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ABSTRACT

Single-photon light detection and ranging (Lidar) devices can

be used to obtain range and reflectivity information from 3D

scenes. However, reconstructing the 3D surfaces from the raw

waveforms can be very challenging, in particular when the

number of spurious background detections is large compared

to the number of signal detections. This paper introduces a

new and fast detection algorithm, which can be used to assess

the presence of objects/surfaces in each waveform, allowing

only the histograms where the imaged surfaces are present

to be further processed. The method is compared to state-

of-the-art 3D reconstruction methods using synthetic and real

single-photon data and the results illustrate its benefits for fast

and robust target detection using single-photon data.

Index Terms— Bayesian statistics, inverse problems, Li-

dar, detection, low-photon imaging and sensing

1. INTRODUCTION

Imaging systems based on time-of-flight laser detection and

ranging (Lidar) are used to reconstruct 3-dimensional scenes

in many applications, including automotive [1], environmen-

tal sciences [2], architectural engineering and defence [3, 4].

This modality consists of illuminating the scene with laser

pulses and analyzing the distribution of the photons received

by the detector to infer the presence of objects as well as

their range, and radiative properties (e.g., reflectivity, obser-

vation conditions). For each pixel, associated with a differ-

ent region of the scene, a histogram of time delays between

the emitted pulses and the detected photon arrivals is usu-

ally recorded. Conventionally, in the presence of objects, the

recorded photon histograms are decomposed into a series of

peaks whose positions can be used to infer the distance of the

objects present in each region of the scene and whose ampli-

tudes provide information about the intensity of the objects.

In this work, we address the target detection problem,

which aims at identifying regions or pixels of the scene where

objects are present. We propose an algorithm adapted to situa-

tions where the flux of photons originally emitted by the laser

∗This work was supported by the Royal Academy of Engineering under

the Research Fellowship scheme RF201617/16/31.

source is small, where the ambient illumination level is high

(i.e., low signal-to-background ratio) and for which classical

depth imaging methods [5] usually provide unsatisfactory re-

sults in terms of object detection and reconstruction. In ad-

dition, this method can be easily extended to single-photon

depth imaging in turbid media, e.g., underwater depth imag-

ing [6, 7]. As in most 3D reconstruction scenarios, we as-

sume that at most one surface can be observed in each pixel.

The observation model includes two kinds of detector events

[8–10]: the photons originating from the illumination laser

and scattered back from the target (if present); and the back-

ground detector events originating from ambient light and

dark events resulting from detector noise. Following a classi-

cal Bayesian approach, the target detection problem is first

formulated as a pixel-wise model selection and estimation

problem and prior distributions are assigned to each of the un-

known model parameters. We also present a post-processing

step to further improve the detection maps at a low additional

cost. This additional step can be seen as defining the prior

probabilities of target presence (or equivalently the binary la-

bels associated with the presence/absence of targets) that ac-

count for the spatial organization of objects in the scene. In

contrast to the target detection method presented in [9], where

a reversible-jump Markov chain Monte Carlo (RJ-MCMC)

[11, 12] method was used to generate samples according to

a posterior distribution of interest, we reformulate the ob-

servation model such that the background parameters can be

marginalized analytically while the other parameters (target

range and reflectivity) can be marginalized from the posterior

distribution using (finite sums of) one-dimensional integrals.

The resulting algorithm, which relies mostly on pixel-wise,

low-dimensional integrations, is thus fast and can be imple-

mented using parallel architectures.

The remainder of this paper is organized as follows. Sec-

tion 2 recalls the classical statistical model used for depth

imaging using single-photon Lidar and introduces the alter-

native model used in this work. Section 3 details the pro-

posed Bayesian target detection method. Simulation results

conducted using real Lidar measurements are presented and

discussed in Section 4. Conclusions and potential future work

are finally reported in Section 5.



2. OBSERVATION MODEL

A histogram of photon detections with T bins is denoted by

z = [z1, . . . , zT ]
T ∈ Z

T×1
+ , where Z+ = {0, 1, . . . } is the

set of positive integers. If the light flux reaching the single-

photon detector is sufficiently low [13], the observed photon

count in a given time bin t follows a Poisson distribution, i.e,

zt|(r, t0, b) ∼ P (rh(t− t0) + b) , ∀t = 1, . . . , T, (1)

where r ∈ R+ is the target intensity, b ∈ R+ is the constant

background level associated with dark counts and ambient il-

lumination and h(t) is the instrumental response of the de-

vice, which is assumed to be normalized (
∑T

t=1
h(t) = 1). In

(1), t0 corresponds to the typical delay/time-of-flight associ-

ated with the depth of the given surface.

An equivalent model can be defined using the signal-to-

background ratio (SBR), which is defined as the ratio of the

useful detected photons, e.g., originally emitted by the laser

source, divided by the total number of background photons in

the histogram, i.e., w = r/(bT ). Following this alternative

parametrization, the observation model (1) can be rewritten

zt|(w, t0, b) ∼ P (b (wTh(t− t0) + 1)) , ∀t = 1, . . . , T.
(2)

The main motivation for using (2) instead of (1) is that gamma

distributions are conjugate priors for b in (2) (and not in (1)),

which allows a simple marginalization of b, as will be seen

in Section 3. Assuming the T observations in z are mutu-

ally independent, conditioned on their means [13], the joint

likelihood can be expressed as

p(z|w, t0, b) =
T
∏

t=1

p(zt|w, t0, b). (3)

As can be seen from the two observation models (1) and (2),

in the absence of surface in the field of view, i.e., when r = 0
or equivalently when w = 0, the observation model reduces

to considering T random variables zt drawn independently

from a Poisson distribution with mean b, i.e.,

zt|(w = 0, t0, b) ∼ P (b) . (4)

In this work, we propose a surface detection algorithm to de-

cide whether w = 0 or w > 0. However, the background level

b, and the instant t0 (if an object is present) are unknown in

practice, which makes the detection task more difficult. The

next section presents the proposed Bayesian strategy for this

detection problem.

3. DETECTION STRATEGY

Adopting a Bayesian framework, we assign prior distribu-

tions to the unknown parameters using the a priori knowledge

available about the model parameters.

3.1. Prior distributions

Similarly to previous work [9, 10, 14], independent prior dis-

tributions are assigned to the background level and target re-

flectivity, i.e., p(r, b) = p(r)p(b). In order to model the ab-

sence (r = 0) or presence (r > 0) of a target, we use a spike

and slab prior distribution [15] for the signal intensity, that is

p(r|u, αr, βr) = uG(r;αr, βr) + (1− u)δ(r) (5)

where δ(r) is the Dirac delta distribution centred in 0 and u ∈
{0, 1} is a binary variable that indicates the presence (u = 1)

or absence (u = 0) of a target. Moreover, G(r;αr, βr) de-

notes a gamma density with known shape αr and rate βr.

Note that (αr, βr) can usually be adjusted from calibration

measurements, as the dynamic range of r is primarily guided

by the laser power used, the average distance between the

Lidar system and the scene, the scattering properties of the

media, the efficiency of the detector and the pixel-wise acqui-

sition time. The prior distribution for the binary label u is a

Bernoulli distribution such that p(u = 1) = π and p(u =
0) = 1− π, where π ∈ (0, 1) is the prior probability of target

presence. Unless stated otherwise, we have used π = 0.5, ex-

pressing our absence of knowledge regarding this parameter.

The background level mostly depends on the amount of

ambient illumination reaching the single-photon detector and

is modelled as in [9, 10] with a conjugate gamma distribu-

tion p(b|αb, βb) = G(b;αb, βb) with known parameters. If

limited information is available about b a weakly informa-

tive prior distribution can be defined for b (e.g., to have a

heavy-tailed prior). The resulting joint prior distribution on

the parametrization based on b and w can be obtained from

p(r, b) by applying a standard change of variables yielding

p(w, b|u, φ) = (1− u)δ(w)G(b;αb, βb)

+ uc0(w)G(b;αb + αr, βb + βrTw) (6)

where φ = {αr, βr, αb, βb}, c0(w) = (Tβr)
αrwαr−1(βb +

Twβr)
αr+αbβαb

b /B(αr, αb) and B(·, ·) is the beta function.

Since φ is known in this work, it is omitted in all the condi-

tional distributions in the remainder of this paper. Assuming

no prior knowledge on the position of the target, we assign a

uniform prior for the depth, i.e., p(t0) = 1/T for any t0 in

{1, . . . , T}. However, this choice could be changed if addi-

tional information was available.

3.2. Decision rule

The proposed decision rule is based on the marginal posterior

distribution of the label u, obtained by integrating out the pa-

rameters b, t0 and w, considered here as nuisance parameters.

Defining H0 and H1 as the absence and presence of the target

respectively, the proposed decision rule is

p(u = 0|z)
H0

≷
H1

p(u = 1|z), (7)



where

p(u|z) =
T
∑

t=1

∫ ∫

p(w, b, t0, u|z)dbdw, (8)

with p(w, b, t0, u|z) ∝ p(z|w, b, t0)p(w, b|u)p(t0)p(u) using

Bayes rule. Note that, as will be shown in Section 4, it is

also possible to consider t0 as a deterministic parameter and

only marginalize (b, w), i.e., consider p(u|z, t0) in (7), where

the actual (unknown) value of t0 is replaced by an arbitrary

estimate.

3.3. Computation of marginals

In order to compute the marginal distribution p(u|z) used in

(7), we first integrate out the background level and target po-

sition, that is

p(w, u|z) ∝

T
∑

t0=1

p(t0)

∫

∞

0

p(z|w, t0, b)p(w, b|u)p(u)db.

Due to the conjugacy between the observation model (2) and

the prior distribution (6), the inner integral is available in

closed form. The integration over the signal-to-background

level is also available in closed form for u = 0,

p(u = 0|z) =

∫

p(w, u = 0|z)dw

=
(1− π)

γ
Γ(z̄ + αb)(T + βb)

z̄+αb (9)

where z̄ =
∑T

t=1
zt is the total number of photons observed

and γ is a normalization constant. Finally, the marginal prob-

ability of the target being present is

p(u = 1|z) =
c1
γ

∫

∞

0

f1(w)

T
∑

t0=1

exp(f2(w, t0))dw (10)

with

f1(w) = wαr−1 (βb + T (1 + w(βr + 1))
z̄+αr+αb

f2(w, t0) =

T
∑

t=1

zt log(wTh(t− t0) + 1),

γ is the same constant as in (10) and c1 = πΓ(αr)Γ(z̄+αb+
αr)(βrT )

αr . Since γ is shared in (9) and (10), it can be easily

computed using p(u = 0|z)+p(u = 1|z) = 1. The marginal

distribution (10) involves an intractable integral. However,

the sum can be computed with O(T log T ) floating point op-

erations using the fast Fourier transform (FFT), allowing the

integral to be be numerically approximated with a quadrature

method (with a computational cost of K integrand evalua-

tions). Thus, the overall complexity is O(KT log T ), which

is close to cross-correlation if K << T . Note that if t0 is not

marginalized and replaced by a point estimate instead, (10) is

simplified as the sum in the integrand reduces to one term.

3.4. Spatial regularization

Histograms corresponding to neighbouring pixels generally

show similar numbers of surfaces [16–18]. Thus, we pro-

posed to refine the pixel-wise detection method to create a

more homogeneous map of target presence. Such segmen-

tation (or subsequent denoising step) can be efficiently com-

puted by solving a total variation (TV) problem [19], that is

û = fth

(

argmin
v

||v − y||22 + τ ||v||TV

)

(11)

where the input image y contains the log-ratios yi,j =
log p(u = 1|z) − log p(u = 0|z) of histogram at pixel

(i, j), || · ||TV is the isotropic total variation operator, τ is a

user-defined parameter which controls the impact of the TV-

based denoiser (τ = 5 here) and fth(·) is a hard thresholding

operation, which assigns 1 to positive inputs and 0 otherwise.
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Fig. 1: Performance of the proposed detection algorithm for

different numbers of photons and signal-to-background ra-

tio. The solid lines correspond to a true positive rate of 95%
with t0 known (red), estimated by cross-correlation (blue) and

marginalized (green).

4. RESULTS

In this section, we evaluate the performance of the proposed

algorithm using synthetic and real Lidar datasets. In all the

results presented here, we assume we know (from calibra-

tion measurements) the average number rM of signal pho-

tons detected when observing an object of unit reflectivity

under similar observation conditions as for the scene of in-

terest. We then use this value to set φ = {αr, βr, αb, βb} =
{2, 2/rM , 1, T/rM}, which corresponds to a fairly informa-

tive prior for r and more weakly informative prior for b1.

First, we evaluate the method for different values of SBR

and z̄, using a Gaussian instrumental response with standard

deviation σ = T/100. Fig. 1 shows the SBR/photon counts

curves for a true positive rate of 95%, without marginaliz-

ing t0 (the true value of t0, estimating it with the classical

matched filter (see [10] for details)) and with the proposed

marginalization. The probability of false alarm of the pro-

posed detector is shown in Fig. 2. While the sensitivity of the

1While a thorough robustness analysis is beyond the scope of this paper,

the results do not vary significantly with reasonable variations of rM .



detector does not change significantly with the marginaliza-

tion of t0 (see Fig. 1), the probability of false alarm increases

when t0 is estimated using the standard cross-correlation.

Fig. 3 depicts a map of the empirical probability of detection

obtained by the proposed method (with t0 marginalized) for

various SBRs and photon counts. This figure gives an em-

pirical bound on the minimum number of photons needed to

detect a target with a given probability, for different levels of

SBR, which can be used to adjust the acquisition time of the

device in practice. In absence of a target, Fig. 2 shows that

around 20 background detections are sufficient to correctly

discard the histogram with high probability (>0.95).
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Fig. 2: Probability of false alarm achieved by the proposed

method by marginalizing t0 (blue curve) and by estimating t0
via cross-correlation/matched filtering (red curve).
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Secondly, we compare the proposed algorithm with two

state-of-the-art single-depth [9] and multi-depth [18] detec-

tion algorithms and the standard cross-correlation with re-

flectivity thresholding (see [9] for details) using real Lidar

dataset, which consists of a polystyrene head measured at a

stand-off distance of 325 metres during midday (more details

can be found in [9]). The hyperparameters of these two al-

gorithms were chosen to obtain the best PD/PFA trade-offs.

The dataset consists of 200 × 200 pixels with T = 2700 his-

togram bins per pixel, an approximate SBR of 0.29 with a

5th-95th percentile interval of (0.05, 0.67). Table 1 shows

the performance of the different detection algorithms for two

different per-pixel acquisition times (3 ms and 1 ms), which

correspond to average counts of 90 and 30 photons, respec-

tively. These results show that although the proposed method

is applied pixel-wise, it generally provides better results than

the cross-correlation method, a significant improvement in

terms of probability of false alarm (PFA) and probability of

detection (PD) is obtained by using the additional denois-

ing step presented in Section 3.4, which accounts for spa-

tial correlation between adjacent pixels (as in [9]). This can

also be confirmed visually on the detection maps depicted in

Fig. 4. In contrast to the proposed method, applying a TV

post-processing step directly to the cross-correlation output

is challenging, as the per pixel detection probabilities are not

available. Note that although our method yields a small im-

provement in terms of PD in the 1 ms case (see bottom row of

Table 1), the corresponding PFA is significantly increased. Fi-

nally, Table 2 illustrates that the proposed method, even when

combined with a post-processing step, remains very compet-

itive from a computational point of view and can potentially

be used for real-time target detection.

PD [%] PFA [%]

3 ms 1 ms 3 ms 1 ms

Altmann et al. [9] 89.2 81.4 0.01 0.01

ManiPoP [18] 94.47 84.51 0.47 0.00

Cross-corr. 91.1 57.4 20.1 42.6

Proposed 80.52 75.40 6.45 18.53

Proposed + TV 92.76 94.31 0.04 0.57

Table 1: Probabilities of false alarm (PFAs) and probabilities

of detection (PDs) for the proposed algorithm and other state-

of-the-art detection algorithms.

Ground truth Altmann et al. Cross-corr. Proposed Proposed+TVManiPoP

Fig. 4: Detected targets (in yellow) for a per-pixel acquisition

time of 3 ms.

3 ms 1 ms

Altmann et al. [9] 24 h 12 h

ManiPoP [18] 539 s 416 s

Cross-corr. 1 ms (p)

Proposed 50 ms (p)

Proposed + TV 50 ms (p) + 0.1 s

Table 2: Execution time for the proposed algorithm and other

state-of-the-art alternatives for per-pixel acquisition times of

3 ms and 1 ms. Cross-correlation and the proposed method

are assumed to be executed in parallel, indicated by (p).



5. CONCLUSIONS AND FUTURE WORK

We presented a new fast target detection algorithm for single-

photon Lidar data. Unlike other existing algorithms, the pro-

posed method is easily parallelizable and can be used as a

pre-processing step to discard histograms without useful in-

formation. This step can improve the reconstruction quality

obtained by algorithms assuming one depth per pixel [20,21],

as it removes histograms without surfaces from the data cube.

Moreover, it can also be used before multiple-surface-per-

pixel algorithms [18, 22] to reduce the computational load.

As mentioned in Section 4, the performance bounds shown in

Figures 1 to 3 can be used to adjust the acquisition time de-

pending on the minimum SBR admissible. Future work will

be devoted to including the proposed method within a hierar-

chical model and refine the additional denoising step investi-

gated in this work.
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