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FAST SWEEPING METHODS FOR EIKONAL EQUATIONS ON

TRIANGULAR MESHES∗

JIANLIANG QIAN† , YONG-TAO ZHANG‡ , AND HONG-KAI ZHAO‡

Abstract. The original fast sweeping method, which is an efficient iterative method for sta-
tionary Hamilton–Jacobi equations, relies on natural ordering provided by a rectangular mesh. We
propose novel ordering strategies so that the fast sweeping method can be extended efficiently and
easily to any unstructured mesh. To that end we introduce multiple reference points and order all the
nodes according to their lp-metrics to those reference points. We show that these orderings satisfy
the two most important properties underlying the fast sweeping method: (1) these orderings can
cover all directions of information propagating efficiently; (2) any characteristic can be decomposed
into a finite number of pieces and each piece can be covered by one of the orderings. We prove
the convergence of the new algorithm. The computational complexity of the algorithm is nearly
optimal in the sense that the total computational cost consists of O(M) flops for iteration steps
and O(M logM) flops for sorting at the predetermined initialization step which can be efficiently
optimized by adopting a linear time sorting method, where M is the total number of mesh points.
Extensive numerical examples demonstrate that the new algorithm converges in a finite number of
iterations independent of mesh size.
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1. Introduction. The eikonal equation in its simplest form says that the mag-
nitude of the gradient of the eikonal is constant: |∇T | = 1, where T is the so-called
eikonal. Because it appears in a variety of applications, it is essential to develop fast
and efficient numerical methods to solve such an equation. In this work, we design
a class of fast sweeping methods on triangulated domains for an eikonal equation of
the following form:

{

|∇T (x)| = f(x), x ∈ Ω \ Γ,

T (x) = g(x), x ∈ Γ ⊂ Ω,
(1.1)

where f(x) is a nonnegative function, Ω is an open, bounded polygonal domain in
Rd, and Γ is a subset of Ω.

Two key points in designing an efficient numerical algorithm for solving such a
nonlinear boundary value problem of hyperbolic type are (1) a numerical discretization
that is both consistent with the causality of the PDE and able to deal with singu-
larities in the solution gradient, and (2) a fast algorithm to solve the resulting large
nonlinear system of equations. There are usually two types of methods for solving the
nonlinear system: time marching methods and direct methods. Time marching meth-
ods add to the equation a pseudo–time variable which transforms the problem into
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a time dependent one and evolve the solution to the steady state. Due to the finite
speed of propagation and the Courant–Friedrichs–Lewy (CFL) condition for stability,
many iterations are needed to reach the steady state solution. The last two decades
have witnessed much effort towards solving the eikonal equation directly: upwind-
ing schemes [32, 31], dynamic programming sweeping methods [27], Jacobi iterations
[26], semi-Lagrangian schemes [8], fast marching-type methods [30, 10, 28, 13], down-
n-out approaches [7], wavefront expanding methods [23], adaptive upwinding methods
[19, 21], fast sweeping methods [2, 37, 29, 35, 12, 34, 11, 36, 33]; see also the refer-
ences therein. Accuracy of numerical solutions is determined by the discretization
scheme. For example, if a first-order monotone scheme is used, in general only the
h1/2 convergence rate can be shown [6] and the h log h convergence rate is optimal for
the eikonal equation [35].

Among all these methods, both the fast marching method and the fast sweeping
method are designed to solve the nonlinear discretized system directly and efficiently
by exploiting causality of the underlying PDE. In terms of complexity, the fast march-
ing method [30, 10, 28, 13] has the complexity of O(M logM), where M is the total
number of mesh points and the logM factor comes from the heapsort algorithm needed
for sorting out the causality order at each step, while the fast sweeping method has
the complexity of O(M), where the constant in O depends on the equation, and this
was proved in [35] for eikonal equations on rectangular grids. For a particular problem
on a fixed grid, one method could be faster than the other. When the grid is more
refined the fast sweeping method will be faster eventually. In [9], concrete and de-
tailed comparisons are presented for various numerical examples. In terms of accuracy
there is no difference since they are two different ways of solving the same nonlinear
discretized equation. The main difference between these two methods lies in the use
of causality. The fast marching method enforces the causality sequentially and on the
fly during each update step; that is why a heapsort algorithm is needed to order all
possible candidates and pick up the correct one by the causality at each step; once a
point is accepted it cannot be revisited and its value cannot be changed afterwards.
On the other hand the fast sweeping method is an iterative method of Gauss–Seidel
type which is extremely simple to implement; such a simple iterative method for a
nonlinear problem is able to achieve an optimal complexity because it can capture
the causality of the PDE in a parallel way, as shown in [35]. Since it is an iterative
method by nature the fast sweeping method is applicable to other situations such as
higher order schemes with ease [34, 33], nonconvex Hamiltonians [12], and parallel
implementation [36].

On the other hand, most of these methods are based on rectangular meshes.
However, it is important to design fast methods on triangulated meshes as well. For
example, in seismics a subsurface velocity model usually consists of several irregular
interfaces, and in robotic path planning an obstacle may have an irregular boundary.
Thus, for applications involving irregular boundaries or interfaces, it is much desired
to triangulate a computational domain into irregular meshes to fit with boundaries
or interfaces. Kimmel and Sethian [13] extended the fast marching method to trian-
gulated domains to compute geodesics on manifolds.

In this work, we extend the fast sweeping method to triangulated domains by in-
troducing novel ordering processes into the sweeping strategy. The resulting method
is proved to be convergent, and numerical examples demonstrate that the method
converges in a finite number of iterations independent of mesh size. The computa-
tional complexity of the new algorithm is nearly optimal in the sense that the total
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computational cost consists of O(M) flops for iteration steps and O(M logM) flops
for sorting at the predetermined initialization step, which can be efficiently optimized
by adopting a linear time sorting method.

An essential property of the eikonal equation is that it is hyperbolic, and a stable
scheme must look for information by following characteristics in an upwind fashion,
which is equivalent to the simple causality for the eikonal equation in that its so-
lution is always increasing (or decreasing) along a characteristic. To satisfy such a
property, it is crucial for a scheme of computing viscosity solutions to be based on a
monotone numerical Hamiltonian [1, 17]. Once we have in place such a discretization
for eikonal equations, the problem reduces to one of solving the resulting nonlinear
system efficiently; the fast sweeping method is designed to do exactly that. The orig-
inal fast sweeping method was inspired by the work in [2]. The fast sweeping method
uses Gauss–Seidel iterations with alternate sweeping orderings to solve the nonlinear
system. The fact that the iterative algorithm for a nonlinear system can converge in
a finite number of iterations independent of mesh size is quite remarkable; even for
a linear system, such as the discretized system for the Laplace equation, this is not
true.

The crucial idea underlying the fast sweeping method is the following [35]: all
directions of characteristics can be divided into a finite number of groups; any char-
acteristic can be decomposed into a finite number of pieces that belong to one of the
above groups; there are systematic orderings that can follow the causality of each
group of directions simultaneously.

On a rectangular grid there are natural orderings of all grid points. For example,
in the two-dimensional (2-D) case, all directions of the characteristics can be parti-
tioned into four groups, up-right, up-left, down-right, and down-left, and it is very
natural to order all the nodes according to their indexes in ascent or descent orders
[2, 37, 29, 11, 35, 12, 34], which yields four possible orderings to cover all those four
directions of characteristics.

However, on an unstructured mesh, only local connection of the nodes is available
and natural ordering no longer exists. To overcome these difficulties we propose
general ordering strategies by introducing multiple reference points and ordering all
the nodes according to their lp-distances to those reference points. For example,
information is propagated as plane waves in different directions when the l1-metric is
used or as spherical waves with different centers when the l2-metric is used. We show
that these orderings satisfy the key properties essential for the fast sweeping method
to converge and numerically demonstrate that the fast sweeping method converges
in a finite number of iterations independent of mesh size. Although it may still
cost O(M logM) by a comparison-based sorting method, the ordering step in our
algorithm may be made to be O(M) by a linear time sorting method since we know
the distribution of nodes at the initial step. For example, the radix sorting method
[4] may be used for such a purpose. Moreover this initial ordering is done for a fixed
mesh once and for all. This is different from other methods based on heap sorting to
maintain a dynamic data structure. Therefore the methods proposed here are very
efficient and extremely easy to write in any number of dimensions.

The rest of the paper is organized as follows. In section 2, we construct local
solvers at each node on a triangulated mesh, propose novel ordering strategies, and
detail fast sweeping algorithms. In section 3, we analyze the new algorithm and prove
convergence results. In section 4, we present various numerical examples to illustrate
the efficiency and the accuracy of the new method. We conclude the paper in section 5.
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Fig. 2.1. Update the value at C in a triangle when causality is satisfied.

2. Fast sweeping methods on unstructured meshes.

2.1. 2-D local solvers. Take d = 2 in (1.1):

{

√

T 2
x + T 2

y = f(x, y), (x, y) ∈ Ω ⊂ R2,

T (x, y) = g(x, y), (x, y) ∈ Γ ⊂ Ω,
(2.1)

where f(x) is a nonnegative function, Ω is an open, bounded polygonal domain in
Rd, and Γ is a subset of Ω.

We consider a triangulation Th of Ω which consists of nonoverlapping, nonempty,
and closed triangles T , with diameter hT , such that Ω̄ = ∪T ∈Th

T . We assume that
Th satisfies the following conditions:

• No more than μ triangles have a common vertex; h = supT ∈Th
hT < 1.

• Th is regular; there exists a constant ω0 independent of h such that if ρT is
the diameter of the largest ball B ⊂ T , then for all T ∈ Th, hT ≤ ω0ρT .

For a given triangle △ABC, we denote ∠A = β, ∠B = α, and ∠C = γ; AB = c,
AC = b, and BC = a are the lengths of the edges AB, AC, and BC, respectively.

During the solution process we need a local solver at vertex C for each triangle;
see Figure 2.1. Given the values TA and TB at A and B of triangle △ABC, we want
to calculate the value TC at C.

To make the description specific, we introduce the definition of causality.
Definition 2.1. Under the above regular triangulation we consider a local scheme

based on piecewise linear reconstructions. By the causality condition of isotropic wave
propagation for updating the travel-time at the node C from travel-times TA and TB,
we mean that the ray which is orthogonal to the wavefront and passes through C must
fall inside the triangle △ABC.

We notice that in isotropic wave propagation the ray direction is the same as
the gradient direction of the travel-time field and thus it is the same as the outward
normal of the wavefront.

First we assume that △ABC is acute. To construct a first-order scheme we
determine a planar wavefront from the known values TA and TB . Suppose that the
angle is θ between the incoming wavefront and the edge AB.

Without loss of generality, we further assume that TB ≥ TA. If TC is deter-
mined by both TA and TB , then by the Huygens principle the wavefront must first
pass through the vertex A, then B, and finally C. To guarantee this, the following
conditions must be satisfied:
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Fig. 2.2. Update the value at vertex C in a triangle when causality is not satisfied.
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Fig. 2.3. C and its obtuse triangle.

• [TB − TA]/fC ≤ AB = c; i.e., it is possible for the wavefront to propagate
from A to B with the given speed, where fC is the value of f(C), the inverse
of the speed at C.

• θ ≤ α so that the wavefront passes through B first rather than C.
• θ + β < π

2 ; otherwise the causality is violated since the vertical line from C
to the wavefront does not fall inside the triangle; see Figure 2.2.

If all n triangles T1, T2, . . . , Tn around C are acute, the wavefront can be captured
well in one of these triangles, no matter which direction the wave comes from. How-
ever, if one of the triangles is obtuse and the wavefront comes in just from this obtuse
angle, then the situation is different; there are two possible cases: (i) if the normal
of the wavefront is contained between those two dotted lines in Figure 2.3, then the
value at C can be updated using values at A and B even though the accuracy will
be degraded; (ii) otherwise, the value at C cannot be updated by A and B correctly
[25]. These will be shown in numerical examples in section 4.

In order to treat obtuse triangles, we adopt the strategy used in [25]. As illustrated
in Figure 2.4, if ∠C is obtuse, then we connect C to a vertex D of a neighboring
triangle to cut the obtuse angle into two smaller angles. If these two angles are both
acute, then we are done, as shown in Figure 2.4(a); otherwise, if one of the smaller
angles is still obtuse, then we keep connecting C to the vertexes of the neighboring
triangles of the next level until all new angles at C are acute, as shown in Figure
2.4(b). All these added edges are “virtual”; i.e., they exist only when the value at
C is updated. Because such a treatment depends on a given mesh, we only need to
do that once before the iteration in the algorithm begins; the resulting algorithm is
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Fig. 2.4. A strategy to treat obtuse angles.

simple with almost no extra computational cost, as shown by numerical examples in
section 4. This construction is different from the one used in [13].

We first give a geometric version of our local solvers.
A 2-D local solver (Version 1: given TA ≤ TB , determine TC = TC(TA, TB)).
1. If [TB − TA] ≤ c fC , then

θ = arcsin

(

[TB − TA]

c fC

)

;

(a) if max (0, α− π
2 ) ≤ θ ≤ π

2 − β, then

h = CP = a sin(α− θ);TC = min{TC , h fC + TB};

(b) else

TC = min{TC , TA + b fC , TB + a fC};

2. else

TC = min{TC , TA + b fC , TB + a fC}.

The angle condition,

max
(

0, α− π

2

)

≤ θ ≤ π

2
− β,

can be obtained in the following way:
1. If β > π

2 , then the causality condition is not valid.
2. If β < π

2 , then we must have θ ≤ π
2 − β; otherwise, the causality is violated

since the vertical line from C to the wavefront does not fall inside the triangle.
Furthermore,
(a) from this condition we can directly deduce that α ≥ θ, since ∠C = γ < π

2
by construction;

(b) if α ≥ π
2 , then we must have α− θ ≤ π

2 so that the ray from C reaching
the wavefront is located inside the triangle.

The following algorithm unifies all the cases into one.
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A 2-D local solver (Version 2: given TA and TB , determine TC = TC(TA, TB)).
1. If |TB − TA| ≤ c fC , then

θ = arcsin

(

[TB − TA]

c fC

)

;

(a) if max (0, α− π
2 ) ≤ θ ≤ π

2 − β or α− π
2 ≤ θ ≤ min (0, π

2 − β), then

h = CP = a sin(α− θ);H = CQ = b sin(β + θ);

TC = min{TC , 0.5 (h fC + TB) + 0.5 (H fC + TA)};

(b) else

TC = min{TC , TA + b fC , TB + a fC};

2. else

TC = min{TC , TA + b fC , TB + a fC}.

In the special case that a given mesh is rectangular and α = β = π
4 , it is straight-

forward to verify that the above local solver reduces to the one given in [35]. Therefore,
the local solver is consistent with the one on rectangular meshes.

If a triangle is acute, then the angle conditions in Version 2 reduce to one condi-
tion:

α− π

2
≤ θ ≤ π

2
− β;

otherwise, the two angle conditions cannot be combined into one, since there are gaps
corresponding to one of the angles α or β being obtuse. See Figures 2.1 and 2.2 for
illustrations.

We emphasize that both updating algorithms require that ∠C = γ < π
2 , but one

of the other two angles may be obtuse.

2.2. A 3-D local solver. A local solver in three dimensions can be derived
similarly. Take d = 3 in (1.1):

{

√

T 2
x + T 2

y + T 2
z = f(x, y, z), (x, y, z) ∈ Ω ⊂ R3,

T (x, y, z) = g(x, y, z), (x, y, z) ∈ Γ ⊂ Ω.
(2.2)

Equation (2.2) is solved in the domain Ω, which has a triangulation Th consisting of
tetrahedrons. We consider every vertex and all tetrahedrons which are associated to
this vertex. Again the question reduces to one of calculating the numerical solution
at the current central vertex for each tetrahedron; see Figure 2.5.

Given the values TA, TB , and TC at A, B, and C of the tetrahedron ABCD,
we need to calculate the value TD at the current central vertex D. The key is to
determine the normal direction 	n of the wavefront and determine whether the causality
condition is satisfied or not. Analogous to Definition 2.1, the ray which has direction
	n and passes through D must fall inside the tetrahedron ABCD so as to satisfy the
causality condition. To check the causality condition numerically, we first compute
the coordinates of the point E at which the ray passing through D with direction 	n
intersects the plane spanned by A, B, and C; afterwards, we check to see whether E
is inside △ABC or not.

Without loss of generality, we assume that TA = min{TA, TB , TC}.
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A 3-D local solver (given TA, TB , and TC , determine TD = TD(TA, TB , TC)).
1. If [TB −TA] ≤ AB · fD and [TC −TA] ≤ AC · fD, then we solve the quadratic

equation for the normal direction 	n of the wavefront:

⎧

⎨

⎩

−→
AB · 	n = [TB − TA]/fD,−→
AC · 	n = [TC − TA]/fD,

|	n| = 1;

(2.3)

(a) if there exist solutions 	n(i), i = 1, 2, for the quadratic equation (2.3) and
the area |△EAB|+ |△EAC|+ |△EBC| = |△ABC| for an 	n(i), then

TD = min{TD, TA + (|−→AD · 	n(i)|) · fD};

(b) else, apply the 2-D local solver on surfaces △ABD,△ACD, and △BCD
and take the minimal one;

2. else, apply the 2-D local solver on surfaces △ABD,△ACD, and △BCD and
take the minimal one.

2.3. Sweeping orders and a complete algorithm. An essential ingredient
for making the fast sweeping method [35] successful is a systematic ordering that
covers all directions of characteristics efficiently. With a causality preserving dis-
cretization in place, information along characteristics of certain directions is captured
simultaneously in each sweeping ordering. Moreover, once the solution at a node gets
its correct value, i.e., the smallest possible value, it will not change in later iterations.
There are natural orderings on rectangular meshes. For example, in 2-D cases [35],
all directions can be divided into four groups, up-right, up-left, down-left, and down-
right, which can be covered by the orderings i = 1 : I, j = 1 : J ; i = 1 : I, j = J : 1;
i = I : 1, j = 1 : J ; i = I : 1, j = J : 1, respectively, where i and j are the running
indexes in the x- and y-directions, respectively. However, such natural orderings no
longer exist on an unstructured mesh.

To devise efficient fast sweeping methods on unstructured meshes, we propose
systematic orderings by introducing multiple reference points and sorting all the nodes
according to their lp-distances to each individual reference point. In this paper we
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focus on p = 1 and 2 and give explicit geometric interpretation. The argument works
for all other p’s.

The lp-metric for a vector x=(x1, x2, . . . , xn)∈Rn is defined as |x|p=(
∑n

j=1|xj |p)1/p.
Without abuse of notation we also use |x| to denote the 2-norm of a vector x. For
example, in two dimensions, we first fix a reference point xref ; if we sweep through
all nodes according to |x − xref |1 in the ascent (or descent) order, then the sweeping
wavefront is an outgoing (or incoming) plane wave since the unit ball of the l1-metric
is a tilted square. If we use |x−xref |2 to order all nodes, then the sweeping wavefront
is an outgoing (or incoming) spherical wave.

Next we address the following questions:
1. How many references points are needed in a systematic ordering that can

cover all directions of information propagating?
2. How many iterations are needed for the algorithm to converge?

To address the first question, we have to understand the directional relation be-
tween a sweeping wavefront and a characteristic. In the continuous case the following
is a basic fact: if the propagating direction of the sweeping wavefront forms an acute
angle with the direction of the characteristic, then the causality along this charac-
teristic can be captured in this ordering. As illustrated in Figure 2.6, if we use the
l2-metric, i.e., with a spherical sweeping wavefront, a straight characteristic in any
direction can be partitioned into two pieces by the tangent point to a particular
spherical sweeping wavefront, and each piece forms an acute angle to the outgoing
or incoming sweeping wavefront. If all characteristics are straight lines, which is the
case when the right-hand side of the eikonal equation is constant, we cover almost all
characteristics by sweeping all nodes according to the l2-distance to a single reference
point in both ascent and descent orders alternately. However, for all characteristics at
the tangent point, the normal of the sweeping wavefront is orthogonal to the direction
of characteristics. So information will not propagate across the tangent point from
one piece to other pieces effectively. To remedy this problem we introduce another
reference point. Now all directions of characteristics can be covered effectively by
the four orderings except one direction, which is orthogonal to the line connecting
these two reference points, as shown in Figure 2.6. Therefore we need at least three
noncollinear reference points and we sweep through all the nodes according to their
l2-distances to these reference points in ascent and descent orderings; a total of six
orderings cover all directions of information propagating along characteristics. It can
be easily seen that four noncoplanar reference points are needed in three dimensions.

If we use the l1-metric, the sweeping wavefront is a tilted square. For each refer-
ence point, as shown in Figure 2.7, the whole plane can be divided into four quadrants,
and each quadrant can be covered by one planar sweeping wavefront. If we choose
two reference points such that the computational domain lies in different quadrants of
these two reference points, all directions of characteristics can be covered by the four
orderings corresponding to the ascent and descent sorting according to the l1-metric;
see Figure 2.7.

When characteristics are not straight lines, any characteristic can be divided into
a finite number of pieces so that each piece can be covered effectively by one of the
orderings, as shown in [35]. The total number of sweepings is increased due to curved
characteristics, but it is still finite. The number of iterations will be estimated in
section 3.

In terms of numerical implementation on a particular mesh some remarks are in
order.
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Fig. 2.7. Reference points and sweeping wavefronts for the l1-metric.

The domain of dependence for a node in the discrete case is a region rather
than only the characteristic that passes through the node in the continuous case.
On a triangular mesh, the propagating direction of a sweeping wavefront has to fall
into the triangle which satisfies the causality criterion in Definition 2.1 so that the
two neighbors that determine the current vertex have already been updated in the
current sweeping. Numerically this means that the normal of the sweeping wavefront
has to make an acute angle with the characteristic that passes through this vertex.

The criterion for an optimal choice of reference points and their locations on a
triangular mesh is that all directions of characteristics should be covered with minimal
redundancy. In practice, it is better if these reference points are evenly spaced both
spatially and angularly with respect to the data set or boundary where the solution
is prescribed. In our numerical tests we use the corners as reference points if the
computational domain is rectangular. Other points, such as the center point of the
domain or middle points of each edge, can be used as well. The number of iterations
needed for convergence may be different for different choices of reference points but
it will be finite.

If we have only a point source as the boundary condition on a rectangular mesh
and we use that point as the single reference point, then the square wave sweeping
accesses nodes in the ascent order in the same way that the down-n-out model does
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[32, 7], and the spherical wave sweeping shares some similarities with the expanding
wavefront model proposed in [31, 23]. However, we are not aware of any work accessing
the nodes in the way similar to the plane wave sweeping proposed here.

The above isotropic metrics are suitable for ordering nodes in solving isotropic
eikonal equations. For general anisotropic eikonal equations considered in [24, 18, 20],
we may introduce anisotropic Riemannian metrics [5] to sort all the nodes, derive
a local solver to update solutions at each node by using phase velocity and group
velocity, as illustrated in [24, 18], and design fast sweeping methods accordingly; see
[22] for a recent work along this direction.

Now we summarize local solvers and sweeping orderings into a complete algorithm.
The fast sweeping algorithm on a triangular mesh.
1. Initialization:

(a) Triangulate the computational domain Ω. Add virtual edges to cut ob-
tuse angles if there are any.

(b) Choose multiple reference points: xi
ref , i = 1, . . . , R.

(c) Sort all nodes according to their lp-distances to the reference points in
ascent and descent orders, and put them into arrays:

S+
i : ascent order, i = 1, 2, . . . , R;

S−
i : descent order, i = 1, 2, . . . , R.(2.4)

(d) Assign exact values or interpolated values T (0) at vertexes on or near the
given boundary Γ, and keep these values fixed during the iterations. At
all other vertexes, assign large positive values N to T (0), where N should
be larger than the maximum of the true solution, and these values will
be updated in later iterations.

2. Gauss–Seidel iteration for k = 0, 1, . . . :
(a) For i = 1, . . . , R:

i. For j = +,−:
A. To every vertex C ∈ Sj

i and every triangle associated with C,
fC=f(C), apply the local solver;

B. Convergence test: ‖T (k+1) − T (k)‖ ≤ ǫ for ǫ > 0 given, where
‖ · ‖ is some specified norm.

We remark that during the Gauss–Seidel iteration the numerical solution at C is
calculated using the current values of its neighbors in every triangle. The smallest
one will be taken as the possible new value. If this smallest new value is smaller than
the current value at C, then the numerical solution at C is updated to be the smallest
new value.

In passing we point out that the sorting procedure in the above algorithm can cost
O(M logM) flops if a comparison-based sorting method is used; however, to achieve
an optimal O(M) complexity for the algorithm, we may use a radix sorting method [4]
in that we know the distribution of nodes. Radix sorting runs an O(M) counting sort
on each digit of the key, starting with the least significant and working for bounded
integers. For general distances computed in the above algorithm, we argue that a
fixed number of digits is sufficient because in some sense the order of updates does
not matter too much for two nodes sufficiently close to each other. Moreover, this
initial ordering is done for a fixed mesh once and for all.

3. Convergence results. In this section we prove convergence of the fast sweep-
ing algorithm on triangular meshes. In the following analysis, we consider a regular



94 J. QIAN, Y.-T. ZHANG, AND H.-K. ZHAO

triangulation Th of Ω with the property that all the inner angles of the triangles in
Th satisfy ≤ π

2 .
Considering a triangle △ABC in which TA and TB are given, we update the

travel-time TC at the vertex C. Denoting

p1 =
TC − TA

b
, p2 =

TC − TB

a
, p3 =

TB − TA

c
,

we adopt the framework in [3] to show consistency and monotonicity of the Godunov
numerical Hamiltonian resulting from the local solver introduced in section 2.

Lemma 3.1 (Godunov numerical Hamiltonian). Assuming that the causality
condition holds, the updating formula for the local solver is one of the solutions for
the following equations:

⎧

⎪

⎨

⎪

⎩

(TC−TA)2

b2 − 2 (TC−TA)(TC−TB)
a b cos γ + (TC−TB)2

a2 = f2
C sin2 γ

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max (TC−TA

b , TC−TB

a ) = fC otherwise.

(3.1)

Here ∠C = γ, ∠A = β, ∠B = α, and fC = f(C). This discretization for the eikonal
equation is based on the Godunov numerical Hamiltonian:

ĤC

(

TC − TA

b
,
TC − TB

a

)

= fC ,(3.2)

where

ĤC(p1, p2) =

⎧

⎪

⎨

⎪

⎩

1
sin γ

√

p2
1 − 2p1 p2 cos γ + p2

2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max (p1, p2) otherwise.

(3.3)

Proof. By Version 2 of the local solver, we have

TC =

⎧

⎪

⎨

⎪

⎩

1
2 (TA + TB) + sin(α−β)

2 sin γ (TB − TA) + sinα sin β
sin γ

√

c2f2
C − (TB − TA)2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

min (TA + bfC , TB + afC) otherwise.

(3.4)

By solving (3.1), we have

TC =

⎧

⎪

⎨

⎪

⎩

1
2 (TA + TB) + b2−a2

2c2 (TB − TA) ± a b sin γ
c2

√

c2f2
C − (TB − TA)2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

min (TA + bfC , TB + afC) otherwise;

(3.5)

one of the two roots corresponds to (3.4).
Next we derive the numerical Hamiltonian. Denote A : (xA, yA), B : (xB , yB),

and C : (xC , yC). Since the causality condition holds, we have

TC − TA

b
= ∇T (C) ·

(

xC − xA

b
,
yC − yA

b

)t

+ o(h2),(3.6)

TC − TB

a
= ∇T (C) ·

(

xC − xB

a
,
yC − yB

a

)t

+ o(h2),(3.7)
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where t denotes the transpose of vectors. Furthermore we have
(

TC−TA

b
TC−TB

a

)

= P∇T (C) + o(h2),(3.8)

where

P =

(

xC−xA

b
yC−yA

b
xC−xB

a
yC−yB

a

)

.

Ignoring higher-order terms and solving for ∇TC , we have

|∇T (C)| ≈

⎧

⎪

⎨

⎪

⎩

1
sin γ

√

(TC−TA)2

b2 − 2 (TC−TA)(TC−TB)
a b cos γ + (TC−TB)2

a2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max
(

TC−TA

b , TC−TB

a

)

otherwise;

(3.9)

this is the Godunov numerical Hamiltonian for the eikonal equation.
Lemma 3.2 (consistency and causality). The Godunov numerical Hamiltonian

ĤC(p1, p2) =

⎧

⎪

⎨

⎪

⎩

1
sin γ

√

p2
1 − 2p1 p2 cos γ + p2

2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max (p1, p2) otherwise

(3.10)

is consistent; namely,

ĤC

(

TC − TA

b
,
TC − TB

a

)

= |p|(3.11)

if ∇Th = p ∈ R2. It is monotone if the causality condition holds: 0 ≤ γ1 ≤ γ, where
γ1 is the angle from the edge CA to the ray (i.e., the vertical line to the wavefront)
CQ counterclockwise; see Figure 2.1.

Proof. By ∇Th = p ∈ R2, we have
(

TC−TA

b
TC−TB

a

)

= Pp.(3.12)

Inserting this into the numerical Hamiltonian, we have (3.11).
Differentiating ĤC(p1, p2) with respect to p1 and p2, the monotonicity of the

Hamiltonian requires

∂ĤC

∂p1
≥ 0,

∂ĤC

∂p2
≥ 0;(3.13)

these can be satisfied if and only if cos γ ≤ p2

p1
≤ 1

cos γ . By

p1 =
TC − TA

b
= fC sin(β + θ),(3.14)

p2 =
TC − TB

a
= fC sin(α− θ),(3.15)

where θ = arcsin( p3

fC
), we have

cos γ ≤ sin(β + θ)

sin(α− θ)
≤ 1

cos γ
,(3.16)
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which is equivalent to the causality condition 0 ≤ γ1 ≤ γ, since γ1 = π
2 − (β + θ) and

γ1 = (γ + α− θ) − π
2 .

Lemma 3.3 (monotonicity). The fast sweeping algorithm is monotone and Lip-
schitz continuous, i.e.,

1 ≥ ∂TC

∂TB
≥ 0, 1 ≥ ∂TC

∂TA
≥ 0,(3.17)

and

∂TC

∂TB
+

∂TC

∂TA
= 1.(3.18)

Proof. Consider the case that TA ≤ TB . We need only verify that the above
inequalities hold when TC is updated by

TC = h fC + TB ,(3.19)

which is the case that the causality condition is satisfied. From Version 1 of the local
solver we have

∂TC

∂TB
= 1 + afC cos(α− θ)

(

− ∂θ

∂TB

)

(3.20)

= 1 − a cos(α− θ)

c cos θ
;(3.21)

∂TC

∂TA
= afC cos(α− θ)

(

− ∂θ

∂TA

)

(3.22)

=
a cos(α− θ)

c cos θ
.(3.23)

From Figure 2.1, we have a cos(α − θ)=PB, c cos(θ)=AR, and PB ≤ AR; therefore,
1 ≥ ∂TC

∂TB
≥ 0, 1 ≥ ∂TC

∂TA
≥ 0, and ∂TC

∂TB
+ ∂TC

∂TA
= 1.

Lemma 3.4 (maximum change principle). In the Gauss–Seidel iteration for the
fast sweeping algorithm, the maximum change of Th at any vertex is less than or equal
to the maximum change of Th at its neighboring points.

Proof. This follows from the above monotonicity property proved in Lemma
3.3.

Lemma 3.5 (order preserving). The fast sweeping algorithm is monotone in the
initial data.

Proof. By the monotonicity property of the solution, if Th(C) ≤ Rh(C) at all
vertexes initially, then Th(C) ≤ Rh(C) at all vertexes after any number of Gauss–
Seidel iterations.

Lemma 3.6 (nonincreasing). The solution of the fast sweeping algorithm is non-
increasing with each Gauss–Seidel iteration.

Proof. This is evident from the updating formula, which updates the current
value only if it is larger than the newly computed value during the Gauss–Seidel
iteration.

Lemma 3.7 (l∞-contraction). Let T (k) and R(k) be two numerical solutions at
the kth iteration of the fast sweeping algorithm. Let ‖ · ‖∞ be the maximum norm.
Then

‖T (k) −R(k)‖∞ ≤ ‖T (k−1) −R(k−1)‖∞;(3.24)
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0 ≤ max
C

{

T
(k)
C − T

(k+1)
C

}

≤ max
C

{

T
(k−1)
C − T

(k)
C

}

.(3.25)

Proof. Assume that the first update at the kth iteration is at C,

T
(k)
C = min{T (k−1)

C , T̄},

where T̄ is the solution computed from its neighbors T
(k−1)
A and T

(k−1)
B . The same is

true for R
(k)
C . By the maximum change principle, we have

|T (k)
C −R

(k)
C | ≤ ‖T (k−1) −R(k−1)‖∞.(3.26)

For an update at any other node later in the iteration, the neighboring values used
for the update are either from the previous iteration or from an earlier update in
the current iteration, both of which satisfy the above bound. By induction, we have
l∞-contraction (3.24). By the monotonicity of the fast sweeping algorithm and (3.24),
setting R(k) = T (k−1) we conclude (3.25).

Theorem 3.8 (convergence). The solution of the fast sweeping algorithm con-
verges monotonically to the solution of the discretized system.

Proof. Denote the numerical solution after the kth iteration by T
(k)
C . Since T

(k)
C

is bounded below by 0 and is nonincreasing with Gauss–Seidel iterations, T
(k)
C is

convergent for all C. After each sweep for each C at each triangle, we have by the
monotonicity of the numerical Hamiltonian

(T
(k)
C − T

(k)
A )2

b2 sin2 γ
− 2

(T
(k)
C − T

(k)
A )(T

(k)
C − T

(k)
B )

a b sin2 γ
cos γ +

(T
(k)
C − T

(k)
B )2

a2 sin2 γ
≥ f2

C(3.27)

because any later update of neighbors of T
(k)
C in the same iteration is nonincreasing.

Moreover, it is easy to see that after T
(k)
C is updated, the function

F (T
(k)
A , T

(k)
B ) =

(T
(k)
C − T

(k)
A )2

b2 sin2 γ
− 2

(T
(k)
C − T

(k)
A )(T

(k)
C − T

(k)
B )

a b sin2 γ
cos γ

+
(T

(k)
C − T

(k)
B )2

a2 sin2 γ
− f2

C(3.28)

is Lipschitz continuous in T
(k)
A and T

(k)
B , and the Lipschitz constant is bounded by

2 max

{

|T (k)
C − T

(k)
A |

b2 sin2 γ
+

|T (k)
C − T

(k)
B |

a b sin2 γ
cos γ,

|T (k)
C − T

(k)
B |

a2 sin2 γ
+

|T (k)
C − T

(k)
A |

a b sin2 γ
cos γ

}

.

Since T
(k)
C is monotonically convergent for all C, we can have an upper bound Z > 0

for the Lipschitz constant. Let δ(k) = max{T (k−1)
C − T

(k)
C } be the maximum change

at all grid points during the kth iteration. By the l∞-contraction property and the

convergence property of T
(k)
C , δ(k) converges monotonically to zero. After the kth

iteration, we have

0 ≤ (T
(k)
C − T

(k)
A )2

b2 sin2 γ
− 2

(T
(k)
C − T

(k)
A )(T

(k)
C − T

(k)
B )

a b sin2 γ
cos γ +

(T
(k)
C − T

(k)
B )2

a2 sin2 γ
− f2

C

≤ Zδ(k).

(3.29)
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Fig. 3.1. Partitioning of a characteristic.

Thus T (k) converges to the solution to (3.1).
Note that the monotone convergence is very important during iterations. Once

the solution at a node reaches the minimal value that it can get, it is the correct value
at that node and will not change in later iterations.

Next we show the estimate for the total number of iterations needed for conver-
gence. As pointed out above, given a systematic ordering, any characteristic can be
partitioned into a finite number of pieces and each piece will be covered correctly by
one of the sweeping orderings, as shown in Figure 3.1(a). Since these pieces have to
be captured sequentially the total number of iterations needed is proportional to the
number of pieces. Finally the number of pieces needed to partition a characteristic is
related to the directional change of the characteristic. We now give an estimate on
the total variation of the tangent direction of any characteristic in a fixed domain Ω.

Denote H(p,x) = |p| − f(x), where p = ∇T . The characteristic equation for the
eikonal equation is

⎧

⎪

⎨

⎪

⎩

ẋ = ∇pH = ∇T
f(x) ,

ṗ = −∇xH = ∇f(x),

Ṫ = ∇T · ẋ = f(x),

where ˙ denotes the derivative along characteristics parametrized by the arc length s.
Since |ẋ| = 1, it was shown in [35] that the curvature bound along a characteristic

is

|ẍ| ≤
∣

∣

∣

∣

∇f(x)

f(x)

∣

∣

∣

∣

.(3.30)

Lemma 3.9. Assuming that f(x) is strictly positive and C1 in Ω, the total vari-
ation of the tangent direction of the shortest characteristic L from an initial point
x0 ∈ Γ to a point x ∈ Ω is bounded by

∫

L

|ẍ|ds ≤ DKfM
fm

,(3.31)

where s is the arc-length along the characteristic L, D is the diameter of domain Ω,
and

K = sup
x∈Ω

∣

∣

∣

∣

∇f(x)

f(x)

∣

∣

∣

∣

, fM = sup
x∈Ω

f(x), fm = inf
x∈Ω

f(x).
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Proof. The existence of the shortest path L, yielding the first-arrival travel-time
from an initial point x0 ∈ Γ to a point x ∈ Ω, is guaranteed by the results in [14, 16].
If L is a single characteristic curve, then from (3.30) we have

∫

L

|ẍ|ds ≤
∫

L

|∇f(x)|
f(x)

ds ≤ K

∫

L

ds,(3.32)

where s is the arc-length; see Figure 3.1(b). The travel-time at x is T (x) =
∫

L
f(s)ds.

This travel-time, which is the first arrival time at x, is smaller than the travel-time
along the direct path from x0 to x. So we have

fm

∫

L

ds ≤
∫

L

f(s)ds = T (x) ≤
∫

x

x0

f(s)ds ≤ fM |x − x0|.(3.33)

Hence

length(L) =

∫

L

ds ≤ DfM
fm

.(3.34)

Together with (3.32) we finish the proof. In general L may be composed of several
pieces of characteristic curves. The above integral may be broken into several parts
accordingly, but the same proof goes through.

According to the above lemma the maximal number of sweeping needed to cover
all characteristics can be bounded by C × DKfM

fm
, where the constant C may depend

on the number of reference points and orderings.
Here is a discrete version of the above argument [36]. For an appropriate upwind

scheme the corresponding discretized nonlinear system of equations has a solution (see
Theorem 3.8). We can classify all nodes into a few groups according to the solution.
All nodes in each group have a dependence pattern similar to their neighbors. For
example, on a rectangular grid in two dimensions, almost all grid points can be di-
vided into simply connected regions. In each region the value at a grid point depends
on two of its neighbors in the following ways: (1) left and down neighbors; (2) left
and up neighbors; (3) right and down neighbors; (4) right and up neighbors. By the
Gauss–Seidel iteration each connected region can be covered by one of the orderings
simultaneously when the ordering is in the upwind direction of the dependence pat-
tern. The number of connected regions is proportional to the number of directional
changes of characteristics which is bounded above. This relates the number of itera-
tions for the fast sweeping method to the above bound. On a triangular mesh, because
an arbitrary unstructured mesh may accommodate much more information flowing
directions than a rectangular mesh, the situation is more complicated. However, given
a triangulation and a choice of the reference points, all nodes can be partitioned into
a finite number of connected regions. In each region the nodal dependence follows one
of the orderings according to the increase/decrease of the distance to the reference
points. For example, all those connected nodes, whose values depend on neighboring
nodes that are closer to one of the reference points, belong to one region. The number
of regions is proportional to the bound above. Although the triangulation and the
choice of the reference points may affect the number of iterations, it is finite for a
fixed setup.

4. Numerical examples. Now we show numerical examples in both two and
three dimensions to illustrate the efficiency and the accuracy of our algorithm. In all
the examples we have used the quick-sort method to order the nodes, though a radix
sorting method may be implemented as well.
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Our computational experience indicates that for an acute triangulation, using
four corners in 2-D rectangular domains or eight corners in 3-D rectangular domains
as the reference points is sufficient for the algorithm to converge in a finite number of
iterations. For a triangulation with some obtuse triangles, more reference points may
be needed. However, if the virtual splitting of obtuse angles as described in section
2.1 is used, then no extra reference point is needed; the results in convergence and
accuracy are similar to those with all triangles being acute.

In all the presented examples the number of iterations is independent of the mesh
size. The convergence of iteration is measured as full convergence in terms of the
l∞-norm; i.e., the iteration stops when the successive error reaches machine zero. On
the other hand, the convergence order of the method is measured in the l1-norm, as
advocated by Lin and Tadmor [15].

We note that in our implementation, the convergence test is checked for every
sweeping; here one sweeping is defined as passing through each node once according
to a given ordering of nodes. So the iteration numbers reported in numerical examples
are, in fact, the sweeping numbers needed for the algorithm to converge.

4.1. 2-D acute triangulation. We first triangulate the computational domain
into acute triangles, then we refine the mesh uniformly by cutting each triangle in
the coarse mesh into four smaller similar ones. We have chosen the four corners as
the reference points in Examples 1, 2, and 3, with both the l1- and l2-metric–based
sortings.

Example 1 (two-circle problem). The eikonal equation (2.1) with f(x, y) = 1. The
computational domain is Ω = [−2, 2]× [−2, 2]; Γ consists of two circles of equal radius
0.5 with centers located at (−1, 0) and (

√
1.5, 0), respectively. The exact solution is

the distance function to Γ. An acute triangulation is used in the computation. The
solution is shown in Figure 4.1(a).

Example 2 (shape-from-shading). This example is taken from [26], in which

f(x, y) = 2π
√

[cos(2πx) sin(2πy)]2 + [sin(2πx) cos(2πy)]2.(4.1)

Γ = {( 1
4 ,

1
4 ), ( 3

4 ,
3
4 ), ( 1

4 ,
3
4 ), ( 3

4 ,
1
4 ), ( 1

2 ,
1
2 )}, consisting of five isolated points. The

computational domain is Ω = [0, 1]× [0, 1]. T (x, y) = 0 is prescribed on the boundary
of the unit square. The solution to this problem is the shape function, which has
the brightness I(x, y) = 1/

√

1 + f(x, y)2 under vertical lighting. We have used acute
triangulations for the following two cases.

Case a.

g

(

1

4
,

1

4

)

= g

(

3

4
,

3

4

)

= 1, g

(

1

4
,

3

4

)

= g

(

3

4
,

1

4

)

= −1, g

(

1

2
,

1

2

)

= 0.

The exact solution for this case is smooth,

T (x, y) = sin(2πx) sin(2πy).

Case b.

g

(

1

4
,

1

4

)

= g

(

3

4
,

3

4

)

= g

(

1

4
,

3

4

)

= g

(

3

4
,

1

4

)

= 1, g

(

1

2
,

1

2

)

= 2.

The exact solution for this case is nonsmooth,

T (x, y) =

⎧

⎪

⎨

⎪

⎩

max(| sin(2πx) sin(2πy)|, 1 + cos(2πx) cos(2πy))

if |x + y − 1| < 1
2 and |x− y| < 1

2 ;

| sin(2πx) sin(2πy)| otherwise.
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Fig. 4.1. (a) Example 1: two-circle problem. (b) Example 3: five-ring problem.

Table 4.1
Accuracy tests for Examples 1 and 2. Acute triangulation. Four corners as the reference points.

Two-circle Shape (Case a) Shape (Case b)

Nodes Elements L1 error Order L1 error Order L1 error Order
1473 2816 7.71E-3 – 4.54E-2 – 2.83E-2 –
5716 11264 4.21E-3 0.87 2.54E-2 0.84 1.62E-2 0.81

22785 45056 2.18E-3 0.95 1.34E-2 0.92 8.76E-3 0.89
90625 180224 1.11E-3 0.97 6.90E-3 0.96 4.60E-3 0.93

Table 4.2
Iteration numbers for Examples 1, 2, and 3. Acute triangulation. Spherical wave sweeping based

on the l2-metric ordering. Four corners as the reference points.

Nodes Elements Two-circle Shape (Case a) Shape (Case b) Five-ring
1473 2816 6 9 9 19
5716 11264 6 13 13 20

22785 45056 8 11 13 21
90625 180224 8 11 13 21

Example 3 (five-ring). The computational domain is Ω = [0, 1]× [0, 1], Γ is a point
source at (0, 0), and a five-ring obstacle is placed in the computational domain. This
example is borrowed from [9]. Here we also use an acute triangulation. The solution
is shown in Figure 4.1(b).

From Table 4.1, we can see that the accuracy of the algorithm for Examples 1 and
2 is first order. Although the same discretized nonlinear system is solved, no matter
which ordering metric is used, different ordering strategies may result in different
numbers of iterations, as illustrated in Tables 4.2 and 4.3, where we have applied
orderings based on l1- and l2-metrics, respectively. Certainly, the two tables also
indicate that the iteration number does not depend on the mesh size as the mesh is
refined.

Table 4.4 shows the number of iterations needed using the l1-metric with only
two reference points. The two reference points are two corners that are not diagonal
to each other.

On the other hand, Table 4.5 shows that a simple extension of the ordering
strategy used for rectangular meshes, i.e., sorting all vertexes according to the ascent
and descent orders of their x- and y-coordinates, may result in more iterations.



102 J. QIAN, Y.-T. ZHANG, AND H.-K. ZHAO

Table 4.3
Iteration numbers for Examples 1, 2, and 3. Acute triangulation. Planar wave sweeping based

on the l1-metric ordering. Four corners as the reference points.

Nodes Elements Two-circle Shape (Case a) Shape (Case b) Five-ring
1473 2816 7 12 9 26
5716 11264 7 12 9 27

22785 45056 7 16 9 27
90625 180224 7 15 9 27

Table 4.4
Iteration numbers for Examples 1, 2, and 3. Acute triangulation. Planar wave sweeping based

on the l1-metric ordering using only two reference points.

Nodes Elements Two-circle Shape (Case a) Shape (Case b) Five-ring
1473 2816 6 12 8 16
5716 11264 6 12 9 25

22785 45056 7 17 9 29
90625 180224 7 14 10 29

Table 4.5
Iteration numbers for Examples 1, 2, and 3. Acute triangulation. Nodes are sorted by x- and

y-coordinates. Four corners as the reference points.

Nodes Elements Two-circle Shape (Case a) Shape (Case b) Five-ring
1473 2816 9 9 9 22
5716 11264 9 10 14 26

22785 45056 13 18 15 33
90625 180224 13 13 15 33

4.2. 2-D obtuse triangulation. We test our strategy for treating a triangula-
tion which has obtuse angles. The obtuse triangulations are constructed by perturbing
randomly the x-coordinates of vertexes (Figure 4.2(a)) or perturbing randomly both
the x-coordinates and the y-coordinates of vertexes (Figure 4.2(b)) in a uniform trian-
gulation. The uniform triangulation, in turn, is obtained by connecting the diagonal
line in every rectangle of a rectangular mesh and cutting every rectangle into two
equivalent isosceles triangles. The perturbation range is [−0.5h, 0.5h], where h is the
length of an isosceles triangle. We use Example 1 in section 4.1 as a test example and
apply spherical-wave sweepings.

As a first test, we use the obtuse triangulation as in Figure 4.2(a), choose four
corners of the computational domain as the reference points, and sweep through all the
nodes according to both ascent and descent sortings. The accuracy and the number
of iterations for the algorithm without and with the obtuse-angle treatment are listed
in Table 4.6.

As a second test, we use eight reference points which include both the four cor-
ners and four middle points of the four edges of the computational domain, and we
use only ascent orders. The accuracy and the number of iterations for the algorithm
without and with the obtuse-angle treatment are listed in Table 4.7 for the obtuse
triangulation as in Figure 4.2(a) and in Table 4.8 for the obtuse triangulation as in
Figure 4.2(b). Comparing Tables 4.6, 4.7, and 4.8, we can see that more reference
points may help us reduce the number of sweepings needed in the algorithm. Roughly
speaking, for different meshes the errors from the algorithm with the obtuse-angle
treatment are decreased 2 ∼ 4 times in comparison to the errors from the algorithm
without such a treatment, as shown in both Table 4.7 and Table 4.8. The first-order
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Fig. 4.2. Obtuse triangulations. (a) Perturbing randomly the x-coordinate of vertexes in a
uniform triangulation; (b) perturbing randomly x- and y-coordinates of vertexes.

Table 4.6
Two-circle problem. Obtuse triangulation (Figure 4.2(a)). Spherical wave sweepings: 4 refer-

ence points (4 corners of computational domain). Both ascent and descent orderings.

Before treatment After treatment

Elements Obtuse elements Max obtu L1 error Order Iter. L1 error Order Iter.
200 78 120◦ 6.70E-2 – 6 4.26E-2 – 5
800 528 115◦ 2.49E-2 1.43 8 1.71E-2 1.32 6

3200 958 125◦ 2.90E-2 −0.22 15 9.71E-3 0.81 12
12800 5890 118◦ 1.98E-2 0.55 34 4.60E-3 1.08 18
51200 40558 116◦ 4.71E-3 2.07 44 2.31E-3 0.99 24

Table 4.7
Two-circle problem. Obtuse triangulation (Figure 4.2(a)). Spherical wave sweepings: 8 refer-

ence points (4 corners and 4 middle points of the 4 edges). Only ascent ordering.

Before treatment After treatment

Elements Obtuse elements Max obtu L1 error Order Iter. L1 error Order Iter.
200 78 120◦ 6.70E-2 – 4 4.26E-2 – 4
800 528 115◦ 2.49E-2 1.43 8 1.71E-2 1.32 6

3200 958 125◦ 2.91E-2 −0.22 8 9.71E-3 0.81 8
12800 5890 118◦ 1.98E-2 0.55 8 4.60E-3 1.08 9
51200 40558 116◦ 4.72E-3 2.07 13 2.31E-3 0.99 11

Table 4.8
Two-circle problem. Obtuse triangulation (Figure 4.2(b)). Spherical wave sweepings: 8 refer-

ence points (4 corners and 4 middle points of the 4 edges). Only ascent ordering.

Before treatment After treatment

Elements Obtuse elements Max obtu L1 error Order Iter. L1 error Order Iter.
200 81 106◦ 3.55E-2 – 4 3.08E-2 – 4
800 727 108◦ 2.30E-2 0.63 8 1.70E-2 0.86 4

3200 1344 106◦ 1.32E-2 0.80 8 8.04E-3 1.08 6
12800 5909 106◦ 7.73E-3 0.77 11 4.66E-3 0.79 10
51200 50560 108◦ 3.88E-3 0.99 14 1.89E-3 1.31 14
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Fig. 4.3. Two-sphere problem. Use a tetrahedral mesh. (a) The surface contour, 30 equally
spaced contour lines from T = 0 to T = 0.742402 (produced automatically by the plotting software);
(b) the contour plot of T = 0.17 in the 3-D case.

Table 4.9
Two-sphere problem. Comparison between tetrahedral meshes and rectangular meshes. Spheri-

cal wave sweepings: 8 corners as reference points. Both ascent and descent orderings.

Unstructured mesh Structured mesh

Nodes Elements L1 error Order Iter. L1 error Order Iter.
9261 48000 1.25E-2 – 12 1.77E-2 – 15

68921 384000 7.17E-3 0.81 12 1.02E-2 0.80 15
531441 3072000 3.79E-3 0.92 12 5.41E-3 0.91 16

accuracy with the obtuse-angle treatment is more regular than that without the treat-
ment. Moreover, comparing the errors in Table 4.6 with those in Table 4.7, we can
observe that without the obtuse-angle treatment different sweeping ordering strate-
gies yield slightly different numerical solutions, and with the obtuse-angle treatment
different sweeping ordering strategies yield the same solutions up to machine zero.
This indicates that the causality of PDEs may not be captured accurately if obtuse
angles are not treated.

4.3. A 3-D example. We test our 3-D fast sweeping methods on tetrahedral
meshes. We use a two-sphere problem as an example: the eikonal equation (2.3) with
f(x, y, z) = 1.

The computational domain is Ω = [0, 1] × [0, 1] × [0, 1]; Γ consists of two spheres
of equal radius 0.1 with centers located at (0.25, 0.25, 0.25) and (0.75, 0.75, 0.75), re-
spectively. The exact solution is the distance function to Γ.

We first partition the computational domain into identical rectangular cubes.
Then a tetrahedral mesh is obtained by cutting each cube into six tetrahedrons.

The results in Figure 4.3 are obtained by using a tetrahedral mesh which consists
of 40 × 40 × 40 × 6 = 384000 tetrahedrons. We choose the eight corners of the
computational domain as the reference points. Both ascent and descent orderings
are used, and the ordering strategy is based on the l2-metric. Figure 4.3(a) shows
contours of the solution on the surface of the domain, and Figure 4.3(b) shows 3-D
plots of the contour T = 0.17.

In Table 4.9, we present the accuracy and numbers of iterations when the tetra-
hedral mesh is refined. To calibrate the result, we apply the same sweeping ordering
to the rectangular mesh from which the tetrahedral mesh is obtained. For the rec-
tangular mesh we use the local solver for rectangular grids as in [35]. Although the
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Table 4.10
Two-circle problem. Comparison between triangular meshes and rectangular meshes. Spherical

wave sweepings: 4 corners as reference points.

Unstructured mesh Structured mesh

Nodes Elements L1 error Order Iter. L1 error Order Iter.
1681 3200 9.85E-3 – 5 1.46E-2 – 5
6561 12800 5.30E-3 0.89 5 7.91E-3 0.88 5

25921 51200 2.74E-3 0.95 5 4.13E-3 0.94 5
103041 204800 1.39E-3 0.98 5 2.10E-3 0.97 5
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Fig. 4.4. log plot of convergence error for 2-D and 3-D examples.

nodes are the same, the local solvers at each node are different so that the discretized
nonlinear systems of the equation are different. The comparison results are also shown
in Table 4.9. It is obvious from the table that the local solver on unstructured meshes
can achieve higher accuracy than that on structured meshes since the former uses
more neighboring points at each node and captures directions of characteristics more
accurately than the latter.

Also we can see from Table 4.9 that if the l2-metric is used for ordering, the
number of iterations on an unstructured mesh can be less than that on a structured
one. However, the local solver at each node for an unstructured mesh is more expensive
than that for a rectangular mesh. Most importantly, we see that both iteration
numbers do not change as the mesh is refined. So our ordering strategy works for
both cases.

A similar comparison for a 2-D case, Example 1 of section 4.1, is presented in
Table 4.10; again the local solver on unstructured meshes achieves higher accuracy
than that on structured meshes.

4.4. Typical convergence behavior. Figure 4.4 shows the typical behavior of
convergence error of the fast sweeping method in terms of the difference between two
consecutive iterations in maximum norm. It demonstrates that the exact solution (up
to machine error) to the discretized system is achieved in a finite number of iterations
independent of mesh size.

5. Conclusion. We propose novel ordering strategies to extend the fast sweep-
ing method to unstructured meshes. To that end we introduce multiple reference
points and order all the nodes according to their lp-metrics to those reference points.
Information propagating along all characteristics can be covered efficiently by the
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systematic orderings. We prove that the new algorithm converges and numerical ex-
amples demonstrate that the algorithm converges in a finite number of iterations in-
dependent of mesh size. The computational complexity of the new algorithm is nearly
optimal in the sense that the total computational cost consists of O(M) flops for iter-
ation steps and O(M logM) flops for sorting at the predetermined initialization step,
which can be efficiently optimized by adopting a linear time sorting method, where
M is the total number of mesh points. Extensive numerical examples demonstrate
the accuracy and the efficiency of the new fast sweeping method.
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