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Abstract—Fast searching a particular subset in a large number
of products attached with RFID tags is of practical importance
for a variety of applications but not yet thoroughly investigated.
Since the cardinality of the products can be extremely large,
collecting the tag information directly from each of those tags
could be highly inefficient. To address the tag searching efficiency
in large-scale RFID systems, this paper proposes several algo-
rithms to meet the stringent delay requirement in developing
fast tag searching protocols. We formally formulate the tag
searching problem in large-scale RFID systems. We propose
utilizing compact approximators to efficiently aggregate a large
volume of RFID tag information and exchange such information
with a two-phase approximation protocol. By estimating the
intersection of two compact approximators, the proposed two-
phase compact approximator based tag searching protocol sig-
nificantly reduces the searching time compared with all possible
solutions we can directly borrow from existing studies. We further
introduce a scalable cardinality range estimation method which
provides inexpensive input for our tag searching protocol. We
conduct comprehensive simulations to validate our design. The
results demonstrate that the proposed tag searching protocol is
highly efficient in terms of both time-efficiency and transmission
overhead, leading to good applicability and scalability for large-
scale RFID systems.

Index Terms—RFID, Tag searching, Approximate protocol

I. INTRODUCTION

Radio Frequency Identification (RFID) technology [7] is

becoming ubiquitously available in a variety of applications,

including inventory management [22], transportation and lo-

gistics [6, 12, 17], object identification and tracking [16, 26],

and etc. Searching a particular set of RFID tags in a large-scale

RFID system is of practical importance for those applications.

For example in inventory management, there is usually a need

of taking stock according to a list of items. Formally, the

problem of tag searching can be defined as follows: given

a set of wanted RFID tags, we wish to know which among

them, if any, currently exist within the interrogation zone of

RFID readers (as Figure 1 depicts, we want to know which tags

within set X exist in tag set Y in the zone). While many active

efforts have been put in studying RFID systems and significant

advance in recent years has been achieved, surprisingly, the

problem of searching with a large number of tags is yet under-

investigated by the research community.

Many existing works concentrate on the RFID tag identi-

fication problem [11, 15, 28], which aims to identify each

of a large number of RFID tags as quickly as possible. The

major research issue in tag identification problem is to design

efficient algorithms that resolve the tag collision problem since
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multiple RFID tags may contend the spatially and temporally

shared communication channel. As a matter of fact, RFID

identification schemes can be directly borrowed to address

the tag searching problem in small-scale RFID systems, i.e.,

when the number of RFID tags is small, we are able to collect

all tag IDs within the interrogation zone and compute the

intersection with a given set of wanted tags. Such solutions,

however, bear the common communication collision problems

among RFID tags, and in particular the long data collection

process renders it inappropriate for applications with stringent

delay requirement. Due to tag-tag collisions, in slotted Aloha-

based identification protocols, each tag attempts 2.72 times

on average to successfully deliver its ID to the reader even

with ideal frame sizing [11]. As a result the efficiency of

identification protocol is very low. According to the RFID

standard ISO-18000, the average identification throughput is

about 100 tags per second [24]. In large-scale RFID systems,

the number of RFID tags could be huge, e.g., there may store

millions of products in a supermarket inventory. Collecting

such a vast volume of RFID tag IDs often fails to meet a

stringent delay requirement.

By painstakingly collecting high volume of RFID tag IDs,

such identification based approaches are far from fast and

efficient tag searching. The current inadequacy motivates us

to design an efficient tag searching protocol without the

expensive tag ID identification phase so as to meet real-time

application demands. We observe that many real applications

can tolerate and are robust to certain error rate within a suffi-

ciently small range. For example, the inventory manager may

want to search for a subset of products with manufacturing

flaws and such a practical application can tolerate small false

positive errors, e.g., provided that all flawed products can be

found, it is acceptable even if a small portion of good products

are wrongly identified as flawed. It is thus desirable to leverage

such characteristics and seek dramatic efficiency improvement



as long as the error rate can be preserved within the tolerable

range.

In order to reduce the overhead of tag searching in large-

scale RFID systems, we propose utilizing compact approxi-

mators to efficiently aggregate a large volume of RFID tag

information, and transmit the compact approximators instead

of directly broadcasting or collecting tag IDs. By transmitting

the succinctly encoded sets instead of raw data sets between

RFID tags and readers, the communication cost involved in

the tag searching protocol is significantly reduced. In this

paper, we choose the Bloom filter as a vehicle to illustrate the

principle of our idea. Many variants of the Bloom filter can

be used as well for the specific design purpose. Nevertheless

due to the large number of RFID tags and the heavy channel

competition how to optimize approximator utility and reduce

the communication cost remains non-trivial. Constrained by

computation and storage resource of RFID tags, achieving the

optimal protocol performance brings challenging problems as

well.

In this paper, we propose a time-efficient protocol for tag

searching in large-scale RFID systems. The objective of the

protocol is to 1) examine whether any wanted tags exist in

the reader interrogation region, and 2) if there are any, report

the IDs of those tags. We also develop a light-weight tag

cardinality range estimation algorithm for input of the tag

searching protocol. We seek to reduce the communication cost

and time delay involved in the tag searching process with

a two-phase compact approximator exchange approach. The

wanted tag set is first aggregated and broadcasted to the RFID

tags and the tag feedbacks are once again aggregated and

revealed to the readers. With optimal parameter settings for

such a two-phase approximator exchange process, we are able

to significantly reduce the transmission overhead according to

particular accuracy requirement.

Our contributions can be summarized as follows. We for-

mally introduce the tag searching problem in large-scale RFID

systems. To the best of our knowledge, this is the first attempt

aiming to address such a practically important and yet under-

investigated problem. We propose a baseline protocol, and then

on top of it propose a much more efficient two-phase compact

approximator based tag searching protocol which significantly

improves the communication and time efficiency in tag search-

ing with guaranteed error rate. The extensive simulation results

show that compared with the baseline protocol, the proposed

tag searching protocol reduces the communication time by

around 79%, and reduces even more compared with the tag

identification based protocols.

The rest of the paper is organized as follows. We present

related work in Section II. In Section III, we formally in-

troduce the tag searching problem and describe the design

requirements. We give detailed description on the tag searching

protocol design and analysis in Section IV. In Section V

we conduct extensive simulations to evaluate our proposed

protocols. Finally we conclude this work in Section VI.

II. RELATED WORK

One closely related problem is RFID identification which

aims at collecting the tag IDs of all RFIDs in the interro-

gation region ([11], and references therein). Existing RFID

identification protocols generally fall into two categories:

ALOHA-based [13, 20] and Tree-based [4, 15] protocols. In

ALOHA-based identification protocols, the reader initiates the

communication between the tags by broadcasting the query

request. Upon receiving such a request, each tag randomly

chooses a time slot and transmits its ID in the corresponding

slot. If the time slot happens to be a singleton slot (i.e., the

time slot has been selected by only one tag), then the tag can

be successfully identified and will keep silent in the rest of

identification process. If the time slot that the tag selected turns

out to be a collision slot (i.e., more than one tag select the time

slot), then the tag cannot be identified, and therefore the tag

retransmits its ID. In Tree-based identification protocols, the

reader interrogates tags and detects whether any transmission

collision occurs. If there are any collisions, the reader splits the

tag set into two subsets and queries the subsets with fewer tags.

The reader continues to splitting the tag set until all the tags

can be successfully identified. While the RFID identification

protocols can be directly borrowed to address the tag searching

problem, the communication overhead and time delay with

large-scale RFID systems could be excessively high.

Instead of identifying all RFID tags, protocols for iden-

tifying missing tags monitor a set of tags and detect the

missing-tag event. The protocols periodically monitor RFID

tags and report whether any tags are missing with a detection

probability. In [22], the monitoring protocol sends an alarm

with high probability once the number of missing tag exceeds

a user-defined threshold. In [14], Li et al propose a missing-tag

detection protocol which can detect the missing-tag event with

certainty as well as report which tags are missing. Opposite to

their purpose of finding missing tags, in this work we focus

on searching a set of tags in the interrogation area.

In [21], Tan et al propose a flexible protocol to authenticate

a single RFID tag. In [24], Yang et al propose an efficient

identification-free batch authentication for large-scale RFID

systems, which provides a provable probabilistic guarantee

that the percentage of potential counterfeit tags is below a

threshold. However, those protocols are not suitable for effi-

ciently searching tags in large-scale RFID systems. There are

currently no works that are capable of extending authentication

protocols to support tag searching in a scalable manner.

Rather than identifying the RFID tags, the RFID cardi-

nality estimation protocols count the number of distinct tags

[8, 10, 18, 27], which may serve as useful inputs for tag

identification or searching. When the approximate tag number

is known, RFID identification protocols can achieve best

performance with near-optimal settings. The proposed tag

searching protocol may also need to estimate RFID cardinality

in the reader interrogation zone to calibrate protocol param-

eters. Such cardinality estimation approaches, however, often

consume excessive transmission time.



III. SYSTEM MODEL AND PROBLEM SPECIFICATION

A. System model

In our model, the RFID system consists of three compo-

nents: a backend server, a number of RFID readers, and a large

number of RFID tags. The backend server coordinates the

RFID readers and has powerful computation capability. The

RFID readers, connected to the backend server via high speed

networks, transmit commands of the backend server and later

report responses back to the server. When multiple readers

are synchronized, we may logically consider them as a whole.

For the tags, the RFID system may use battery-powered active

ones that have larger transmission range, or use light-weight

passive ones that are energized by radio waves transmitted by

the readers and communicate with the reader by backscattering

the RF carrier according to the application requirement.

In particular, the current passive RFID tags are required to

implement a set of mandatory commands, e.g., the inventory

commands, according to the EPC global Class-1 Gen-2 stan-

dard [1]. It provides flexibility for manufacturers to implement

customized commands. In conformance with the standard, one

may extend the functionalities of RFID systems and include

some value-added features. Such a flexible design motivates

researchers to explore and design new features for RFID tags

for practical needs with currently available components (e.g.,

random number generator [1, 9], lightweight hash function

[25], etc). We assume that the random number generators

meet the randomness criteria of the EPC standard, and the

lightweight hash functions satisfy the uniform distribution

requirement.

The underlying RFID system is assumed to work on a

slotted MAC model. Each tag waits for the reader’s command

in each round of communication, which is known as the

Reader Talks First mode. Each tag contains a unique 96-bit

ID according to the standard setting in the EPC global Class-1

Gen-2 standard [1].

For each communication frame, a reader initiates commu-

nication first by sending commands and the parameters to

tags, e.g., selecting the tags to participate in the frame and

configuring the number of slots in the frame size. If no tag

transmits signals in the slot, the slot is called an empty slot. If

one or more tags transmit signals in one slot, the slot is called

non-empty slot. The transmitted message can be successfully

decoded if a single tag responds, and messages get corrupted

when multiple tags response in the same slot. Nevertheless,

if an RFID reader only needs to determine whether one slot

is chosen by any tags, we can let each tag transmit one-bit

short response in the selected slot. If the reader captures any

responses in the slot, it means the slot has been selected by

tag(s) and the non-empty slot can be encoded as ‘1’. If the

reader senses no response in a slot, the empty slot can be

encoded as ‘0’.

The tag-to-reader (T⇒R) transmission rate and the reader-

to-tag (R⇒T) transmission rate are not necessarily symmetric

depending on the physical implementation and the interroga-

tion environment [3, 19, 23]. As specified in the EPC global

TABLE I
KEY NOTATIONS

Symbols Descriptions
X The set of the wanted tags

Y The set of tags in the interrogation zone

YC/Y∼C The set of candidate tags/ non-candidate tags

X ∩Y Intersection of X and Y

| · | Cardinality of the set

BF (·) The Bloom filter for the set

A ∩BF (B) The subset of A that can pass the Bloom filter for B

αTb/βTb Reader to tag/ tag to reader per-bit transmission time

h(·) A uniform hash function

Class-1 Gen-2 standard, the T⇒R datarate is either 40 kbps to

640kbps (FM0 encoding format) or 5kbps to 320kbps (Miller-

modulated subcarrier encoding format), while R⇒T datarate

is normally 26.7kbps to 128kbps [1].

B. Problem specification

As Figure 1 depicts, we consider a large-scale RFID system

with Y = {y1, y2, . . .} representing all the RFID tags in the

interrogation zone covered by readers, and X = {x1, x2, . . .}
representing the wanted RFID tags we are interested in.

The problem of searching for RFID tags is to find the
intersection X ∩Y. Each tag x ∈ X is called a wanted tag.

The wanted tags X are not necessarily in the interrogation

area, i.e., the intersection can be an empty set. In other

instances, all the wanted tags may be covered by readers,

i.e., X ⊆ Y. We do not restrict the spatial distribution of

Y. We denote by | · | the cardinality of the set. For example,

as depicted in Figure 1, many tags are covered by 4 readers

in the interrogation zone Y. There are |X| = 24 wanted

tags, among which 16 tags (black dots) are indeed in the

interrogation zone and the other 8 tags (white dots) are not.

For a tag y ∈ Y, with a priori knowledge during the searching

process, if Pr{y ∈ X} �= 0, the tag is considered as a

candidate tag, and if Pr{y ∈ X} = 0, the tag becomes a non-
candidate tag. The candidate tags form a subset YC , and the

non-candidate tags form the other subset Y∼C . Obviously, for

any time instance the subset of candidate tags and the subset

of non-candidate tags are by definition mutually exclusive and

complementary, i.e., YC ∩Y∼C = Ø and YC ∪Y∼C = Y.

As we accumulate more knowledge during the tag searching

process, some candidate tags may eventually become non-

candidate tags. Table I summarizes key notations used across

this paper.

In practical situations, many applications tolerate a small

false rate, as long as the false rate is sufficiently small. For

most applications, in order to make the searching protocol

scalable, it seems natural to trade the accuracy within a

tolerable range for significant efficiency improvement. Given

a false rate requirement, an ideal tag searching protocol is

expected to compute the intersection X∩Y at minimum time

and communication cost with a false rate smaller than the

requirement. As a matter of fact, since the low-cost light-

weight RFID tags are inherently error prone, the impractical

pursuit of perfect X ∩Y calculation may lead to excessively



high overhead in realistic implementations. In spite of the

search accuracy and efficiency, in many applications the

anonymity of the RFID tags should be protected for privacy

issues. Revealing identity information to the public might raise

security and privacy concerns.

To meet above constraints and requirements, the goal of

this work is to propose a fast RFID tag searching protocol

that is able to efficiently calculate the intersection X ∩ Y
within a guaranteed false rate. To this end, the protocol should

avoid the explicit identification of tag IDs, prevent heavy

communication collisions between massive RFID tags, and

reduce the transmitted bits of information.

IV. TAG SEARCHING PROTOCOLS

In this section, we introduce several approaches to develop

efficient tag searching protocols for large-scale RFID systems.

We first give a baseline protocol which prevents collecting

all tag IDs from the interrogation zone. We further propose a

two-phase compact approximator based tag searching protocol

to significantly reduce the transmission cost and achieve

extra high efficiency. In addition, we propose a light-weight

cardinality range estimation approach for providing rough

cardinality as input to the tag searching protocol.

A. Baseline protocol

According to the aforementioned tag identification algo-

rithms, we know that directly collecting tag IDs from all tags

in set Y is highly inefficient because the transmission amount

is high and the tag-tag collisions are heavy. The quantity of

the tags in the interrogation zone can scale up to millions in

some large-scale systems and identifying such amount of tags

is impractical. Since we only concern the set of wanted tags

X rather than all the tags in set Y, an obvious optimization

is that, instead of identifying the tag set Y in interrogation

zone we let the RFID reader broadcast the IDs of tags in set

X one by one and wait for the responses from tags in set

Y. Upon receiving the broadcasted IDs, each tag compares

with its own ID, and reply immediately by sending a short

response if the broadcasted ID matches its own ID or keep

silent otherwise. For each ID, we can reserve a one-bit slot for

identifying tags’ binary response, i.e., ‘1’ when tag response

is received or ‘0’ otherwise. Instead of ‘polling’ IDs from

set Y, by ‘pushing’ the tag IDs from set X, the baseline

protocol avoids collecting a large amount of tag IDs as well

as the heavy tag-tag collisions during the process. Since tag

IDs are 96 bits long and we need a binary response from each

tag, the expected execution time of the baseline protocol is

approximately

TBase = |X| × (96× α× Tb + β × Tb), (1)

where α×Tb denotes the per bit transmission time from readers

to tags, and β×Tb denotes the per bit transmission time from

tags to readers.

In practical large-scale RFID systems, the number of tags

can scale to millions, while the number of wanted tags is

usually much smaller, i.e., |X| � |Y|. Therefore, the baseline

protocol significantly reduces the searching time. Even if |X|
approaches |Y|, since the baseline protocol inherently avoids

tag-tag collisions, it still significantly outperforms the identi-

fication protocols in large-scale tag searching applications.

Although the baseline protocol demonstrates a promising

performance improvement, it suffers several limitations which

motivate our study for a more efficient and secure tag search-

ing protocol. First, though |X| is probably much smaller than

|Y|, |X| can still be a large number for large-scale RFID

systems where there are many wanted items. As the searching

time increases proportionally with |X|, the baseline protocol

may still fail to meet stringent delay requirement. It is yet

significant to further improve the searching efficiency. Second,

the baseline protocol requires that all tags participate during

the entire tag searching process, which results in unnecessary

power consumptions on both reader and tag ends. Third, in

the baseline protocol unique tag IDs are explicitly transmitted

and acknowledged on the air which leads to potential privacy

leaks.

B. Compact approximator based tag searching protocol

Based on the baseline protocol, we propose a two-phase

compact approximator based tag searching protocol to further

reduce transmission overhead and searching time. In particular,

we transmit the compact approximators instead of explicit

tag IDs to reduce transmission amount otherwise involved in

broadcasting or collecting those IDs. One well known compact

approximator, Bloom filter, is capable of encoding itemized

information in a hashed Boolean vector. In this paper we

use the Bloom filter as a representative approximator to carry

aggregated tag ID information. One can choose a variety of

compact approximators to aggregate the tag sets. [2] surveys

various existing techniques using such approximators.

The compact approximator based tag searching protocol

consists of two phases. In the first phase, we significantly

reduce the number of candidate tags in YC by filtering the

candidate tags using a Bloom filter produced with the wanted

tags in X. In the second phase, we estimate the intersection

X∩Y by filtering the wanted tags with a virtual Bloom filter

produced with the responses from the candidate tags.

1) Preliminary: Compact approximators are capable of

succinctly representing a large volume of information. By

transmitting the concisely encoded sets instead of the raw

data sets, the communication cost involved can be significantly

reduced. In this paper, we choose the Bloom filter as a vehicle

to demonstrate how the compact approximator can be used to

develop efficient tag searching protocol.

The Bloom filter representing a set A = {a1, a2, . . . , aM}
of M elements comprises of a Boolean vector of L bits and

K independent hash functions hi(·), 1 ≤ i ≤ K. Each hash

function hi(·) maps an element a ∈ A ⊆ Ω to a bit hi(a) ∈
{1, 2, . . . , L}, where Ω represents the universal set. Initially,

the L-bit array is set to ‘0’. For each element a ∈ A, the bits

hi(a) are set to ‘1’, 1 ≤ i ≤ K. In order to determine whether

a given element b ∈ Ω belongs to A, we compute K hash

functions hi(b), 1 ≤ i ≤ K. If all hi(b) bits on the vector have



been set to ‘1’, we assert that b ∈ A, and otherwise b /∈ A.

Generally, membership testing using Bloom filter has no false

negatives [2]. Nevertheless, it may produce false positives, i.e.,

an element might be misclassified to be within the set while it

is not. Many practical applications tolerate such false positives,

as long as the rate is sufficiently small.

Given the assumption that the K hash functions are inde-

pendently and identically distributed (i.i.d.), and can uniformly

map M elements into the range {1, 2, . . . , L}, the probability

of a false positive can be calculated in a straightforward way.

Let P denote the probability that a particular bit remains ‘0’.

Then P = (1− 1
L )

M×K ≈ e−M×K/L as M × K bits are

independently selected by hash functions with probability 1
L

for each bit. Therefore, the probability that a specific bit is set

to ‘1’ is 1− P . A false positive occurs when for an element

b /∈ A, all hi(b) bits (1 ≤ i ≤ K) are set to ‘1’ due to the

hash results of other elements. We denote the false positive

rate as PFP , and we have

PFP = (1− P )K ≈ (1− e−M×K/L)K (2)

It is easy to see that the minimum value of PFP = 0.6185
L
M

when the number of hash functions is K = L
M × ln 2 given

the number of wanted tags M and the size of Bloom filter L.

In practical applications, the number of wanted tags M is

usually known a priori. On the other hand, the size of Bloom

filter vector L should be carefully selected. Since the false

positive rate PFP monotonically decreases with the increase

of L, a larger size of Bloom filter vector guarantees a lower

false positive rate. A larger L, however, in our tag searching

problem may result in a larger volume of transmission in

broadcasting the Bloom filter vector from the readers to

RFID tags. The number of hash functions, K determines the

computation intensity on RFID tags since each tag should

perform K hash functions with its constrained computation

resources and storage capacities. As K = � L
M × ln 2� is

proportional to the vector size L, choosing appropriate Bloom

filter vector size L is critical to the protocol performance,

helping to achieve better accuracy and efficiency trade-offs.

In later analysis, we assume all parameters including L and

K, are real numbers. In practical implementation, one can first

compute the parameters, and then round them into integers.

There are many lightweight hash functions instantly avail-

able in the literatures. To simplify the circuit design of passive

RFID tags, one may preload random numbers on the memory

chip at each tag during manufacturing. One may adopt the

efficient design that organizes the random bits into a logical

ring, described in [14]. Since each tag only needs a small

number of random numbers (see Section V), the memory

overhead is very small and within the current storage capacity

of (even passive) RFID tags [1].

2) Two-phase compact approximator based tag searching
protocol: We propose a Compact Approximator based Tag

Searching (CATS) protocol. CATS consists of two phases.

Referring to Figure 2, we introduce the CATS protocol in this

subsection.

In the first phase, we reduce the candidate tags using a

X
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2
1

(2) (
( ))

BF
BFY
X

�

Fig. 2. Two-phase filtering: (1) Transmission of the compact approximator
BF1(X) from backend server to the interrogation zone. The readers broadcast
BF1(X) to the tags. The tags that pass BF1(X) remain in candidate tag set
YC = Y ∩ BF1(X); (2) The candidate tags Y ∩ BF1(X) respond in the
second-phase communication. The responses forms BF2(Y ∩BF1(X)) for
server examination.

Bloom filter. In particular, the backend server constructs a

Bloom filter vector by mapping the wanted tags in set X into

an L1-bit array using K1 hash functions with random seed S1.

The RFID readers broadcast the L1-bit Bloom filter vector,

K1, and S1 to all RFID tags in interrogation zone. Here we

denote the Bloom filter vector as BF1(X). When receiving

BF1(X), K1, and S1, each tag y ∈ Y locally performs K1

hash functions with random seed S1 which are identical to

those used to build BF1(X), and checks whether the bits

hi(x) of BF1(X) are ‘1’s for 1 ≤ i ≤ K. If all the K1 bits

in BF1(X) are ‘1’s, then we say the tag y passes BF1(X).
We denote by Y ∩ BF1(X) the set of tags that pass the test

of BF1(X) which is the current candidate set YC .

Since the Bloom filter has no false negatives, the tags that

cannot pass the test of BF1(X), denoted as Y−Y∩BF1(X),
may directly classify themselves into non-candidate set Y∼C .

The non-candidate tags will keep silent and do not participate

in later tag searching operations. On the other hand, the tags

in YC will stay alert and participate in the following phases

of CATS. We emphasize that because of the false positive

problem of the Bloom filter, there are a few tags y /∈ X ∩Y
that may pass the test of BF1(X) in the first phase with a

probability of PFP1.

The expected number of the candidate tags after the first

phase Y ∩BF1(X) is

E (|Y ∩BF1 (X)|) = |Y −X ∩Y| × PFP1 + |X ∩Y|
≤ |Y| × PFP1 + |X ∩Y|

The false positive rate is

PFP1min = 0.6185
L1
|X| = φ

L1
|X| (3)

In later description, we define the constant φ = 0.6185. Since

PFP1 exponentially decreases with the increase of L1, we can

reduce the false positive rate PFP1 at the cost of additional

transmission of a longer BF1(X). The transmission time of

BF1(X) is

T1 = L1 × α× Tb (4)

For the purpose of clarity, we ignore the transmission cost of

the configuration parameters including K1, S1, and L1, which

normally take several bytes to encode.

After filtering Y with BF1(X), the cardinality of candidate

tags |Y∩BF1(X)| will become much smaller than the original



cardinality |Y|, in the cases that |X∩Y| < |Y| and PFP1min

is small. At current stage, each of the RFID tag IDs in the

candidate set YC is preserved locally on the tag chip and

X ∩ Y still remains unknown to the reader. Such a set is

not adequately accurate, yet explicitly letting tags within the

set send their IDs back to the readers may result in heavy

collisions in a large scale RFID system.

In the second phase, the RFID readers broadcast the

parameters K2, L2, and a new random seed S2 to the RFID

tags and initiate another round of filtering. Upon receiving

the configuration parameters, each candidate tag y ∈ YC =
Y ∩ BF1(X) calculates and selects K2 slots at the indexes

hi(y), (1 ≤ i ≤ K2) in a frame of L2 length. In later process,

each candidate tag transmits a short response at each of the

K2 corresponding slots. Such a process is similar with the first

phase of CATS. In the frame, there are two different types of

slots: empty slots and non-empty slots. In particular, according

to the responses from the candidate tags, the reader encodes

a L2-bit vector as follows: if the ith slot is an empty slot the

reader set the ith bit of the vector to be ‘0’, otherwise ‘1’. A

virtual Bloom filter is thus constructed based on the responses

from each of the remaining candidate tags in Y ∩ BF1(X).
We denote the L2-bit long vector as BF2(Y∩BF1(X)). Note

that BF2(Y∩BF1(X)) is not managed by any RFID tags but

the backend server beyond the readers.

With the knowledge of BF2(Y ∩ BF1(X)), the backend

server performs membership testing using tag IDs from the

wanted tag set X to determine the intersection X ∩ Y. The

tag IDs which pass BF2(Y∩BF1(X)) test are considered to

be within the set X ∩BF2(Y ∩BF1(X)).
According to the characteristics of the Bloom filter, for

arbitrary sets A and B, we have

A ∩B ⊆ A ∩BF (B) ,

|A ∩B| ≤ |A ∩BF (B)| (5)

We can infer from (5)

X ∩Y ⊆ X ∩BF2 (Y ∩BF1 (X)) ,

|X ∩Y| ≤ |X ∩BF2 (Y ∩BF1 (X))| (6)

In the CATS protocol, we use X ∩ BF2 (Y ∩BF1 (X)) to

approximate the intersection X ∩Y.

C. Joint optimization

Although CATS guarantees that any wanted tag x ∈ X∩Y
can be correctly classified, due to false positive property of

the Bloom filter there might be unwanted tags misclassified

as in X ∩Y.

The false positive probability after the second phase filtering

is

PFP2 ≈ (1− e−|Y∩BF1(X)|×K2/L2)K2 . (7)

With the optimal setting K2 = L2

|Y∩BF1(X)| , the minimum

false probability is

PFP2min = φL2/|Y∩BF1(X)| (8)

Therefore, the expected number of tags which are misclas-

sified is |X−X∩Y|×PFP2. Given a tolerable false positive

rate PREQ, the CATS is able to guarantee PFP2 ≤ PREQ

with joint optimization on L1 and L2.

The transmission time of the frame with L2 response slots

in the second phase is

T2 = L2 × β × Tb (9)

Similar to the first phase, we ignore the transmission cost of

configuration parameters including K2, S2, and L2.

According to (4) and (9), the total transmission time in

CATS is

Tt = T1 + T2 = Tb × (αL1 + βL2) = Tb × Lt (10)

where Lt = αL1 + βL2 abstracts the total bits transmitted in

CATS.

According to (5), (7), and (8), we have

PFP2 = φL2/|Y∩BF1(X)| ≤ φL2/(|Y|PFP1+|X∩Y|),

≤ φL2/(|Y|φL1/|X|+|X∩Y|) ≤ φL2/(|Y|φL1/|X|+|X|) (11)

To maximize the protocol efficiency, we expect to meet

the false rate requirement of PREQ with a minimum total

transmission time. Therefore, the problem can be modeled as

the following optimization problem:

Minimize : Lt = αL1 + βL2

Subject to : φL2/(|Y|φL1/|X|+|X|) ≤ PREQ

We solve such a problem with Lagrange multiplier tech-

nique. We define

Λ(L1, L2, λ) = αL1+βL2+λ(φL2/(|Y|φL1/|X|+|X|)−PREQ)

and solve ∇L1,L2,λΛ(L1, L2, λ) = 0.

We obtain the optimal settings for L1 and L2 for the

optimization problem as follows:

L1 = |X| logφ
(
− α |X|
β |Y| lnPREQ

)
, (12)

L2 =
|X|
lnφ

(
lnPREQ − α

β

)

This way, we can guarantee the false positive probability of

PREQ with the total transmission of L1-bit R⇒T and L2-bit

T⇒R transmissions.

According to (12), one may notice that CATS requires the

cardinality |X| of the wanted tags as well as the cardinality

|Y| of the tags in the interrogation zone as inputs to set the

optimal frame size L1 and L2. While in most cases |X| is

already known in advance to the backend server, in practice,

we may have only rough estimation on the cardinality |Y| of

the RFID tags in interrogation zone.

Therefore, we investigate the sensitivity and robustness of

the protocol optimality to the variance of |Y|. If the optimal

frame size setting is very sensitive to the variance on |Y|,
tuning the frame sizes with an inaccurate set cardinality might

result in huge performance degradation.

From (12), we find that |Y| directly influences the setting

of frame size L1 in the first-phase of CATS. We compute the
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Fig. 3. Sensitivity analysis: L1 against |Y|

first order derivative as follows.
dL1

d |Y| = −
|X|

|Y| lnφ ≈
2.08 |X|
|Y| (13)

From (13) we notice that the fraction
|X|
|Y| determines the

first order derivative. Since |Y| tends to be much bigger than

|X| in most scenarios, the first order derivative can be very

small, meaning that L1 is not sensitive to the variance of |Y|.
Figure 3 plots the optimal setting of frame size L1 given

|X| = 5 × 103, 5 × 104, and 5 × 105, and |Y| varying from

1 × 106 to 5 × 106. When
|X|
|Y| is small, the derivative of L1

is very small. On the other hand, Figure 3 suggests us that by

slightly increasing L1, we are able to accommodate a much

larger tag set Y.

In the next subsection, we will later show that it is com-

munication economic to use a slightly increased Bloom filter

length L1 so as to guarantee PREQ with high probability.

D. Cardinality range estimation

In some application scenarios, even a rough estimation

of |Y| is not available, and thus we have to estimate the

cardinality of the tag population. There are many existing tag

cardinality estimation algorithms. Those algorithms, however,

need relatively long processing time to derive accurate estima-

tion result [8, 10, 18, 27]. The marginal accuracy improvement

decreases dramatically when one pursues higher accuracy esti-

mation results. This observation motivates a rough estimation

of |Y| range rather than an accurate estimation with excessive

communication overhead.

Instead of pursuing an accurate cardinality estimation result

at excessive communication cost, since the parameters are not

sensitive to the estimation error of the tag cardinality, we

propose a light-weight cardinality range estimation component

to provide cardinality input for CATS. Aiming at a rough

cardinality range estimation, the proposed approach tries to

maximize the marginal gain of estimation accuracy. During the

process, there are several estimation rounds. In each round, the

reader collects the 1-bit slot containing empty or non-empty

responses from tags in order to roughly estimate the size of

tag set.

At the beginning, the reader broadcasts a threshold u and

the number of estimation rounds n to the tags, and monitors

the communication channel for the responses from tags in

the following n slots. When receiving the threshold u and

the number of estimation rounds n, each tag independently

computes a binary random vector with a uniform distribution

hash function hB(ID). We denote by R(ID) the position of

right-most zero of hB(ID). For example, assuming that

hB(ID1) = 0100 11︸︷︷︸
2

, hB(ID2) = 100 111︸︷︷︸
3

, (14)

R(ID1) = 2 and R(ID2) = 3, respectively. Obviously, the

random number R(ID) follows geometric distribution with

probability Pr{R(ID) = k} = 1
2k+1 .

We denote by Rij , (1 ≤ i ≤ |Y|, 1 ≤ j ≤ n), the random

number of tag i in the jth estimation round. In the estimation

round j, if Rij > u, then tag i responds to the reader by

sending a 1-bit short response; otherwise the tag keeps silent.

As a result, n consecutive empty or non-empty slots will be

sensed by the reader.

The probability that each tag keeps silent in the jth estima-

tion round is

Pr(Rij < u) =

u−1∑
k=0

Pr(k) =

u−1∑
k=0

1

2k+1
= 1− 1

2u
(15)

In the case that all Rij < u, i ∈ {1, 2, . . . , |Y|}, the reader

observes no single from the tags, i.e., the channel is idle.

Therefore, with the assumption of i.i.d. for Rij , the probability

that the reader observes an idle channel in the jth estimation

round is as follows.

Pr(idle) = [Pr(Ri < u)]
|Y|

=

(
1− 1

2u

)|Y|

≈ e−|Y|/2u = e−ρ,

where we define ρ = |Y|
2u .

We define a Bernoulli random variable X which takes value

1 with probability Pr(idle) ≈ e−ρ and value 0 with probability

1− Pr(idle) ≈ 1− e−ρ, so we have

Pr(X = 1) ≈ e−ρ,Pr(X = 0) ≈ 1− e−ρ (16)

Therefore, according to (16), the expected value and the

variance of X are

E(X) = e−ρ, σ2(X) = e−ρ(1− e−ρ) (17)

The maximum variance of X is σ2(X)MAX = 0.25, when

e−ρ = 0.5.

We define the average value of n measurements as X̄ =
1
n

∑n
j=1 Xj . Then the expectation and the variance of X̄ are

E(X̄) = E(X) = e−ρ, σ2(X̄) =
σ2(X)

n
≤ 0.25

n
(18)

According to (18), the observation of X̄ can be used to

estimate the set cardinality |Ŷ| as follows

|Ŷ| = −2u ln X̄ (19)

The challenge in such a cardinality estimation approach

arises however, when either Pr(idle) ≈ e−ρ → 0 or 1. Without

observing adequate number of distinct channel states, the

estimation accuracy on |Ŷ| would be poor [5]. This motivates

us to adjust the threshold u so as to quickly adapt to the

cardinality range. The RFID reader adaptively calibrates u
according to the tags’ responses and progressively narrows

down the estimation range, e.g., if we observe very few idle

states (i.e., X̄ → 0), we infer that |Y| � 2u and increment u;

if we observe idle channel in almost all rounds (i.e., X̄ → 1),



we infer that |Y| � 2u and decrement u. The expected

value of X̄ is nondecreasing with the increase of u. With the

monotonic feature, we can speed up the convergence of u and

narrow down the estimating range with bisection search.

Since the result may still vary slightly because of the esti-

mation variance, we seek a guaranteed cardinality estimation

confidence range, i.e., Pr{|Y|(1− ε) ≤ |Ŷ| ≤ |Y|(1 + ε)} ≥
1 − 1

k2 . We can rewrite the estimation range requirement as

follows

Pr{|Y|(1− ε) ≤ |Ŷ| ≤ |Y|(1 + ε)}
=Pr{e− |Y|(1+ε)

2u ≤ X̄ ≤ e−
|Y|(1−ε)

2u } (20)

According to Chebyshev’s inequality, we have

Pr{e− |Y|2u − k

2
√
n
≤ X̄ ≤ e−

|Y|
2u +

k

2
√
n
} ≥ 1− 1

k2
(21)

Combining (20) and (21), we compute the minimum estima-

tion round n∗ which can guarantee the estimation requirement

Pr{|Y|(1− ε) ≤ |Ŷ| ≤ |Y|(1 + ε)} ≥ 1− 1
k2 .

The estimation result influences the first-phase parameter

setting in the CATS protocol, such as L1 and K1. Since the

CATS protocol can accommodate a larger number of tags

by slightly increasing L1, it is communication economic to

enhance the robustness at a small communication cost. Assume

that the estimation value is |Ŷ| and the length of the Bloom

filter in the first phase is L1(|Ŷ|), then to accommodate

|Ŷ|(1 + ε) tags, according to (12), we can slightly increase

L1 by |X| logφ 1
(1+ε) . In later evaluation part, we show that,

ε = 10% already gives us quite good performance.

E. Discussion

1) Estimate candidate cardinality before the second-phase
filtering: We jointly optimize the Bloom filter sizes L1 and

L2 and pre-set the frame lengths. As a matter of fact, after the

filtering, we have another chance to estimate the cardinality of

shortlisted candidate tags |YC | = |Y ∩BF1(X)|, and further

tune the second-phase parameters L2 and K2 accordingly,

L2 = |Y ∩BF1(X)| × logφPREQ, (22)

K2 =
L2

|Y ∩BF1(X)| × ln 2

This provides one more chance to optimize the frame size

L2 in order to achieve the false positive requirement with even

lower communication cost. In the scenario that |Y∩BF1(X)|
is small and execution time involved in collecting the IDs

is within the delay requirement, the tag searching protocol

may even directly collect the IDs from those tags instead of

performing the second filtering phase.

2) Multiple readers and mobile tags: Since the propagation

range of both RFID readers and RFID tags are limited, many

large-scale applications deploy multiple readers to enhance

the coverage for a large number of tags in the interrogation

region. In such scenarios, duplicate readings of the same object

are very common. In CATS, however, the backend server

aggregates the 1-bit responses from all readers. Even if a tag is

located in the overlapped interrogation region and its response

is overheard by multiple readers, its impact on the backend

aggregation is equivalent to a single response. Therefore, the

CATS protocol well handles the multiple reader scenario with

the duplicate-insensitive nature in tag responses. When RFID

tags are attached to mobile objects and move within the

interrogation region of multiple readers, the response from

the same tag will finally converge at the backend server

even it might go through multiple readers. Such a scenario

is equivalent to that of the multiple readers and thus can be

correctly handled by the CATS protocol.

3) Anonymity: In some applications where the tag ID

carries private information about the associated item, explicitly

transmitting such information might lead to privacy leakage.

CATS resists such privacy threats because each RFID tag does

not explicitly broadcast its ID. Instead each tag responds to the

reader’s query according to implicit hash results. In addition,

the tag does not reveal the hash result directly to publics.

At each response slot, a number of tags reply to the reader,

and their responses cumulate. Neither the readers nor any

overhearing entities can distinguish the exact set of tags which

respond at a collision slot. Consequently, the hash values of

RFID tags are well preserved from any eavesdroppers.

V. EVALUATION

A. Simulation setting and performance metrics

In the simulations, we assume that there is no transmission

loss between RFID tags and the reader. In each frame the

reader initiates the communication by sending commands to

the tags and waits for tag’s response. The RFID reader is

capable of detecting and distinguishing empty slots from non-

empty slots. All presented results are obtained by averaging

over 150 runs.

We mainly consider the searching efficiency given a toler-

able false positive. Since both T⇒R and R⇒T transmission

rates vary depending on various factors,we assume both T⇒R

and R⇒T datarates to be 40kbps, i.e., the transmission time for

each bit equals to 25μs [1]. The total transmission time reflects

the protocol efficiency. The protocol with short transmission

time will be able to scale up with more RFID tags.

We also concern whether the tag searching algorithm can

guarantee the tolerable false positive specified by users. We use

the false positive fraction as the accuracy indicator, denoted

as

fractionFP =
|{x|x ∈ X−X ∩Y, x ∈ X ∩BF2}|

|X−X ∩Y| ,

where X ∩ BF2 denotes the set of the tags that pass the

two phase membership test. Given a false positive requirement

PREQ, the protocol is expected to guarantee fractionFP ≤
PREQ.

B. Protocol investigation

1) Cardinality range estimation: We first investigate the

cardinality range estimation algorithm and demonstrate its

effectiveness. In the simulation, we set the tag cardinality in

the interrogation region to be 10000. Figure 4(a) illustrates the

cumulative distribution of the estimated values for the tag car-

dinality with different rounds of estimation. Figure 4(b) plots
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Fig. 4. Cardinality range estimation with |Y| = 10000: (a) Cumulative
distribution of estimation results; (b) Estimation results with estimation rounds
n = 512, 1024, and 2048.

1000 estimation results for each of the 512, 1024, and 2048

estimation rounds, respectively. We observe that the cardinality

estimation protocol provides tunable estimation accuracy in

terms of estimation time, i.e. the more estimation rounds

we run, the more accurate estimation results will be. The

marginal accuracy improvement, however, decreases when we

reach 1024 rounds. Besides, since the CATS algorithm is not

sensitive to the tag cardinality in the interrogation region, we

prefer rough estimation rather than expensive high accuracy

estimation. The empirical results show that 1024 estimation

rounds suffice to get accurate cardinality range input for CATS.

As depicted in Figure 4(b), with 1024 estimation rounds we

observe that 1) most estimation results, 99.3%, are within

the confidence range [9000, 11000], and 2) for the small

portion, 0.7%, of the estimation results off the confidence

range are still very close to the confidence range. Therefore,

in later experiments we estimate the tag cardinality range with

1024 rounds of estimation, and set tolerable cardinality range

estimation error to be ε = 10%.

2) CATS investigation: In this subsection, we investigate

the CATS protocol performance. The cardinality of tag set

Y is either known in advance or estimated with the previous

cardinality range estimation approach.

Figure 5 plots the optimal frame sizes L1 and L2 under

different settings of R⇒T and T⇒R datarates, as well as

different false positive requirements. In Figure 5(a), we fix

PREQ = 5% and vary α
β from 0.0625 to 16. When α

β is small

, meaning that R⇒T per bit transmission time is smaller than

that of T⇒R, CATS prefers a longer L1 and a shorter L2.

When α
β is big, CATS prefers a shorter L1 and a longer L2

so as to shift more communications to the second phase. In

Figure 5(b), we fix α
β = 1, and vary PREQ from 1% to 10%.

A larger tolerable false positive rate trades for shorter frame

sizes and thus shorter transmission time.

For simplicity, in the following experiments we assume a
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Fig. 5. (a) α
β

varies from 1
16

to 16, and the same false positive rate PREQ =

5%; (b) PREQ varies from 1% to 10%, and the symmetric datarates α
β

= 1.

TABLE II
PARAMETER SETTING ( α

β
= 1, PREQ = 0.05, AND |Y| = 5000000)

|X|(105) K(1,2) L1 L2 Lest Lsum

0.5 (8,4) 593429 415825 11099 1020353

1 (7,4) 1042590 831650 21014 1895254

2 (6,4) 1796645 1663301 40844 3500790

4 (5,4) 3016219 3326602 80504 6423325

8 (4,4) 4878294 6653204 159824 11691322

16 (3.4) 7448301 13306408 318464 21073173

32 (2,4) 10280027 26612817 635744 37528588

symmetric T⇒R and R⇒T datarates (i.e., α = β), and a

required false positive rate PREQ = 5%. In Table II, we

show the optimal parameter settings given |X| varying from

50000 to 3200000 and |Y| = 5000000. K(1,2) represents

the hash functions that each tag will take in the first and

second phase Bloom filter membership testing and inserting.

L1 and L2 are the optimized Bloom filter sizes in the two

phases. Lest, representing the cardinality range estimation

overhead, consists of log232 = 5 bisection steps (32 rounds

for each step) to converge to an estimation range, and 1024

rounds to sharpen the accuracy (with ε = 10%). We count

the extra |X| logφ 1
(1+ε) in Lest as well. Lsum denotes total

bit transmission involved in the entire CATS protocol, i.e.,

Lsum = L1 + L2 + Lest. According to Table II, we find

Lest counts for less than 2% of the total bit transmission

Lsum. Lsum has already taken the cardinality range estimation

overhead into consideration.

Figure 6(a) compares the total transmission time of tag

searching with CATS, the baseline protocol, and an ideal

ALOHA-based identification protocol with the optimal effi-

ciency of 36.8% [11]. The expected transmission time of the

baseline protocol is almost 4.81 to 8.41 times that of CATS.

According to the results, CATS significantly outperforms

the optimal performance state-of-the-art identification based

protocols can achieve. Besides the search efficiency, we are

also interested in whether the false positive rate of CATS

is within the requirement bound. Figure 6(b) plots the false

positive fraction of CATS with different scenarios, where we

fix |Y| = 5000000 and vary |X| from 50000 to 3200000. We

observe that for each setting the false positive rate increases

as Ratio=
|X∩Y|
|X| increases, and that the false positive rate also

increases with |Y|. The false positive rates of all tests remain

within the tolerable bound PREQ = 5%.
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(b)

Fig. 6. CATS investigation with varied |X| from 0.5 × 105 to 32 × 105

and the fixed |Y| = 5000000: (a) Total transmission time (in log scale); (b)
False positive fraction.

One may notice that in the case of |X| = 50000, the

false positive rate is below 2% indicating that CATS performs

beyond the expected false positive rate. It is mainly because

we consider the worst case in tuning CATS parameters (L1,

L2, and the like) without the knowledge of |X ∩ Y|, i.e.,

we bound |Y ∩ BF1(X)| with |Y|PFP1 + |X|. When |Y|
is small and

|X∩Y|
|X| is big, |Y ∩ BF1(X)| is much smaller

than |Y|PFP1 + |X|. On the other hand, when |Y| � |X|,
|Y|PFP1+ |X| becomes a good estimation of |Y∩BF1(X)|.

In Figure 7, we examine the same metrics by varying

|Y| from 50000 to 3200000 with the fixed |X| = 50000.

Similarly, Figure 7(a) shows that CATS significantly reduces

transmission time compared with the other two approaches.

Figure 7(b) shows that CATS secures the false positive rate

PREQ = 5% for all tests.

VI. CONCLUSION

In this paper, we study the tag searching problem in large-

scale RFID systems. The solution to such problem is of sig-

nificant importance for many RFID management applications.

To meet the stringent delay requirement, we propose CATS,

a compact approximator based tag searching protocol, which

significantly improves the searching efficiency in comparison

with the state-of-the-art approaches, while being able to secure

an arbitrary required false rate. We propose a light-weight car-

dinality range estimation algorithm for providing cardinality

input to CATS. We do extensive simulations to evaluate the

performance of CATS and the results demonstrate that CATS

outperforms other possible solutions originated from existing

approaches.
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