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Abstract 

In this work a novel technique of impulsive noise 
removal in color images is proposed. The new approach is 
based on the calculation of costs of digital paths which link 
the central pixel of the processing window with its 
boundary. The minimum value of these costs serves as a 
measure of pixel impulsiveness. The output of the proposed 
filtering technique is a weighted average of the central pixel 
and its robust estimate, calculated utilizing the measures of 
corruption assigned to pixels in the local neighborhood.  

The experiments performed on a set of standard color 
images revealed a very high effectiveness of the new 
filtering design, comparable with the most efficient 
methods known from the literature. Additionally, the new 
filter is extremely fast and therefore it can be applied in real 
time image enhancement scenarios.  
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1. Introduction 

Noise reduction, despite many years of investigations, 
remains an active research field, as the restoration and 
enhancement of noisy images is an indispensable step in 
most imaging pipelines. Quite often color images are 
corrupted by impulsive noise, caused by the instabilities in 
the image formation process, poor lighting conditions, 
electromagnetic interferences and aging of the storage 
material(1,2).  

Numerous filters, which were elaborated to suppress 
the impulsive noise in color images, are based on order 
statistics(3-5). These methods rely on the ordering of color 
pixels of the processing window W, which are treated as 
vectors. For each pixel from W the sum of distances to 
neighboring pixels is assigned, the cumulative distances are 
sorted and the ordered sequence of color pixels is utilized in 
the construction of various filtering designs. The popular 
Vector Median Filter (VMF) output is the first ordered pixel 

and it minimizes the sum of distances to other samples in 
the processing window. The α-trimmed VMF averages the 
first α of the ordered pixels to enable the additional 
smoothing of Gaussian noise contaminating the color 
image. 

The efficiency of these techniques is limited in the 
case of impulsive noise, as every image pixel is processed 
and mostly changed, which leads to the unnecessary 
filtering of uncorrupted pixels, resulting in the loss of 
image details. Therefore, the switching filters, which 
replace only the pixels detected as corrupted by the 
impulsive noise, offer much better denoising quality(6,7).  

The efficiency of the switching filters is strongly 
dependent on the accuracy of the impulse detection scheme 
and the proper adjustment of the threshold, which 
discriminates between the impulses and uncorrupted pixels. 
Therefore, the soft-switching filters, whose output is 
defined as a weighted average of the central pixel of the 
processing window and a robust pixel estimate like VMF, 
offer better image enhancement results. Their main 
advantage is that no thresholding is performed and their 
output is not so sensitive to the inaccurate estimation of the 
degree of pixel corruption(8,9).  

The paper is structured as follows. In Section 2 the 
design of the proposed filtering technique is described. In 
the next Section the results of experiments and the 
comparison with the state-of-the-art denoising methods are 
presented. Section 5 concludes the paper. 

2. Filter design 

Let D be an nonempty set. We can assign distances to 
points in D, defining a real valued function on the Cartesian 
product D×D. The function ρ: D×D → ℝ is called a distance 
if it satisfies: ρ(u,v) ≥ 0, with ρ(u,v)=0 when u=v, for u, v  ∈  

D×D. In digital image processing three basic distances are 
frequently used. If u=(u1,u2) and v=(v1,v2) denote two image 
points, (u, v∈ ℤ2), then we can define the city-block distance 
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L1, the Euclidean L2 and chessboard L∞ distance:  
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Using the city-block and chessboard distances, we are 
able to define the two basic types of neighborhood: 
4-neighborhood �4(u)={v: ρ4(u,v)=1} and 8-neigborhood �8(u)={v: ρ∞(u,v)=1}. In this paper we will assume that the 
image pixels are in 8-neighborhood relation and will 
consider digital paths defined as a sequence of points (x0, 
x1,…, x�), such that for k ∈{1,2,…, n} xk-1≠ xk. 

Using the distances between neighboring points, 
which are called prime distances, we can define a distance 
between any pair of image pixels by following all 
admissible paths linking them and then taking the minimum 
of the total length over all possible routes. In this way, the 
distance between two points on the image domain is the 
length of the path for which the sum of prime distances 
between the path nodes is minimal. For the city-block 
distance, the admissible paths consist of horizontal and 
vertical moves, whereas for the chessboard distance also the 
diagonal moves are allowed. The prime distances of the two 
kinds of neighborhoods are assumed in this paper to be 
equal to ρ =1. The cost C(q0,qn) of a path joining the image 
pixels q0, q1,…,qn will be defined as   
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For gray scale images, the concept of the cost of 
digital paths can be extended, so that the differences in 
pixel intensities between neighboring pixels are taken into 
consideration. Then the cost of a path can be defined as  
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The cost of a transition between two image pixels is thus 
a sum of absolute intensity differences encountered on a 
given path raised to the power of γ and combined with the 
scaled topographic distance parameter λ.  The minimal 
cost of a transition between two image points is called a 
geodesic distance.  

For color images, denoting the image pixels as xk, 
where k is an index indicating at the pixel position on the 
image domain, the cost of a path can be expressed as 
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where ‖·‖ denotes the Euclidean norm in RGB color space. 
In the article10 the minimum cost of a path joining the 

boundary of a processing window with its center has been 

used as a measure of pixel distortion. The rationale behind 
such an approach is the fact that isolated pixels, which are 
introduced by the impulsive noise process, are not included 
in any low-cost path leading from the center to the border 
of a filtering window. 

Figure 1 shows an exemplary 5×5 processing window, 
whose central pixel has the intensity 9, which is outlying 
from other samples. The minimum cost of a path 
connecting this pixel with the window’s border—shaded 
pixels—will serve as a measure of its outlyingness.   

 

Fig. 1. Exemplary processing window of size 5×5 
with depicted gray scale intensities. 

 
Fig. 2. Digital paths of length 2 joining the border of 

the processing window with its center. 

 
Fig. 3. Notation used for the description of paths. 

For the determination of the minimum cost of a path 
joining the window’s center with its border a double scan 
algorithm can be employed(11,12). This algorithm, in its 
simplified form, performs the running analysis of five 
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pixels in a local moving window, which moves through the 
image in two scans.  

To decrease the computational complexity, only the 
paths in horizontal, vertical and diagonal direction joining 
the border of the window with its center are considered in 
this paper. In the example shown in Fig. 1, the center of the 
window can be reached in two steps as shown in Fig. 2.  

Using the notation presented in Fig. 3, and setting γ=2 
and λ=0, the costs of 8 digital paths in horizontal, vertical 
and diagonal direction of length n=2 are: 
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where Ck is the cost of a path in the direction k, where 
k=1,2…,7, 8, denotes the geographic directions (E, NE, …,S, 

SE). The minimum cost C=min{Ck} will serve as a measure 
of pixel corruption. 

The simplest scheme for the replacement of the noisy 
pixels would be to construct a switching filter based on the 
minimum connection cost, so that if it exceeds a specified 
threshold, then the pixel would be replaced by a robust 
estimate like VMF and otherwise this pixel would not be 
changed. However, such a design would be very sensitive to 
the thresholding parameter value and therefore a 
soft-switching technique based on the idea presented in 
paper(10) was implemented. 

In the first step, a local weighted average yi of pixels 
in a 3×3 window W centered at position i is determined 
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where Ck are the minimum costs of paths calculated for 

pixels xk ∈ W according to Eq. (5). In this way yi is the 
weighted average of the pixels in the local neighborhood 
and the weights are small for the noise affected pixels. The 
estimate of the uncorrupted color pixel is then used in the 
second step, which provides the final filter output zi 
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The output pixel is an average of the pixel xi of the 
noisy image and its estimate yi. The weights in (6) and (7) 
are determined by the minimum path costs and are 
controlled by parameters h1 and h2 which have to be tuned 
to obtained proper denoising results. 

3. Experiments 

The efficiency of the proposed technique of impulsive 
noise removal was evaluated on a set of color test images 
depicted in Fig. 4. These images were corrupted by random 
valued impulsive noise, so that each image pixel was 
contaminated with probability p. The RGB channels of  
corrupted pixels were replaced by random values from the 
range [0,255] drawn from a uniform distribution. 

For the assessment of the restoration quality, the 
PSNR and MAE quality measure were used 
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where xik and zik stand for the noise-free and restored pixel 
channels and Q denotes the number of image pixels. 

Figure 5 depicts the influence of the parameters h1 and 
h2 on the PSNR values. As can be observed, the best 
achievable results are only slightly dependent on the image 
contamination intensity and its structure. Similar 
conclusions can be drawn from the dependence of MAE 
quality measures on the two parameters. Therefore, 
a default setting h1=h2=30 and the 5×5window was adopted 
for the comparison of the new filter with techniques known 
from the literature.  

For the evaluation of the new filter’s performance, it 
has been compared with a set of efficient methods(6). The 
following filters were taken for comparisons: Soft 
Switching Filter(10) (SSF), Fast Averaging Peer Group 
Filter(7) (FAPGF), Sigma Vector Median Filter (SVMF), 
Sigma Directional-Distance Filter (SDDF), Peer Group 
Filter (PGF), Fast Modifed Vector Median Filter (FMVMF), 
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Adaptive Vector Median Filter (AVMF), Adaptive Center 
Weighed Vector Median Filter (ACWVMF), Adaptive 
Center Weighed Directional Distance Filter (ACWDDF) 
and Fast Peer Group Filter (FPGF).  

The filtering results presented in Fig. 6 and 
summarized in Tab. 1 in terms of the PSNR and MAE 
quality measures (QM), prove the very high efficiency of 
the new filtering structure. Although, the results are slightly 
worse than those achieved using the SSF(10), the loss of 
efficiency is compensated by much lower computational 
complexity. For the estimation of pixel impulsiveness, only 
16 distances between pixels has to be computed, as only 
horizontal, vertical and diagonal paths are considered. The 
calculation of weights, needed for the determination of the 
final output, do not significantly increase the computational 
burden. Furthermore, the new filter performance is 
comparable with the newly introduced FAPG(7), which 
belongs to the most efficient denoising frameworks.    

4. Conclusions 

In the paper a novel filtering design intended for the 
suppression of impulsive noise in color images has been 
presented. The proposed method is based on the cost of 
horizontal, vertical and diagonal digital paths which join the 
central pixel of a processing window with its border. The 
central pixel is assigned the minimum cost, which serves as 
a measure of its corruption. This feature is used in the 
construction of a soft switching filter whose output is a 
weighted average of the processed sample and its robust 
estimate. The filter is controlled by two parameters, which 
proved to be not dependent on the image structure and 
noise intensity level.  

Besides its high efficiency, comparable with best 
existing techniques, the new technique is very fast, as for 
the estimation of pixel corruption measure only 16 
distances between pixels in the filtering window have to be 
computed and the robust estimate needed for the switching 
weight is calculated in a 3×3 window. The structure of the 
filter is quite simple and can be easily parallelized, so that it 
can be applied in various real time imaging tasks. 
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Table 1: Filtering efficiency of the NEW technique compared with competitive denoising methods. 
 

QM p SSF NEW FAPGF SVMF SDDF PGF FMVMF AVMF ACWVMF ACWDDF FPGF 

CAPS 

PNSR 0.1 40.47 39.77 40.10 37.27 33.18 39.72 38.58 31.94 39.17 36.57 38.47 
0.2 37.68 36.94 36.75 30.25 26.75 34.40 34.96 28.51 32.36 31.69 34.50 
0.3 35.31 34.65 34.11 24.34 22.25 29.65 30.06 25.67 26.66 26.77 29.83 

MAE 0.1 0.50 0.60 0.39 0.64 1.05 0.38 0.42 0.97 0.38 0.57 0.45 
0.2 0.89 1.06 0.80 1.29 2.23 0.88 0.84 2.06 1.01 1.18 0.96 
0.3 1.33 1.52 1.32 3.26 4.79 1.74 1.64 3.53 2.38 2.39 1.83 

FLOWERS 

PNSR 0.1 38.41 37.64 38.22 36.07 33.46 37.86 36.39 30.88 36.93 35.87 36.26 
0.2 35.49 34.93 35.05 30.35 27.69 33.19 33.40 27.54 31.91 31.69 32.87 
0.3 33.85 33.07 32.67 25.08 23.44 29.43 29.64 25.02 27.31 27.59 29.42 

MAE 0.1 0.65 0.79 0.49 0.67 1.02 0.49 0.56 1.20 0.53 0.71 0.64  
0.2 1.20 1.40 1.02 1.47 2.15 1.19 1.13 2.57 1.30 1.43 1.35 
0.3 1.70 2.01 1.68 3.30 4.35 2.20 2.07 4.28 2.64 2.62 2.41 

RAFTING 

PNSR 0.1 32.62 31.84 31.66 31.22 30.23 32.92 30.36 29.77 31.95 32.01 30.76  
0.2 30.26 29.72 29.72 26.99 25.50 29.53 28.50 26.68 28.33 28.66 28.48 
0.3 28.24 28.54 28.15 22.61 21.59 26.43 25.96 24.14 24.50 25.04 25.88 

MAE 0.1 1.49 1.76 1.29 1.60 2.03 1.06 1.59 1.55 1.21 1.52 1.61  
0.2 2.52 2.97 2.25 2.78 3.57 2.19 2.55 3.14 2.44 2.66 2.80 
0.3 3.54 3.54 3.32 5.40 6.48 3.76 4.03 5.18 4.48 4.43 4.48 

AIRPLANE 

PNSR 0.1 35.81 35.81 34.42 32.66 31.34 35.03 32.18 31.79 33.47 34.05 32.75  
0.2 32.81 32.81 32.12 25.40 25.30 30.13 29.00 28.01 27.30 29.25 29.24 
0.3 31.06 31.06 30.07 19.67 20.65 24.67 24.00 23.49 21.65 24.05 24.06 

MAE 0.1 0.76 0.76 0.70 0.96 1.29 0.59 0.91 0.92 0.70 0.84 0.90  
0.2 1.35 1.35 1.26 2.34 2.71 1.38 1.65 1.98 1.86 1.67 1.74 
0.3 1.93 1.93 1.97 6.41 5.95 3.25 3.63 4.18 4.89 3.54 3.85 

 

 

      
CAPS FLOWERS RAFTING AIRPLANE LENA PEPPERS 

Fig. 4. Color test images. 
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Fig. 5. Dependence of PSNR on the parameters h1 and h2 for the LENA and PEPPERS test images.  

    
Test image Noisy, p=0.2 NEW SSF 

    
FAPGF SVMF SDDF PGF 

    
FMVMF ACWVMF ACWDDF FPGF 

Fig. 6. Filtering efficiency of the NEW filter compared with the competitive methods. 
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