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Fast Swept-Volume Distance for Robust Collision Detection* 

Patrick G. Xavier 

Abstract: The need for collision detection arises in 

several robotics areas, including motion-planning, online 

collision avoidance, and simulation. At the heart of most 

current methods are algorithms for interference detection 

andor distance computation. A few recent algorithms and 

implementations are very fast, but to use them for accu- 

rate collision detection, very small step sizes can be neces- 

sary, reducing their effective efficiency. We present a fast, 

implemented technique for doing exact distance compu- 

tation and interference detection for translationally-swept 

bodies. For rotationally swept bodies, we adapt this tech- 

nique to improve accuracy, for any given step size, in dis- 

tance computation and interference detection. We present 

preliminary experiments that show that the combination 

of basic and swept-body calculations holds much promise 

for faster accurate collision detection. 

1 Introduction 

1.1 Overview 

Collision detection is a basic problem in robotics and 

related areas, arising in motion planning, control, graphi- 

cal programming, motion-preview, virtual reality, and dy- 

namical simulation. The collision detection problem asks 

whether a rigid body moving along a given path intersects 

with any of a set of obstacles at any point on that path. 

In a fuller version of the problem, all contacts must also 

be determined. In both cases, accuracy is of extreme im- 

portance when the results of collision detection between 

modeled objects affect the behavior of physical robots or 

influence the outcomes of physical simulations, such as 

those used in process and product design and evaluation. 

*This research was supported by DOE Contract DE-AC04- 

94AL85000, and by the Laboratory Directed Research and Development 

Office of Sandia National Laboratories. 

v Most current methods for collision detection rely on in- 

terference detection and/or distance computation. A few 

recent algorithms are very fast, but to use them for ac- 

curate collision detection, very small step sizes between 

queries become necessary because of the difficulty in de- 

termining whether a collision occurs between consecutive 

interference or distance computations. This reduces effec- 

tive efficiency. 

We recently developed a technique, based on a novel 

use of Gilbert’s Algorithm [12], for computing exact dis- 

tances between linear-translationally swept rigid bodies. 

For bodies swept with a rotational component, we have 

extended this technique to improve accuracy, for any 

given step size, in distance computation. The same tech- 

niques trivially suffice for interference detection between 

the swept bodies. In both cases, the bodies can be non- 

convex, and the combination of basic and swept-body 

distancehnterference calculation is suitable for fast, ac- 

curate collision detection. We report on our algorithms, 

our implementation, and preliminary tests involving 1OK- 

60K polygon examples that illustrate the potential of our 

swept-body distance techniques. 

1.2 Background: Collision, Interference, 

and Distance 

We first review definitions of interference detection, 

distance computation, and collision detection for a sin- 

gle moving body. Interference detection (or clash detec- 

tion) for a rigid body R at a position and orientation x 

and obstacles 0 means to determine whether R ( x )  n 0 

is non-empty, with R(x) denoting the image of R in the 

world. Distance computation means to determine the min- 

imum distance between all points in R ( x )  and those in 

0. Simple collision detection for a rigid body R moving 

over a path segment among obstacles 0 means to deter- 
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mine whether at any point along the path the body con- 

tacts or intersects any obstacles. In other words, if we let 

C denote the space of positions and orientations and let 

p : [0,1] -+ C denote the path segment, then collision 

detection asks whether there is any t E [0,1] such that 

R ( p ( t ) )  n 0 is non-empty. 

Figure 1 : Between queries, the triangle moves linearly from A to A’. 

Because there is no interference with the obstacle at the query times, sim- 

ple interference checking fails to detect the collision with the obstacle. 

Basic distance queries at the query points would indicate that it might 

be possible that there is a collision, but further computations would be 

needed to decide. The swept hull of the moving triangle intersects the 

obstacle, so a swept-body interference check would detect the collision. 

Exact or accurate collision detection is often avoided 

for the sake of speed. Usually, either interference detec- 

tion or distance computation queries are applied at closely 

spaced points on the path. Simple use of interference 

detection can obviously miss collisions. (See Figure 1.) 

Growing the objects by a safety margin can prevent this, 

but at the risk of detecting false collisions. With distance 

computation, one can vary the step size reduce the number 

of queries needed to obtain a given resolution, but resolu- 

tion is limited to the minimum step size. The result can be 

reduced step sizes and application speed. One can collect 

all pairs of polygons closer than the step size and then ap- 

ply more sophisticated methods (including ours) to these 

pairs, and our discussion attempts to account for this. 

1.3 Results 

We present results that help to bridge the gaps between 

robust space-time methods for collision detection (e.g., 

[4,7]) and fast exact interference detection (e.g., [13]) and 

distance computation (e.g., [22]) techniques. Specifically, 

we present an easily implemented technique for exact dis- 

tance computation for linear-translationally swept bodies. 

We then extend this technique to the improve accuracy, 

for any given step size, in distance computation and in- 

terference detection for rotationally swept bodies. Our 

techniques enable conservative approximations when de- 

sired. We assume that all bodies, previous to sweeping, 

are represented by boundaries composed of convex poly- 

gons andlor by unions of convex polygons and polyhedra. 

We do not require the bodies to be manifolds. 

In Section 2 we describe our techniques, which com- 

bine a convex-hull-based hierarchy with a previously un- 

reported use of Gilbert’s Algorithm. In Section 3 we 

present preliminary experimental results obtained using 

our implementation. We compare the linear-translational 

swept-body technique against its non-swept-body coun- 

terpart in both distance computation and interference de- 

tection. Both are implemented in our geometry library, 

the C-Space Toolkit. Our test scenarios have 10K to 60K 

polygons and include semi-pathological cases with over 

500 pairs of polygons in contact per step. 

1.4 Previous and Related Work 

We review some of the extensive body of work on inter- 

ference detection and distance computation between two 

rigid bodies. An overview covering a more complete set 

of previous and related work (from three research com- 

munities) can be obtained by consulting [13-151. A re- 

lated and important problem concerns collision detection 

among members of a collection of objects that move ar- 

bitrarily but continuously with respect to each other. For 

example, see [2,9,17,20]. 

For a number of years, hierarchical geometric repre- 

sentations have been used to avoid all pairs comparisons 

in interference detection, distance computation, and colli- 

sion detection. The binary-space partitioning tree (BSP- 

tree) [11,21] and variants (e.g., [24]) have been success- 

fully used in exact interference checking and contact de- 

termination, but they do not readily yield distance infor- 

mation. The octree [16,19] is another space-partitioning 

data-structure that has been used in interference detection 

(for example, [ l]), but it must be used with other geomet- 

ric objects to obtain computations matching the accuracy 

of faceted boundary representations or BSP-trees. 

Other hierarchical structures use various primitives to 

bound an object or its surface at each level of the hierar- 

chy, although sometimes holes are treated explicitly, as in 

[9,10]. Successful implementations for exact interference 

detection and distance computation have been based on 

several geometric primitives. The convex-hull based im- 

plementations of [5,6,9,23], the sphere-based techniques 

of [22], and bounding-prism methods of [13] are among 

those known to be fast. However, none of these results 

cover swept-body distance or swept-body interference de- 

tection. 
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Much work has also been done on optimizing the 

minimum-distance computation between primitives. The 

convex-hull distance algorithm of [12], referred to as 

“Gilbert’s Algorithm” is used by many of the systems 

mentioned above. [5,8] have presented fast incremen- 

tal convex-hull distance schemes, which exhibit constant- 

time complexity when the object configurations change 

only by small amounts between queries. There is poten- 

tial to adapt these techniques into our system. 

[7] describes a technique for exact collision detection 

for convex polyhedra moving along path segments linear 

in translation and the quaternion representation of SO(3). 

Finally, [4] uses space-time techniques and develops al- 

gorithms and hierarchical structures for exact collision 

detection for non-convex objects. Both these results are 

more general than ours in allowing exact time intervals of 

contact and penetration to be computed directly, but they 

are considerably more expensive. 

2 Algorithm 

We now describe our techniques. First, we review a ba- 

sic method of hierarchical exact distance calculation. We 

then describe our extension of this method to exact dis- 

tance calculation for linear-translationally swept bodies. 

Finally, we describe two extensions that compute approx- 

imate distances for bodies that are swept linearly and ro- 

tationally simultaneously. 

2.1 Basic Hierarchical Distance Calculation 

We represent the boundary of a body with a bounding- 

volume hierarchy generated with a variant of our algo- 

rithm described in [25]. The hierarchy is a binary tree 

whose nodes each contain a convex polygon or convex 

polyhedron. The subtree rooted at a node represents the 

union of the primitives at its leaves. Thus, each node of 

our hierarchical geometric representation contains a con- 

servative approximation, or wrapper, of the object rep- 

resented by its subtree. In particular, our trees contain a 

convex hull (polyhedron) at each interior node, and con- 

vex polygon or polyhedron at each leaf. 

To perform basic distance computation, we use a recur- 

sive algorithm similar to those of [22] and others. (See 

Figure 2.) At each stage we consider a pair of nodes, one 

from each tree. We begin at the roots, with the distance 

dist set at infinity. In the base case, we simply calculate 

the distance between two convex primitives, and set dist 

to this distance if it is smaller than the current value. In 

Simple Basic Distance 

real cstkDist(body *R, body * S )  

real dist t 00; 

pairstack stack; 

body *bl,*b2; 

stack.push(R,S); 

while (!stack.isEmpty()) { 

{ 

stack.pop(&bl ,&b2); 

if(isLeaf(b1) A isLeaf(b2)) 

else if(hullDist(bl,b2) > dist) 

else if(isLeaf(b1) V 

dist t min(dist,primDist(bl ,b2)); 

continue; 

(!isLeaf(b2) A len(b1) < len(b2))) { 

stack.push(b1, b24childl); 

stack.push(b1, b24child2); 

stack.push(b1 +childl, b2); 

stack.push(b1 +child2, b2); 

} else { 

1 
1 
return dist; 

} 

Figure 2: This pseudo-code gives the simple basic algorithm, using a 

stack to implement recursion. It should look familiar to many readers. 

the recursive case, if the distance between the hulls of the 

current nodes is no greater than dist, then we recurse us- 

ing the current node from one tree paired with each of 

the children of the current node from the other; otherwise, 

we cut the current branch of the recursion. The Zen(b1) < 
Zen(b2) test is a heuristic, comparing principal axis lengths 

to decide which one of bl  and b2 should be descended. 

Both huZlDist(..) andprimDist(..) compute the distance 

between two convex polygons or polyhedra. This can be 

efficiently done with Gilbert’s Algorithm [ 121. 

2.2 Hierarchical Distance Calculation for a 

Translationally-Swept Body 

We now make three observations. 

First, although Gilbert’s Algorithm is usually applied 

to convex polyhedra and convex polygons, it can do more: 

given two finite sets of points, it computes a minimum 

distance vector between their convex hulls. To see that 

this is true without going into the details, we observe that 

points in the interior of the hulls are never returned by the 
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support functions in [ 121. 

Second, the convex hull of the vertices of a polyhe- 

dron (polygon) and their images under a translation x is 

equal to the swept hull of that polyhedron (polygon) un- 

der translation x .  Thus, we can use Gilbert’s Algorithm to 

compute the the distance between two polygons (or poly- 

hedra) swept by linear translations. We do this by adding 

the new positions of the vertices to the lists of input ver- 

tices. 

Third, if A, B, and C are convex and A U B c C,then 

sweep(A,x) U sweep(B,x) C sweep(C,x). 

This means that the conservative approximation nature of 

our hierarchies is preserved under translation. 

Together, this means we can do the following to the 

algorithm in Figure 2. First, we add vectors x and 

y, which give the translations to be applied to R and 

S, to the parameter list. We then replace the function 

calls primDist(bl,b2) and hullDist(bl,b2) with the call 

transGilbert(bl,x, b2, y), which calls Gilbert’s Algorithm 

on the vertices of bl unioned with their images under 

translation x, and on the vertices of b2 unioned with their 

images under translation y. 

These extensions are clearly easy to implement. To see 

heuristically that the extended distance algorithm should 

be fast, we first observe that the divide-and-conquer ef- 

fects of the geometric hierarchy are still valid in d - 1 of d 

dimensions, i.e., in the directions normal to the sweep di- 

rection. Second, the loss of divide-and-conquer effective- 

ness in the sweep direction varies roughly with the ratio of 

the sweep length to the diameter of the environment in the 

sweep direction. Finally, since the number of vertices in 

each call to Gilbert’s algorithm only doubles, the cost of 

each call should at most double or triple in typical cases 

(in which the algorithm is (O(N1ogN)). 

Finally, we observe that when both bodies are in mo- 

tion, computing the swept-body distance gives a conser- 

vative estimate of how close the bodies come during the 

motion. However, when two bodies each undergo a linear 

translational motion, the relative motion is also a linear 

translation. Therefore, we can transform the problem to 

one with one linearly translating body and one stationary 

body, and get an exact answer. 

2.3 A Rotational Sweep Approximation 

For motions that include a small single-axis rotation,l 

we describe two approximation techniques - a simple 

‘A mathematical description of the transformation is given by (4). 

one that might underestimate or overestimate the distance, 

and a conservative one that will never overestimate but 

might underestimate. Both require the rotation angle to be 

less than :. 
The simple approximation technique replaces the func- 

tion calls to primDist(bl,b2) and huElDist(bl,b2) with 

calls to a function that calls Gilbert’s Algorithm on the 

unions of the vertices of bl and b2 and their final images 

under the sweep motions, just as in the translational case. 

By convexity, it suffices to consider the case of a line seg- 

ment. First, we consider a vertex rotated by angle 9 about 

an axis a distance r away. (See Fig. 3a.) The distance 

B’ 

1 

I 

I 

I 

I 
I 

I 

I 

I 

I 
I 

I 

Figure 3: (a) Line segment AA’ approximates arc AA’. If segments 

and DA’ are tangents, then triangle ADA‘ bounds the arc. (b) Line 

segment AB rotates by 0 about C; new term must bound the maximum 

distance between segment AB’ (or A’B)  and the union of sectors ACA’ 

and BCB‘.  

- -  

between the arc the vertex follows and the line segment 

between its original and final locations is bounded by 

r (l--cos(;)) 

For a line segment that has projected length 1 perpendic- 

ular to the axis of rotation, we bound the maximum dis- 

tance between the region swept by the segment and the 

(4-vertex) convex hull of its vertices at their original and 

final locations. This is (1) plus the greatest minimum dis- 

tance possible between an axis of rotation on the segment 

and the boundary of the 4-vertex convex hull (see Fig. 3b), 

or 
I 

r (I - cos (!)I + ;;sing. (2) 

(2) thus bounds the error in distance computation that 

can result. Compared to the r sin( i) error bound resulting 

from just computing distance before and after the rotation, 

we see that the part of the error dependent on rotational 

radius r decreases quadratically with the rotation angle 

instead of linearly. (Consider the series expansions.) 

A more sophisticated technique, which builds on one 

from [ 181, is similarly bounded in error but conservative, 

\ \ A / /  A 
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returning distances no greater than the actual distance. In 

the planar case, the position of a vertex during motion is 

bounded by the triangle formed by its initial and final po- 

sitions and the intersection of the tangents at the initial 

and final positions. (See Fig. 3a.) The distance from the 

two new edges to the arc is bounded by r tan ( E )  sin ( g  ) , 
which is greater than (1). Substituting this into (2), we 

obtain an error bound, 

(3) 
1 

r tan (!) sin (g) + 5 sine. 

Now, suppose that a vertex p is subjected to a simul- 

taneous translation normal to the rotation axis, so that its 

position for s E [0,1] is given by 

R,, ( S ~ ) ( P  - 1.0) + ro + sx, (4) 

where R,, (a) is the rotation matrix for angle a about ne 

and the original axis of rotation goes through ro. Then 

the same construction bounds the motion of the vertex, 

and the error bound remains (3). 

The case with a translational component parallel to the 

rotation axis is similar, but requires a four-vertex bound- 

ing hull instead of a triangle. We again first consider the 

tangents to motion at the endpoints, but instead find their 

intersections with the plane that bisects the initial and fi- 

nal vertex positions. The four-vertex hull then bounds the 

vertex’s motion. A simple but not tight error bound dou- 

bles (4), so that for a moving line segment of projected 

length 1, we have the bound, 

2r tan (;) sin (:) + I sin e. ( 5 )  

Note that this bound is independent of the translation x. 

Now, let %(p, n g ,  ro, x) denote the vertices so con- 

structed for a vertex p. Then for a convex polygon with 

vertex set V ,  the convex hull of the set of vertices given by 

(J WPi,ne,ra,x) 
PiEV 

bounds the volume swept by the polygon. By convexity, 

the distance error bound (5) for the line-segment case also 

holds for a polygon(dron) that projected has diameter I 

perpendicular to the rotation axis. This is particularly sig- 

nificant because 1 is typically much smaller than r, and be- 

cause a more careful analysis eliminates the l sin 8 term 

when it is not. 

Using ?f to expand the vertex sets in the calls to 

Gilbert’s Algorithm in the hierarchical distance algorithm 

results in a conservative distance approximation algo- 

rithm. An error bound can be computed from (5) and the 

I and T for the closest pair of polygons (polyhedra) found. 

The expanded vertex sets and the distance underestima- 

tion makes the cost greater than the simpler approximation 

technique, but guarantees conservative results. 

3 Implementation, Examples, and 

Discussion 

3.1 Implementation 

The algorithms sketched in Section 2 have been imple- 

mented in C++ as a part of our geometry engine, the C- 

Space Toolkit. Our implementation contains several opti- 

mizations that we describe briefly in the Appendix and is 

still under development. We use the Quickhull code [3] 

from the University of Minnesota for computing convex 

hulls. The runs described in this paper were done on an 

SGI Indigo2 R4400/250. 

To get a rough idea of our implementation’s speed, we 

tested it on the “Complex Torus” motion sequences [I31 

from the U. North Carolina at Chapel Hill, featuring a 

20K-polygon body moving along a 98K polygon envi- 

ronment. It averaged at 44Hz when performing complete 

interference detection between the bodies (collecting all 

pairs of interfering polygons), and at 31Hz when doing 

distance computation. 

3.2 Interference Detection and Distance 

Computation: Basic Versus Swept- 

Body 

In this section and the next we present examples com- 

paring the performance of our swept-body distance code 

with the basic distance code. We include interference de- 

tection computations, which we implement as distance 

computation subject to maximum and minimum thresh- 

olds. We consider only linear translations; the rotational 

case will be covered in future work. 

Our examples covered two model scenarios. In the 

first (Figure 4), coded “FY, a truck chassis (10K poly- 

gons) moves through an environment containing other 

truck chassis and a teapot (42K polygons total). The ob- 

jects are up to 10 units in scale, and the translational path 

is 20 units long. Zero-distance occurs near both ends of 

the path, and the interference and distance queries are typ- 

ical of gross-motion problems or free-flight. In the second 

scenario (Figure 5), coded “GPM’, a gear (3920 poly- 
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Figure 4: IT, an example typical of gross-motion problems or free- 

flight. The light-colored truck chassis translates from right to left, shown 

at path start and finish. 

. .  

D 1.6 I 1.9 I 2.2 I 2.9 I 5.3 

I .32 I .49 I .83 I 1.5 I 2.7 

gons) drops through a hole in a flat plate (4054 polygons) 

and onto the spindle of a motor (2252 polygons). The mo- 

tor is roughly unit scale, and the translational path is one 

unit long. The clearance between the gear and the motor 

spindle is 0.00125 units. Except where noted, an initial 

GPM 

GPM 

Figure 5: GPM, an example with tight tolerances and semi- 

pathological difficulty due to concavities and symmetries. The gear is 

shown at the middle and the end of its path downwards. 

D 2.0 3.3 5.9 10.7 20.9 

I .59 1.1 1.7 3.1 6.0 

call is always made to the distance function to initialize 

the caches, so that the runs reflect steady-state behavior. 

Our first series of experiments compares the costs of 

four types of queries: basic distance (D), interference de- 

tection (I), swept-body distance (DS), and swept-body in- 

terference detection (IS). For each model scenario, we 

broke the motion into 25-400 steps. The results are shown 

in Table 1. They show swept-body interference detec- 

tion and distance computation costing up to 30-50 per- 

cent more time than their basic counterparts. Swept-body 

interference detection was typically half as expensive as 

basic distance computation. 

An interesting observation is that despite the much 

smaller polygon count, the GPM examples are computa- 

tionally more intensive than the FT examples. Not only 

are clearances small in the hole and on the spindle, but in 

numsteps I 25 I 50 I 100 I 200 I 400 

scenario I exDt I time (secs.) 

FT I DS I 1.5 I 1.9 I 2.5 I 3.8 I 6.4 

F T I  IS I .44 I .64 I 1.1 I 2.0 I 3.5 

GPM I DS 1 3.1 I 5.1 I 9.3 I 17.3 I 31.9 

GPM I IS I 1.0 I 1.6 I 2.6 I 4.6 I 8.6 

Table 1: Distance computation (D) and interference detection 
(I) in both the basic and swept-body (S) cases. Scenario FT: 
1OK polygons moving, 42K polygons stationary; scenario GPM: 

3.9K polygons moving, 6.3K polygons stationary. 

both cases, the geometric symmetry means that there are 

many pairs of polygons approximately the minimal dis- 

tance (0.00125) apart. This is a semi-pathological but re- 

alistic occurrence. While the gear moves onto the spindle 

in the last 20-25 percent of the motion, there are typically 

500 pairs of polygons that are about the same, minimal 

distance apart, and distance calculation slows to 10-15Hz. 

For comparison, if we set the interference threshold to 

0.00128, our implementation exploits cached information 

to detect interference at over 2 H z  in that segment. 

3.3 Tkanslational Sweeps and Collision De- 

tection 

We now consider how basic and swept-body distance 

computation might be used in robust collision detection. 

Two important problems that arise in assembly plan- 

ning are to determine: (i) whether a linear translation 

causes interference, and (ii) which pairs of polygons in- 

terfere during the motion. Basic interference detection 

can only answer (i) and (ii) to a resolution equal to the 

step size. Accuracy is attainable if both the step size and 

the interference threshold (safety margin) can be precisely 

manipulated. Basic distance algorithms have the advan- 

tage of efficient step size estimates. Both (i) and (ii) can be 

reduced to polygon-polygon collision detection problems 

by stepping through the motion and collecting all polygon 

pairs less than a step size apart. 

In contrast, a single swept-body interference query is 

sufficient to answer (i) exactly. On an implementation that 

can automatically collect all pairs of interfering polygons 

(i.e., witness pairs), a single query is also sufficient for 

(ii). Because the translational swept-body distance algo- 
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ISe I .44 .6 .84 1.49 2.85 

ISWe 1 1.9 3.0 5.1 8.7 16.8 

rithm is exact, it is not necessary to step through the mo- 

tion. In the GPM scenario, our implementation required 

0.45 seconds each for (i) and (ii) when there was no con- 

tact (€ = 0.00124), and 0.45 seconds for (i) and .89 sec- 

onds (1335 witness pairs) for (ii) when there was contact 

(e = 0.00126). For this test, no cache initialization queries 

were done, since it is likely that this sort of query would 

be done “cold” in practice. 

Sequential-motion collision detection queries occur in 

dynamical simulation and other applications. An addi- 

tional problem is (iii) to determine contact initiation and 

termination points during a timestep. Computing a con- 

servative approximation of (ii) - finding a guaranteed 

superset of polygon pairs that interfere sometime during 

a step - reduces this problem to a collection of polygon- 

polygon problems.2 

For an example of this sub-task, we considered two 

cases of the gear-plate-motor example, one in which the 

0.00125 unit clearance is considered interferencekollision 

( E  = 0.00128), and one in which it is not. We conducted 

five experiments. (See Table 2.) Using basic thresholded 

interference detection with witness collection, we set the 

interference threshold to half the step size (TW) and to 

the same value plus E (TWc). Swept-body interference de- 

tection with witness collection was tested both with the E 

(ISWc) and without (ISW). Our swept-body tests use a hy- 

brid implementation - the swept-body code is triggered 

when basic code would collect witnesses. This accounts 

for GPWSW being faster than G P M S  (see Tablel). We 

also ran the swept-body interference detection with the E 

but without witness collection (IS€). 

numsteDs I 25 I 50 I 100 I 200 I 400 I 
scenario I expt I time (secs.) 

GPM I TW I 3.7 I 3.6 I 5.7 I 9.8 I 7.8 

GPM I TWe I 3.7 I 3.7 I 5.8 I 9.4 I 17.8 

GPM I ISW I .83 I 1.2 I 2.1 I 3.5 I 7.8 

Table 2: Some queries that might be used in collision detection. 

We see two important comparisons. First, we com- 

pare GPM/ISW and GPWSE against GPh4fMV and 

GPIWTWe to consider how useful swept-body interfer- 

ence detection might be in answering problem (i) - de- 

termining whether a collision takes place during a motion 

2These, in turn could be solved by using sub-steps, binary search and 

swept-polygon distance, or a space-time method [4,7]. 

step. The data shows the swept-body method to be much 

faster except when there is no interference and the step 

size is smaller than the clearance. To consider efficiency 

in collecting witnesses for accurately answering problems 

(ii) and (iii), we compare GPMSW and GPWSWc to 

GPM/TW and GPM/TWc, and find that the basic code is 

several times as costly as the swept-body code when the 

former must collect many polygon pairs that the latter can 

rule out, when the latter rules many collisions that the for- 

mer does not, and that the two methods cost about the 

same when they find similarly high numbers of collision 

candidates. Given the algorithms and analysis in Section 

2.3, we expect that these more general algorithms could 

similarly increase performance in accurate collision de- 

tection for motions with a rotational component. 

4 Conclusions and Future Work 

We have presented methods for extending basic hierar- 

chical distance computation to swept-body distance com- 

putation, both in linear translational and combined trans- 

lational and rotational sweeps. Our methods are exact for 

the translational case, and include an improved conserva- 

tive approximation in the rotational case. The methods 

apply Gilbert’s Algorithm in a simple but previously un- 

reported way. They have been implemented as a part of 

our geometry library, the C-Space Toolkit. 

We have presented simple experiments for the linear- 

translational case comparing the swept-body and basic 

techniques in distance computation, interference detec- 

tion, and collision detection. These experiments indicate 

that the computing the linearly- swept-body distance is no 

more than 50 percent more expensive than the basic tech- 

nique in practice, and that our methods hold the potential 

to speed up robust collision detection. 

We are currently building a fast, robust, full-contact col- 

lision detection system around our basic and swept-body 

distance code. In addition, we see room for speeding up 

our code by by upgrading our implementation of Gilbert’s 

Algorithm to use incremental computations, e.g., [5,23]. 

We soon hope to report soon on improved results. 
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A Main Optimizations in the C- 

Space Toolkit 

We list five main optimizations our distance-computa- 

tion code uses that result in much greater speed over the 

algorithm in Figure 2. They will be reported in detail in 

a forthcoming publication. (1) For a given body pair, our 

implementation caches which leaf pair results in the min- 

imum distance; on the subsequent call, it uses this pair in 

intially bounding the distance. (2) Our version of Gilbert’s 

Algorithm takes an optional maxdist argument and can cut 

short computation if the actual distance exceeds it. (3) 

Our implementation keeps a cut-table of pairs of interior 

nodes for which it believes a comparison against the cur- 

rent best distance might cause a cut in the recursion; the 

pre-recursion check is only done on node-pairs in this ta- 

ble. (4) At interior nodes, our hierarchies use convex hulls 

with no more than some a priori fixed number of ver- 

tices. (5 )  Our implementation caches minimum-distance 

simplices found in calls to Gilbert’s Algorithm and uses 

them as initial simplices the when same arguments are en- 

countered again; this was suggested in [ 121. 
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