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Abstract 

Fast symplectic mapping, based on a canonical generator of the full-turn map in 

polar coordinates (I, a), is a powerful tool to study long-term stability in large 

hadron storage rings. Accurate maps for realistic lattices can be constructed 

in a few hours on a workstation computer, and can be iterated to follow orbits 

for lo7 turns in less than 4 hours. Orbits of the map can also be used in a 

non-perturbative construction of quasi-invariant actions. By bounding the small 

changes in quasi-invariants along many short orbits, one can derive conservative 

estimates of survival time for long orbits, for any initial condition in a region of 

phase space. A first quasi-invariant vector, J ,  arises from a canonical transfor- 

mation ( I ,  a) + ( J ,  Q), based on interpolation of invariant tori surrounding the 

origin. The variation of J is relatively large near a broad resonance. In such 

a region a second canonical transformation, associated with pendulum-like mo- 
tion in appropriate variables, is required to produce a good quasi-invariant. This 

quasi-invariant is used to set a long-term bound on motion near a broad, large- 

amplitude resonance in a realistic model of the Large Hadron Collider (LHC). 
Interesting general properties of the pseudo-pendulum motion are studied. 
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FULL-TURN MAP AS DYNAMICAL MODEL 

For the primary dynamical description of a Hamiltonian accelerator model 

one relies on a symplectic tracking code. This is the best available description, 

but it is so expensive in computation time as to rule out detailed study of 

dynamical mechanisms over typical storage times in large hadron machines. 

Under the restriction that a realistic model of the machine is sought, there 

have been two responses to this situation: (a) try to find “early indicators” 

of instability, or devise some way of extrapolating the dynamical aperture as 

a function of the turn number; (b) construct a full-turn map that approxi- 

mates the dynamics of the tracking code, while requiring much less time for 

computation of one-turn evolution. 

For recent interesting work on (a) and references to earlier papers, see 

Ref. (1). Here we are concerned with (b), although our procedure for long- 

term bounds may also be included within the category of early indicators. 

Much of the past work on full-turn maps, especially at the SSC project (2), 

emphasized the representation of the map as a truncated Taylor series. One 

finds, however, that the violation of symplecticity in this approach is too large 

at amplitudes near the dynamic aperture, for the highest-order truncations 

used to date (3). An exactly symplectic map can be defined through a mixed- 

variable canonical generator (3, 4). The definition is implicit, in that each 
evaluation of the map requires the solution of a nonlinear equation. An explicit 

symplectic map may be constructed as a composition of Cremona maps with 

linear symplectic transformations; for instance, kicks in transverse momentum 

interleaved with rotations (5,6). We prefer an approach based on the canonical 

generator, because the approximation theory of the scheme can be worked out 

in an elementary way. Correspondingly, we find an algorithm to construct the 

generator that is robust and allows systematic improvements in accuracy. The 

implicit nature of the map causes no trouble in practice, since the required 

solution of nonlinear equations can be done efficiently by Newton’s method. 

Our construction of the map generator proceeds from the viewpoint of 

modern numerical analysis, which emphasizes Eocd approximation and inter- 

polation, and is supported by convergence theorems that require only local 

smoothness of the function to be represented (7, 8, 9). By contrast, methods 

based on Taylor expansions often demand stronger conditions on the func- 

tion, since convergence is controlled by the nearest singularity, which may be 

outside the region in which a representation of the function is required (6). 

The Taylor expansion of the generator used in Ref. (4) seems to have worked 

well enough in the example of the SSC, but there have been reports of other 

examples in which it did not succeed (10). 
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CONSTRUCTION OF FULL-TURN SYMPLECTIC MAP 

Our numerical construction of the generator of a full-turn map was de- 

scribed in detail in Ref. (3) and reviewed briefly in Refs. (11, 12). For a report 

on later experience with the map see Ref. (13). The construction is based 

on data from a symplectic tracking code; namely, the results of single-turn 

tracking from many initial conditions. The generator G(1,W) of the map 

( I ,  a) I+ (f’, W) is expressed in canonical polar coordinates ( I ,  @), which are 

normally action-angle coordinates of an underlying linear system, but need 

not be such. It is represented as a Fourier series in a’, with coefficients that 

are spline functions of I .  
In our first application of the method to the Large Hadron Collider (LHC), 

the map induced by the generator represents transverse motion in two degrees 

of freedom for one turn at fixed total energy. The energy is changed once 

per turn by a sinusoidal formula to represent synchrotron oscillations. The 

generator depends parametrically on the energy deviation 6 = (E  - Eo)/Eo, 
and is expressed in terms of transverse coordinates centered at the &dependent 

fixed point of the four-dimensional map (3). 

We have proposed various ways to validate the map (13), including the fol- 

lowing: (a) point-by-point comparison of the orbits from mapping and track- 

ing; (b) comparing resonances of the map and tracking in plots of vs. @2, 

especially for narrow high-order resonances; (c) constructing a quasi-invariant 

torus of the map, and assessing its degree of invariance under tracking; (d) 

comparing the borders of chaotic regions for map and tracking. One might 

think also of comparing short-term apertures, but we have not yet made maps 

that are accurate at the short-term aperture, since that would require a great 

many Fourier modes and spline interpolation points, making it expensive in 

the case of large lattices. 

We reach the interesting conclusion that maps for the LHC which show 

only modest point-by-point agreement with tracking (say one part in lo4 at 

one turn) show excellent agreement with tracking under tests (b) and (c) (13). 

Thus, maps with relatively few Fourier modes and spline points, which can be 

iterated quickly, seem to provide a picture of the dynamics closely similar to 

that of tracking. Test (d) has not been carried out carefully to date. 

One can prove analytically, at least for sufficiently small amplitudes, that 

the map obtained from our generator converges to the one-turn evolution given 

by the underlying tracking code, as the number of Fourier modes and the num- 
ber of interpolation points go to infinity (14). Correspondingly, we find numer- 

ically that the point-by-point agreement between map and tracking improves 

steadily when more modes and interpolation points are introduced. 

The use of polar coordinates to describe the map generator has a disadvan- 

tage in a region of phase space where one action variable is small and the other 
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‘. 
large. In general the generator has a singularity at Ii = 0 for each component 

index i, and this spoils the map construction algorithm when 1’ is small, but 

some I, large. An analogous map construction algorithm can be written down 

in Cartesian coordinates, by substituting expansions in Hermite polynomials 

for the Fourier series (14). This scheme, not yet implemented in a code, would 

be free of coordinate singularities and seems to be a promising route to a global 

map construct ion. 

In the following discussion the dynamical model is that provided by the 

map. Conclusions about long-term motion or resonances all refer to  the map. 

POINCARE SECTION s AT THE SYNCHROTRON 
PERIOD 

vlie study a realistic model of the LHC in injection mode, for which the 

synchrotron period is 129.97 turns (15). We approximate this period by 130 

turns, and modulate the energy by the rule 

6 = 6, sin(2~n/130) , (1) 

where n is the turn number, with a realistic value 6, = 5. In this formula- 

tion the Hamiltonian is periodic with period 130C in the independent variable 

s, the arc length on a reference trajectory of circumference C. Thus, trans- 

verse phase space at s = 0 (mod 130C) forms a four-dimensional Poincark 

section S. It is useful to view the motion on the section S, thus obtaining 

a stroboscopic picture of synchrotron oscillations. There exist invariant tori 

and resonances on S, and these can be studied by methods that have already 

proved to be effective in the case of pure transverse motion at constant 6. 
Quasi-invariants on S, which is to  say quantities that return to nearly the 

same value each time the orbit passes S, can be used to estimate long-term 

bounds on the motion. 

LONG-TERM BOUNDS ON THE MOTION 

Let us recall briefly the method for setting long-term bounds that was 

proposed and illustrated in Refs. (16) and (17). Suppose that we have made 

a canonical transformation ( I ,  @) 3 ( J ,  lP) so that J on S is nearly invariant. 

Let R be an open region in the J1, J2 plane, and 0, C R a proper subregion. 

Define A J as the minimum Euclidean distance from Q, to the boundary of $2. 
Let 6J be an upper bound for the absolute value of the change of J during 

p synchrotron periods, for any orbit with initial action J ( 0 )  in R; here any 

initial angle lP(0) is allowed. Then J on an orbit with J ( 0 )  E 0, cannot leave 
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s2 in fewer than pA J / 6  J synchrotron periods. If n, is the number of turns per 

period, then we have stability for N turns (in the sense of J staying within s2 

when J ( 0 )  E O,), where 

N = pn,AJ/GJ . 

In a numerical realization of this simple argument a principal problem is the 

matter of how to determine 6 J .  One possibility is to use interval arithmetic 

(18)) which can provide rigorous error bounds for numerical calculations. Berz 

and Hoffstatter (19) carried out such a plan in a formulation based on Taylor 

series maps, giving results for some accelerator models. Recently, Berz (20) 

has reported progress on a general and efficient way of implementing interval 

arithmetic, using controlled “models” of the functions involved. This approach 

might be adapted to handle our type of map. 

Interval arithmetic is likely to be expensive in computation time whenever 

it furnishes a close upper bound on the maximum of a function. A less costly 

approach is to use some sort of Monte Carlo sampling, which is known to 

be more efficient than raster-based sampling in high dimensional problems. 

Although this could not claim the rigor of interval arithmetic, it may very 

well provide a better guess for the minimum 6J in a given computation time. 

Inevitably, the task in studying long-term stability in accelerators is to provide 

a sophisticated guess, not to prove theorems, since our Hamiltonian is itself a 

guess. 

The traditional Monte Carlo method for computing integrals converges as 

l/+, where n is the number of samples, irrespective of the dimension of 

the problem. This estimate has a probabilistic character, however, and need 

not be literally valid when the method is realized through pseudo-random 

numbers on a computer. The quasi-Monte Carlo method, based on determin- 

istic “quasi-random sequences” (21) , can give log n/n convergence in a strict 

(not probabilistic) sense. The “method of good lattice points” (22) is a related 

method for integration of periodic functions. Adaptation of quasi-Monte Carlo 

or good lattice points to maximization rather than integration may provide an 

interesting approach to the problem of finding a minimum upper bound 6 J .  
To date we have used simple sampling with pseudo-random numbers, together 

with some knowledge of the specific character of our function, to arrive at 

estimates that seem plausible. 

There are certain aspects of our evaluation of N in Eq. (2) that make 

the task easier than might be expected. First, one finds in typical cases that 

estimates of 6J increase slowly, if at all, with increasing p .  Thus, if one can 

afford the computation to get 6 J  for large p ,  the desired large value of N 
can be obtained. Second, one finds that the algebraic change d J  in J over p 

periods, including sign, fluctuates about an average value that is about two 
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orders of magnitude smaller than IdJlmaz. Here we refer to fluctuations within 

an ensemble of orbits with the same p ,  or within a single orbit for increasing 

p .  This suggests that even if our estimate of S J  is considerably less than a 
true value, our value of N will still be a conservative estimate. That is, the 

probability of many changes d J  of maximum magnitude adding coherently to 

bridge the gap between R, and R is extremely small. Third, it appears that 

dJ(J (O) ,  Q(0)) has the same general character as a function of (J(O),  XP(0)) 

for any value of p .  It has a lot of oscillations as a function of Q(O), but the 

amplitude and wavelength of the oscillations seem to be fairly uniform over 

phase space and with respect to p ,  with no evidence of peaks a great deal 

larger than average, or wavelengths much smaller than average. This leads to 

the idea of using results for small p as a guide on how to extrapolate Gom 

small random samples to large, even when p is large. Some experience with 

this trick is reported later in this paper. 

CONSTRUCTION OF QUASI-INVARIANTS ON S 

We determine quasi-invariants from orbits of the map, just as we used or- 

bits of tracking to construct the map. This non-perturbative method succeeds 

even at large amplitudes close to chaotic regions, and in general has a greater 

scope and reliability than perturbation theory, while being competitive in com- 

putation time. An important advantage of our method in the present problem 

is that it allows us to find invariants of the map over a synchrotron period 

of 130 turns. This would not be possible in perturbation theory without an 

explicit construction of a 130-turn Taylor series map, a task that would be 

quite difficult. 

The particular method that we have used to determine invariants from 

orbits is based on polar coordinates, and suffers from the coordinate singularity 

noted above when one action variable is small while the other is large. In such 

a case the method is not a good substitute for perturbation theory in Cartesian 

coordinates. It is likely, however, that a modified method based on orbit data 

can be devised to handle the general case. 

Let P, = { ( I ,  @)(i), i = 0,1, - - - , n} be a sequence of n + 1 points on the 

Poincark section S, namely the first n+ 1 points at which a single orbit crosses 

S. For a large set of initial conditions (I ,@)(')  the points of the orbit will lie 

on an invariant torus, which can be represented as a Fourier series for I as a 
function of @: 

This equation 

of a canonical 

m 

may also be stated in terms of a generating function S ( J , @ )  
transformation ( I ,  @) e- ( J ,  e), where J is an invariant of the 

5 



FIGURE 1. A plot of vs. for an orbit on a quasi-invariant torus 

motion on S. Developing 8 in a Fourier series with coefficients gm( J ) ,  we have 

where J is the zero mode (the term for m = 0). The value of J serves as a 

label to distinguish various tori. The Fourier coefficients may be determined 

from the sequence Pn, to arbitrary accuracy at sufficiently large n. The de- 

termination is not a standard problem of numerical Fourier analysis, however, 

since the points Q ( J )  are distributed unpredictably while usual methods like 

the FFT require data on a uniform grid. A stable method of dealing with this 

problem is to take the values of I on a uniform grid in Qi as the unknowns in 

place of the coefficients I,. With a number of cells in the i-th dimension equal 

to 2Mi + 1, where Mi is the maximum mode number for that dimension, we 

choose the number of orbit points n to be so large that at least one q>Q) lies in 

each cell. Retaining just one point per cell, we then obtain a well-conditioned 
system of linear equations to determine the values of I on the grid; from those 

the Fourier coefficients can be calculated by an FFT. In the case of a reso- 

nant orbit there will be regions of Qi space that are never visited by the orbit, 

hence cells that never contain an orbit point if Mi is sufficiently large. Then 

the method fails, as it must, since the orbit does not lie on a surface of the 

form (3). At large amplitudes one also finds chaotic orbits, which may provide 

at least one point per cell if Mi is not too big. These are easily recognized 

visually, if not mathematically. The points tend to cluster and do not line 
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@1/2n 

FIGURE 2. A plot of @z vs. @I for an orbit on resonance 

FIGURE 3. A plot of @Z vs. @I for a chaotic orbit 

up in the orderly manner that one sees in the case of nearly invariant tori. 

The calculation of the Fourier coefficients may go through without difficulty, 

but the coefficients do not fall off with increasing m, and the resulting surface 

is far from being invariant. Indeed, the failure of invariance for a torus con- 
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FIGURE 4. Initial actions on a 6x11 grid with filling fractions greater than 41% in 2000 periods. 

The number of cells in space is 512, corresponding to a maximum Fourier mode number of 

25 in either dimension. 

structed from orbit data may be regarded as a mathematical test for chaos. 

Figure 1 shows a plot of @2 vs. for an orbit on a nearly invariant torus. 

For comparison, Fig. 2 shows a resonant orbit, and Fig. 3 a chaotic orbit. 

For the LHC, the length of orbit required to construct a torus with 15 

Fourier modes in each direction is typically 5000 to 10000 synchrotron periods. 

The computation time is 17 to 34 minutes on an IBM RS6000-590 workstation, 

when the map is like that described in (23). A lot of time can be wasted, 

however, in futile attempts to fit tori to resonant orbits. To facilitate the 

finding of good tori, we do a survey of phase space, testing a set of orbits on 

a grid of initial conditions. Each orbit on the grid if followed for a relatively 

small number of periods, say 2000, and the fraction of cells in iP1, iPz space 

that are visited by the orbit is recorded. Those orbits that hit a large fraction 

of the cells (say more than 40%) are good candidates for tori, while those that 

hit only a small fraction (say less than 25%) are almost certainly resonant. 

Such a survey at least reduces the amount of human work required, even if it 

takes a fairly long computer run. In Fig. 4 we show a typical survey, showing 

those initial actions that give a filling fraction greater than 41% for orbits 

of 2000 periods, for cells in '(a space corresponding to a maximum Fourier 

mode number of 25 in either dimension. As expected, the phase space is quite 

inhomogeneous with respect to this aspect of orbits. 

In a region devoid of large-scale chaos, one may usually construct a num- 
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J2 

12 13 14 15 16 

J l  

FIGURE 5. Resonance lines in a region of the J-plane, for all resonances with Irnl I + IrnzI 5 8. 
J is in units of lo-*,. The stars mark the values of J on the original fitted tori used to define 

the first canonical transformation. 

ber of tori of the form (3), changing initial conditions if necessary to dodge 

resonances. For instance, one may find tori for a roughly Cartesian grid of 

initial conditions I(*) in the I-plane, all with a(’) = 0. These tori may then be 

interpolated smoothly in J ,  for instance by cubic spline interpolation of the 

Fourier coefficients gm(J) for C2 smoothness. This gives the generator G( J,  a) 
of a canonical transform ( I ,  a) I--) ( J ,  XP) that is rigorously defined in an open 

domain of J space. The quasi-invariant J will be nearly constant on S as a 

function of turn number, at least on the original tori that were fitted to orbits. 

On interpolated tori J may be less constant, particularly if the interpolation 

forms a bridge over a strong resonance. The canonical transformation may 

partially normalize the motion, taking out the principal, global distortion of 

the underlying linear motion, while leaving the local effect of a resonance. It 
is this residual effect of a resonance that we wish to explore in the following. 

Each fitted torus has a tune v that is rather well-defined, since the new 

phase angle advances by a nearly constant amount 27rv per turn. (Note that 

a “turn” may here refer to a full synchrotron period, 130 turns in our LHC 
model, if synchrotron oscillations are accounted for by the method described 

above.) These tunes on fitted tori can be interpolated in J ,  to give a smooth 

function v( J ) .  If the interpolation is well-behaved, in the sense of providing 

a well-defined inverse function J(v) ,  then we can map resonant tune lines, 

m - v = p ,  p = integer, into the J-plane. 
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FIGURE 6. The tune v(J) for values of J on a rectangular grid in the region of Fig. 5. 

Such a map for region of LHC J-space is shown in Fig. 5, for all resonances 

up to  order 8. The corresponding canonical transformation was based on 

interpolating 9 fitted tori, on a 3 x 3 grid indicated by points marked in 

the figure with an asterisk. This interpolation bridges over a strong ( 6 , l )  

resonance. We shall see that the ( 6 , l )  makes itself clearly felt over the whole 

region of J-space of the plot and more. Notice that this is quite a big region, 

corresponding to about a 30% change in J .  The other resonances shown in 

Fig. 5 have relatively minor effects, almost unobservable, even though some 

are of low order. The presence of many low-order resonances that are quite 

weak can be traced to the fact that we are here dealing with tunes for 130 

turns. 

Although an interpolation of fitted tori and tunes can usually be made, it 

may happen that v ( J )  is not a nice function and the inverse J (v )  does not 

exist. In that case the picture of a partial normalization leaving the local 

effect of a resonance is simply not valid, and an analysis like that pursued in 

the following sections is not possible. This has been our experience to date in 

regions very close to  large-scale chaos. It may sometimes be possible to retrieve 

such a picture by working in a smaller region of phase space, or changing the 

choice of fitted tori. A good case, that corresponding to Fig. 5, is illustrated 
in Fig. 6 ,  which shows the behavior of v ( J )  on a uniform grid in J-space. 

The figure clearly suggests that the inverse function J (v )  exists, and that is 

confirmed by an accurate calculation of the inverse by Newton's method. 
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FIGURE 7. A plot of J2 vs. J1 for an orbit in the [6,1] resonance region. Units: 

PENDULUM-LIKE MOTION NEAR A BROAD 
RESONANCE 

When we attempt to estimate the maximum change in J in the region of 

Fig. 5, we find that it is considerably larger, by almost a factor of 100, than 

the change for orbits starting on the original fitted tori that determined the 

canonical transformation. This is due to the strong (6 , l )  resonance that lies 

between the fitted tori. It is difficult to get suitable long-term bounds with 

such large variations, so we are led to a detailed examination of the resonance 

in the hope of finding a new, more constant quasi-invariant. A plot of J2 vs. 

J1 along an orbit beginning near the resonance shows points lying close to a 

line segment, as we see in Fig. 7. This suggests that the motion may follow 

an isolated-resonance model, in which the Hamiltonian has the form 

11 



17 

16 

Kl 

15 

14 

_-I.-..- 

...................................... 
............................... 

......................... 
................ 

0.0 0.2 0.4 0.6 0.8 1.0 

x1/2n 

FIGURE 8. A plot of K1 vs. XI (mod 27r) for several orbits in the [6,1] resonance region. All 
orbits have the same initial value of Kz.  Units: lo-*,. 

Since H is independent of the angle x 2 ,  the conjugate action K2 is constant 

on orbits of H ,  which is to say that the motion in the J1, J2 plane is along a line 

parallel to the vector m. This agrees approximately with Fig. 7, if rn = (6 , l ) .  

Note that this simple behavior cannot be seen in the original variables. A plot 

in the 1 1 , 1 2  plane shows some sort of complicated oscillatory motion. 

Further confirmation of the isolated resonance model is seen when we plot 

several orbits on the section S at the same initial value of K2, graphing K1 vs. 

x1 (mod 27r), as in Fig. 8. We see pendulum-like motion, which we classify 

as rotation when x1 (mod 271) ranges over the full interval [0,27r] or libration 

(island motion) when it oscillates over subintervals of [0,27r]. Obviously we 

cannot have perfect pendulum motion, since the system is still non-integrable. 

The departure from the ideal is seen in small fluctuations of K2 along an orbit, 

as shown in Figs. 7 and 9, or by examining the apparent curves of Fig. 8 on a 

finer scale to reveal that the points actually scatter about an averaging curve, 

with a spread similar in magnitude to that of Kz in Fig. 9. 

A closer investigation shows further interesting departures from pure pen- 

dulum motion. An attempt to find the elliptic fixed point results in a small 

cloud of points in the K1- x1 plane with some minimum spread, as shown in 

Fig. 10. We have tried to determine whether this cloud represents a projection 

of some more exact structure in a higher dimensional space. For instance, we 

might be seeing a projection of a curve with x 2  as curve parameter. To check 

this idea, we compute a long orbit (about 40000 synchrotron periods), and 
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FIGURE 9. A plot showing fluctuations of Kz along a single orbit in the [6,1] resonance region. 

Units: 10-8m. 

plot only points for which x 2  (mod 271) falls into a small interval. We find 

that the picture is still very similar to that of Fig. 10, the magnitude of the 

spread being about the same. This seems to rule out the proposed structure, 

at least if it were 2~-periodic in x 2 .  Next we tried looking at points for which 

K2 falls into a small interval, again finding a spread similar to  that of Fig. 10. 

The conjecture here was that for a small range of K2 the orbit might resem- 

ble more closely an isolated-resonance orbit. Finally, we tried simultaneous 

restrictions on both of the aforementioned variables, and in that trial we did 

see some structure, typically a few small ellipses, fuzzy and overlapping, as in 

Fig. 11. By a careful tuning of the interval of K2, this picture may be changed 

to two ellipses, or to one, or to no points at all. The case of two ellipses is 

shown in Fig. 12. For the case of a single ellipse, we moved the short interval 

of x2, unchanged in length, while leaving the interval of K2 unchanged, and 

again found several overlapping ellipses. 

Turning attention to the region where a hyperbolic fixed point would exist 

in pure pendulum motion, we find that separatrix-like rotation curves are well- 
defined (modulo the scatter displayed in any of our “curves”) over a time of 

about one pendulum rotation period. The curves follow different courses over 

successive periods, however, approaching more or less closely an imagined (but 

nonexistent) hyperbolic point, as is seen in Fig. 13. It is as though the energy 

of the pendulum were modulated, being changed a little from one period to the 

next. If we adjust the initial condition of the orbit to approach the imagined 
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FIGURE 10. The points corresponding to  the “elliptic fixed point” of Fig. 8 plotted on a larger 

scale. 
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FIGURE 11. Points corresponding to  the smeared “elliptic fixed point” of Fig. 10, but with 

simultaneous cuts in K2 and x 2 ;  namely, 9.4023 < K2 < 9.4028 , 0.6 < ~2/27r < 0.7. 

hyperbolic point more closely, we find orbits in which rotations change into 

librations, and vice-versa. Over a time of about one period, the motion has 

14 



15.7560 m 
15.7555 

. . .  
e .  

- 

- .. . 
0 .  .. . 15.7550 - 

. . .  

. i l l 1  L I I I  , 1 1 1  t h  

0.9018 0.9020 0.9022 

FIGURE 12. Points corresponding to  the smeared "elliptic fixed point" of Fig. 10, but with 

simultaneous cuts in K2 and x 2 ;  namely, 9.4025 < KZ < 9.4026 , 0.6 < x2/2n < 0.7. 

1- 

FIGURE 13. Points on a single orbit near an imagined "hyperbolic fixed point". Over a time 

of about one pendulum period a curve is well-defined (modulo the minimum smear seen in any 

of the pendulum curves), but takes a different course from one pendulum period t o  the next. 
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FIGURE 14. Points on a single orbit near an imagined “hyperbolic fixed point”. In comparison 

to Fig. 13, the initial condition is adjusted to bring the orbit slightly closer to the “fixed point”. 

Over a time of about one pendulum period the orbit has either rotational or librational character, 

and shifts from one to the other in apparently random fashion. 

one character or the other. Fig. 14 shows an orbit that made four transitions 

between the two types of motion, and then several rotations. On a longer time 

interval, following that of the plot, it made many more rotations but eventually 

went into libration again. These “changes in pendulum energy” seem to occur 

in random patterns, and that is the only manifestation of “chaos” beyond 

the small scatter in the curves during a pendulum period. It is of course 

conceivable that the changes have some pattern or periodicity that we have 

not yet noticed. 

The pendulum period we refer to in the experiments near the hyperbolic 

point is rather long, around 700 synchrotron periods. Far from the hyper- 

bolic point in the rotation region there are similar but less pronounced shifts 

in the orbits over a rotational period, the latter of course now being some- 

what shorter. Slow time evolution of fairly well-defined structures might also 

account for the existence of several ellipses in Fig. 11. 

QUASI-INVARIANTS NEAR A STRONG RESONANCE 

One quasi-invariant that is suitable for our purposes is Kz. A second is 

associated with those rotation orbits that are not too close to separatrix-like 

orbits. As we have seen, the orbits do not define exact curves, always exhibiting 
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a slight scatter about an imagined averaging curve. To define quasi-invariants 

precisely, we make a least-squares fit of K1 to a Fourier series in X I ,  for each 

of several orbits that all have the same initial value Kz(0) of Kz, and the 

same initial angles, say (xl(O), x2(0)) = (0,O). We repeat this step for several 

values of K2(0), and finally interpolate the full set of Fourier coefficients by 

cubic splines to obtain a smooth foliation of a region by surfaces represented 

as Fourier series. Convenient variables in which to interpolate are K1(0) and 

K2(0), so that we come out with a series 

where the coefficients an have continuous second derivatives. For a point 

(K1, K2, X I ,  x2) on an arbitrary orbit in the region of phase space covered 

by our foliation, we choose the quasi-invariants to be Klo and K2, where Klo 
is the solution of the equation 

. 

n 

In practice the solution of (10) is easily obtained by Newton’s method, using 

the initial value of K1 on the orbit in question as the zeroth iterate. 

In pIace of K10 one could as well use the more conventional action variable, 

the coefficient of the zero mode in (9): 

i r27r 

The computations are much more convenient with K10, however, and the latter 

has substantially the same behavior as (K l ) .  Both choices measure a drift in 

the center of oscillation along the direction of m, while K2 measures a drift 

perpendicular to  m. 

We have now defined quasi-invariants for the outer rotation orbits on either 

side of a wide resonance island. We shall find that these quantities are suffi- 

ciently constant so as to ensure that any orbit that finds its way into an outer 

rotation region will stay there for a very long time, at least in the example 

under discussion. What happens in the region inside and near the island is 

then irrelevant for long-term behavior, since an orbit in that region will either 
stay there or move into a rotation region and then be trapped for a long time. 

In other words, in a “worst case scenario” we can assign zero time to  cross the 

island. 
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FIGURE 15. Data for 10 rotational pendulum orbits and the curves obtained by fitting them 

to Fourier series with 8 modes. The orbits all have the same initial value of K2. The data are 

barely distinguishable from the curves at the resolution of the plotter. 

LONG-TERM BOUND NEAR A BROAD, 
LARGE-AMPLITUDE RESONANCE 

We now consider long-term behavior of orbits in the region of J-space 

shown in Fig. 5. Through long-term mapping of single orbits we estimate 

roughly that this region is at 80% of the long-term (lo6 turn) dynamic aper- 

ture. (Here we measure the distance to the aperture in terms of the amplitude, 

( J ;  + J:)ll4, which is roughly proportional to the transverse displacement of 

the particle.) We have chosen this large-amplitude region to test our method 

under difficult conditions of practical interest. These conditions are probably 

close to the extreme for which our method can predict stability over times 

comparable to desired storage times. At amplitudes a bit larger the motion 
becomes chaotic and good quasi-invariants apparently do not exist. We set 

up a least-squares fit to rotation orbits as described in the previous section, 

obtaining a series as in Eq.(9) over a domain as follows, in units of meters: 

15.1 < Kl(0) < 16.0 , 9.40 < K2(0) < 10.1 . 

We tried both a 4 x 4  and a l o x  10 uniform Cartesian grid in the (K1(0), Kz(0))- 

plane as the set of points to interpolate. We used the 10 x 10 grid finally, 

although the quasi-invariants it provided were not substantially more constant 

than those for the 4 x 4. This indicates that the limit in quality of quasi- 
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invariants cannot be overcome by finer interpolation. We used 8 Fourier modes 

in Eq.(9), after finding that a larger mode set did not improve the fit or the 

quality of quasi-invariants. Fig. 15 shows a typical fit to 10 orbits for a fixed 

Kz(0). Note that the rotational orbits do not straighten out completely with 

increasing distance from the island, unlike the case of real pendulum motion, 

and they may be concave upward or downward. The location of the region in 

which they are fairly straight will depend on the choice of the fitted tori that 

defined our first canonical transformation. 

Using pseudo-random numbers, we made an ensemble of 2040 randomly 

chosen initial conditions in ( J , Q )  space, allowing the full range of Q(0) E 

[0, 27rI2, but restricting J ( 0 )  so that K(0) lay in the rectangle (12). We followed 

an orbit from each initial condition for 2000 synchrotron period, and found the 

following ensemble maxima for changes in absolute values of quasi-invariants 

over 2000 periods (in units of lO-*m): 

6~~~ = 9.9 10-~ , SK2 = 1.7. . (13) 

The corresponding ensemble average changes including sign, (dKlo) and 

(dK2), are smaller in magnitude by about a factor of 100. Because of the 

relatively small sample, we think that that the results are an underestimate, 

and seek a way to make a correction. As mentioned in Section 4, a way to 

correct is to look at the behavior of the changes versus sample size for a map 

over 1 synchrotron period instead of 2000. This seems reasonable, since the 

function to be maximized seems to be qualitatively similar for 1 and 2000 

periods. Fig. 16 and 17 show typical sections of the two functions, in which 

one initial angle varies while the other three variables are fixed. Computing an 

ensemble of 240000 one-period orbits, and comparing to an ensemble of 2000 
one-period orbits, we get an increase of about 30% in the ensemble maxima of 

SK. Moreover, the data suggest that the 240000 samples give a good estimate 

for the true maxima of the one- period map, since large increases in the maxima 

occur only over the first few thousand samples. After 50000 samples we found 

no change at all. In view of these results, and the encouraging circumstance 

that ensemble averages including sign are much smaller than maxima, we think 

it safe to increase the estimates (13) for 2000 periods by 30% and base long- 

term bounds on the resulting values. For orbits with Kl(O),K,(O) near the 

center of the rectangle (12) the minimum distances to the boundary of the 

rectangle in the two directions are AKl(0) = 0.45,AK2(0) = 0.35. Since 

p = 2000, n, = 130, SKlo = 0.013, 6K2 = 0.022, we see from Eq. (2) that 
such orbits cannot leave the rectangle in fewer than 4 - lo6 turns. The required 

stability time for injection in the LHC corresponds to 7 .  lo6 turns. 

Thus, we have given a “proof of principle” for our method. We have shown 

that very conservative predictions of stability in the LHC can be made for times 

comparable to the injection time, even in the neighborhood of a broad, large- 

amplitude resonance not far from the estimated dynamic aperture. Needless 
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FIGURE 16. The change dK10 in K ~ o  over 2000 synchrotron periods versus initial angle Ql(0) 
with other initial coordinates (randomly chosen) held fixed. dK10 in meters. 
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FIGURE 17. The change dK10 in Klo over 1 synchrotron period versus initial angle Ql(0) 
with other initial coordinates (randomly chosen) held fixed. dK10 in meters. 

to say, corresponding predictions for a big region of phase space would require 

much more extensive computations along the same lines. These computations 

lend themselves well to parallel computation, since the many short orbits re- 

quired for evaluation of 6K's could be followed in parallel operations. 
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DIRECT TEST OF LONG-TERM PREDICTIONS BY 
MAPPING 

We have tested the prediction of stability of the previous section by direct 

mapping of long orbits. For instance, we have followed 9 orbits for lo7 turns 

each, the orbits having initial conditions near the center of the domain (12). 

As expected, every orbit stayed near its starting point in Klo, Kz space, in fact 

with much less change than the bounds (13) would suggest. 
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