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Abstract

We derive a Godunov-type numerical flux for the class of strictly convex,

homogeneous Hamiltonians that includes H(p, q) =
√

ap2 + bq2 − 2cpq,
c2 < ab. We combine our Godunov numerical fluxes with simple Gauss-

Seidel type iterations for solving the corresponding Hamilton-Jacobi Equa-

tions. The resulting algorithm is fast since it does not require a sorting strat-

egy as found, e.g., in the fast marching method. In addition, it provides a way

to compute solutions to a class of HJ equations for which the conventional

fast marching method is not applicable. Our experiments indicate conver-

gence after a few iterations, even in rather difficult cases.

1 Introduction

Hamilton-Jacobi equations have a rich pool of applications, ranging from those of

optimal control theory, geometrical optics, to essentially any problem that needs the

(weighted) distance function [13]. Examples include crystal growth, ray tracing,

etching, robotic motion planning , and computer vision. Solutions of these types

of equations usually develop singularities in their derivatives, and thus, the unique

viscosity solution [5] is sought.

∗Department of Mathematics and PACM, Princeton University, Princeton, New Jersey 08644.

Email: ytsai@math.princeton.edu
†Research supported by ONR N00014-97-1-0027, DARPA/NSF VIP grant NSF DMS 9615854

and ARO DAAG 55-98-1-0323
‡Department of Mathematics, UCSD, La Jolla, CA 92093-0112. Email: lcheng@math.ucsd.edu
§Research supported by NSF Grant #0112413 and #0208449
¶Department of Mathematics, UCLA, Los Angeles, California 90095. Email: sjo@math.ucla.edu
‖Department of Mathematics, UCI, Irvine, CA 92697-3875. Email: zhao@math.ucla.edu

1



In this article, we focus on the class of time independent Hamilton-Jacobi Equa-

tions with Dirichlet boundary condition:

H(x,∇u) = r(x), u|Γ = 0;

H(x,p) are strictly convex, non-negative, and limλ→0H(x, λp )=0. We explain

our method using this following important model equation:

H(φx, φy) =
√

aφ2
x + bφ2

y − 2cφxφy = r, (1)

where φ : R
2 7→ R continuous and a, b, c and r can either be constants or scalar

functions, in which case H depends also on x, defined on R
2, satisfying ab > c2,

a, b, r > 0. With a = b = 1, and c = 0, we have the standard eikonal equation

for which many numerical methods have been developed. This equation has the

essential features of HJ equations with convex Hamiltonians so that we can easily

explain our algorithm, and is general enough that fast marching is not applicable.

In the following subsections, we will review some of the solution methods for the

eikonal equation since it forms the motivation of our work. We then present a fast

Gauss-Seidel type iteration method for equation (1) which utilizes a monotone up-

wind Godunov flux for the Hamiltonian. We show numerically that this algorithm

can be applied directly to equations of the above type with variable coefficients.

1.1 Solving Eikonal Equations

In geometrical optics [9], the eikonal equation

√

φ2
x + φ2

y = r(x, y) (2)

is derived from the leading term in an asymptotic expansion

eiω(φ(x,y)−t)
∞
∑

j=0

Aj(x, y, t)(iω)−j

of the wave equation:

wtt − c2(x, y)(wxx + wyy) = 0,

where r(x, y) = 1/|c(x, y)|, is the function of slowness. The level sets of the

solution φ can thus be interpreted as the first arrival time of the wave front that is

initially Γ. It can also be interpreted as the “distance” function to Γ.
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We first restrict our attention for now to the case in which r = 1. Let Γ be a closed

subset of R
2. It can be shown easily that the distance function defined by

d(x) = dist (x,Γ) := min
p∈Γ

||x − p||, x = (x, y) ∈ R
2,

is the viscosity solution to equation (2) with the boundary condition

φ(x, y) = 0 for (x, y) ∈ Γ.

Rouy and Tourin [19] proved the convergence to the viscosity solution of an iter-

ative method solving equation (2) with the Godunov Hamiltonian approximating

||∇φ||. The Godunov Hamiltonian function can be written in the following form:

HG(p−, p+, q−, q+) =
√

max{p+
−, p

−
+}

2 + max{q+−, q
−
+}

2 (3)

where p± = Dx
±φi,j , q± = Dy

±φi,j , D
x
±φi,j = ±(φi±1,j−φi,j)/h and accordingly

for Dy
±φi,j , and x+ = max(x, 0), x− = −min(x, 0).

Osher [12] provided a link to time dependent eikonal equations by proving that the

t-level set of φ(x, y) is the zero level set of the viscosity solution of the evolution

equation at time t
ψt = ||∇ψ||

with appropriate initial conditions. In fact, the same is true for a very general

class of Hamilton-Jacobi equations (see [12]). As a consequence, one can try to

solve the time-dependent equation by the level set formulation [16] with high order

approximations on the partial derivatives [8][17]. Crandall and Lions proved that

the discrete solution obtained with a consistent, monotone Hamiltonian converges

to the desired viscosity solution [4].

Tsitsiklis [24] combined heap sort with a variant of the classical Dijkstra algorithm

to solve the steady state equation of the more general problem

||∇φ|| = r(x).

This was later rederived in [22] and also reported in [7]. It has become known as the

fast marching method whose complexity is O(N log(N)), where N is the number

of grid points. Osher and Helmsen [14] have extended the fast marching type

method to somewhat more general Hamilton-Jacobi equations. We will comment

on this in a following section.
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1.2 Anisotropic Eikonal Equation

We return to the Hamiltonian in question: H(p, q) =
√

ap2 + bq2 − 2cpq. Writing

the quadratic form as

ap2 + bq2 − 2cpq =
(

p q
)

(

a −c
−c b

)(

p
q

)

,

it is easy to see that we can diagonalize the symmetric matrix in the middle of the

equation for our previously noted choices of a, b, c and find a coordinate system

ξ-η such that after rescaling, the Hamiltonian becomes

H(p̃, q̃) =
√

p̃2 + q̃2.

The eigensystem of the above matrix defines the anisotropy. Indeed, the authors in

[14] proposed to solve the constant coefficient equation (1) by first transforming it

to equation (2) in the ξ-η coordinate system.

This anisotropy occurs in fields such as ray tracing in special media, e.g. crystals,

in which there are “preferred” directions. Furthermore, we will see that it can be a

result of considering the geodesic distance function on a manifoldM that is defined

as the graph of a smooth function f .

Let φ be the distance function such that

φ(x, y) = min
γ⊂M

∫

γ

ds,

and γ connects the point (x, y) with the set Γ ⊂M. The minimizing curve is called

the geodesic, and φ the distance function to Γ on M. Moreover, φ solves

||P∇ψ∇φ||
2 = 1, φ|Γ = 0, (4)

where ψ(x, y, z) = f(x, y) − z, and the projection operator [3]

P∇ψ = I −
∇ψ

⊗

∇ψ

||∇ψ||2
,

which projects a vector onto a plane whose normal is parallel to ∇ψ. Using the

fact that P∇ψ is a projection operator, a simple calculation shows that

||P∇ψ∇φ||
2 = (1−

f2
x

f2
x + f2

y + 1
)φ2
x+(1−

f2
y

f2
x + f2

y + 1
)φ2
y−2

fxfy
f2
x + f2

y + 1
φxφy.

(5)
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This is clearly of the form of Hamiltonians that we are interested in. We will apply

our algorithm to compute the geodesic distance later in this paper.

There are other approaches that are designed to compute distances on manifolds.

[10] provided an algorithm to compute the geodesic distance on triangulated mani-

folds. Barth [2] uses the Discontinuous Galerkin Method to find distance on graphs

of functions that are represented by spline functions. In [3], the authors embed

the manifold as the zero level set of a Lipschitz continuous function and solve

the corresponding time-dependent eikonal equation (4) in the embedding space.

As we have mentioned in the previous subsection, the zero level set of the time-

dependent eikonal equation at time t1 is the t1-level set of the solution to the sta-

tionary eikonal equations (see [12]). In [11], the authors adopted the standard fast

marching method to solve the isotropic eikonal equation in a thin band of thickness

ǫ, that encloses the manifold M , and proved that the restriction of the solution to

M converges to the geodesic distance as ǫ goes to 0. In [20, 21], the authors pro-

vide an ordered upwind method to solve a general class of static Hamilton-Jacobi

equations. We will comment on their method in a later subsection.

1.3 Osher’s Fast Marching Criteria

Since the fast marching method is by now well known, we will not give much detail

on its implementation in this paper. In general, this involves a sorting procedure

and the solution of

HG(Dx
−φi,j , D

x
+φi,j , D

y
−φi,j , D

y
+φi,j) = 1 (6)

for φij in terms of its four neighboring values. More precisely, the heap sort strat-

egy of the fast marching method requires a monotone update sequence. The up-

dated value of a grid node has to be greater than or equal to those of the grid nodes

used to form the finite difference stencil. This amounts to the condition

pHp + qHq ≥ 0,

which dictates that the solution is non-decreasing along the characteristics. How-

ever, if we use one sided upwind finite difference approximations for partial deriva-

tives of φ on a Cartesian grid, it is equivalent to demanding that the partial deriva-

tives of φ (i.e. p and q) and their corresponding components of the characteristics

directions (i.e. dx/dt and dy/dt) have the same sign. Since dx/dt = Hp and

dy/dt = Hq, we have the stricter Osher’s fast marching criterion:

pHp ≥ 0, qHq ≥ 0. (7)
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It does not matter whether the Hamiltonian is convex or not; as long as criterion (7)

is satisfied, a simple fast marching algorithm can be applied. But if the criterion

is not satisfied, fast marching cannot be applied to the problem on a Cartesian

grid. Of course there are Hamiltonians that do not satisfy (7). In the class of

Hamiltonians that we consider, as long as c 6= 0, it is likely that the values of p
and q differ to the extent that the above criterion is no longer satisfied. In light

of criterion (7), we have also tried to find directions ξ(x, y) and η(x, y) locally in

which p̃Hp̃ ≥ 0, q̃Hq̃ ≥ 0. However, if one insists on using Cartesian grids, the

implementation of this approach might be a bit hairy. We are interested especially

in tackling, over a Cartesian grid, problems where the solution is non-decreasing

along characteristics but Osher’s fast marching criterion is not satisfied.

1.4 The Sweeping Idea

Danielsson [6] proposed an algorithm to compute Euclidean distance to a subset of

grid points on a two dimensional grid by visiting each grid node in some predefined

orders. In [?], Boué and Dupuis suggest a similar “sweeping” approach to solve

the steady state equation which, by experience, results in a O(N) algorithm for

the problem at hand. This “sweeping” approach has recently been used in [23] and

[26] to compute the distance function to an arbitrary data set in computer vision.

In [25], the author provides some theoretical evidence indicating that sweeping

converges to an approaximate Euclidean distance function, i.e. to an approximate

viscostiy solution of |∇φ| = 1 in 2d predetermined iterations. We will talk about

these iterations in a later section. Using this “sweeping” approach, the complexity

of the algorithms drops from O(N logN) in fast marching to O(N), and the im-

plementation of the algorithms becomes a bit easier than the fast marching method

that requires heap sort.

This sweeping idea is best illustrated by solving the eikonal equation in [0, 1] :

|ux| = 1, u(0) = u(1) = 0.

Let ui = u(xi) denote the grid values associated to the uniform grid composed

of the gridpoints 0 = x0 < x1 < . . . < xn =1. We then solve the discretized

nonlinear system

√

max(max(D−ui, 0)2,min(D+ui, 0)2) = 1, u0 = un = 0 (8)

by our sweeping approach. We set initially, u
(0)
i = ∞, i = 1, · · · , n − 1. In

practice, ∞ can be replaced by some number K which is larger than maxx∈[0,1] u.

Let us begin by sweeping from 0 to 1, i.e. we update ui from i = 1 increasing to
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i = n−1. This is “equivalent” to following the characteristics emanating from x0.

Let u
(1)
i denote the grid values after this sweep. We then have

u
(1)
i =

{

i/n, if i = 1, · · · , n− 2
1/n, if i = n− 1.

i/n, i = 1, · · · , n− 1.

Notice that at i = n − 1, we actually use the upwind information from the neigh-

boring right boundary point. Furthermore, notice that u
(1)
i already has the correct

desired values for i ≤ n/2 since the sweep goes from left to right, the desired

upwind direction for these i. In the second sweep, we update ui from i = n − 1

decreasing to 1, starting with u
(1)
i . During this sweep, we follow the characteristics

emanating from xn. The use of (8) is essential, since it determines what happens

when two characteristics cross each other. It is then not hard to see that after the

second sweep,

ui =

{

i/n, if i ≤ n/2
(n− i)/n otherwise.

Notice the correct values at i ≤ n/2 derived after the first sweep are unchanged and

new and correct values for i > n/2 are created. In summary, this simple iterative

algorithm can be described as: at the k-th iteration, solve

max

(

max

(

u
(k)
i − u

(k−1)
i−1

∆x
, 0

)

,min

(

u
(k−1)
i+1 − u

(k)
i

∆x
, 0

))

= 1

for u
(k)
i for each i going from 1 to n−1 in the first iteration (k = 1), and from n−1

to 1 for the second iteration (k = 2). However, for more complicated equations

and boundary conditions, it is not so easy to write down the equivalent explicit

solution.

In this paper, we will extend this sweeping approach to a class of H-J equations

that cannot be solved by the fast marching algorithm by first deriving a Godunov

Hamiltonian.

In [20, 21], the authors proposed a one-pass method that is based on a control-

theoretic view point. In principle, they solve the Hamilton-Jacobi-Bellman equa-

tion

max
a

∇u · af(a,x) = 1, (9)

where p = (p, q), and the function f(a,x) is the speed of motion. This formula is

the second Legendre Transform taken on the sphere, see e.g. [15, 18].

The idea is still to follow the characteristics and update the grid value in a monotone

sequence. In a notation similar to the 2 dimensional setting of [20, 21], we let uo
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be the grid value we are updating. To update uo, they have to look for two other

grid values ur and us which are not necessarily on the immediate grid neighbors

of uo. For example, if uo is the grid value ui,j , the immediate neighbors of uo are

then ui+1,j ,ui,j+1,ui−1,j , and ui,j−1. As we indicated in the previous subsection, it

is possible that uo is less than all its immediate neighboring values. We then need

to find two other grid values, here denoted as us and ur, to form an upwinding

stencil. Then uo is found by minimizing a nonlinear expression derived from (9),

using the values of ur, us and f. The heap sort data structures is used in order to

find ur and us, therefore, the complexity is N logN, where N is the total number

of grid points. Also, since ur and us may not lie on the immediate neighbors, this

algorithm may need a larger region around the initial wavefront to get started.

As one will see in the following section, our proposed method is also based on

following the characteristics. To update uo, our method only uses the immedi-

ate neighboring grid values and does not need the heap sort data structure. More

importantly, our algorithm follows the characteristics with certain directions si-

multaneously, in a parallel way, instead of a sequential way as in the fast marching

method. The Godunov flux is essential in our algorithm, since it determines what

neighboring grid values should be used to update u on a given grid node o. At least

in the examples presented, we only need to solve a simple quadratic equation and

run some simple tests to determine the value to be updated. This simple proce-

dure is performed in each sweep, and the solution is obtained after a few sweeps.

Our code is not much more than what is presented in Section 3.2. We also point

out the ease of implementing our proposed algorithm and its extension to more

dimensions. This will appear in a sequel paper.

2 A Godunov Flux for Strictly Convex Hamiltonians

By solving the Riemann problem for Hamilton-Jacobi Equations (Godunov’s pro-

cedure), Bardi and Osher [1] proved rigorously that

HG(p−, p+; q−, q+) = extp∈I[p−,p+]extq∈I[q−,q+]H(p, q) (10)

where

ext p∈I[a,b] = min
p∈[a,b]

if a ≤ b,

ext p∈I[a,b] = max
p∈[b,a]

if a > b,

HG(Dx
−φij , D

x
+φij , D

y
−φij , D

y
+φij) = HG(p−, p+; q−, q+)
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and I[a, b] denotes the closed interval bounded by a and b. This is a monotone

upwind flux function, which implies convergence. Godunov’s scheme (10) for the

eikonal equation
√

φ2
x + φ2

y = 1 can be derived from the above formula. It is

one of the central topics of this paper to derive an explicit formula for the class

of strictly convex Hamiltonians in question. Especially, we will demonstrate our

numerical methods on H =
√

aφ2
x + bφ2

y − 2cφxφy, c
2 < ab.

Note that in general, if we reverse the order on p and q in our ext-ext decision, the

result might be different, although they both give convergent monotone methods.

However, in the convex Hamiltonian at hand, the results are order independent.

For convenience, we will also use HG(φi,j , φi±1,j , φi,j±1) to denote the evaluation

of our Godunov Hamiltonian HG(Dx
−φij , D

x
+φij , D

y
−φij , D

y
+φij).

2.1 Derivation of the Flux

In order to derive a compact expression that satisfies equation (10), we need to

study the extremum of the Hamiltonian on Ip × Iq ⊂ R
2, where Ip is a shorthand

for I[p−, p+].

The extremum may occur on either the critical points of H , or the boundary of

Ip × Iq. Let us first look at the partial derivatives of H, i.e. Hp and Hq, and their

zeros. Fix a q0, the extremum of H(p, q0) occurs at either the critical point of

H(p, q0) (i.e. where Hp = 0) or the boundary of I[p−, p+]. We denote the critical

point by pσ(q0). Similarly, given p0, we obtain the critical point qσ(p0). For con-

venience, we shall denote pσ(q0) by pσ when q0 can be determined from the con-

text, and (pσ, qσ) is the critical point of H such that Hp(pσ, qσ) = Hq(pσ, qσ) =
0. Therefore, we consider separately H(pσ, qσ), H(p−, qσ(p−)), H(p+, qσ(p+)),
H(pσ(q−), q−), H(pσ(q+), q+), and H(p±, q±) as possible evaluations of (10).

For fixed p, we have

HG(p, q−, q+) = H(p, sgn max{(q− − qσ)
+, (q+ − qσ)

−} + qσ ), (11)

where

sgn max(x, y) = x+ if max{x+, y−} = x+

sgn max(x, y) = −y− if max{x+, y−} = y−.

The expression for fixed q is a direct analogy to (11). It is easy to see thatHG(·, ·; q−, q+)
is increasing in q− and decreasing in q+. By symmetry, HG(p−, p+; ·, ·) is increas-

ing in p− and decreasing in p+.
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Details of the derivation of the above expression are provided in the appendix.

The following proposition will be of use in analyzing this introduced Godunov

flux.

Proposition 1 If Hpp > 0,Hqq > 0 and pHp ≥ 0, qHq ≥ 0, and pσ(0) =
qσ(0) = 0, then pσ(q) ≡ 0 ∀q ,and qσ(p) ≡ 0 ∀p.

Proof. pσ(q) by definition, is the zero of Hp(pσ(q), q) = 0. We will write pσ in

place of pσ(q) for brevity. This Proposition is then proved by simple manipulation

of the definitions.

d

dq
pσH(pσ, q) = p′σHp(pσ, q) + pσ(Hpp(pσ, q)p

′
σ +Hpq(pσ, q))

= pσp
′
σHpp(pσ, q) +

∂

∂q
Hp(pσ, q)

= pσp
′
σHpp(pσ, q)

= 0

The hypothesis Hpp > 0 implies that

pσ(q) = 0 ∀q or p′σ(q) = 0 ∀q.

Again, by the hypothesis that pσ(0) = qσ(0) = 0, we can conclude that pσ(q) ≡ 0
∀q.

Similarly, qσ(p) ≡ 0 ∀p. Q.E.D.

Notice that if the Hamiltonian is
√

p2 + q2, our upwinding expression in (11) is

identical to the conventional expression max(p+
−, p

−
+). (In this case, the sign of the

second argument does not matter since we are really evaluating the square product

of it in the eikonal equation.) In fact, we have the following Corollary, which is a

direct consequence of Proposition 1.

Corollary 1 If Hpp > 0,Hqq > 0, pHp ≥ 0, qHq ≥ 0, pσ(0) = qσ(0) = 0, and

H(p, q) = H(|p|, |q|), then the Godunov flux can be simplified to

HG(p−, p+; q−, q+) = H(max{p+
−, p

−
+},max{q+−, q

−
+}).
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3 The Sweeping Algorithms

We will use the model equation (1) as a concrete example for the exposition of

our algorithm. We stress here again that the scheme described below is valid for a

general class of convex, homogeneous Hamilton-Jacobi Equations.

From the assumption that the solution is nondecreasing along the characteristics,

i.e.

pHp + qHq ≥ 0,

we can easily deduce that the solution is non-decreasing at least in either the x- or

y- direction; i.e. either pHp ≥ 0 or qHq ≥ 0. Since we approximate the derivatives

φx(xi,j) by finite differencing using the neighbors of φi,j , the above monotonicity

property translates to the following requirement in the solution φi,j :

Definition: Let φi,j be the solution of HG(φ, φi±1,j , φi,j±j) = ri,j . We say that φ
satisfies the monotonicity requirement if

φi,j ≥ min{φi±1,j , φi,j±1}.

3.1 Derivation of the Scheme

Without loss of generality, we assume that r(x, y) = 1. Let us re-examine the

equation to be solved:

H(p, q) = 1 (12)

where

H : R × R → R.

Equation (12) dictates a level set relation; namely, the solution is the 1-level set

of H in the p-q plane (denoted here as Λ). Correspondingly, the solutions of the

Hamilton-Jacobi equation with the Godunov Hamiltonian

HG(p+, p−; q+, q−) = extp∈I[p−,p+]extq∈I[q−,q+]H(p, q) = r (13)

satisfy the following two properties:

• they are the intersections of Λ and the set I[p−, p+] × I[q−, q+];

• they are either the critical points of H or the boundary points of the set

I[p−, p+] × I[q−, q+].
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Figure 1: The 1-level set of H and the box I[p-,p+]xI[q-,q+]

q

p+p−

p

q−

q+

p

q

p+p−

q+

q−

Figure 1 demonstrates two possible configurations of the intervals. So what our

algorithm should do is find a suitable value of φ on each grid node so that the

divided forward and backward differences of φ at that grid node satisfy equation

(13).

Suppose we are on the grid node (i, j), and it is determined that

HG(p+, p−; q+, q−) = H(p−, q+) = 1.

Correspondingly, for our model equation (1), we have to solve the following quadratic

equation:

a(
φi,j − φi−1,j

∆x
)2 + b(

φi,j+1 − φi,j
∆y

)2 − 2c(
φi,j − φi−1,j

∆x
)(
φi,j+1 − φi,j

∆y
) = 1.

(14)

The solution φi,j has to satisfy not only the above equation, but it ultimately has

to be a solution to equation (13) given its four neighbors φi−1,j , φi+1,j,φi,j−1, and

φi,j+1. The subfigure on the right in figure 1 shows one such possible configuration;

i.e.

φi,j − φi−1,j

∆x
<
φi+1,j − φi,j

∆x
and

φi,j − φi,j−1

∆y
<
φi,j+1 − φi,j

∆y
,

such that

extp∈I[p−,p+]extq∈I[q−,q+]H(p, q) = min
p∈I[p−,p+]

min
q∈I[q−,q+]

H(p, q) = 1.
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One can, of course, implement a tree of all the probable cases from the complete

listing of that of the Godunov Hamiltonian (10). However, we have a more straight-

forward approach that utilizes the compact expressions for the Godunov Hamilto-

nian (11) that we obtained from the previous section.

Instead, we solve the equation with the following reduced formulas for the original

Godunov Hamiltonian:

HG(p+, p−; q+, q−) = extq∈I[q−,q+]H(p−, q), (15)

HG(p+, p−; q+, q−) = extq∈I[q−,q+]H(p+, q), (16)

HG(p+, p−; q+, q−) = extp∈I[p−,p+]H(p, q−), (17)

HG(p+, p−; q+, q−) = extp∈I[p−,p+]H(p, q+), (18)

HG(p+, p−; q+, q−) = H(pσ, qσ) (19)

For example, in the first case, the flux is equivalent to

H(p−, sgn max{(q− − qσ)
+, (q+ − qσ)

−} + qσ ) = 1.

The possible evaluations of sgn max{(q− − qσ)
+, (q+ − qσ)

−} + qσ are q−, q+,
qσ(p−), and 0.We thus end up solving the H-J equation with all possible arguments

for the Hamiltonian.

Suppose we solve algebraically H(p−, q+) = 1 for φi,j and call the solution φcan.
We then compute the divided differences p± and q± using this φcan in place of φi,j .
We call φcan valid if both

H(p−, sgn max{(q− − qσ)
+, (q+ − qσ)

−} + qσ ) = 1,

H(sgn max{(p− − pσ)
+, (p+ − pσ)

−} + pσ , q+) = 1,

and φcan satisfies the monotonicity requirement (Definition 1).

Finally, we set φi,j to be the minimum of those in the set of all valid candidate

solutions φcan obtained from using all the possible combinations of the arguments

of H . This is motivated by the first arrival time interpretation of the function φ.

In essence, we are solving for the central value in the Godunov Hamiltonian in

terms of its four neighbors. It’s well known and easy to show that any monotone

Hamiltonian, let alone Godunov’s, is a monotone function of this value. For these

Hamiltonians, this value goes from −∞ to +∞. Thus there is always a unique

solution.

Definition: (Sweeping iteration)

13



A compact way of writing this sweeping iterations in C/C++ is:

for(s1=-1;s1<=1;s1+=2)

for(s2=-1;s2<=1;s2+=2)

for(i=(s1<0?nx:0);(s1<0?i>=0:i<=nx);i+=s1)

for(j=(s2<0?ny:0);(s2<0?j>=0:j<=ny);j+=s2)

update φi,j

3.2 The Algorithm

For the brevity of the algorithm, we define respectively

hG1(p, q−, q+) := sgn max{(q− − qσ(p))
+, (q+ − qσ(p))

−} + qσ(p),

hG2(p−, p+, q) := sgn max{(p− − pσ(q))
+, (p+ − pσ(q))

−} + pσ(q).

where qσ(p) = pc/b and pσ(q) = qc/a.

Algorithm: We assume that φ(i, j) is given the exact values in a small neigh-

borhood of Γ. We denote this neighborhood Nbd(Γ). We initialize φ by setting

φ(i, j) = φ
(0)
i,j to ∞1 . We begin by computing φ

(n)
i,j , for n = 1.

Do the following steps while ||φ(n) − φ(n−1)|| > δ: (δ > 0 is the given tolerance.)

1. For each grid point (i, j) visited in the sweeping iteration, if xi,j 6=
Nbd(Γ), do the following:

(a) For (sx, sy) = (−1, 1), (−1,−1), (1,−1), and (1, 1)

i. Solve

H(
sx · (φtmp(sx, sy) − φ(n)(i− sx, j))

dx
,
sy · (φtmp(sx, sy) − φ(n)(i, j − sy))

dy
) = r(i, j)

for φtmp(sx, sy).

ii. Let

p(sx, sy) =
sx · (φtmp(sx, sy) − φ(n)(i− sx, j))

dx
,

and

q(sx, sy) =
sy · (φtmp(sx, sy) − φ(n)(i, j − sy))

dy
.

1Notice that we only need to use a large value in actual implementation.
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iii. Let TG1(sx, sy) be the logical evaluation of the equality:

H(p(sx, sy), hG1(p(sx, sy), q(sx, 1), q(sx,−1))) = r(i, j),

and TG2(sx, sy) be that of

H(hG2(p(1, sy), p(−1, sy), q(sx, sy)), q(sx, sy)) = r(i, j).

iv. Let M(sx, sy) = φtmp(sx, sy) − min(φ(n)(i− sx, j), φ
(n)(i, j −

sy)).

v. If TG1(sx, sy), TG2(sx, sy) are true, and M(sx, sy) ≥ 0, add

φtmp(sx, sy) to the list phi_candidate.

(b) For (sx, sy) = (1, 0), (−1, 0),

i. Solve

H(
sx · (φtmp(sx, 0) − φ(n)(i− sx, j))

dx
,
sx · (φtmp(sx, 0) − φ(n)(i− sx, j))

dx

c

b
) = r(i, j),

for φtmp(sx, sy)

ii. Compute p(sx, sy), and q(sx, sy) following the definition.

iii. Evaluate TG1(sx, sy).

iv. If TG1(sx, sy) is true and M(sx, sy) ≥ 0, add φtmp(sx, sy) to the

list phi_candidate.

(c) For (sx, sy) = (0, 1) and (0,−1),

i. Solve

H(
sy · (φtmp(0, sy) − φ(n)(i, j − sy))

dy

c

a
,
sy · (φtmp(0, sy) − φ(n)(i, j − sy))

dy
) = r(i, j),

for φtmp(sx, sy).

ii. Compute p(sx, sy), and q(sx, sy) following the definition.

iii. Evaluate TG2(sx, sy).

iv. If TG2(sx, sy) is true and M(sx, sy) ≥ 0, add φtmp(sx, sy) to the

list phi_candidate.

(d) Let φmin be the minimum element of phi_candidate.

φ(n)(i, j) = min(φ(n)(i, j), φmin).

(e) Clear phi_candidate.
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2. Set n = n+ 1, go back to 1.

As described in the previous section, we have to solve the H-J equation with all pos-

sible arguments for the Hamiltonian and take the minimum of those in the set of

all valid candidate solutions. The possible arguments of the Hamiltonian consists

of the forward/backward differences of φ and the critical points centered at each

grid node. In the above algorithm, this set of all possible arguments is indexed

by {−1, 0, 1}2. Therefore, by X(−1, 1), we denote the quantity X that is com-

puted from using H(p−, q+). The number 0 encodes the cases of critical points.

For example, φtmp(−1, 1) denotes the roots of the quadratic equation formed by

H(p−, q+) = r; φtmp(1, 0) denotes that of H(p+, qσ(p+)).

We remark that in the case of c = 0, our algorithm is equivalent to what is used

in the fast marching method under the Rouy-Tourin formula (10). Secondly, in

our numerical implementation, we put a threshold value in the evaluations TG1 and

TG2 due do numerical accuracy reasons.

4 Examples

Proposition 1 and Corollary 1 show the equivalence of the Godunov flux derived in

this paper to the one commonly used in the fast marching applications. The use of

this sweeping approach with the Godunov flux (10) has been reported in [23, 25]

for eikonal equations, we will not repeat the examples in this paper. Instead, we

present results of our algorithm applied to our model equation.

4.1 Quadratic Hamiltonians
√

ap2 + bq2 − 2cpq, ab > c2, a, b > 0

In each of the following examples, we compute the difference in the approxima-

tions in each successive iteration, i.e. ||φn+1 − φn||L1
, and say that the iterations

have converged if this distance is less than ε∆x, where ε > 0, and ∆x is the grid

size. In the examples presented in this paper, we simply set the threshold to be

10−10. Notice also that the set Γ, on which φ = 0, is depicted in red in the contour

plots in the following examples.

We started out by testing our algorithm on constant coefficient cases. In the case of

a = b, c = 0, we have solutions that match the fast marching solutions. Figure 2

shows a result of a computation of the anisotropic case where a = b = 1, c = 0.9.
This is our first example in which the fast marching method is not applicable.
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Figure 2: A sweeping result after 2 sweeping iteration on a 50x50 grid. The initial

boundary is a single point in the center. a = 1.0, b = 1.0, c = 0.9.
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Next we apply the sweeping algorithm directly to cases in which the coefficients

of the quadratic Hamiltonian or the right hand sides are not constant. Figure 3

shows a computational result on a constant coefficient isotropic Hamiltonian and

rather oscillatory forcing function. The rectangle in the middle is the set Γ. Figure

4 shows a computational result for a very anisotropic case. We notice that the

number of iterations needed for convergence seems to depend on the anisotropy of

the Hamiltonian and also on how oscillatory the forcing term is. Figure 5,6,7 show

results obtained from variable coefficient Hamiltonians with constant and variable

forcing function r(x, y).

4.2 Examples of Distance on Manifolds

We now apply our sweeping algorithm to compute the geodesic distance on mani-

folds that are the graphs of certain functions. Given a function f(x, y),, with graph

z= f(x,y), we compute the coefficients a(x, y), b(x, y) and c(x, y) according to (5),

and apply our algorithm directly to the corresponding H-J equation. We first test

the algorithm on a half sphere with radius one. Figures 8 and 9 show the equidis-

tance lines to one and two seed points respectively. Figures 10, 11 and 12 show

similar computation results applied to somewhat more oscillatory manifolds. As

we expected, more sweeping iterations are required for convergence.
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Figure 3: a = 1, b = 1, c = 0, with a more oscillatory r(x) = 2.1 − cos(4π2xy),
on a 200x200 grid, convergence is reached in 7 sweeping iterations. The subplot

on the top is the contour of the solution started with the square in the center. On

the bottom is the graph of r(x). Level curves with step 0.02 are plotted.
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Figure 4: (A very degenerate case) a = 0.375, b = 0.25, c = 0.29, with a more

oscillatory r(x) = (2.1− cos(4π2xy))/4.0, on a 100x100 grid. Notice that in this

case, ab = 0.0938 is barely greater than c2 = 0.0841. The contour of the solution

is plotted. The convergence is reached at 43 sweeping iterations.
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Figure 5: a = 1, b = 1, c(x, y) = 0.9 sin(5πx), and r(x, y) = 1. 50x50 grid.

Convergence after 10 iterations.
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Figure 6: a = 1.5 + sin(5πx), b = 1, c = −0.6. 50x50 grid. Convergence after

10 iterations.
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Figure 7: a = 1.5 + sin(5πx), b = 1, c = −0.6, and r(x, y) = 2.1 + cos(4πxy).
100x100 grid. Convergence after 10 iterations.
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Figure 8: This is an example of the distance on a half sphere. The sweeping algo-

rithm applied to the graph of f(x, y) =
√

1.0 − (x2 + y2), with φ(0, 0) = 0 as

boundary condition on a 100x100 grid.
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Figure 9: This is an example of the distance on a half sphere. The sweeping algo-

rithm applied to the graph of f(x, y) =
√

1.0 − (x2 + y2), with two seed points.

The convergence is reached after 2 sweeping iterations.
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Figure 10: The distance contour from the seed point (0, 0) on the graph of

f(x, y) = cos(2πx) sin(2πy). 100x100 grid, convergence after 9 iterations.
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Figure 11: The distance contour from the seed point (0, 0) and (−0.8,−0.5) on

the graph of f(x, y) = cos(2πx) sin(2πy). 100x100 grid, convergence after 11

iterations.
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4.3 Grid Effects

We first perform a rotation of the coordinate system. We represent this by

(x, y) 7→ (x̃, ỹ),

and let

(a, b, c) 7→ (ã, b̃, c̃)

To study the grid effects of our sweeping algorithm, we set u = 0 on a rotated

square whose sides do not align with the grid lines. Comparing the results, shown

in figure 13, we see that the second picture, concentrating especially on the di-

amond shaped contour in the middle, indeed shows grid effects compared to the

first picture. However, with further grid refinement, as shown in the third picture,

grid effects become unnoticeable and the solution from our sweeping algorithm

accurately approximates the exact solution.
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Figure 12: The distance contour from the seed point (0, 0) on the graph of

f(x, y) = cos(2πx − π) sin(2πy − π/2). 100x100 grid, convergence after 9 it-

erations.
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Figure 13: Anisotropic case with a point source at (0, 0). a = 1, b = 1, c =
0.9 and ã = 1.70365 b̃ = 0.296352, and c̃ = −0.561141. 50x50 and 100x100.

Convergence after 2 iterations.
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Table 1: Comparison of the time-marching solution and the sweeping solution to

the example shown in figure 12.

dx = 2/50 2/100 2/200 2/400 2/800

||φ− φ̃||L1
2.85423 1.83377 1.04008 0.56206 0.295738

||φ− φ̃||∞ 1.03825 0.708986 0.436469 0.246439 0.133858

4.4 Comparison with the Time Marching Solutions

We use the first order RK-Lax-Friedrichs method [17] to discretize the following

equation and march to steady state:

φ̃t + sgn(φ(x, y))(H(x, y, φ̃x, φ̃y) − r(x, y)) = 0. (20)

where φ̃(x, y, t = 0) = φ(x, y) = 0 for (x, y) ∈ Γ, and φ is the solution obtained

from the sweeping algorithm.

We remark that solving equation (20) is by no means a practical method for solving

the steady state equation. Thousands of iterations are required for steady state,

even if we take φ as the initial Cauchy data. We only use it to verify the validity

of our algorithm. Secondly, the solutions of equation (20) suffer from excessive

smearing due to the numerical viscosity introduced by the Lax-Friedrichs method.

As a consequence, φ̃ does not match well with φ on coarse grids. The reader can

compare figure 14 with figure 12, for example. However, we do see that ||φ − φ̃||
decreases with the refinement of the grid size. See table 1 and figure 14. We remark

that higher order approximation schemes such as RK3-WENO5 will greatly reduce

the numerical viscosity. The reader is referred to [17]. Our purpose here is only to

show that the sweeping approximations converge to the viscosity solution.

4.5 Numerical Convergence

Since we can easily compute the geodesic distance on a sphere, we will use it as an

example to show numerical convergence of our algorithm. A distance contour plot

is shown in figure 8. Table 2 shows a numerical convergence of order 1. We have

also noticed that the number of iterations, that is needed for the L1 difference of the

approximations in each successive iteration to decrease below the given tolerance,

seem to be bounded independently of the grid size. This number seems to depend

on the anisotropy (c2/ab), the forcing function r, and the configuration of the

interface Γ.
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Figure 14: Steady state of the time marching on a 100x100 grid and 800x800 grid.
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Table 2: A numerical convergence study of the sweeping algorithm applied to the

graph of f(x, y) =
√

1.0 − (x2 + y2), with φ(0, 0) = 0 as boundary condition on

the domain [−0.7, 0.7] × [−0.7, 0.7].

dx = 1.4/200 1.4/400 1.4/800 1.4/1600

||φ− φ̃||L1
0.0138803 0.0079927 0.00453004 0.00253513

rate 0.796 0.819 0.84
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5 Conclusion

In this article, we have studied a fast method for solving a class of time independent

Hamilton-Jacobi equations with Dirichlet boundary conditions. The Hamiltonians

of interest are homogeneous and convex. This fast method combines the idea of

tracing the characteristics with Godunov construction and Gauss-Seidel iterations

with smart choices of different updating sequences. In particular, we discussed

some important properties of the Hamiltonian H =
√

ap2 + bq2 − 2cpq, c2 < ab,
and the corresponding H-J equations. By the simple structure of the convexity, we

derived a compact expression for the Godunov Hamiltonian that involves taking

extrema of the Hamiltonian in relation to the evaluations of the derivatives of the

solution. With our compact Godunov flux, the complexity of evaluating the Go-

dunov Hamiltonian is reduced to only eight cases in two space dimensions. We

then incorporated the expression into a simple Gauss-Seidel type iteration pro-

cedure. We have produced some computational results using this algorithm. In

particular, we have applied our algorithm to compute geodesic distances on graphs

of functions. This is of some importance since people are interested in finding the

geodesics on terrain-like manifolds.

We also remark that this Godunov-flux sweeping approach can be extended to

higher dimensional cases. We are currently preparing another paper on this subject.

Our experience shows that the number of iterations needed depends on the amount

of anisotropy and the nature of the forcing function. Under normal non-degenerate

circumstances, experience shows a O(N) complexity for convergence, where N
is the number of grid points. Recently, in [25], the author provided some theoreti-

cal evidence on the bound of the number of iterations for isotropic, homogeneous

eikonal equations. This points out a future research direction of bounding the num-

ber of sweeping iterations needed for convergence in relation to the anisotropy.

6 Appendix

6.1 Derivation of the Flux for Homogeneous Convex Hamiltonians

To obtain the formula used earlier in this paper, we simply verify its equivalence to

the following cases, which rely only on the convexity of H :

p− < p+, and q− < q+ :

HG = min
p∈[p−,p+]

min
q∈[q−,q+]

H(p, q).
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• if qσ ∈ [q−, q+],

– pσ < p− < p+, H(p−, qσ)

– p− < p+ < pσ, H(p+, qσ)

– p− < pσ < p+, H(pσ, qσ)

• if qσ < q−,

– pσ < p− < p+, H(p−, q−)

– p− < p+ < pσ, H(p+, q−)

– p− < pσ < p+, H(pσ, q−)

• if qσ > q+,

– pσ < p− < p+, H(p−, q+)

– p− < p+ < pσ, H(p+, q+)

– p− < pσ < p+, H(pσ, q+)

p− < p+, and q− > q+ :

HG = min
p∈[p−,p+]

max
q∈[q+,q−]

H(p, q) = min
p∈[p−,p+]

max{H(p, q−),H(p, q+)}.

• if qσ < q+,

– pσ < p− < p+, H(p−, q−)

– p− < p+ < pσ, H(p+, q−)

– p− < pσ < p+, H(pσ, q−)

• if qσ > q−,

– pσ < p− < p+, H(p−, q+)

– p− < p+ < pσ, H(p+, q+)

– p− < pσ < p+, H(pσ, q+)

• if q+ < qσ < q−
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– (qσ − q+) > (q− − qσ), H(·, q+)

– (qσ − q+) ≤ (q− − qσ), H(·, q−)

p− > p+, and q− > q+ :

HG = max
p∈[p+,p−]

max
q∈[q+,q−]

H(p, q)

• if qσ > q−,

– pσ > p−, H(p+, q+).

– pσ < p+, H(p−, q+).

• if qσ < q+,

– pσ > p−, H(p+, q−).

– pσ < p+, H(p−, q−).

• if q+ < qσ < q−

– (qσ − q+) > (q− − qσ), H(·, q+)

– (qσ − q+) ≤ (q− − qσ), H(·, q−)

p− > p+, and q− < q+ :

HG = max
p∈[p+,p−]

min
q∈[q−,q+]

H(p, q)

• if qσ ∈ [q−, q+],

– pσ > p−, H(p+, qσ).

– pσ < p+, H(p−, qσ).

• if qσ < q−,

– pσ > p−, H(p+, q−).

– pσ < p+, H(p−, q−).

• if qσ > q+,

– pσ > p−, H(p+, q+).

– pσ < p+, H(p−, q+).
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