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Abstract

Supporting vector machine (SVM) is the most fre-
quently used classifier for machine learning tasks.
However, its training time could become cumber-
some when the size of training data is very large.
Thus, many kinds of representative subsets are cho-
sen from the original dataset to reduce the training
complexity. In this paper, we propose to choose
the representative points which are noted as an-
chors obtained from non-negative matrix factoriza-
tion (NMF) in a divide-and-conquer framework,
and then use the anchors to train an approximate
SVM. Our theoretical analysis shows that the solv-
ing the DCA-SVM can yield an approximate solu-
tion close to the primal SVM. Experimental result-
s on multiple datasets demonstrate that our DCA-
SVM is faster than the state-of-the-art algorithms
without notably decreasing the accuracy of classifi-
cation results.

1 Introduction

Supporting vector machine (SVM) [Cortes and Vapnik, 1995]

can be considered as the most popular classifier in machine
learning tasks. Due to its importance, optimization meth-
ods for SVM have been widely studied [Li et al., 2015;
Tsang et al., 2005; Liu and Tao, 2016; Gu et al., 2015;
Li and Guo, 2013; Xu et al., 2015; Luo et al., 2016], and ef-
ficient libraries such as LIBSVM [Chang and Lin, 2011] and
SVMlight [Joachims, 1999] are well developed. However, its
application on real-world datasets is limited due to the train-
ing time which will increase tremendously as the size of train-
ing set becomes large. For example, training time complexi-
ty for SVMs with non-linear kernels is typically quadratic in
the size of the training dataset [Shalev-Shwartz and Srebro,
2008].

A great number of works have been made to accelerate
the training procedure in this literature [Fan et al., 2008;
Hsieh et al., 2014; Shalev-Shwartz et al., 2011]. The SVM
primal problem is a convex optimization problem with strong
duality, thus its solution can be arrived at by solving its dual
formulation [Boyd and Vandenberghe, 2004].

Training set selection methods attempt to reduce the SVM
training time by optimizing over a selected subset of the train-

ing set. Several distinct approaches have been used to select
the subset. A core set is defined as the subset of X and its
solution of an optimization problem has a solution similar to
that for the entire data set [Clarkson, 2010]. In [Tsang et al.,
2005], core vector machine (CVM) is proposed which can ap-
proximately solve the L2-SVM formulation using core sets,
and proved that L2-SVM is a reformulation of the minimum
enclosing ball problem for some kernels. Ball vector machine
(BVM) further improves CVM by focusing on the enclosing
ball [Tsang et al., 2007].

Another type of approximate SVM algorithms is based
on the geometric property of data distributions. [Bennet-
t and Bredensteiner, 2000] developed an intuitive geometric
interpretation of the standard support vector machine classi-
fication of both linearly separable and inseparable data, and
proved that finding the maximum margin between the two
sets is equivalent to finding the closest points in the smallest
convex hulls that contain each class for the separable case.
However, Early work [Chazelle, 1993] proved that the calcu-
lation complexity of obtaining an exact convex hull is unac-
ceptable in real applications. [Zhou et al., 2013] developed a
divide-and-conquer algorithm to obtain the approximate con-
vex hull.

Inspired by recent developments on obtaining representa-
tive points, we propose a fast SVM algorithm based on the
anchors of approximate convex hull obtained by NMF, and
prove that our algorithm can yield an approximate solution
close to the primal SVM. We conduct the experiments both
on synthetic and multiple real datasets. The results show that
our DCA-SVM outperforms the state-of-the-art algorithms,
and validate the efficiency and significance of our method.

2 Related Work and Preliminaries

Given a binary-class dataset X with n vectors xi ∈ R
m, its

corresponding labels Y = {yi : y ∈ {−1, 1}, i = 1, · · · , n}.
The primal SVM can be represented as follows:

min
w,b

J1(w, b) =
1

2
‖w‖2 +

C

n

n∑

i=1

ℓ(w, b, φ(xi)) (1)

where ℓ(w, b, φ(xi)) is the hinge loss of xi. The penalty pa-
rameter C is divided by n, which has been frequently used.
The optimization of the objective function (1) requires n sam-
ples. The training time of traditional SVM can be decreased
by reducing the size of the training set.
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o
(a) conical hull cone(XA)

o
(b) convex hull simplex(XA)

{   } = data vectors {   } = anchors (vertices)

Figure 1: Illustration of the conical hull and the convex hull gener-
ated by NMF.

Among a large number of works focusing on obtaining rep-
resentative subsets, obtaining the geometry convex hull of X
is one of the most popular methods. First, let’s make a brief
revisit on the geometric properties of a set of data. Given a
set of points R = {ri}

k
i=1, its cone cone(R) is defined as the

conical combinations of k points.

cone(R) = {
k∑

i=1

hiri|ri ∈ R, hi ∈ R+} (2)

Similarly, a simplex is a non-empty convex set that is closed
with respect to convex combinations of its elements. Given a
set of points V = {vi}

k
i=1, a simplex ∆(V ) can be defined as

follows:

∆(V ) = {
k∑

i=1

hiri|ri ∈ V, hi ∈ R+,

k∑

i=1

hi = 1} (3)

For a given dataset X , let ∆(X) denote its convex hull and
XA be anchors (vertices) of the convex hull ∆(X). There-
fore, all points of X can be represented by following convex
combination:

xi =
∑

xt∈∆(X)

hi,txt, (4)

where 0 ≤ hi,t ≤ 1,
∑

xt∈∆(X) hi,t = 1 and hi,t indicates

the convex combination coefficient of anchor xt for point xi.
Figure 1 shows examples of conical hull and convex hull.

Although the anchors on the convex hull can fully repre-
sent the property of all points, the computational complexity
of exact convex hull for high-dimensional datasets can be ex-
tremely cumbersome. It was proved in [Chazelle, 1993] that
the calculation complexity of obtaining an exact convex hull

of n vectors of m features is O(n⌈m/2⌉+n log n). One exam-
ple shown in Figure 2 indicates one extreme situation where
all points are in the convex hull. Therefore, the approximate
yet representative subset of points is needed.

2.1 Approximate Convex Hull of NMF

Non-negative matrix factorization (NMF) decomposes a
matrix X ∈ R

n×m
+ which contains n non-negative m-

dimensional vectors {xi}
n
i=1 into the form of X = HW ,

where H ∈ R
n×k
+ , W ∈ R

k×m
+ and k ≪ min{n,m}. The

rows of W are composed of k non-negative basis vectors rep-
resenting all the samples, while the n rows of H are non-
negative weight vectors [Zheng et al., 2015].

y
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1
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the number of subproblems
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m

B( )

m−1
All points on the arc are anchors

Figure 2: An extreme case for divide-and-conquer anchoring. If
all points lie on the surface of the Gaussian ball, they will all be
considered as anchors by exact convex hull calculating algorithms.
However, its computation cost will be too expensive.

Many additional assumptions are further imposed on the
H and W to transform the original NP-hard NMF problem
into tractable [Vavasis, 2009]. For example, an early work
in [Donoho and Stodden, 2003] gives a separability assump-
tion and prove that a uniqueness of NMF solution can be
achieved under this additional assumption. Therefore, the ge-
ometric concepts of cone, conical hull, simplex and convex
hull can be defined both geometrically and algebraically un-
der the separability assumption. We can also know that a sep-
arable matrix is one that admits a non-negative factorization
where X = HX(:,K), i.e., W just consists of a subset of
the columns of X . The index set K of columns are called ex-
treme columns. Namely, in separable NMF, X = HX(:,K)
implies that all columns of X lie in the cone generated by the
columns indexed by K. For any k ∈ K, {αX(:, k)|α ∈ R+}
is an extreme ray of this cone. Computing K is reduced to
finding the extreme rays of a cone.

Besides, a near-separable matrix is one where X = HX(:
,K) + N , where N is the noise matrix. Determining K is
reduced to finding the extreme points of a convex hull.

Separability assumption selects a few data points to rep-
resent the other data points in the whole dataset. This con-
straint is more than merely an artificial trick: it is favored and
justified by various practical applications. For example, in
big data challenges, it is more natural, interpretable and effi-
cient to represent high-dimensional data by a few actual data
points selected from a huge dataset rather than artificial basis
vectors. The separability assumption allows the anchors such
data expresses itself assumption has become a popular trend
in the recent study of other related matrix factorization [Zhou
et al., 2013].

Although traditional methods such as linear programming
(LP) and greedy pursuit methods can pick out the anchors
from noisy data and results in a near-separable NMF, their
efficiency could be seriously weakened in high dimension-
s. Recent work [Zhou et al., 2013] presents a quite effi-
cient divide-and-conquer anchoring (DCA) framework to ad-
dress near-separable NMF problem by solving several inde-
pendent sub-problems in low-dimensional spaces, and then
obtain an approximate convex hull from the large-scale da-
ta in high-dimensional space. Specifically, DCA is a divide-
and-conquer framework [Liu et al., 2011] for near-separable
NMF and with two steps: the divide step equals applying
near-separable NMF to data random projections in multiple
subspaces, whilst the conquer step is a fast hypothesis testing
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based on statistics of the low-dimensional anchors achieved
in the divide step.

In each sub-problem of the divide step, DCA projects all
the row vectors in X to a randomly generated d-dimensional
hyperplane P = P(B), where B denotes a subspace B =
[η1; · · · ; ηd] ∈ R

d×m spanned by d random vectors {ηi}
d
i=1

uniformly sampled from the unit hypershere S
m−1 in R

m.
The projections of X on P is Y = XBT . Since the ge-
ometry of conical hull cone(XA) is partially preserved in Y ,
the output of separable NMF in i-th subproblem is the low-
dimensional anchors’s indexes can be represented as follows:

Āi = SNMF(X(Bi)T ) (5)

The conquer step of DCA is composed of a hypothesis
testing that accepts or rejects each data point associated with
a detected low-dimensional anchor (from the s subproblem-
s) as an anchor. Since the anchors are usually detected in
sub-problems with higher probability than non-anchors, the
hypothesis testing can then be reduced to picking out the
k data points whose random projections are most frequent-
ly selected as anchors in all the sub-problems. The anchor
number k can be predetermined or determined automatical-
ly. Let I(i ∈ Āj) : i → {0, 1} be an indicator func-
tion for the event that data index i is within the Āj of the
jth sub-problem. For predetermined k, DCA selects the
top k largest

∑s
j=1 I(i ∈ Āj). In some applications, the

rank k is unknown and needs to be determined automatical-
ly. When the noise is not overwhelming, a large gap can be
observed between anchor and non-anchor on their statistics∑s

j=1 I(i ∈ Āj).
Hence, a tolerance µ can be pre-defined to detect such gap

in the sorted
∑s

j=1 I(i ∈ Āj) of all data points and auto-

matically identify k. Let p be the new index set after sorting∑s
j=1 I(i ∈ Āj) of all i ∈ [n] in descending order. By defin-

ing g(pl)
∑s

j=1 I(pl ∈ Āj), anchor set A can be estimated

without knowing k by

A := p[l∗], l
∗ = min l : g(pl)− g(pl+1) ≤ sµ (6)

DCA can be further accelerated by projecting vectors onto ex-
tremely low-dimensional space, such as 1D or 2D space. By
this means, DCA gets a promising approximate convex hull.
Based on this development, we propose to use the approxi-
mate convex hull to be further applied in the SVM training to
reduce the training time.

3 Fast SVM Trained on Anchors

In this section, we will introduce the proposed fast SVM
trained on anchors, named DCA-SVM. We use the anchors of
approximate convex hulls obtained by the divide-and-conquer
NMF framework to train the approximate SVM. Figure 3
shows the illustration of our method. The objective function
of our method can be written as follows:

min
w,b

J2(w, b) =
1

2
‖w‖2 +

C

n

k∑

t=1

βtℓ(w, b, φ(xt)) (7)

where βt =
∑n

i=1 hi,t is the sum of weights for vector xi,

and C
n is the same penalty parameters in problem (1).

outlier P

convex hull
X=FXA+N

{   } XA
-{   } X

-
{   } XA

+
{   } X

+

o 

Figure 3: Illustration of the proposed approximate SVM trained on
anchors by NMF. X+ and X

− denote the two different classes, and
X

+

A
and X

−

A
stand for sets of anchors (vertices) of the convex hull

for each class. The outlier point Po, as well as the inner points, can
be represented by linear combination of anchors and corresponding
noise. The proposed approximate SVM will be trained on X

+

A
and

X
−

A
.

3.1 Getting Anchors

To obtain the anchors of the approximate convex hull, it
is required to first rearrange X according to their labels as
X = {X+, X−}. The divide-and-conquer methods [Xu et
al., 2016] which pursue the anchor points are conducted on
X+ and X− separately. For simplicity, we use the form of
the explicit representation of transformed data vectors in the
kernel space:

Z = {zi : zi = φ(xi), ∀xi ∈ X} (8)

3.2 Defining Convex Combination Coefficients

After getting the anchors XA of the original dataset X , we
need to determine the coefficients of the anchors correspond-
ing to other points by following equations,

min
H+

n∑

i=1

‖X −HX+
A‖2F ,

s.t. 0 ≤ hi,t ≤ 1, and
∑

xt∈XA

hi,t = 1
(9)

Where H is the coefficient matrix. Since most of the points
are inner points, their convex combination coefficients can
be quickly obtained. More specifically, for each point xi, it
required to be determined whether it can be fully represented
by the anchors,

f(xi, XA) = min
hi

‖φ(xi)−
∑

xt∈XA

hi,tφ(xt)‖
2,

s.t. ∀i, 0 ≤ hi,t ≤ 1, and
∑

xt∈XA

hi,t = 1
(10)

where ‖φ(xi) −
∑

xt∈XA
hi,tφ(xt)‖

2 = K(xt, xt) +∑
t=1

∑
r=1 hi,thi,rK(xt, xs)− 2

∑
t=1 K(xi, xt). In order

to solve this quadratic optimization problem, we set a thresh-
old ξ > 0, if f(xi, XA) ≤ ξ, xi is considered as an inner
point of the convex hull XA, otherwise, xi will be considered
as an outer point of the convex hull. In this way, the weight
coefficients for each xi can be calculated separately, which
can be accelerated by coordinate descent algorithms.
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Algorithm 1 Approximate SVM trained on divide-and-
conquer anchors, where the anchor number k is determined
automatically.

Input: training data X , sub-problem number s, random vec-
tor number d.

Output: Parameters of DCA-SVM for classification
Split training set into X+ and X− according to their labels;
(1) Divide and Conquer Step:
for i = 1 to s do

generate random projection matrix B;
obtain anchors Ai of X(Bi)T by SNMF in Eq. (5).

end for
combing anchors to get X+

A and X−
A by Eq. (6);

(2) Coefficients Learning Step:
Determining the weight matrices F± and noise matrices
N± of X± = FX±

A +N± .
(3) Training procedure:
train SVM using anchors X+

A and X−
A according to Eq.

(7).

After getting the coefficient parameters, all points can be
presented as follows:

zi =
∑

zt∈Z∗

hi,tzt + τi (11)

where τi is a vector indicates the representation error between
f(xi, XA),

After getting the coefficients hi,t(1 ≤ t ≤ k) for point xi,
for an anchor xt(1 ≤ t ≤ k), we then obtain its compound
coefficient βt =

∑n
i=1 hi,t, which will be used in the objec-

tive function of DCA-SVM in Eq. (7). Further, the proposed
DCA-SVM can be solved by standard SVM solver such SMO
algorithm.

3.3 Computational Complexity

The computation complexity of Algorithm 1 mainly consist-
s of two parts: finding out the anchors for two classes and
training SVM on the representative subsets. In the practical
calculation, the complexity of getting anchor by DCA-1D or
DCA-2D is O(nk log k); For the proposed approximate SVM
algorithm, its input number of vectors is reduced from n to
ρk, where ρ is a constant value. The computational complex-
ity of our approximate SVM algorithm is equal to the primal
SVM with same number of reduced training samples.

Let (w∗
1 , b

∗
1) and (w∗

2 , b
∗
2) be the optimal solution of

J1(w, b) and J2(w, b), respectively. The following theorem
proved that our SVM can yield an approximate solution close
to the primal SVM by thresholding the value of noise.

Theorem 1. Let J1(w, b) and J2(w, b) be the objective func-
tions of primal SVM and DCA-SVM, Then,

J1(w, b)−
C

N

N∑

i=1

max{0,−yiw
T τi} ≤ J2(w, b) (12)

where τi is the noise for vector xi. Due to limited space,
the proof of Theorem 1 is not presented here. In a nutshell,
the proof process is straightforward by taking the weighting
coefficients of anchors into Eq. (7).

4 Experiments

In this section, we will present the experimental results on
synthetic datasets and popular real datasets. We perform
all compared algorithms on three real-world datasets: KD-
D99Lite, UCI Forest1 and IJCNN12. KDD99Lite is a simpli-
fied version of KDD993 by removing the repeated data vec-
tors as described in [Tavallaee et al., 2009]. KDD99Lite con-
sists of a training set with 1,074,974 vectors and a test set
with 77,216 vectors of 41 features. UCI Forest dataset has
581,012 vectors with 54 features, and it is used to classify the
areas of forest cover into one of seven types. We follow the
settings of [Tavallaee et al., 2009] to obtain as a classification
the 2nd forest cover type and the other types. For IJCNN1,
its training set and testing set have 49,990 and 91,701 vectors,
respectively. All vectors of IJCNN1 have 22 features. Table
1 summarizes the information of three datasets.

Table 1: Summarization of three datasets on their numbers of train-
ing sets, test sets and features.

Datasets KDD99Lite UCI Forest IJCNN1

Training set 1,074,974 283,301 49,990
Test set 77,216 297,711 91,701
Features 41 54 22

For the sake of accuracy of the experiment, we partitioned
the data randomly for five-fold cross-validation. The param-
eter C varies in the range {2−6, 2−5, . . . , 25, 26}.

Our proposed DCA-SVM will be compared with AESVM,
CVM, BVM, SVMperf and LIBSVM. These algorithms can
be summarized as follows:

• AESVM: reduces the excessive training time by select-
ing the approximate extreme points according to Eu-
clidean distance between each point within a divide-and-
conquer framework. We set the parameter ǫ = 10−2

when using AESVM [Nandan et al., 2014].

• CVM: core vector machine, approximately solves the
L2-SVM formulation using core sets, which is a subset
of the original entire dataset [Clarkson, 2010].

• BVM: ball vector machine, a simplified version of
CVM, only utilizes the points lying on the enclosing ball
[Tsang et al., 2007].

• SVMperf: an implementation of the SVM formula-
tion for optimizing multivariate performance measures
[Joachims, 2005]. We set the given number of support
vectors as 1000 in our experiments.

• LIBSVM: a widely used implementation of SVM based
SMO algorithm [Chang and Lin, 2011].

In addition to classification accuracy, we use other mea-
sures to evaluate the performances of these methods, which
are expected training time speedup Tte, overall training time
speedup Tto, expected classification time speedup Tce and

1https://archive.ics.uci.edu/ml/datasets/Covertype
2http://www.csie.ntu.edu.tw/$\sim$cjlin/libsvmtools/datasets/

binary.html\#ijcnn1
3http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
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Figure 5: Comparison of DCA-SVM, AESVM, CVM and BVM on the time they need to get the number of anchors and number of vectors
from 20 anchors for each class. (a) Anchors may become inner points after adding noise. (b) The total number of representative subsets for
all methods. (c) Training time for getting the subsets for all methods.

Table 2: Classification results of DCA-SVM, AESVM, CVM, BVM, SVMperf and LIBSVM on three real datasets in terms of four time
measures, and the maximum (×10

2), mean (×10
2) and standard deviation (×10

2) of accuracy.

Algorithms Tte Tto Tce Tco acc(max) acc(mean± std)

KDD99Lite
DCA-SVM 1712.2 173.1 6.1 3.9 94.1 92.4±0.6

AESVM 1211.0 156.2 5.9 3.2 94.2 92.3±0.7
CVM 9.1 6.3 1.5 2.2 94.2 92.5±0.9
BVM 26.2 21.7 2 1.9 94.0 92.6±1.7

SVMperf 3.1 1.1 2.6 2.6 94.3 92.6±1.2
LIBSVM 1.0 1.0 1.0 1.0 94.1 92.7±0.7

UCI Forest
DCA-SVM 1402.4 51.8 28.4 71.8 67.5 60.2±2.2

AESVM 966.1 32.8 22.9 68.4 67.2 59.8±2.8
CVM 7.9 5.8 10.5 25.7 63.8 59.1±4.1
BVM 6.1 4.9 11.3 8.2 64.2 60.2±2.4

SVMperf 3.2 1.2 183.5 261.2 67.2 61.1±2.9
LIBSVM 1.0 1.0 1.0 1.0 68.3 61.3±3.4

IJCNN1
DCA-SVM 40.1 6.2 3.2 1.9 98.7 96.3±2.6

AESVM 21.8 4.3 3.1 1.5 98.6 95.9±2.2
CVM 0.3 0.2 0.7 0.6 98.7 96.6±3.1
BVM 0.5 0.4 1.1 1.0 99.0 96.1±2.9

SVMperf 0.3 0.2 5.1 4.2 99.1 96.3±2.5
LIBSVM 1.0 1.0 1.0 1.0 99.1 96.7±1.7
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classification time speedup for optimal hyper-parameters Tco

as described in [Nandan et al., 2014]. Denoting F as any
concrete SVM algorithm such as DCA-SVM, AESVM and
CVM. Four time-related measures are represented as follows.

Expected training time speedup Tte stands for the expected
speedup time in training procedure:

Tte =
1

RS

R∑

r=1

S∑

s=1

TL
r
s

TF
r
s

(13)

where TL
r
s and TF

r
s stand for the training times of LIBSVM

and given algorithm F in the sth cross-validation fold with
the rth set of hyper-parameters of grid search.

Overall training time speedup Tto represents the overall
training time including the time spent on calculating the rep-
resentative subset such as in DCA-SVM and AESVM.

Tto =

∑R
r=1

∑S
s=1 TL

r
s∑R

r=1

∑S
s=1 TF

r
s + TX∗

(14)

where TX∗ notes the time used to obtain the subset.
Expected classification time speedup Tce is indicated as

follows:

Tce =
1

RS

R∑

r=1

S∑

s=1

NL
r
s

NF
r
s

(15)

where NL
r
s and NF

r
s represent the numbers of support vec-

tors in the solution of LIBSVM and F , respectively.
Classification time speedup for optimal hyper-parameters

Tco chooses the corresponding optimal classification accura-
cy results of LIBSVM and given F in grid search:

Tco =
maxr

∑S
s=1 NL

r
s

maxr
∑S

s=1 NF
r
s

(16)

4.1 Experimental Study on Synthetic Data

For illustrative purpose, we conduct our first on the synthet-
ic dataset. Two sets of vectors X+ and X− are generat-
ed according to X± = FX±

A + N±. The noise matrices
N+ and N− both are generated by i.i.d Gaussian distribution
N (0, σ2) where σ represents the noise level. The number of
anchors for each class is fixed as 20. After setting noises of
different levels, we get two sets of points. The number of
points for each set is 1000 and the feature number is 10000.
As elaborated in Figure 4, different noise levels will bring
different changes to the anchors of convex hull.

Figure 5 shows the results of the proposed DCA-SVM
compared with three popular approximate SVM algorithm-
s: AESVM, CVM and BVM. Their results are evaluated in
terms of three measures: anchor index recovery rate repre-
senting the ratio of the observed number of original anchors
to the total number, overall training time consisting of the
time of determining representative subsets, and overall train-
ing time. It can be observed that most algorithms are able to
find out the original anchors when the noise level is close to 1
where the original convex hull remains its shape. Moreover,
the numbers of points in the representative subsets obtained
by four algorithms have large difference. DCA-SVM aims to
find the approximate convex hull, thus its point numbers are

less than the other three algorithms. It is worth noting that
DCA-SVM uses the least training time. Their property on
classification accuracy will be further studied on real datasets
in the rest of this section.

4.2 Comparision on Real Datasets

We evaluate the classification performance of DCA-SVM,
AESVM, CVM, BVM and LIBSVM. We follow the same
experimental settings in [Nandan et al., 2014]. There are t-
wo notable kinds of parameters, classification accuracy and
training time. The classification accuracy is defined as the ra-
tio of the number of correct classifications to the total number
of samples involved in training procedure, while the training
time consists of four time measures mentioned above.

Table 2 shows the classification results of DCA-SVM,
AESVM, CVM, BVM, SVMperf and LIBSVM on KD-
D99Lite, UCI Forest and IJCNN1. These results are evaluat-
ed in terms of four time measures and three accuracy-related
measures. We can observe that: (1) Most approximate SVM
algorithms achieve faster overall training time Tto than LIB-
SVM on KDD99Lite and UCI Forest datasets, while these
approximate SVM algorithms run much slower on IJCNN1
except DCA-SVM and AESVM. This is because the sizes of
training sets of KDD99Lite and UCI Forest are much larg-
er than IJCNN1, which makes the training time on the w-
hole original training sets become tremendous. (2) The pro-
posed DCA-SVM outperforms other algorithms notably on
expected training time speedup Tte and overall training time
speedup Tto. Specifically, the Tte of DCA-SVM is 1712.2
times faster than LIBSVM on KDD99Lite dataset and nearly
twice as fast as the competitive AESVM on IJCNN1 dataset.
(3) All algorithms produce similar accuracy performances on
three datasets. The proposed DCA-SVM achieves decent ac-
curacy which is only 0.2% less than the largest accuracy on
KDD99Lite dataset. In short, our method outperforms most
of the compared methods on speed and produce fairly good
classification accuracy results.

5 Conclusions

In this paper, we propose to train an approximate SVM by us-
ing the anchors obtained from non-negative matrix factoriza-
tion (NMF) in a divide-and-conquer framework. To be spe-
cific, the weighting coefficients of the anchors correspond-
ing to other points are used in the training procedure of the
approximate SVM. Our theoretical analysis shows that the
solving the DCA-SVM can yield an approximate solution
close to the primal SVM. Experimental results on the syn-
thetic datasets and multiple real-world datasets show that the
proposed DCA-SVM is faster than other state-of-the-art algo-
rithms, and does not lead to a notable decrease in the accuracy
of classification results, which validate the efficiency and sig-
nificance of our method.
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