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Fast synthesis of large-area bilayer graphene
film on Cu
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Bilayer graphene (BLG) is intriguing for its unique properties and potential
applications in electronics, photonics, and mechanics. However, the chemical
vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is
suffering from a low growth rate and limited bilayer coverage. Herein, we
demonstrate the fast synthesis of meter-sized bilayer graphene film on com-
mercial polycrystalline Cu foils by introducing trace CO2 during high-
temperature growth. Continuous bilayer graphene with a high ratio of AB-
stacking structure can be obtained within 20min, which exhibits enhanced
mechanical strength, uniform transmittance, and low sheet resistance in large
area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer
graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal
Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene
exhibits tunable bandgap and performs well in photodetection. This work
provides important insights into the growth mechanism and the mass pro-
duction of large-area high-quality BLG on Cu.

Bilayer graphene (BLG) and its stacking order provide remarkable and
unique properties compared to monolayer graphene (MLG), such as
the tunable bandgap of AB-stacking BLG (AB-BLG)1, the conventional
superconductivity in magic-angle twisted BLG (tBLG)2, as well as the
enhanced mechanical strength3 and electrical conductivity4. There-
fore, the controlled preparation and applications of BLG have attrac-
ted intense academic and industrial interests5,6. The current methods
for the synthesis of BLG mainly include mechanical exfoliation7, arti-
ficial stacking of two individual monolayer graphene8, and chemical
vapor deposition (CVD) growth9,10. However, the exfoliation method
suffers from small sizes of graphene flakes and therefore low pro-
duction efficiency, while stacking of two monolayer graphene would
inevitably introduce interfacial impurities. In contrast, the CVD
approach has exhibited excellent capability to synthesize large-area,

high-quality BLG films, and the as-received BLG can satisfy the
requirements of graphene-based electronic and photonic devices in
terms of scalability and quality11,12.

Despite the recent breakthrough regarding the CVD synthesis of
BLG with near-100% coverage and uniform stacking order using metal
alloys suchasCuNi13,14, CuSi15, and Pt3Si

16, the fabricationofmetal alloys
usually needs careful control over the amount and uniformity of
alloying element in large area, which would become more difficult in
the industrial-scale production. In this regard, it is still challenging to
achieve the fast synthesis of large-area continuous BLG on Cu, which is
the most promising metal substrate to synthesize high-quality gra-
phene films with low cost and high uniformity6. The growth of adlayer
graphene on Cu requires an additional supply of carbon species, and
two possible routines have been reported to supply active carbon
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species for growing the second-layer graphene. Carbon species can
either diffuse from the edge of the MLG domains to be consumed in
the nucleation and growth of second layers17,18 or diffuse across the Cu
bulk to supply the growth of the second layer on the other side of the
Cu foil19,20. However, the reported bilayer coverage of graphene on Cu
is still less than 95%21, and several hours are required for the growth22,23.
This is because the second-layer graphene usually nucleates under-
neath the first-layer graphene, resulting in the difficulty in the con-
tinuous supply of active carbon species16. Especially, the supply of
active carbon species gradually decreases with the coverage of gra-
phene on Cu, which would determine the amount of carbon species
produced on uncovered Cu, and the growth of BLG would be imme-
diately terminated once the Cu is fully covered by graphene24. The
structure of Cu pockets22 or enclosures25 has been used for initiating
the diffusion through the Cu bulk, which, however, is not compatible
with mass production, for adjacent Cu would be fused together easily
at high temperature. Therefore, tremendous efforts are still in great
demand for achieving the fast and scalable synthesis of BLG on com-
mercially available Cu foil.

CO2, the greenhouse gas, has been widely utilized to produce
valuable carbon-based nanomaterials tomitigate the adverse effects of
high CO2 emissions. Recently, the capability of CO2 for high-
temperature CVD growth of graphene has been reported by several
groups26,27. In detail, CO2 can be utilized for the pre-treatment of
commercial Cu substrates based on its selective etching ability of the
disordered carbon impurities26,27 or for growing graphene as the car-
bon source28. However, when CO2 is employed as a carbon source,
additional catalysts, such as Ni/Al2O3

21,28 and CuPd29, or special treat-
ment of the substrates30 are usually required, which might hinder
compatibility with the mass production processes. In all, even though
isolated MLG domains28, continuous MLG films26,27, and isolated BLG
domains21 have been successfully grown based on CO2, till now, the
controlled preparation of large-area high-quality continuous BLG on
Cu has not been achieved yet.

Herein, we demonstrated the role of CO2 in the formation of BLG
andachieved the fast synthesisof continuousBLGwithin 20minon the
commercial polycrystalline Cu foils, which is compatible with the
production ofmeter-sized BLG films with bilayer coverage no less than
94%. During the high-temperature growth, CO2 can etch the as-formed
MLG film and provide sufficient diffusion routes for carbon species to
arrive at the Cu surface, which would fuel the growth of the second-
layer graphene underneath. The growth mechanism was identified by
an isotropic labeling technique. Transmission electron microscopy
(TEM) and Ramanmeasurements confirmed AB-stacking dominated in
the as-received BLG, which also exhibits enhanced mechanical
strength and reduced sheet resistance. Especially, 96 and 100% AB-
stacking structure can be obtained on single-crystal Cu(111) foils and
ultraflat single-crystal Cu(111)/sapphire substrates, respectively.
Moreover, AB-BLG also exhibits tunable bandgap and promising per-
formance as employed for photodetectors. This work not only pro-
vides a deeper understanding of the growth mechanism of BLG on Cu
but also paves an avenue toward the mass production of high-quality
BLG films for potential applications.

Results
Rapid growth of BLG assisted by CO2

The fast synthesis of BLG film on Cu foils was carried out by introdu-
cing CO2 with trace amount into the low-pressure CVD system during
the high-temperature growth (Supplementary Fig. 1). After the opti-
mization of CVD growth parameters, such as the growth pressure and
gas flow rates of H2 and CH4, continuous BLG was obtained after
20min growth (Supplementary Figs. 2–8). Figure 1a–c shows the
representative optical microscope (OM) images of the as-prepared
graphene films that were grown on polycrystalline Cu foils and then
transferred onto SiO2/Si substrates after varied growth times. In detail,

after 1min growth, the whole coverage of MLG was achieved without
the formation of adlayer (Fig. 1a). Notably, after the introduction of
CO2, the full coverage of the first-layer graphene does not restrict the
growth of second-layer graphene, indicating that the growth behavior
of graphene was different from the previously reported self-limited
growth mechanism24,31. After growth for 10min, bilayer coverage can
increase to ~50% (Fig. 1b), and 20min is sufficient for obtaining the
continuous BLG (Fig. 1c and Supplementary Fig. 8).

Generally, without using CO2, the final bilayer coverage of gra-
phene is less than 10% (Supplementary Fig. 9), consistentwith previous
reports24. In contrast, the growth rate and coverage of BLG on Cu can
be highly enhanced by optimizing the supply amount of CO2, i.e., the
flow rate and injection time of CO2 accompanied by the supply of CH4

for the graphene growth stage. Specifically, the BLG coverage increa-
ses linearly both with the flow rate of CO2 (Fig. 1d) and with the
injection time of CO2 (Fig. 1e). Moreover, once the CO2 is turned off,
the supply of CH4 and H2 would not enable the increase of the bilayer
coverage (Fig. 1f), indicating that continuous supply of CO2 is crucial
for the formation of BLG with high coverage.

In comparison with previous reports, the improvement of both
BLG growth rate and coverage is clearly revealed using our CO2-
assisted synthesis strategy, based on which continuous BLG with an
average domain size of ~30–50μm can be obtained within 20min
(Fig. 1g). Note that the original references are also listed in Supple-
mentary Table 1 with more details9,10,17,21,22,32–52. The CO2-assisted strat-
egy also exhibits excellent scalability and compatibility with the
growth of large-area graphene on Cu foils. The introduction of CO2

enabled the successful synthesis of eight pieces of submeter-sized BLG
film (0.3m * 0.1m) in one batch with an average bilayer coverage
higher than 95% (Fig. 1h, i and Supplementary Figs. 10–12). Moreover,
the graphene film grown on a two-meter-long Cu foil with BLG cov-
erage of ~92% was also achieved by simply introducing CO2 into a
homemade roll-to-roll mass production system (Supplemen-
tary Fig. 13).

The role of CO2 in facilitating BLG growth on Cu
The growth mechanism of the BLG assisted by CO2 was investigated
using the isotopic labeling technique. In detail, BLG films were syn-
thesized by alternately introducing 13CH4 and

12CH4 every 2min to fuel
the graphene growth (Fig. 2a), while the flow rate of H2 and CH4 was
kept constant. The graphene films after the growth of 1min, 10min,
and 20min were then separately transferred to SiO2/Si substrates for
Raman characterization, which can visualize the spatial distribution of
isotopes37,53. Representative Raman spectra of MLG composed of 12C
(12C-MLG), BLG composed of 12C (12C/12C-BLG), and BLG consisting of
12C in the first layer and 13C in the second layer (12C/13C-BLG) are pre-
sented in Fig. 2b. The spatial distribution of 12C and 13C can be obtained
from Raman intensity mappings of the G bands centered at ~1580 cm−1

and ~1520 cm−1, respectively, which correspond to the 12C-labeled
graphene and 13C-labeled graphene. Figure 2c, d clearly reveals the
formation of a continuous 12C-MLG film, which means that 1-min
exposure of 12C-labeledmethane is sufficient for growing fully covered
MLG on Cu. The nucleation time of the second-layer graphene can be
inferred by the number of observed 13C rings in one concentric hexa-
gon and the number of introduced 13C flux, and the growth rate can be
inferred from the length of 13C or 12C shell and the introduction dura-
tion of 13C or 12C-labeled methane (Fig. 2e, f, and Supplementary
Fig. 14). Clearly, after the nucleation, the growth rate of BLG domains
keeps nearly constant (~2μm/min) until the coalescence with adjacent
domains (Fig. 2f and Supplementary Figs. 14 and 15). In addition, the
segregation growth of BLG was also excluded by the clear border
between12C-IG and 13C-IG rings.

Stacking sequence of the BLG was identified by performing mild
Bi3+ sputtering to acquire the depth profile of 12C and 13C using time-of-
flight secondary ionmass spectrometry (ToF-SIMS). Note that the BLG
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sample with ~50% bilayer coverage was used to easily distinguish the
MLG and BLG regions, and the sample was synthesized by alternately
introducing 13CH4 and 12CH4 every 2min for 10min. As indicated, the
top-layer graphene is mainly composed of 12C, while the bottom-layer
graphene is composed of ~50% 12C and 50% 13C (Fig. 2g and Supple-
mentary Fig. 16), verifying that the second-layer graphene grows
underneath the first-layer graphene, consistent with the Raman results
of the 13C/12C-BLG treated after mild etching using oxygen plasma
(Supplementary Fig. 17). Interestingly, we observed a high spatial
uniformity of 13C signals with a lower intensity than 12C in the first-layer
graphene, which is mainly attributed to the etching by CO2 and
repairing by 13C-labeled methane of the first-layer graphene (Supple-
mentary Figs. 18 and 19)54, implying the crucial role of the partial
etching of the first-layer graphene for the fast synthesis of BLG on Cu
(Supplementary Fig. 20).

Therefore we propose that the CO2-assisted growth of BLG with
full coverage on Cu substrate mainly consists of four steps: (1) a con-
tinuous MLG film (first-layer graphene) would quickly form on Cu

owing to the sufficient supply of carbon source, which can be etched
with the formation of point defect by the introduction of CO2; (2)
active carbon species would diffuse through defects in first-layer gra-
phene to fuel the nucleation and growth of second-layer graphene
between the first-layer graphene and Cu substrate; (3) the growth of
second-layer graphene domains are continuously fueled by the supply
of active carbon species; (4) a continuous BLG film quickly forms on
the Cu foil.

Characterization of BLG grown on polycrystalline Cu foils
Stacking order and crystallinity of the as-synthesized BLG on the
commercial polycrystalline Cu foils was characterized using TEM.
Figure 3a displays a typical high-resolution TEM (HRTEM) image of
BLG, from which the lattice of AB-BLG is clearly visible. Layer-by-layer
etching of the as-synthesized graphene film using electron beam
radiation also provides direct evidence about the graphene layer
number. Selected area electron diffraction (SAED) patterns (inset in
Fig. 3a) were collected across the whole region of the 3-mm-sized TEM
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Fig. 1 | Fast synthesis of large-area bilayer graphene (BLG) film with the assis-
tance of CO2. a–c Optical microscope (OM) images of the transferred graphene
after 1min (a), 10min (b), and 20min (c) growth on commercial polycrystalline Cu
foils. Monolayer graphene is abbreviated as MLG. d Relationship between the
graphene bilayer coverage and the flow rate of CO2, together with a linear fitting
(dashed red). Inset: Typical OM images of the graphene grown using 5 sccm (top
left) and 20 sccm (bottom right) CO2. e Relationship between the graphene growth
time and its bilayer coverage when 30 sccm CO2 was introduced to grow graphene
for 20min, together with a linear fitting (dashed red). f Relationship between the
graphene growth time and its bilayer coveragewhen 30 sccmCO2was utilized only

in the first 10min. The dashed line connects the points using a B-spline option in
Origin. Inset: OM image of the synthesized graphene after flowing H2 and CH4 for
90min but only flowing CO2 in the first 10min. Error bars in (d–f) represent stan-
dard deviations from three measurement results for each sample. g Relationship
between the graphenegrowth time and its bilayer coverage, showing the advantage
of our CO2-assisted strategy (red) in comparison with previous works (blue).
h Photographs of the large-area BLG films grown on eight pieces of commercial Cu
foils in one batch. i Statistic of the graphene bilayer coverage of the graphene
samples in (h) (red) and the graphene sample grown without CO2 (green).
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grid (inset in Fig. 3b). Based on orientations of the SAED patterns, the
ratio of AB-BLG and tBLG was calculated. Note that, for AB-BLG, the
hexagonal SAED pattern with a diffraction intensity ratio of the outer
{1-210} peak over the inner {0-110} peak is 2:1, while for tBLG, there are
two groups of MLG SAED patterns, whose intersection angle corre-
sponds to the twist angle of tBLG (Supplementary Fig. 21). AB-BLG
stacking structure was dominant on Cu(100)-dominated polycrystal-
line Cu foil substrates, with the ratio as high as 61% (Fig. 3b), pre-
sumably owing to the lower formation energy of AB-BLG than that of
tBLG55.

To further characterize the crystallinity of the BLG, large-area
HRTEM images of AB-BLG and tBLG with lattice resolution were also
captured (Supplementary Fig. 22), and the absence of defects clearly
confirms the high quality of the BLG. The mechanical property of the
suspended BLG, which is highly related to its defect density, was also
measured using the atomic force microscopy (AFM) nano-indentation
method16. From the force-displacement curve in Fig. 3c, Young’s
modulus and fracture force of the as-prepared BLG were estimated to
be ~698Nm−1 (1.04 TPa) and ~79.5 Nm−1 (118.6GPa), which are com-
parable with the values of the exfoliated BLG and significantly higher
than those of its monolayer counterpart (Supplementary Fig. 23).

The optical and electrical properties of the BLG films were
investigated by transferring graphene films onto the functional sub-
strates with the assistance of polymethyl methacrylate (PMMA)56. As
shown in Fig. 3d, the BLG film on the quartz substrate exhibits an
average optical transmittance of ~95.4% at 550nm wavelength with
high uniformity in large area (Supplementary Fig. 24). At the same
time, the sheet resistance of BLG (~150Ω sq−1) on SiO2/Si substrate is
much lower than that of the MLG (~339Ω sq−1) (Fig. 3e and Supple-
mentary Fig. 25). Furthermore, the narrow distribution of the sheet
resistance of the BLG over large area further confirms its high uni-
formity (Fig. 3f).

Synthesis of AB-BLG on Cu(111) substrates
Based on our CO2-assisited strategy, two kinds of Cu(111) substrates
were prepared as substrates for growing single-crystal AB-BLG. The
ratio of AB-BLG increased to ~96% when using a single-crystal Cu(111)
foil substrate derived from the high-temperature annealing of com-
mercial polycrystalline Cu foils57 (Supplementary Figs. 26 and 27).
Moreover, a 100% AB-stacking structure has been successfully syn-
thesized on the ultraflat single-crystal Cu(111) that was obtained by
epitaxial growth of Cu(111) (i.e., Cu(111) film) on annealed c-plane
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sapphire58 (Fig. 4a and Supplementary Figs. 28–30), which might be
thanks to the enhanced surface flatness and purity of the Cu(111) film
substrate. The atomic-resolution scanning TEM (STEM) image of AB-
BLG was also acquired, in which the bright and dark spots correspond
to the overlapped AB carbon atoms and the un-overlapped A or B
carbon atoms, respectively (inset in Fig. 4a).

Raman spectra of the AB-BLG films grown on Cu(111) were col-
lected after the transfer of graphene to SiO2/Si substrate (Supple-
mentary Figs. 31 and 32), based onwhich the stacking order and defect
density of as-received graphene canbe inferred16. The absenceof theD
band further verifies the high crystallinity of the BLG (Fig. 4b). The
asymmetrical 2D band with a full width at half maximum (FWHM) of
~55 cm−1 can be well fitted into four Lorentzian bands with different
frequencies, confirming the AB stacking order (Fig. 4c). In addition,
Raman mapping and statistics of both the FWHM of 2D band and
intensity ratio of 2Dband toGband (Supplementary Fig. 31b, c) further
reveal the high quality and spatial uniformity of the AB-BLG.

The electrical quality of the AB-BLG is probed using the dual-gate
Hall bar device, where the AB-BLG crystal is encapsulated by two bulk
hBN flakes (Supplementary Figs. 33 and 34)59, which function as top
and bottom dielectrics. An observable bandgap can be induced in our
AB-BLG device by applying an out-of-plane electric displacement
field13,14. In detail, the total resistance (ρxx) of the BLG varied sig-
nificantly with both back gate voltage (Vbg) and top gate voltage (Vtg),
which clearly verified the tunability of the bandgap (Fig. 4d and Sup-
plementary Fig. 35).

Compared with MLG, BLG also shows superior performance
when utilized for graphene-based photodetection. The adjacent
MLG and AB-BLG regions, after transferring onto a SiO2/Si substrate,

were etched into a strip and then fabricated into a two-terminal field
effect transistor (FET) device (Inset of Fig. 4e and Supplementary
Fig. 36). After conducting the photocurrent mapping over the entire
device using a home-built scanning photocurrent microscopy, a
strong photoresponse was observed at the interfaces of the
graphene-metal electrodes with opposite polarity (Fig. 4f), con-
sistent with previously reported results of metal-graphene
junctions60,61. The photocurrent profiles along the two graphene/
electrode interfaces are displayed in Fig. 4e, in which a much larger
net photocurrent was generated in the BLG/metal junction than that
between the MLG/metal junction, which can be attributed to the
enhanced optical adsorption and higher Seebeck coefficient of
BLG62,63. Enhanced photoresponsivity with uniform distribution is
also observed in the channel region of the BLG in comparison with
its monolayer counterpart (Fig. 4f).

Discussion
In all, we raise a strategy to synthesize meter-sized BLG films on
commercial polycrystalline Cu foils by introducing trace CO2 during
the high-temperature growth stage, based on which continuous BLG
is obtained within 20min. The BLG is dominated by AB-stacking
structure (~61% areal ratio) and exhibits improved mechanical,
optical, and electrical properties. Moreover, ~100% AB-BLG single
crystal has been successfully grown on the ultraflat single-crystal
Cu(111)/sapphire substrate, which is prepared by epitaxial deposi-
tion of Cu on single-crystal sapphire substrates. This work not only
proposes an effective mechanism for the synthesis of BLG but also
paves the way for the fast production and applications of large-scale
BLG films.
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Methods
Graphene synthesis
The graphene film is grown on commercial Cu foils (25μm thick,
99.9%, Kunshan luzhifa Electronic Technology Co., Ltd) in a hot-wall
low-pressure CVD system equipped with a quartz tube (6 inches in
diameter). The Cu foil is first heated to 1020 °C under CO2 atmosphere
(500 sccm, ~1000Pa) for 60min and then annealed in the same
atmosphere for 30min to eliminate the carbon-containing con-
tamination before graphene growth. A mixture gas of H2

(100–1000 sccm), CH4 (1–20 sccm), and CO2 (0–30 sccm) is subse-
quently flowed into the CVD chamber to initiate the BLG growth
(1–90min). CO2 is turned off after the graphene growth, followed by
rapid cooling to room temperature under the mixing gas of CH4 and
H2. In addition, to investigate the growth mechanism, the 13C-labeled
CH4 is utilized, which is purchased from the Sigma-Aldrich company
(production number #490229) with 13C atom ratio of 99%. The batch-
to-batch mass production of eight pieces of submeter-sized BLG films
(0.3 × 0.1m2) with the aid of CO2 is conducted by supporting the Cu
foils using quartz plates, which are stacked vertically using the small
quartz columns as the spacer to control the distance between adjacent
layers. The CO2 annealing time is prolonged to 60min to thoroughly
clean the Cu surface while other parameters were kept the same.
Meter-sized BLG film is grown inside a quartz tube with a diameter of
10 inches using a homemade roll-to-roll CVD system, whose constant
temperature region is 2m long (Details seen in Supplementary infor-
mation). For single-crystal AB-BLG grown on Cu(111) films, after 30min
high-temperature annealing at 1020 °C using 1000 sccm Ar and

50 sccm H2, 200 sccm CH4 (0.1%, diluted in Ar) is introduced for
60min to acquire a continuousMLG film, followed by flowing 30 sccm
CO2 for 30min to prepare a continuous BLG.

Graphene transfer
The graphene is transferred to quartz and SiO2/Si substrates with the
assistance of PMMA for structure characterization and property
measurement64. In brief, PMMA is spin-coated atop the graphene/Cu
samples and then baked at 170 °C for 5min. Prior to Cu etching using
1M Na2S2O8 solution, the graphene film on the other side of Cu is
removed using air plasma (40W, 15 sccm, 3min) (Pico SLS, Diener).
After being washed several times using deionized water, the PMMA/
graphenemembrane is lifted by target substrates and dried overnight,
followed by the PMMA dissolution in acetone. For TEM characteriza-
tion, BLG films are transferred from the Cu substrates onto the com-
mercial TEM grids (Quantifoil, Au-300 mesh-R2/1 µm) without using
PMMA65. After putting a TEM grid on top of the flat BLG/Cu sample, a
droplet of isopropanol was used to adhere them together, followed by
etching Cu using Na2S2O8 solution (0.5M concentration) and cleaning
the suspended BLG sample in distilled water, which was finally dried
using a mild N2 flow.

Graphene characterization
Bilayer coverage of graphene films is evaluated using OM (Nikon
microscopy (LV100ND) and scanning electronmicroscopy (SEM, FEI
Quattro S, acceleration voltage 1–20 kV). The crystallographic
orientation of Cu is confirmed via EBSD (DigView 5 operated at 20 kV
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Fig. 4 | Synthesis of AB-stacking bilayer graphene (AB-BLG) on Cu(111) sub-
strates. a Distribution of twist angles based on selected area electron diffraction
patterns of the BLG grown on the ultraflat single-crystal Cu(111) substrate that was
obtained by epitaxial growth of Cu(111) (i.e., Cu(111) film) on annealed c-plane
sapphire. Inset: Statistical results of AB-BLG (red) and non-AB stacking BLG (tBLG)
(blue) (center) and scanning transmission electron microscope image of the AB-
BLG with atomic resolution (top right). b Raman spectra of the AB-BLG transferred
onto a SiO2/Si substrate acquired via a line scanning with the step of 50μm by
normalizing theGband intensity. cRaman2Dbandof theAB-BLG,which isfittedby
four Lorentzian peaks. d Two-dimensional plot of the total resistance (ρxx) as
functions of both top gate voltage (Vtg) and back gate voltage (Vbg) of a dual-gate

AB-BLG device. e Photocurrent distribution in the two graphene/electrode junc-
tions. Inset: Optical microscope image of the graphene field effect transistor (FET)
device and the boundary ofmonolayer graphene (MLG) and BLG regions ismarked
by thewhite dashed line. Scale bar: 5μm.The green and purple areas correspond to
the MLG and BLG regions, respectively, and the blue and red curves correspond to
the two black dashed lines in the inset, as denoted by the black arrows.
f Photocurrent mapping result of the graphene device, in which the MLG is on the
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correspond to the regions marked by black dashed lines in the inset of (e) and the
white dashed line denotes the boundary of MLG and BLG regions.
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voltage). The distribution of 12C and 13C is analyzedwith a ToF-SIMS 5
instrument (ION-ToF GmbH, Münster, Germany), which is equipped
with a 30 keV Bi3+ primary ion gun, a 1 keV Cs+ sputter gun, together
with an electron flood gun for charge neutralization. TEM char-
acterizations are conducted using FEI Tecnai F30 for collecting
SAED patterns under 300 kV, using an aberration-corrected and
monochromated G2 cubed Titan 60-300 electron microscope for
HRTEM imaging under 80 kV, and using a double aberration-
corrected FEI (Titan Cubed Themis G2 electron microscope) for
STEM imaging under 60 kV. The nano-indentation experiment is
performed using Asylum Cypher ES AFM. Raman spectra were
obtained with LabRAM HR-800 using a 532 nm laser and ×100
objective. Optical transmittance spectra are collected using a
Perkin-Elmer Lambda 950 UV-vis spectrophotometer, and the
transmittance mapping is conducted by manually adjusting the
sample positions. Sheet resistance is measured by a four-probe
resistance measuring meter (CDE ResMap 178).

Device fabrication and measurement
For the electrical measurement, the AB-BLG is first encapsulated by
two pieces of relatively thick hBN crystals (~40nm) using the dry-peel
technique with the aid of poly-propylene carbonate/poly dimethyl
siloxane stack59,66 and then fabricated into a Hall bar device with one-
dimensional contacts (Cr/Au, 3 nm/80 nm) using electron-beam
lithography (EBL) and standard etching procedure. The fabricated
device is thenmeasured using the conventional lock-in technique. The
carriermobilitywasmeasured at 300K in a glovebox filledwithAr, and
the gate-dependent transfer curves were measured at 290K under
vacuum after storage in high vacuum (~10−7 torr) for 1 week. For the
photocurrent measurement, the AB-BLG FET device is fabricated on a
285 nm SiO2/Si substrate. The metal contacts (Ti/Au, 5 nm/45 nm) are
fabricated using EBL, followed by metal deposition and the lift-off
process. The photocurrent is then measured using a homemade
scanning photocurrent microscope67 under a focused 532 nm laser
spot (~10μW, 1μmindiameter)without applying source-drain bias and
gate bias.

Data availability
The source data underlying the figures of this study are available at
https://doi.org/10.6084/m9.figshare.22633576. All raw data generated
during the current study are available from the corresponding authors
upon request.
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