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Fast Synthesis of Exact Minimal Reversible Circuits using Group Theory  

Guowu Yang,  Xiaoyu Song, and Marek A. Perkowski 

Dept. Electrical & Computer Engineering, Portland State University, Oregon, USA. 

 

Abstract 

 

We present fast algorithms to synthesize exact minimal reversible circuits for 

various types of gates and costs. By reducing reversible logic synthesis problems 

to group theory problems, we use the powerful algebraic software GAP to solve 

such problems.  Our approach is not only able to minimize for arbitrary cost 

functions of gates, but also faster than the existing approaches to reversible logic 

synthesis. In addition, we show that the Peres gate is a better choice than the 

standard Toffoli gate in libraries of universal reversible gates. 

         

Index Terms: Reversible Logic, Quantum Circuits, Minimization, Group Theory,  

Algorithm. 

1. Introduction 

There has been recently much research effort on developing algorithms for synthesis of 

reversible circuits [1-6]. The previous approaches are either not optimal, time consuming or 

cannot be applied to 4 qubit circuits. It has been known that any 3-bit reversible gate can be 

synthesized using the CNT gate library [1]. In [14], an optimal approach was proposed for 

synthesizing 3-bit reversible gates with an average of 5.63 gates.  
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Group theory has been demonstrated as a powerful tool for analysis in many applications. 

Few preliminary works on using group theory for reversible logic synthesis have been proposed 

[3, 8]. Recently, some important results have been presented in [14]. GAP [11] is a mathematical 

analysis package for group theory applications. It is composed of a set of efficient and fast 

algorithms for manipulating set and group operations. It was used to prove the universality of a 

given reversible logic sets [8, 13]. 

In this paper, we describe fast GAP-based algorithms to synthesize exact minimal reversible 

circuits for various types of gates with various gate costs. By reducing the reversible logic 

synthesis problems to the group theory problems, we are able to use the power of algebraic 

software GAP which is especially efficient for solving group theory problems.  We are able to 

minimize reversible circuits for arbitrary gate cost circuits. Our algorithms are orders of 

magnitude faster than the existing approaches to reversible logic synthesis. In addition, we show 

that the Peres gate is a better choice than the standard Toffoli gate in the libraries of universal 

reversible gates. As an important feature, our approach can handle gates in libraries with 

arbitrary gate-dependent costs. 

2. Background 

DEFINITION 1: Let B = {0, 1}. A Boolean logic function f with w input variables, B1, …, Bw, and w 

output variables, P1, …, Pw, is a function f: Bw → Bw, where (B1, …, Bw) ∈Bw is the input vector 

and (P1, …, Pw) ∈Bw is the output vector. A Boolean logic function f is reversible if it is a one-

to-one, onto function (bijection). A Boolean reversible logic function with w inputs and w 

outputs is also called a w×w reversible gate. 

 

Now we introduce permutation group and its relationship with reversible functions.  

 

DEFINITION 2: Let M = {1, 2, …, n}. A bijection (one-to-one, and onto mapping) of M onto itself 

is called a permutation on M. The set of all permutations on M forms a group [10], under 

composition of mappings, called a symmetric group on M, denoted by Sn [9]. If M is a set of all 

2w binary vectors with length w, the symmetric group on M is denoted by . A permutation 

group is just a subgroup [10] of a symmetric group.  

wS
2
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A mapping a: M→M can be written as a = . We use another notation, writing it 

as a product of disjoint cycles [9]. For example,  will be written as  (3, 4)(7, 8). 

The identity mapping “( )” (direct wiring) is called the unity element in a permutation group. As 

a convention, a product a*b of two permutations a and b means applying mapping a before b, 

which corresponds to cascading a and b. 
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To establish a one-to-one correspondence between a w×w reversible function and a 

permutation on M={1, 2, …, 2w}, we encode a w-bit binary input (output) vector 

 as a unique integer value 

= . In this formula for index, we added a 

“1” due to the following two reasons. First, in most of the permutation group references, M 

begins from one, instead of zero. Second, in GAP, M also begins from one, instead of zero. 

Therefore, we have the following relation: 

211 ,...,, >< − BBB ww

),,( 1BBindex w L 12...22 12
3

1
21 +⋅++⋅+⋅+ −w

wBBBB

211 ,...,, >< − BBB ww = −1. Using the 

integer coding, we consider a permutation as a bijection function f: {1, 2, ..., 2

),,( 1BBindex w L

w} → {1, 2, ... , 

2w}. Cascading two gates is equivalent to multiplying two permutations.  In what follows, we 

will not distinguish a w×w reversible gate from a permutation in . If A and B are subsets of a 

symmetric group, then A*B is defined as {a*b | a∈A∧b∈ B}. Let |S| be the size of S. 

wS
2

 

DEFINITION 3: w_library is the set of w×w reversible gates which are used to synthesize w×w 

reversible gates, denoted as w_L, or simply as L. We use T(L) to denote a set of all w×w 

reversible gates that can be synthesized using gates from library  L. 

 

DEFINITION 4: A minimum length minl(a) of any element a in T(L) means that there exist minl(a) 

gates in L (the gates can be of the same type) such that a is a cascade of these minl(a) gates, and 

there does not exist k gates in L such that k < minl(a) and a is a cascading of these k gates. A 

minimum length of T(L) refers to the maximum value of all minimum lengths in T(L), denoted as 

maxl(T(L)) or simply as maxl(T). We define T_k = {a | a ∈T(L) ∧ minl(a) = k}, which is the set 

of all elements in T(L) with a minimum length k. 
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DEFINITION 5: A synthesis of a reversible gate g means that there are n gates in library L such that 

g is the cascading of these n gates. The cost of the circuit refers to the sum of the costs of these n 

gates. The minimum cost Minc(g) means that there exists a realization of g with cost Minc(g), 

and there does not exist a realization with cost less than Minc(g). A minimum cost synthesis of g 

is the synthesis with cost Minc(g). 

3. Algorithms 

This section presents four algorithms for reversible logic synthesis. The first and second 

algorithms deal with minimal length problems. Some papers discussed these problems. Miller et 

al [7] produced some near-optimal results.  Shende at al [14] gave optimal results using group 

theory. Our first two algorithms are similar to [14], but these algorithms were realized in GAP, 

and had a faster speed. The third and fourth algorithms deal with minimal cost problems, which 

is more reasonable in practice because the gates have different costs. 

3.1 Minimal length Algorithms 

Given a library L, Algorithm 1 will answer the following questions: 

1) What reversible gates can be synthesized by L, i.e., what is the set T(L)?  

2) What is the maximum length of T(L)?  

3) How many gates have the minimum length k? And what are these gates? 

Let A(k) and B(k) denote the sets of gates, and let n(k) be the size of S(k), k ≥ 0. Starting from 

the identity gate, we perform the permutation multiplication with library. A(0)= {( )}, 

A(1)=A(0)∪A(0)*L. For step j, we have A(j), the set of circuits with length no more than j 

(Lemma 1). The next step is to perform: A(j+1)= A(j)∪A(j)*L, where A(j) ⊆ A(j+1), until a fix-

point is reached. A detailed description is given as follows. 
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Algorithm Finding_Minimum_Length (FML): 

Input: Library L. 

Output: j, n(1), … n(j), B(1), …, B(j), A(j).   

1. A(0)={( )}; G=Group(L);  

2. while n(j)≠0 do 

3.      j=j+1; 

4.      A(j)=A(j-1)∪A(j-1)*L; 

5.      B(j)=A(j) - A(j-1); 

6.      n(j)=|S(j)|; 

7. end while. 

 

Lemma 1: A(k) = {a | a ∈ T(L)∧minl(a) ≤ k}. 

Proof: According to the first and fourth lines, it is obvious that A(k)=A(0) ∪L ∪ L2∪…∪Lk.  

Therefore, for any a in A(k), a is in T(L), and minl(a) ≤ k. On the other hand, if a is in T(L) and 

minl(a)=m ≤ k then there exist m gates b1, …, bm in L such that a = b1*…*bm.  

So, a∈Lm⊆A(k). Thus the assertion is true.       

 

Theorem 1: 

(1): Algorithm FML will halt in a finite number of steps. 

(2): A(j) = T(L), j = maxl(T), S(k) = T_k, n(k) = | T_k |. 

Proof:  

(1): Since A(k) ⊆ T(L) ⊆ , these monotonically increasing sets A(k) will converge to a fix-

point, which means there exist j such that A(j+1) = A(j). So n(j+1)=0. Thus Algorithm FML will 

halt in a finite number of steps. 

wS
2

(2): From Lemma 1, we have B(k) = A(k) – A(k-1) = T_k, n(k) = |B(k)| = |T_k|. Since n(j+1) = 

0, we have: A(j+1) = A(j). Since A(j+1) = A(j), we cannot add any more new gates in A(k) when 

cascading arbitrary gates from L after the gates from A(k). Thus A(j) = T(L), and j = maxl(T).    

 

Given a library L and an arbitrary reversible gate g, the following algorithm determines 

whether g can be synthesized by using gates from L. If yes, the algorithm will output k gates 
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L[ck] ,…, L[c1] in L such that g = L[c1]*…*L[ck], and k = minl(g). Set A(0) = {( )}. L[ci] refers to 

the ci-th element in L.  (L[ci])
-1 is the inverse of L[ci]. In the second algorithm, sets A(1), .., A(j) 

have the same meaning in Algorithm FML.  

 

Algorithm Minimum_Length_Representation (MLR): 

Input:  Library L, g.  

Output: Implementation of g with minimum length k. 

1. G=Group(L); flag=0; a = g; 

2. if g in G then  

3.     flag=1;  

4.     compute A(k) (k=0,1,..) as FML; 

5.     if g in A(k) then 

6.            for i=k downto 1 do 

7.                 find ci such that a*(L[ci])
-1∈A(i-1); 

8.                 a = a*(L[ci])
-1; 

9.            endfor; 

10.     endif; 

11. endif;   

12. return flag, L[ck] ,…, L[c1], k;  

 

Theorem 2:  

(1) In algorithm MLR, if flag=0, then gate g can not be synthesized using gates from library L.  

(2) If algorithm MLR returns flag=1, L[ck] ,…, L[c1], then g = L[c1]*…*L[ck], minl(g) = k. 

Proof: (1) If flag=0, g is not in Group(L), namely g can not be generated by library L. 

(2) From algorithm MLR, g is in A(k) but not in A(k-1), so k = minl(g). From for loop 6 to 9, we 

have    

( ) = g *(L[ck])
-1 *…*(L[c1])

-1.  Therefore,  

g = [(L[ck])
-1 *…*(L[c1])

-1]-1 = L[c1]*…*L[ck].        
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3.2 Minimal Cost Algorithms 

In practice, the costs of NOT gates, Feynman gates (called also the Controlled_NOT gates) 

and other well-known gates are different (for instance, minimum costs for NMR realization 

technology of quantum gates are given in [15]). For instance, a 3*3 reversible gate can be 

implemented by quantum gates: 1-qubit NOT gate, 2-qubit Feynman gate, Controlled_V gates 

and Controlled_V+ (Hermitian) gate. The cost of a 2-qubit gate is much larger than that of a 1-

qubit gate. Thus, we approximately ignore the cost of NOT gates and assume the cost of a 2-

qubit gate is equal to 1. The cost of a reversible gate is measured by the number of the 2-qubit 

gates in its optimal implementation of quantum gates. As a result, for 3*3 reversible gates, we 

can have a reasonable approximation for the gate costs: cost (NOT)=0, cost(Feynman)=1, 

cost(Peres)=4 (see Fig.1), cost(Toffoli)=5 (see Fig.2) and cost(Fredkin)=5. Because of the 

different costs of the gates in a library, we cannot equally deal with each gate in the library. In 

the following, we present two algorithms to find and to represent the implementation with 

minimum cost in any given library. If in future new costs will be calculated for some quantum 

realization technology other than NMR [15], we can easily adapt these costs to our CAD tools 

for quantum synthesis. 

                          

         Figure 1: Peres gate Pe12                                  Figure 2: Toffoli gate To1  
 

Generally, assume a library L includes p+1 parts: L0 = {gates with cost 0} (It always contains 

a direct wiring, i.e., identity gate), and Lri = {gates with cost ri}, where ri > 0 are different 

integers, i = 1, …, p. These two algorithms can be run with arbitrary values of costs of gates. 

This is practically important, since for instance it is known that costs of the same gates in 

quantum NMR realization, optical realization and ion trapped realization can differ considerably 

V V V+

B3 

B2 

P3 

B1 

P2 

P1    

P3 B3 

V V V+

P2 B2 

P1 B1 
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from one and another and ratios of costs of the same gates vary significantly between the 

technologies.  

The following algorithm gives the number n(k) of the reversible gates with the minimum cost 

k and the set B(k) of these gates. Set A(k) is the set of circuits with cost no more than k.  A(k) and 

B(k) are computed as follows: A(0)=Group(L0) (All zero cost circuits),  

LriN=Lri*A(0), i=1,…p,  

A(j)=A(j-1)∪Α(j-r1)∗Lr1N∪...∪Α(j-rp)∗LrpN (if j-ri<0, then we do not need to union the product 

Α(j-ri)∗LriN), j=1,2,…. B(0)=A(0), B(j)=A(j)-A(j-1). 

 

Algorithm Finding_Minimum_Cost (FMC): 

Input: L0, Lr1, …, Lrp, r1, …, rp; 

Output: j, n(0), n(1), …, n(j), B(0), B(1), …, B(j), A(j). 

1. G = Group(L); m = |G|; 

2. A(0) = Group(L0); B(0) = A(0); 

3. for 1≤ i ≤ p do LriN= {(), Lri}*B(0); 

4. j= 1; ma = |A(0)|; 

5. while (ma<m) do 

6.   j=j+1; A(j)=A(j-1); 

7.   for 1≤ i ≤ p do 

8.     if (j-ri  ≥ 0) then  A(j) = A(j) ∪A(j-ri)*LriN; 

9.    endfor; 

10.   ma = |A(j)|; B(j) = A(j) - A(j-1); n(j)=|B(j)|; 

11. endwhile; 

 

Lemma 2: B(k) = {a | a∈T(L), Minc(a) ≤ k } 0≤ k≤ j. 

Proof: Case 1: For any g∈A(k), the lines 2, 3, 6 and 8 tell us g∈T(L), and cost of g is less than or 

equal to k. 

Case 2: For any a∈T(L), Minc(a) ≤ k, we will prove a∈A(k) by induction on k. When k = 0, the 

definition of Minc(a) and the line 2 show that a∈A(0). Suppose it is true for k ≤ h. Consider the 

situation k = h+1. If Minc(a) ≤ h, according to the assumption, it is true. If Minc(a) = h+1, there 
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exist 2n+1 gates (i.e. the gates b0, b1, …, bn-1, bn in A(0) and c1, …, cn in the union of Lri) such 

that a = b0*(c1* b1)*…*(cn-1*bn-1)*(cn*bn) and the sum of the cost of ci is h+1. Assuming the cost 

of cn be ri, then b0*(c1* b1)*…*(bn-1*cn-1) is in A(h+1-ri). According to the line 8, we have 

a∈A(h+1).    

 

4. Experiments 

We present some experiments on 3-qubit synthesis. All experiments are running on an 

850MHz Pentium® III computer. 

We first introduce some libraries and then give the experimental results. In the following, we 

give some permutations of the well-known 3*3 Feynman gates and NOT gates. We use ⊕  to 

denote XOR.   

Feyman gates: Fe12: P3=B3, P2=B2, P1=B1⊕B2.  

Table 1: Permutation of Feynman gate Fe12

Inputs Outputs 

B3 B2 B1 index P3 P2 P1 index 

0 0 0 1 0 0 0 1 

0 0 1 2 0 0 1 2 

0 1 0 3 0 1 1 4 

0 1 1 4 0 1 0 3 

1 0 0 5 1 0 0 5 

1 0 1 6 1 0 1 6 

1 1 0 7 1 1 1 8 

1 1 1 8 1 1 0 7 

 

Fe12=(3,4)(7,8), 

Similarly, we have Fe13=(5,6)(7,8), Fe21=(2,4)(6,8), 

Fe23=(5,7)(6,8), Fe31=(2,6)(4,8), Fe32=(3,7)(4,8). 

NOT gates: N1: P3=B3, P2=B2, P1=B1’ (inverter of B1). 

N1=(1,2)(3,4)(5,6)(7,8), N2=(1,3)(2,4)(3,7)(4,8),  

N3=(1,5)(2,6)(3,7)(4,8). 
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3_NFT (or 3_CNT) library: this library includes 3 NOT gates, 6 Feynman gates, and 3 Toffoli 

gates. 

To1 = (7,8), i.e., P3=B3, P2=B2, P1=B1⊕B2B3, 

To2 = (6,8), i.e., P3=B3, P2=B2⊕B1B3, P1=B1, 

To3 = (4,8), i.e., P3=B3⊕B1B2, P2=B2, P1=B1. 

 

3_NFP library: this library includes 3 NOT gates, 6 Feynman gates, and 6 Peres gates. One 

example of Peres gate is shown in Fig.1. In the following, we constructively demonstrate that 

Peres gate is a better choice in a universal library than a popularly used Toffoli gate. Not only is 

the gate cheaper in quantum realization, but on average circuits have a smaller number of gates 

and have smaller total costs when Peres gates are used instead of Toffoli gates. 

According to Figure 1, we have 

Pe12=(5,7,6,8), i.e.,  P3=B3, P2=B2⊕B3, P1=B1⊕B2B3, 

Similarly, we have 

Pe13=(3,7,4,8), i.e.,  P3=B3⊕B2, P2=B2, P1=B1⊕B2B3, 

Pe21=(5,6,7,8), i.e.,  P3=B3, P2=B2⊕B1B3, P1=B1⊕B3, 

Pe31=(3,4,7,8), i.e.,  P3=B3⊕B1B2, P2=B2, P1=B1⊕B2, 

Pe23=(2,6,4,8), i.e.,  P3=B3⊕B1, P2=B2⊕B2B3, P1=B1, 

Pe32=(2,4,6,8), i.e.,  P3=B3⊕B1B2, P2=B2⊕B1, P1=B1. 

 

3_NFFr library: this library includes 3 NOT gates, 6 Feynman gates, and 3 Fredkin gates. 

Fr1 = (4,6), P3=B1’B3+B1B2, P2=B1’B2+B1B3, P1=B1, 

Fr2 = (4,7), P3=B2’B3+B2B1, P2=B2, P1=B2’B1+B2B3, 

Fr3 = (6,7), P3=B3, P2=B3’B2+B3B1, P1=B3’B1+B3B2. 

 

We implemented the above algorithms using GAP. We then supplied all 40320 possible 3-bit 

reversible gates as specifications to be synthesized by our algorithms. Our algorithms 

synthesized all these 40320 gates in very short time (see Table 2, 3 and 4). Time is measured in 

seconds. 
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Table 2: Time of number of gates with minimal 

length k in different papers 

NFT 

Lib. 

[4] 750MHz  

Pentium III  

Non-optimal 
solution 

[7] 2GHz  

Pentium IV  

optimal 
solution 

We: 850MHz  

Pentium III  

optimal 
solution 

Time 20 40 12 

 

  

Table 3 presents results for various gate libraries: NFT, NFP, NFFr, NFPT (NOT, Feynman, 

Peres, Toffoli), NFTFr (NOT, Feynman, Toffoli, Fredkin) and NFPFr (NOT, Feynman, Peres, 

Fredkin). The parameter “aver.” means the average minimum length. Observe that NFP is a 

winner in the category of three-gate libraries and NFPFr in the category of four-gate libraries. 

Cascades with Peres gates are shorter both on average and for the most complex circuits. We 

proved here that every 3-qubit circuit can be realized with at most 6 gates: NOT, Feynman and 

Peres. Our design times are better than those reported in the previous work. 

 

Table 3: Number of gates with minimum length k 

Mini- 

length NFT NFP NFFr NFPT NFTFr NFPFr

0 1 1 1 1 1 1 

1 12 15 12 18 15 18 

2 102 174 101 228 143 248 

3 625 1528 676 1993 1006 2356 

4 2780 8968 3413 10503 5021 12797 

5 8921 23534 11378 23204 15083 22794 

6 17049 6100 17970 4373 17261 2106 

7 10253 0 6739 0 1790 0 

8 577 0 30 0 0 0 

Total 40320 40320 40320 40320 40320 40320 

Aver. 5.87 4.84 5.66 4.73 5.33 4.60 

maxl 8 6 8 6 7 6 

Time 12 10 13 10 12 11 

 

It can be also seen in Tables 3 and 4 that all libraries that include Peres gate lead to cheaper 

circuits than those that do not include such gate (Aver. means the average minimum cost, and we 
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assume that cost of NOT gate = 0, cost of Feynman gate = 1, cost of Toffoli gate = 5, cost of 

Peres gate = 4, and cost of Fredkin gate = 5). It can be observed that NFP library is good enough, 

NFPFr library is just a little better than NFP after adding 3 Fredkin gates. 

 

Table 4: Number of circuits with minimum cost k 

Mini-cost NFT NFP NFFr NFPT NFTFr NFPFr 

0 8 8 8 8 8 8 

1 48 48 48 48 48 48 

2 192 192 192 192 192 192 

3 408 408 408 408 408 408 

4 480 672 480 672 480 672 

5 288 1248 288 1248 384 1344 

6 592 3184 880 3184 1072 3568 

7 2016 4320 3008 4320 3104 3968 

8 4128 3552 3904 3552 3808 3424 

9 2496 11520 1440 11520 1248 11520 

10 672 4416 416 4416 1856 4416 

11 2880 0 4608 0 6720 0 

12 7488 9856 10432 9856 7552 9856 

13 7488 896 3456 896 2688 896 

14 384 0 0 0 0 0 

15 1600 0 0 0 6784 0 

16 5568 0 4608 0 3840 0 

17 3584 0 6144 0 128 0 

Aver. 11.98 9.08 11.87 9.08 11.38 9.06 

Time 112 111 123 126 159 126 

 

From the library NFP and NFPT in Table 4, we know that any 3*3 reversible circuits can be 

realized by no more than 13 2-qubit control and XOR quantum gates and some 1-qubit NOT 

gates. Therefore, the maximum cost of any 3*3 reversible circuits is no more than 13. 
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5. Conclusion 

By reducing the reversible circuit synthesis problem to group theory representation and using 

group-theory algebraic software GAP, we were able to synthesize exact 3-qubit circuits with the 

minimum numbers of gates from various libraries. Our approach synthesizes minimum-cost 

circuits from libraries of gates with arbitrary costs. We showed that a Peres gate is better than the 

Toffoli gate that is used by practically every research paper. We demonstrated on several 

examples and in an exhaustive analysis the importance and usefulness of the Peres gate. It is the 

cheapest gate in NMR quantum realization [15]. Using the library containing the Peres gate, we 

can have circuits with a smaller number of gates with a less cost. As a result, there are no more 

reasons to use Toffoli gates in practical NMR designs.  
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