
To appear in 1997 IEEE Int’l Con$ on Robotics and Automation

Fast Swept-Volume Distance for Robust Collision Detection*

Patrick G. Xavier

Abstract: The need for collision detection arises in

several robotics areas, including motion-planning, online

collision avoidance, and simulation. At the heart of most

current methods are algorithms for interference detection

andor distance computation. A few recent algorithms and

implementations are very fast, but to use them for accu-

rate collision detection, very small step sizes can be neces-

sary, reducing their effective efficiency. We present a fast,

implemented technique for doing exact distance compu-

tation and interference detection for translationally-swept

bodies. For rotationally swept bodies, we adapt this tech-

nique to improve accuracy, for any given step size, in dis-

tance computation and interference detection. We present

preliminary experiments that show that the combination

of basic and swept-body calculations holds much promise

for faster accurate collision detection.

1 Introduction

1.1 Overview

Collision detection is a basic problem in robotics and

related areas, arising in motion planning, control, graphi-

cal programming, motion-preview, virtual reality, and dy-

namical simulation. The collision detection problem asks

whether a rigid body moving along a given path intersects

with any of a set of obstacles at any point on that path.

In a fuller version of the problem, all contacts must also

be determined. In both cases, accuracy is of extreme im-

portance when the results of collision detection between

modeled objects affect the behavior of physical robots or

influence the outcomes of physical simulations, such as

those used in process and product design and evaluation.

*This research was supported by DOE Contract DE-AC04-

94AL85000, and by the Laboratory Directed Research and Development

Office of Sandia National Laboratories.

v Most current methods for collision detection rely on in-

terference detection and/or distance computation. A few

recent algorithms are very fast, but to use them for ac-

curate collision detection, very small step sizes between

queries become necessary because of the difficulty in de-

termining whether a collision occurs between consecutive

interference or distance computations. This reduces effec-

tive efficiency.

We recently developed a technique, based on a novel

use of Gilbert’s Algorithm [12], for computing exact dis-

tances between linear-translationally swept rigid bodies.

For bodies swept with a rotational component, we have

extended this technique to improve accuracy, for any

given step size, in distance computation. The same tech-

niques trivially suffice for interference detection between

the swept bodies. In both cases, the bodies can be non-

convex, and the combination of basic and swept-body

distancehnterference calculation is suitable for fast, ac-

curate collision detection. We report on our algorithms,

our implementation, and preliminary tests involving 1OK-

60K polygon examples that illustrate the potential of our

swept-body distance techniques.

1.2 Background: Collision, Interference,

and Distance

We first review definitions of interference detection,

distance computation, and collision detection for a sin-

gle moving body. Interference detection (or clash detec-

tion) for a rigid body R at a position and orientation x

and obstacles 0 means to determine whether R (x) n 0

is non-empty, with R(x) denoting the image of R in the

world. Distance computation means to determine the min-

imum distance between all points in R (x) and those in

0. Simple collision detection for a rigid body R moving

over a path segment among obstacles 0 means to deter-

1

To appear in 1997 IEEE Int’l Con$ on Robotics and Automation

mine whether at any point along the path the body con-

tacts or intersects any obstacles. In other words, if we let

C denote the space of positions and orientations and let

p : [0,1] -+ C denote the path segment, then collision

detection asks whether there is any t E [0,1] such that

R (p (t)) n 0 is non-empty.

Figure 1 : Between queries, the triangle moves linearly from A to A’.

Because there is no interference with the obstacle at the query times, sim-

ple interference checking fails to detect the collision with the obstacle.

Basic distance queries at the query points would indicate that it might

be possible that there is a collision, but further computations would be

needed to decide. The swept hull of the moving triangle intersects the

obstacle, so a swept-body interference check would detect the collision.

Exact or accurate collision detection is often avoided

for the sake of speed. Usually, either interference detec-

tion or distance computation queries are applied at closely

spaced points on the path. Simple use of interference

detection can obviously miss collisions. (See Figure 1.)

Growing the objects by a safety margin can prevent this,

but at the risk of detecting false collisions. With distance

computation, one can vary the step size reduce the number

of queries needed to obtain a given resolution, but resolu-

tion is limited to the minimum step size. The result can be

reduced step sizes and application speed. One can collect

all pairs of polygons closer than the step size and then ap-

ply more sophisticated methods (including ours) to these

pairs, and our discussion attempts to account for this.

1.3 Results

We present results that help to bridge the gaps between

robust space-time methods for collision detection (e.g.,

[4,7]) and fast exact interference detection (e.g., [13]) and

distance computation (e.g., [22]) techniques. Specifically,

we present an easily implemented technique for exact dis-

tance computation for linear-translationally swept bodies.

We then extend this technique to the improve accuracy,

for any given step size, in distance computation and in-

terference detection for rotationally swept bodies. Our

techniques enable conservative approximations when de-

sired. We assume that all bodies, previous to sweeping,

are represented by boundaries composed of convex poly-

gons andlor by unions of convex polygons and polyhedra.

We do not require the bodies to be manifolds.

In Section 2 we describe our techniques, which com-

bine a convex-hull-based hierarchy with a previously un-

reported use of Gilbert’s Algorithm. In Section 3 we

present preliminary experimental results obtained using

our implementation. We compare the linear-translational

swept-body technique against its non-swept-body coun-

terpart in both distance computation and interference de-

tection. Both are implemented in our geometry library,

the C-Space Toolkit. Our test scenarios have 10K to 60K

polygons and include semi-pathological cases with over

500 pairs of polygons in contact per step.

1.4 Previous and Related Work

We review some of the extensive body of work on inter-

ference detection and distance computation between two

rigid bodies. An overview covering a more complete set

of previous and related work (from three research com-

munities) can be obtained by consulting [13-151. A re-

lated and important problem concerns collision detection

among members of a collection of objects that move ar-

bitrarily but continuously with respect to each other. For

example, see [2,9,17,20].

For a number of years, hierarchical geometric repre-

sentations have been used to avoid all pairs comparisons

in interference detection, distance computation, and colli-

sion detection. The binary-space partitioning tree (BSP-

tree) [11,21] and variants (e.g., [24]) have been success-

fully used in exact interference checking and contact de-

termination, but they do not readily yield distance infor-

mation. The octree [16,19] is another space-partitioning

data-structure that has been used in interference detection

(for example, [l]), but it must be used with other geomet-

ric objects to obtain computations matching the accuracy

of faceted boundary representations or BSP-trees.

Other hierarchical structures use various primitives to

bound an object or its surface at each level of the hierar-

chy, although sometimes holes are treated explicitly, as in

[9,10]. Successful implementations for exact interference

detection and distance computation have been based on

several geometric primitives. The convex-hull based im-

plementations of [5,6,9,23], the sphere-based techniques

of [22], and bounding-prism methods of [13] are among

those known to be fast. However, none of these results

cover swept-body distance or swept-body interference de-

tection.

2

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily corrstitute or
imply its endorsement, recommendation, or favoring by the United States Covernment or
any agency thereof. The views and opinions of authors expressed herein do not necessar-

ily state or reflect those of the United States Government or any agency thereof.

Portions of this document may be illegible
in electronic image products. lmapes are
produced from the best avabble original
dolllment

*

To appear in 1997 IEEE Int’l Con$ on Robotics and Automation

Much work has also been done on optimizing the

minimum-distance computation between primitives. The

convex-hull distance algorithm of [12], referred to as

“Gilbert’s Algorithm” is used by many of the systems

mentioned above. [5,8] have presented fast incremen-

tal convex-hull distance schemes, which exhibit constant-

time complexity when the object configurations change

only by small amounts between queries. There is poten-

tial to adapt these techniques into our system.

[7] describes a technique for exact collision detection

for convex polyhedra moving along path segments linear

in translation and the quaternion representation of SO(3).

Finally, [4] uses space-time techniques and develops al-

gorithms and hierarchical structures for exact collision

detection for non-convex objects. Both these results are

more general than ours in allowing exact time intervals of

contact and penetration to be computed directly, but they

are considerably more expensive.

2 Algorithm

We now describe our techniques. First, we review a ba-

sic method of hierarchical exact distance calculation. We

then describe our extension of this method to exact dis-

tance calculation for linear-translationally swept bodies.

Finally, we describe two extensions that compute approx-

imate distances for bodies that are swept linearly and ro-

tationally simultaneously.

2.1 Basic Hierarchical Distance Calculation

We represent the boundary of a body with a bounding-

volume hierarchy generated with a variant of our algo-

rithm described in [25]. The hierarchy is a binary tree

whose nodes each contain a convex polygon or convex

polyhedron. The subtree rooted at a node represents the

union of the primitives at its leaves. Thus, each node of

our hierarchical geometric representation contains a con-

servative approximation, or wrapper, of the object rep-

resented by its subtree. In particular, our trees contain a

convex hull (polyhedron) at each interior node, and con-

vex polygon or polyhedron at each leaf.

To perform basic distance computation, we use a recur-

sive algorithm similar to those of [22] and others. (See

Figure 2.) At each stage we consider a pair of nodes, one

from each tree. We begin at the roots, with the distance

dist set at infinity. In the base case, we simply calculate

the distance between two convex primitives, and set dist

to this distance if it is smaller than the current value. In

Simple Basic Distance

real cstkDist(body *R, body * S)

real dist t 00;

pairstack stack;

body *bl,*b2;

stack.push(R,S);

while (!stack.isEmpty()) {

{

stack.pop(&bl ,&b2);

if(isLeaf(b1) A isLeaf(b2))

else if(hullDist(bl,b2) > dist)

else if(isLeaf(b1) V

dist t min(dist,primDist(bl ,b2));

continue;

(!isLeaf(b2) A len(b1) < len(b2))) {

stack.push(b1, b24childl);

stack.push(b1, b24child2);

stack.push(b1 +childl, b2);

stack.push(b1 +child2, b2);

} else {

1
1
return dist;

}

Figure 2: This pseudo-code gives the simple basic algorithm, using a

stack to implement recursion. It should look familiar to many readers.

the recursive case, if the distance between the hulls of the

current nodes is no greater than dist, then we recurse us-

ing the current node from one tree paired with each of

the children of the current node from the other; otherwise,

we cut the current branch of the recursion. The Zen(b1) <
Zen(b2) test is a heuristic, comparing principal axis lengths

to decide which one of bl and b2 should be descended.

Both huZlDist(..) andprimDist(..) compute the distance

between two convex polygons or polyhedra. This can be

efficiently done with Gilbert’s Algorithm [121.

2.2 Hierarchical Distance Calculation for a

Translationally-Swept Body

We now make three observations.

First, although Gilbert’s Algorithm is usually applied

to convex polyhedra and convex polygons, it can do more:

given two finite sets of points, it computes a minimum

distance vector between their convex hulls. To see that

this is true without going into the details, we observe that

points in the interior of the hulls are never returned by the

3

t

To appear in 1997 IEEE Int’l Con$ on Robotics and Automation
I

support functions in [121.

Second, the convex hull of the vertices of a polyhe-

dron (polygon) and their images under a translation x is

equal to the swept hull of that polyhedron (polygon) un-

der translation x . Thus, we can use Gilbert’s Algorithm to

compute the the distance between two polygons (or poly-

hedra) swept by linear translations. We do this by adding

the new positions of the vertices to the lists of input ver-

tices.

Third, if A, B, and C are convex and A U B c C,then

sweep(A,x) U sweep(B,x) C sweep(C,x).

This means that the conservative approximation nature of

our hierarchies is preserved under translation.

Together, this means we can do the following to the

algorithm in Figure 2. First, we add vectors x and

y, which give the translations to be applied to R and

S, to the parameter list. We then replace the function

calls primDist(bl,b2) and hullDist(bl,b2) with the call

transGilbert(bl,x, b2, y), which calls Gilbert’s Algorithm

on the vertices of bl unioned with their images under

translation x, and on the vertices of b2 unioned with their

images under translation y.

These extensions are clearly easy to implement. To see

heuristically that the extended distance algorithm should

be fast, we first observe that the divide-and-conquer ef-

fects of the geometric hierarchy are still valid in d - 1 of d

dimensions, i.e., in the directions normal to the sweep di-

rection. Second, the loss of divide-and-conquer effective-

ness in the sweep direction varies roughly with the ratio of

the sweep length to the diameter of the environment in the

sweep direction. Finally, since the number of vertices in

each call to Gilbert’s algorithm only doubles, the cost of

each call should at most double or triple in typical cases

(in which the algorithm is (O(N1ogN)).

Finally, we observe that when both bodies are in mo-

tion, computing the swept-body distance gives a conser-

vative estimate of how close the bodies come during the

motion. However, when two bodies each undergo a linear

translational motion, the relative motion is also a linear

translation. Therefore, we can transform the problem to

one with one linearly translating body and one stationary

body, and get an exact answer.

2.3 A Rotational Sweep Approximation

For motions that include a small single-axis rotation,l

we describe two approximation techniques - a simple

‘A mathematical description of the transformation is given by (4).

one that might underestimate or overestimate the distance,

and a conservative one that will never overestimate but

might underestimate. Both require the rotation angle to be

less than :.
The simple approximation technique replaces the func-

tion calls to primDist(bl,b2) and huElDist(bl,b2) with

calls to a function that calls Gilbert’s Algorithm on the

unions of the vertices of bl and b2 and their final images

under the sweep motions, just as in the translational case.

By convexity, it suffices to consider the case of a line seg-

ment. First, we consider a vertex rotated by angle 9 about

an axis a distance r away. (See Fig. 3a.) The distance

B’

1

I

I

I

I
I

I

I

I

I
I

I

Figure 3: (a) Line segment AA’ approximates arc AA’. If segments

and DA’ are tangents, then triangle ADA‘ bounds the arc. (b) Line

segment AB rotates by 0 about C; new term must bound the maximum

distance between segment AB’ (or A’B) and the union of sectors ACA’

and BCB‘.

- -

between the arc the vertex follows and the line segment

between its original and final locations is bounded by

r (l--cos(;))

For a line segment that has projected length 1 perpendic-

ular to the axis of rotation, we bound the maximum dis-

tance between the region swept by the segment and the

(4-vertex) convex hull of its vertices at their original and

final locations. This is (1) plus the greatest minimum dis-

tance possible between an axis of rotation on the segment

and the boundary of the 4-vertex convex hull (see Fig. 3b),

or
I

r (I - cos (!)I + ;;sing. (2)

(2) thus bounds the error in distance computation that

can result. Compared to the r sin(i) error bound resulting

from just computing distance before and after the rotation,

we see that the part of the error dependent on rotational

radius r decreases quadratically with the rotation angle

instead of linearly. (Consider the series expansions.)

A more sophisticated technique, which builds on one

from [181, is similarly bounded in error but conservative,

\ \ A / / A

4

To appear in 1997 IEEE Int’l Con$ on Robotics and Automation

returning distances no greater than the actual distance. In

the planar case, the position of a vertex during motion is

bounded by the triangle formed by its initial and final po-

sitions and the intersection of the tangents at the initial

and final positions. (See Fig. 3a.) The distance from the

two new edges to the arc is bounded by r tan (E) sin (g) ,
which is greater than (1). Substituting this into (2), we

obtain an error bound,

(3)
1

r tan (!) sin (g) + 5 sine.

Now, suppose that a vertex p is subjected to a simul-

taneous translation normal to the rotation axis, so that its

position for s E [0,1] is given by

R,, (S ~) (P - 1.0) + ro + sx, (4)

where R,, (a) is the rotation matrix for angle a about ne

and the original axis of rotation goes through ro. Then

the same construction bounds the motion of the vertex,

and the error bound remains (3).

The case with a translational component parallel to the

rotation axis is similar, but requires a four-vertex bound-

ing hull instead of a triangle. We again first consider the

tangents to motion at the endpoints, but instead find their

intersections with the plane that bisects the initial and fi-

nal vertex positions. The four-vertex hull then bounds the

vertex’s motion. A simple but not tight error bound dou-

bles (4), so that for a moving line segment of projected

length 1, we have the bound,

2r tan (;) sin (:) + I sin e. (5)

Note that this bound is independent of the translation x.

Now, let %(p, n g , ro, x) denote the vertices so con-

structed for a vertex p. Then for a convex polygon with

vertex set V , the convex hull of the set of vertices given by

(J WPi,ne,ra,x)
PiEV

bounds the volume swept by the polygon. By convexity,

the distance error bound (5) for the line-segment case also

holds for a polygon(dron) that projected has diameter I

perpendicular to the rotation axis. This is particularly sig-

nificant because 1 is typically much smaller than r, and be-

cause a more careful analysis eliminates the l sin 8 term

when it is not.

Using ?f to expand the vertex sets in the calls to

Gilbert’s Algorithm in the hierarchical distance algorithm

results in a conservative distance approximation algo-

rithm. An error bound can be computed from (5) and the

I and T for the closest pair of polygons (polyhedra) found.

The expanded vertex sets and the distance underestima-

tion makes the cost greater than the simpler approximation

technique, but guarantees conservative results.

3 Implementation, Examples, and

Discussion

3.1 Implementation

The algorithms sketched in Section 2 have been imple-

mented in C++ as a part of our geometry engine, the C-

Space Toolkit. Our implementation contains several opti-

mizations that we describe briefly in the Appendix and is

still under development. We use the Quickhull code [3]

from the University of Minnesota for computing convex

hulls. The runs described in this paper were done on an

SGI Indigo2 R4400/250.

To get a rough idea of our implementation’s speed, we

tested it on the “Complex Torus” motion sequences [I31

from the U. North Carolina at Chapel Hill, featuring a

20K-polygon body moving along a 98K polygon envi-

ronment. It averaged at 44Hz when performing complete

interference detection between the bodies (collecting all

pairs of interfering polygons), and at 31Hz when doing

distance computation.

3.2 Interference Detection and Distance

Computation: Basic Versus Swept-

Body

In this section and the next we present examples com-

paring the performance of our swept-body distance code

with the basic distance code. We include interference de-

tection computations, which we implement as distance

computation subject to maximum and minimum thresh-

olds. We consider only linear translations; the rotational

case will be covered in future work.

Our examples covered two model scenarios. In the

first (Figure 4), coded “FY, a truck chassis (10K poly-

gons) moves through an environment containing other

truck chassis and a teapot (42K polygons total). The ob-

jects are up to 10 units in scale, and the translational path

is 20 units long. Zero-distance occurs near both ends of

the path, and the interference and distance queries are typ-

ical of gross-motion problems or free-flight. In the second

scenario (Figure 5), coded “GPM’, a gear (3920 poly-

To appear in 1997 IEEE Int’l Con$ on Robotics and Automation

Fr
Fr

Figure 4: IT, an example typical of gross-motion problems or free-

flight. The light-colored truck chassis translates from right to left, shown

at path start and finish.

. .

D 1.6 I 1.9 I 2.2 I 2.9 I 5.3

I .32 I .49 I .83 I 1.5 I 2.7

gons) drops through a hole in a flat plate (4054 polygons)

and onto the spindle of a motor (2252 polygons). The mo-

tor is roughly unit scale, and the translational path is one

unit long. The clearance between the gear and the motor

spindle is 0.00125 units. Except where noted, an initial

GPM

GPM

Figure 5: GPM, an example with tight tolerances and semi-

pathological difficulty due to concavities and symmetries. The gear is

shown at the middle and the end of its path downwards.

D 2.0 3.3 5.9 10.7 20.9

I .59 1.1 1.7 3.1 6.0

call is always made to the distance function to initialize

the caches, so that the runs reflect steady-state behavior.

Our first series of experiments compares the costs of

four types of queries: basic distance (D), interference de-

tection (I), swept-body distance (DS), and swept-body in-

terference detection (IS). For each model scenario, we

broke the motion into 25-400 steps. The results are shown

in Table 1. They show swept-body interference detec-

tion and distance computation costing up to 30-50 per-

cent more time than their basic counterparts. Swept-body

interference detection was typically half as expensive as

basic distance computation.

An interesting observation is that despite the much

smaller polygon count, the GPM examples are computa-

tionally more intensive than the FT examples. Not only

are clearances small in the hole and on the spindle, but in

numsteps I 25 I 50 I 100 I 200 I 400

scenario I exDt I time (secs.)

FT I DS I 1.5 I 1.9 I 2.5 I 3.8 I 6.4

F T I IS I .44 I .64 I 1.1 I 2.0 I 3.5

GPM I DS 1 3.1 I 5.1 I 9.3 I 17.3 I 31.9

GPM I IS I 1.0 I 1.6 I 2.6 I 4.6 I 8.6

Table 1: Distance computation (D) and interference detection
(I) in both the basic and swept-body (S) cases. Scenario FT:
1OK polygons moving, 42K polygons stationary; scenario GPM:

3.9K polygons moving, 6.3K polygons stationary.

both cases, the geometric symmetry means that there are

many pairs of polygons approximately the minimal dis-

tance (0.00125) apart. This is a semi-pathological but re-

alistic occurrence. While the gear moves onto the spindle

in the last 20-25 percent of the motion, there are typically

500 pairs of polygons that are about the same, minimal

distance apart, and distance calculation slows to 10-15Hz.

For comparison, if we set the interference threshold to

0.00128, our implementation exploits cached information

to detect interference at over 2 H z in that segment.

3.3 Tkanslational Sweeps and Collision De-

tection

We now consider how basic and swept-body distance

computation might be used in robust collision detection.

Two important problems that arise in assembly plan-

ning are to determine: (i) whether a linear translation

causes interference, and (ii) which pairs of polygons in-

terfere during the motion. Basic interference detection

can only answer (i) and (ii) to a resolution equal to the

step size. Accuracy is attainable if both the step size and

the interference threshold (safety margin) can be precisely

manipulated. Basic distance algorithms have the advan-

tage of efficient step size estimates. Both (i) and (ii) can be

reduced to polygon-polygon collision detection problems

by stepping through the motion and collecting all polygon

pairs less than a step size apart.

In contrast, a single swept-body interference query is

sufficient to answer (i) exactly. On an implementation that

can automatically collect all pairs of interfering polygons

(i.e., witness pairs), a single query is also sufficient for

(ii). Because the translational swept-body distance algo-

6

f

GPM

GPM

To appear in 1997 IEEE Int’l Con. on Robotics and Automation

ISe I .44 .6 .84 1.49 2.85

ISWe 1 1.9 3.0 5.1 8.7 16.8

rithm is exact, it is not necessary to step through the mo-

tion. In the GPM scenario, our implementation required

0.45 seconds each for (i) and (ii) when there was no con-

tact (€ = 0.00124), and 0.45 seconds for (i) and .89 sec-

onds (1335 witness pairs) for (ii) when there was contact

(e = 0.00126). For this test, no cache initialization queries

were done, since it is likely that this sort of query would

be done “cold” in practice.

Sequential-motion collision detection queries occur in

dynamical simulation and other applications. An addi-

tional problem is (iii) to determine contact initiation and

termination points during a timestep. Computing a con-

servative approximation of (ii) - finding a guaranteed

superset of polygon pairs that interfere sometime during

a step - reduces this problem to a collection of polygon-

polygon problems.2

For an example of this sub-task, we considered two

cases of the gear-plate-motor example, one in which the

0.00125 unit clearance is considered interferencekollision

(E = 0.00128), and one in which it is not. We conducted

five experiments. (See Table 2.) Using basic thresholded

interference detection with witness collection, we set the

interference threshold to half the step size (TW) and to

the same value plus E (TWc). Swept-body interference de-

tection with witness collection was tested both with the E

(ISWc) and without (ISW). Our swept-body tests use a hy-

brid implementation - the swept-body code is triggered

when basic code would collect witnesses. This accounts

for GPWSW being faster than G P M S (see Tablel). We

also ran the swept-body interference detection with the E

but without witness collection (IS€).

numsteDs I 25 I 50 I 100 I 200 I 400 I
scenario I expt I time (secs.)

GPM I TW I 3.7 I 3.6 I 5.7 I 9.8 I 7.8

GPM I TWe I 3.7 I 3.7 I 5.8 I 9.4 I 17.8

GPM I ISW I .83 I 1.2 I 2.1 I 3.5 I 7.8

Table 2: Some queries that might be used in collision detection.

We see two important comparisons. First, we com-

pare GPM/ISW and GPWSE against GPh4fMV and

GPIWTWe to consider how useful swept-body interfer-

ence detection might be in answering problem (i) - de-

termining whether a collision takes place during a motion

2These, in turn could be solved by using sub-steps, binary search and

swept-polygon distance, or a space-time method [4,7].

step. The data shows the swept-body method to be much

faster except when there is no interference and the step

size is smaller than the clearance. To consider efficiency

in collecting witnesses for accurately answering problems

(ii) and (iii), we compare GPMSW and GPWSWc to

GPM/TW and GPM/TWc, and find that the basic code is

several times as costly as the swept-body code when the

former must collect many polygon pairs that the latter can

rule out, when the latter rules many collisions that the for-

mer does not, and that the two methods cost about the

same when they find similarly high numbers of collision

candidates. Given the algorithms and analysis in Section

2.3, we expect that these more general algorithms could

similarly increase performance in accurate collision de-

tection for motions with a rotational component.

4 Conclusions and Future Work

We have presented methods for extending basic hierar-

chical distance computation to swept-body distance com-

putation, both in linear translational and combined trans-

lational and rotational sweeps. Our methods are exact for

the translational case, and include an improved conserva-

tive approximation in the rotational case. The methods

apply Gilbert’s Algorithm in a simple but previously un-

reported way. They have been implemented as a part of

our geometry library, the C-Space Toolkit.

We have presented simple experiments for the linear-

translational case comparing the swept-body and basic

techniques in distance computation, interference detec-

tion, and collision detection. These experiments indicate

that the computing the linearly- swept-body distance is no

more than 50 percent more expensive than the basic tech-

nique in practice, and that our methods hold the potential

to speed up robust collision detection.

We are currently building a fast, robust, full-contact col-

lision detection system around our basic and swept-body

distance code. In addition, we see room for speeding up

our code by by upgrading our implementation of Gilbert’s

Algorithm to use incremental computations, e.g., [5,23].

We soon hope to report soon on improved results.

Acknowledgements

The author thanks Randy Wilson, Peter Watterberg

(Sandia), Philip Hubbard (Washington U. at St. Louis),

and Ming Lin and Stephan Gottschalk (UNC) for provid-

ing the geometric models used in our experiments. The

7

author also thanks Randy Wilson and Arlo Ames (Sandia)

for their comments and suggestions.

A Main Optimizations in the C-

Space Toolkit

We list five main optimizations our distance-computa-

tion code uses that result in much greater speed over the

algorithm in Figure 2. They will be reported in detail in

a forthcoming publication. (1) For a given body pair, our

implementation caches which leaf pair results in the min-

imum distance; on the subsequent call, it uses this pair in

intially bounding the distance. (2) Our version of Gilbert’s

Algorithm takes an optional maxdist argument and can cut

short computation if the actual distance exceeds it. (3)

Our implementation keeps a cut-table of pairs of interior

nodes for which it believes a comparison against the cur-

rent best distance might cause a cut in the recursion; the

pre-recursion check is only done on node-pairs in this ta-

ble. (4) At interior nodes, our hierarchies use convex hulls

with no more than some a priori fixed number of ver-

tices. (5) Our implementation caches minimum-distance

simplices found in calls to Gilbert’s Algorithm and uses

them as initial simplices the when same arguments are en-

countered again; this was suggested in [121.

References

[l] S. Arimoto, H. Noborio, S. Fukuda, and A. Noda. A feasible ap-

prach to automatic planning of collision-free robot motions. In

Int’l Symp. on Robotics Reasearch, 1988.

Curved surfaces and coherence for nonpenetrating

rigid body simulation. Computer Graphics (Proc. SIGGRAPH),

24(4):19-28, August 1990.

[3] C. B. Barber, D .P. Dobkin, and H. Huhdanpaa. The quickhull

algorithm for convex hulls. To appear in ACM Trans. on Muthe-

matical Sofrware. Also appears as Tech. Rept. GCG 53, Geometry

Center at U. Minnesota, Minnesota, MN, 1993.

[4] S. Cameron. Collision detection by 4D intersection testing. Int’l

Journal ofRobotics Research, 6(3):291-302, June 1990.

[5] S. Cameron. A comparison of two fast algorithms for comput-

ing the distance between convex polyhedra. submitted to IEEE

Trans. on Robotics anddutomation, July 1996.

[6] S. Cameron. Dealing with geometric complexity in motion plan-

ning. In IEEE ICRA I996 Workshop on Practical Motion Planning

in Robotics, Minneapolis, MN, 1996.

[7] J. Canny. Collision detection for moving polyhedra. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 8(2):200-

209,1986.

[2] D. Baraff.

[SI J. Canny and M. C. Lin. A fast algorithm for incremental distance

calculation. In Proc. IEEE ICRA 1991, pages 100&1014, Sacre-

mento, California, 1991.

To appear in 1997 IEEE Int’l Con$ on Robotics and Automation -4

[9] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-collide: An

interactive and exact collision detection system for large-scale en-

vironments. In Pmc. ACM Interactive 3 0 Graphics Con$, pages

[lo] B. Faverjon. Hierarchical object models for efficient anti-collision

algorithms. In Proc. IEEE ICRA I989, pages 333-340, Scottsdale,

AZ, 1989.

[l l] H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation

by a priori tree structures. In Proc. of ACM SIGGRAPH, pages

124133,1980.

[12] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast proce-

dure for computing the distance between complex objects in three-

dimensional space. IEEE Journal of Robotics and Automation,

4(2), April 1988.

[13] S. Gottschalk, M.C. Lin, and D. Manocha. Obb-tree: A hierarchi-
cal structure for rapid interference detection. In Proc. ACM SIG-

GRAPH ‘96, 1996.

[14] M. Held, J. Klosowski, and J. S. B. Mitchell. Evaluation of colli-

sion detection methods for virtual reality fly-throughs. In Proc. 7th

Canadian Con$ on Computational Geometry, Quebec, Canada,

1995.

[15] P. Hubbard. Approximating polyhedra with spheres for time-

critical collision detection. ACM Trans. on Graphics, 15(3), July

1996.

[16] C. L. Jackins and S. L. Tanimoto. Octtrees and their use in repre-

senting three-dimensional objects. Computer Graphics and Image

Processing, (14):249-270, 1980.

[17] M. Lin, D. Manocha, and J. Canny. Fast contact determination in

dynamic environments. In Proc. IEEE ICRA 1994, pages 602-607,

San Diego, CA, May 1994.

[18] T. Lozano-P6rez. Spatial planning: A configuration space ap-

proach. IEEE Trans. on Computers, C-32(2):10&120, 1983. Also

MIT A.I. Memo 605, December 1982.

[19] D Meagher. Geometric modeling using octree encoding. Computer

Graphics and Image Processing, (19):129-147, 1982.

[20] B. Miaich and J. Canny. Impulse-based simulation of rigid bodies.

In Proc. Monterey Symp. on Real-Time Interactive Graphics, April

1995.

[21] B. Naylor. Interactive solid geometry via padtioning trees. In

Proc. of Graphics Interface, pages 11-18, May 1992.

[22] S. Quinlan. Efficient distance computation between non-convex

objects. In Proc. I994 IEEE Int’l Conf on Robotics and Automa-

tion, San Diego, CA, 1994.

[23] Y. Sato, M. Hirata, T. Maruyama, and Y. Arita. Efficient collision

detection using fast distance calculation algorithms for convex and

non-convex objects. In Proc. I995 IEEE Int’l Con$ on Robotics

anddutomation, pages 772-778, Minneapolis, MN, April 1996.

[24] G. Vanecek. Brep index, a multi-dimensional space partition-

ing tree. In Proc. Ist ACM-SIGGRAPH Symp. on Solid Mod-

eling Foundations and CAD/CAM Applications, pages 35-44,

Austin,TX, June 1991.

[25] P. Xavier. A generic algorithm for constructing hierarchical repre-

sentations of geometric objects. In Pmc. I996 IEEE Int’l Con$ on

Robotics and Automation, pages 3644-3651, Minneapolis, MN,

April 1996.

189-196,1995,

8

