,k′=−`

ψ̂(`)

(
M∑
m=1

cmD
k,k′

` (gm)

)
Dk,k′

` (qn). (17)

Based on this representation our fast summation algorithm splits into three steps:
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1. The calculation of the innermost sum which is an adjoint nonequispaced Fourier transform
that can be approximately computed for the M source nodes gm using a NFSOFT with
numerical complexity up to O(L4 +M).

2. The multiplication with the Fourier coefficients ψ̂(`) in O(L3) steps.

3. The computation of the outer sums which is essentially a nonequispaced discrete SO(3)
Fourier transform evaluated at the target nodes qn, n = 1, . . . , N , and can be computed
approximately by an NFSOFT with numerical complexity up to O(L4 +N).

Expressing the original summation problem (15) as the matrix vector product

f = Ψc

with

f = (f(qn))n=1,...,N ∈ CN , Ψ ∈ CN×M , Ψnm = ψ(qng
−1
m ) and c = (c1, . . . , cM) ∈ CM

the fast summation algorithm corresponds to a rank |JL| approximation ΨL ∈ CN×M of the
matrix Ψ. In fact, we compute

fL = ΨLc,

with

fL = (SLf(qn))n=1,...,N ∈ CN , and ΨL ∈ CN×M , [ΨL]nm = SLψ(qng
−1
m ).

In particular the matrix ΨL factorizes into

ΨL = DL,QN Ψ̂LDH
L,GM

,

where DL,QN , DL,GM are the Fourier matrices as defined in (10) and Ψ̂L ∈ C|JL|×|JL| is given
by

Ψ̂L = diag(ψ̂L), [ψ̂L]`,k,k′ = ψ̂(`).

The proposed method is summarized in Algorithm 1.
In the case that the function ψ is not radial its truncated Fourier series expansion may be

written using the representation property (4) of the Wigner–D functions as

SLψ(qg−1) =
L∑
`=0

∑̀
k,k′=−`

ψ̂(`, k, k′)
∑̀
j=−`

Dkj
` (q)Dk′j

` (g), g,q ∈ SO(3).

Substitution in (15) and rearranging of the sums again yields a separation of source and target
nodes

f(q) ≈ SLf(q) =
L∑
`=0

∑̀
k,k′=−`

Dk,k′

` (q)
∑̀
j=−`

ψ̂(`, k, j)
M∑
m=1

cmD
k′j
` (gm),
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Algorithm 1: Fast summation of radial functions on SO(3).
Input : M ∈ N, N ∈ N

gm ∈ SO(3), m = 1, . . . ,M /* source nodes */
c ∈ CM /* coefficients */
qn ∈ SO(3), n = 1, . . . , N /* target nodes */
L ∈ N0 /* cut off parameter */

ψ̂(`) ∈ C, ` = 0, . . . , L /* Fourier coefficients */

Compute ĉ = DH
L,GM

c by an adjoint NFSOFT.
Compute f̂L = Ψ̂Lĉ.
Compute fL = DL,QN f̂L by an NFSOFT.

Output : fL ∈ CN /* approximating f = Ψc */
Complexity: O(M +N + L4L)

where the innermost sum is an adjoint Fourier transform and the outer most sum is a direct
Fourier transform. In contrast to the radial case Step 2 now consists of L + 1 matrix - matrix
multiplications

f̂` = ψ̂`ĉ`, ` = 0, . . . , L, (18)

where matrices of Fourier coefficients f̂`, ψ̂`, ĉ` ∈ C(2`+1)×(2`+1) are defined as

[ψ̂`]k,k′ = ψ̂(`, k, k′), [ĉ`]k,k′ = [DL,GMc]l,k,k′ and [f̂`]k,k′ = f̂`,k,k′ , k, k′ = −`, . . . , `.

Together, these matrix multiplications have the numerical complexity O(L4). This results in the
overall complexity O(L4 + N + M) of our fast summation algorithm, which is described in
Algorithm 2.

Algorithm 2: Fast summation on SO(3).
Input : M ∈ N, N ∈ N

gm ∈ SO(3), m = 1, . . . ,M /* source nodes */
c ∈ CM /* coefficients */
qn ∈ SO(3), n = 1, . . . , N /* target nodes */
L ∈ N0 /* cut off parameter */

ψ̂(`, k, k′) ∈ C /* Fourier coefficients */
l = 0, . . . , L, k, k′ = −`, . . . , `

Compute ĉ = DH
L,GM

c by an adjoint NFSOFT.
Compute f̂` = ψ̂`ĉ`, ` = 0, . . . , L.
Compute fL = DL,QN f̂ by an NFSOFT

Output : fL ∈ CN /* approximating f = Ψc */
Complexity: O(M +N + L4)
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4 Error Estimates
Next we discuss the error introduced by the approximation of Ψ by ΨL. Obviously, this error
depends on the decay rate of the Fourier coefficients ψ̂.

Lemma 8. Let ψ ∈ L∞(SO(3)) be a radial function and let f ∈ L∞(SO(3)) and SLf ∈ ΠL be
defined as in (15) and (16). Then we have the error estimate

‖f − SLf‖∞ ≤ ‖c‖1
∑
l>L

(2`+ 1)
∣∣∣ψ̂(`)

∣∣∣ . (19)

For a not necessarily radial function ψ ∈ L∞(SO(3)) the error is bounded by

‖f − SLf‖∞ ≤ ‖c‖1
∑
`>L

√
2`+ 1 ‖ψ̂`‖F , (20)

where ‖ψ̂`‖F denotes the Frobenius norm of the matrix ψ̂` ∈ C(2`+1)×(2`+1).

Proof. The first assertion follows from

‖f − SLf‖∞ ≤
M∑
m=1

|cm| max
q∈SO(3)

∣∣∣∣∣∑
`>L

∣∣∣ψ̂(`)
∣∣∣U2`

(
cos
|qg−1

m |
2

)∣∣∣∣∣ .
For the second assertion we rearrange the values of the Wigner-D functions at g ∈ SO(3) as
matrices D`(g) ∈ C(2`+1)×(2`+1) with

[D`(g)]k,k′ = Dk,k′

` (g).

Hence, we can write

‖f − SLf‖∞ ≤
M∑
m=1

|cm| max
q∈SO(3)

∣∣∣∣∣∑
`>L

∑̀
k,k′=−`

ψ̂k,k
′

` Dk,k′

` (q)

∣∣∣∣∣
= ‖c‖1 max

q∈SO(3)

∣∣∣∣∣∑
`>L

Tr ψ̂H
` D`(q)

∣∣∣∣∣ .
Applying the Cauchy Schwarz inequality to the Frobenius inner product we obtain

‖f − SLf‖∞ ≤ ‖c‖1 max
q∈SO(3)

∑
`>L

‖ψ̂`‖F
(
Tr D`(q)DH

` (q)
)1/2

= ‖c‖1 max
q∈SO(3)

∑
`>L

‖ψ̂`‖F U2`(1)1/2

= ‖c‖1
∑
`>L

√
2`+ 1 ‖ψ̂`‖F .
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Analogously to (Keiner et al., 2006) one obtains immediately the following approximation
error between the matrices Ψ and ΨL with respect to the p–matrix norm.

Corollary 9. For a radial function ψ ∈ L∞(SO(3)) and 1 ≤ p ≤ ∞ we have the following
condition on the p–matrix norm

‖Ψ−ΨL‖p ≤M1− 1
pN

1
p

∑
`>L

(2`+ 1)
∣∣∣ψ̂(`)

∣∣∣ .
For a general ψ ∈ L∞(SO(3)) one has

‖Ψ−ΨL‖p ≤M1− 1
pN

1
p

∑
`>L

‖ψ̂`‖F .

Let us finish this section by giving error estimates for ‖f−SLf‖∞‖c‖1
if ψ is one of the particular

kernels defined in Section 2.4 by considering the sum

∞∑
`=L+1

(2`+ 1)
∣∣∣ψ̂(`)

∣∣∣ .
First we obtain an error estimate for the radial function derived from the generating function of
the Chebyshev polynomials by

∞∑
`=L+1

(2`+ 1)κ2` = κ2L+2

(
2L

1− κ2
+

3− κ2

(1− κ2)2

)
= O(Lκ2L) for fixed 0 < κ < 1, L→∞.

Analogously, for the Abel–Poisson kernel we have

∞∑
`=L+1

(2`+ 1)2κ2` = κ2L+2

(
4L(L+ 1)

1− κ2
+

8L+ 9 + κ4 − 2κ2

(1− κ2)3

)
(21)

= O(L2κ2L) for fixed 0 < κ < 1, L→∞.

For the Gauss-Weierstrass kernel we have
∞∑

`=L+1

(2`+ 1)2e−`(`+1)κ <

∞∑
`=L+1

(2`+ 1)2e−(L+1)(`+1)κ

= e−(L+1)2κ

(
4L(L+ 1)

e(L+1)κ − 1
+

(8L+ 9)e2(L+1)κ + 1− 2e(L+1)κ

(e(L+1)κ − 1)3

)
= O(L2e−(L+1)(L+2)κ) for fixed κ > 0, L→∞.

For the von Mises-Fisher kernel we use orthogonality of the cosine system. Under the con-
dition that we chose ` > κ + 2, the resulting sum can be approximated by the error estimate in
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the Leibniz criterion. This yields∣∣∣∣∣∣
∞∑
r=0

κr

πr!

π∫
0

cosr ω(cos `ω − cos(`+ 1)ω) dω

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
r=`

κr

πr!

π∫
0

cosr ω(cos `ω − cos(`+ 1)ω) dω

∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑
r=`

κr

πr!

(
(−1)r2−`π

3
2 cos π

2
(`+ r)Γ(1 + r)

Γ(1+`−r
2

)Γ(1− `+ r)Γ(2+`+r
2

)
− (−1)r2−`π

3
2 cos π

2
(1 + `+ r)Γ(1 + r)

2Γ(2+`−r
2

)Γ(−`+ r)Γ(3+`+r
2

)

)∣∣∣∣∣
<

κ`

2``!
.

Hence, we first estimate
∞∑

`=L+1

(2`+ 1)

∣∣∣∣I`(κ)− I`+1(κ)

I0(κ)− I1(κ)

∣∣∣∣
=

1

I0(κ)− I1(κ)

∞∑
`=L+1

(2`+ 1)

∣∣∣∣∣∣
∞∑
r=0

κr

πr!

π∫
0

cosr ω(cos `ω − cos(`+ 1)ω) dω

∣∣∣∣∣∣
<

1

I0(κ)− I1(κ)

∞∑
`=L+1

(2`+ 1)κ`

2``!
.

This sum can be estimated by two geometric series. Thus one obtains

1

I0(κ)− I1(κ)

∞∑
`=L+1

(2`+ 1)κ`

2``!

<
1

I0(κ)− I1(κ)

(
κL+1

2LL!

∞∑
s=0

(
κ

2(L+ 1)

)s
+

κL+1

2L+1(L+ 1)!

∞∑
s=0

(
κ

2(L+ 2)

)s)

=
κL+1

I0(κ)− I1(κ)

(
(L+ 1)

2L−1L!(2(L+ 1)− κ)
+

(L+ 2)

2L+1(L+ 1)!(2(L+ 2)− κ)

)
= O

(
κL

L!

)
for fixed κ > 0, L→∞.

Since the de la Vallée Poussin kernel has a finite Fourier expansion the approximation er-
ror becomes exactly zero when choosing the cutoff degree L = κ. However, for very large κ
truncating the Fourier expansion at a cutoff degree L < κ might be desirable. Rewriting the
approximation error for the de la Vallée Poussin kernel in terms of binomial coefficients

κ∑
`=L

(2`+ 1)2κ!(κ+ 1)!

(κ− `)!(κ+ `+ 1)!
=

4(
2κ+1
κ

) κ−L∑
`=0

(κ+
1

2
− `)2

(
2κ+ 1

`

)



4 ERROR ESTIMATES 14

we observe that it is the truncated variance sum of the binomial distribution Bn(`) = 2−2n
(
n
`

)
.

Since the centered and scaled binomial distribution converges to the normal distribution

Nµ,σ(x) =
1√
2πσ

e−
1
2

(x−µ)2

σ2

with mean µ = 0 and standard deviation σ = 1 we have for the approximation error the asymp-

totic estimate for λ→∞ and L = λ
√
κ+ 1

2
∈ N

‖f − SLf‖∞
‖c‖1

=

(
2κ+1
κ

)
(2κ+ 1)22κ

κ∑
`=L

(2`+ 1)2κ!(κ+ 1)!

(κ− `)!(κ+ `+ 1)!
(22)

=
4

2κ+ 1
2−2κ

κ−L∑
`=0

(κ+
1

2
− `)2

(
2κ+ 1

`

)
→ 4

∫ ∞
λ

`2 dN0,1(`).

Next we want to show that there is an upper bound for the approximation error that does not
depend on κ and decays exponentially in λ. Therefore, we first need the following estimate of
the binomial distribution by the Gaussian distribution.

Lemma 10. Let n, ` ∈ N and ε ∈ {0, 1
2
} such that n

2
+ ε ∈ N. Then

Bn(
n

2
+ ε+ `) ≤ Bn(n

2
+ ε)

N
0,
√
n+1
2

(ε)
N

0,
√
n+1
2

(`+ ε) ≤ CN
0,
√
n+1
2

(`+ ε),

where the constant C > 0 does not depend on n and `.

Proof. Using 1−x
1+x
≤ e−2x for x ∈ [0, 1] we obtain

Bn(n
2

+ ε+ `+ 1)

Bn(n
2

+ ε+ `)
=

(
n

n
2
+ε+`+1

)(
n

n
2
+`+ε

) =
n− (n

2
+ ε+ `)

n
2

+ ε+ `+ 1
=

1− 2(ε+`)+1
n+1

1 + 2(ε+`)+1
n+1

≤ e−2
2(ε+`)+1
n+1 =

e−
1
2

(ε+`+1)2

(n+1)/4

e−
1
2

(ε+`)2

(n+1)/4

.

This gives the left inequality. The right inequality follows by Stirling’s formula.

Lemma 11. Let L = λ
√
κ+ 1

2
∈ N. Then the approximation error ‖f−SLf‖∞‖c‖1

for the de la Vallée
Poussin kernel is uniformly bounded for all κ ∈ N and decays exponentially with λ→∞.

Proof. Using Lemma 10 with (22) we obtain for κ ∈ N,

‖f − SLf‖∞
‖c‖1

=
1

κ+ 1
2

κ−L∑
`=0

(κ+ 1
2
− `)2B2κ+1(`)

≤ 1

κ+ 1
2

κ−L∑
`=0

(κ+ 1
2
− `)2CN

(0,
√
κ+ 1

2
/2)

(κ+
1

2
− `)

≤ C

(κ+ 1
2
)3/2

κ−L∑
`=0

(κ+ 1
2
− `)2e

− 1
2

(κ+1
2−`)

2

(κ+1
2 )/2

≤ C

(κ+ 1
2
)3/2

∫ −λ√κ+ 1
2

−∞
l2e
− 1

2
`2

(κ+1
2 )/2 d` ≤ C

∫ −λ
−∞

(`+ 1)2e−
1
8
(`−1)2 d`.
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Since the last term decays exponentially in λ the lemma is shown.

5 Numerical Tests and Applications

5.1 Numerical Tests
We now present some numerical examples to demonstrate performance and accuracy of the fast
kernel summation as described in our algorithms. The algorithms were implemented in C and
tested on a 3.00 GHz Intel XenonTM computer with 12 GB main memory, SuSe-Linux (64 bit),
using double precision arithmetic. In addition we used the FFTW 3.0.1 (Frigo and Johnson,
2009) and NFFT 3.0.2 (Keiner et al., 2009a,b) libraries as well as the NFSOFT (Potts et al.,
2009). Whenever involved we used the NFFT with oversampling factor ρ = 2, precomputed
Kaiser-Bessel functions and NFFT-intern cut-off parameter m = 10.
In our numerical experiments we focus on two main aspects of our algorithm. Firstly, we examine
the approximation error between the directly computed sum (15) and the fast computed one from
(17). Secondly, we compare the time requirements of our algorithm to the time requirements of
the direct summation.

Approximation Errors According to Lemma 8 we choose the quotient

E∞ =
||f − fL||∞
||c||1

(23)

as a measure for the approximation error we are interested in. Here, the vector f = (f(qn))n=1,...,N ∈
CN contains the directly computed values of f at the target nodes qn ∈ SO(3), while we compute
fL = (SLf(qn))n=1,...,N ∈ CN by using Algorithm 1. The target nodes q(α, β, γ) as well as the
source nodes g(α, β, γ) were chosen pseudo-randomly from the cuboid [0, 2π)× [0, π]× [0, 2π).
Furthermore the vector c = (cm)m=1,...,M ∈ CM contains M -many pseudo-random coefficients
from the complex square

[
−1

2
, 1

2

]
×
[
− i

2
, i

2

]
.

While the error E∞ does not depend on the number of target nodes N we see a slight depen-
dancy on the number of source nodes M , i.e., the error becomes smaller for growing M . This
is due to the choice of our error measure, in particular, to the denominator ||c||1. This however
does not contradict the results of Lemma 8 which states that there is an upper bound independent
of the number of source nodes M . Figure 1 confirms this.

Since we are interested in the maximum error we have chosen for our next experiments the
number N of targets nodes sufficiently large to ensure that the discrete error E∞ is almost equal
to the true error in (20), i.e., ‖f − fL‖∞ ≈ ‖f − SLf‖∞ for large N . On account of Figure 1 we
choose M = N = 105 for the next tests. Apart from the number of source and target nodes we
examined how the approximation error E∞ depends on the cut off degree L, and on the function
ψ.
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Figure 1: This figure shows the accuracy as a function of the cut-off degree L where we used
the van Mises Fisher kernel with κ = 25. In the left graph we fixed the number of source nodes
M = 103 and plotted the accuracy for different choices ofN target nodes. The right graph shows
the contrary setting where we fixed the number of target nodesN = 103 and plotted the accuracy
for various numbersM of source nodes. The solid, bold line in both graphs shows the theoretical
error bound from equation (21).

The Abel–Poisson Kernel At first we examine the Abel–Poisson kernel. Figure 1 already
showed some measured errors as well as the theoretical error bound for this kernel. In addition
to that, we now plot the error E∞ as a function of the cut off degree L for different choices of the
parameter κ which controls the localization of the kernel. To give an idea about this localization
property we also plot the kernels chosen in each of the summations.
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κ = 0.83

0 20 40 60 80
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E
∞

κ = 0.69
κ = 0.75
κ = 0.83

Figure 2: The left part of the figure shows the Abel–Poisson kernel ψκ for different parameters
κ. The right graphs give the approximation error (23) of our fast algorithm in dependency of the
cut-off degree L of the Fourier expansion (17). The tickles graphs show the theoretical bounds
(21) whereas the markers give the numerical errors.



5 NUMERICAL TESTS AND APPLICATIONS 17

The von Mises–Fisher Kernel For the von Mises-Fisher kernel we again show the error
E∞ as a function of the cut off degree L for different choices of the parameter κ and compare it
to the theoretical error bound found in (22). Figure 3 shows that the numerical error curves are
decreasing much faster and have a sharper bend, than the ones for the Abel–Poisson kernel. This
is due to the nicer localization properties of the von Mises-Fisher kernel.

−2 0 2

0

200

400

600

rotational angle ω

ψ
κ

κ = 6
κ = 10
κ = 25

10 20 30 40 50
10−12

10−8

10−4

100

cut-off degree L

E
∞

κ = 6
κ = 10
κ = 25

Figure 3: The left part of the figure shows the Mises Fisher kernel ψκ for different parameters
κ. The right graphs give the approximation error (23) of our fast algorithm in dependency of the
cut-off degree L of the Fourier expansion (17). The tickles graphs show the theoretical bounds
(22) whereas the markers give the numerical errors.

The de la Vallée Poussin Kernel The third type of kernel used in our experiments is the
de la Vallée Poussin kernel. A fact that distinguishes it from the previously considered kernel is
its error bound which is independent from the localization parameter κ as seen in Equation (22).

Time requirements After analyzing the accuracy of our algorithm we like to examine its time
requirements. We compare the direct algorithm (15) to the fast summation (17) using NFSOFT
to perform Algorithm 1.

We like to point out that we call our algorithm a ”fast” RBF algorithm because we reduced
the total complexity from O(MN) to O(M +N +L3 logL) where M and N are the number of
source and target nodes and L3 is the dimension of the approximation space. Note that the latter
contributes additively in our algorithm, which mean that our algorithm will perform faster then
the direct algorithm as long as the dimension of the approximation space is less then the product
of the number of source and target nodes.

As in our first experiment we consider the van Mises Fisher kernel with κ = 25 and set the
number of source and target nodes to be equal M = N . As it can be seen in Figure 1 our test
function f in terms of harmonic functions requires a polynomial degree of 40 in order to get
a reasonable approximation with an error in the order of magnitude of 10−11. On the rotation
group the function space of polynomials up to degree L = 40 has the dimension 1

3
(L+ 1)(2L+
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Figure 4: The left part of the figure shows the de la Vallée Poussin kernel ψκ for different param-
eters κ. The right graphs give the approximation error (23) of our fast algorithm in dependency
of the cut-off degree L of the Fourier expansion (17). The tickles graphs show the theoretical
bounds (22) whereas the markers give the numerical errors.

1)(2L + 3) = 91 881. Indeed, for M = N = 105 source and target nodes no strong over or
undersampling of the function f can be observed (see Figure 5). In the case a larger error is
acceptable the polynomial degree of the approximation can be chosen correspondingly smaller
(cf. Figure 1). In Figure 6 we compare the performance of our algorithm for different polynomial
degrees and increasing number of source and target nodes. Due to the lack of implementations of
other algorithms like Moving Squares, Thin Plate Splines, partition of unity, or fast multipole to
the rotational group SO(3) the direct algorithm is the only algorithm to whom we can compare
our algorithm.

As expected our fast algorithm outperforms the direct summation. Moreover, we can ver-
ify that the time requirements of the direct algorithm are increasing as O(MN) while the fast
summation algorithm only shows growth of O(M + N). This example also shows another phe-
nomenon. The time performance of our fast algorithm is dominated by the cut off degree L of
SLf as long as the number of nodes does not exceed M ≥ L3. Thus we see an almost constant
time effort for M < L3 while afterwards the time is controlled by the number of nodes as the
graphs for all three cut-off degrees approach each other.

5.2 Kernel Density Estimation from EBSD Data
In quantitative texture analysis one is concerned with polycrystalline specimen and investigates
the relationship between the orientation of the crystals and the macroscopic properties of the
specimen. The orientation of a single crystal is described by an equivalence class of rotations
[g] ∈ SO(3)/S where S ⊂ SO(3) is the symmetry group of the crystal. The distribution of
crystal orientations within the specimen is modeled by the so called orientation density function
(ODF) f : SO(3)/S → R which is defined as the relative frequency of crystal orientations by
volume.

Experimentally the ODF of an specimen can be determined by measuring single crystal ori-
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Figure 5: This figure shows the function f plotted along all rotations about the x-axis in depen-
dency of the angle of rotation. The squares represent the function value at all of those of the
N = 105 randomly chosen target nodes that are at distance of at most 2.5 degree from a rotation
about the x-axis. The deviation of the squares from the graph of the function f indicates the
variation of the function f orthogonal to plotting path.
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Figure 6: This figure shows the time needed to compute the sums (1) depending on the number
of source and target nodes M = N . We compare the direct computation via equation (14) (solid,
bold line) to the fast summation (17) using the NFSOFT with different cut-off degrees L.
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entations GM = ([g1], . . . , [gM ]) with [gm] ∈ SO(3)/S via electron back scattering diffraction
(EBSD) (cf. Adams et al., 1993). These orientations can be interpreted as a random sample of
the unknown ODF.

Let ψ : SO(3) → R be a nonnegative, radial function with integral one. Then the kernel
density estimator of the unknown ODF f : SO(3)/S → R given the random sample GM ⊂
SO(3)/S is defined as (cf. van den Boogaart, 2001)

f̃GM ([q]) =
1

M |S|
M∑
m=1

∑
s∈S

ψ(qsg−1
m ), (24)

where q ∈ [q] and gm ∈ [gm] are arbitrary representatives of the corresponding equivalent
classes.

Since (24) is of the form (15) with coefficients cm,s = 1
M |S| , m = 1, . . . ,M , s ∈ S, we are

in the setting of Algorithm 1. Fixing a cutoff degree L ∈ N the numerical complexity for the
evaluation of (24) in N ∈ N arbitrary orientations [qn] ∈ SO(3)/S is O(M |S|+N + L4).

Rewriting (24) as

f̃GM ([q]) =
1

M

M∑
m=1

ψS(q−1gm) with ψS(q) =
1

|S|
∑
s∈S

ψ(qs) (25)

we obtain the setting of Algorithm 2 since ψS is not radially symmetric. The numerical com-
plexity O(M + N + L4) of this approach compares favorable to the previous one if the random
sample GM contains more then L4

|S| orientations.
In order to demonstrate the performance of our algorithms we use an EBSD data set of a Ferit

specimen measured by I. Lischewski at the department of physical metallurgy and metal physics,
Aachen, Germany, which consists of 124.000 single orientations. A plot of the raw EBSD data
is shown in Figure 7a. Therefore, the Euler angles representation was used to assign to each
orientation an RGB–color, which is plotted in a the map.

We apply kernel density estimation with the radially function ψ defined as the de la Vallée
Poussin kernel with parameter κ = 23 and evaluate the function f̃GM at N = 104 nodes and
compare three different ways of calculating the sum (24). First we use a naive implementation
that evaluates the functions ψ(gm(qs)−1) directly at the given nodes. Second we apply Algorithm
1 for the radially symmetric function ψ to the symmetrized set of nodes SGM ; and third we apply
Algorithm 2 to the symmetrized kernel ψ and the set of nodesGM . Since, the de la Vallée Poussin
kernel is a polynomial all the computations are exact.

The corresponding runtimes of the algorithms were 18000s for the direct evaluation of the
sums, 520s for Algorithm 1, and 22s for Algorithm 2. This shows the practical relevance of the
presented algorithms. A plot of the ODF f̃GM is shown in Figure 7b.
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(a) The Raw EBSD data. (b) The estimated ODF.

Figure 7: The plot (a) on the left hand side shows the raw EBSD data. The position within the
plot corresponds to the position within the specimen and the RGB values of the colors correspond
to the Euler angles of the crystal orientation at this position. The plot (b) on the right hand side
shows the estimated ODF f̃GM : SO(3) → R in sections according to the Euler angles. Red
colors indicate high values and blue colors low values.
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