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Abstract

In many large-scale video analysis scenarios, one is in-

terested in localizing and recognizing human activities that

occur in short temporal intervals within long untrimmed

videos. Current approaches for activity detection still strug-

gle to handle large-scale video collections and the task

remains relatively unexplored. This is in part due to the

computational complexity of current action recognition ap-

proaches and the lack of a method that proposes fewer inter-

vals in the video, where activity processing can be focused.

In this paper, we introduce a proposal method that aims to

recover temporal segments containing actions in untrimmed

videos. Building on techniques for learning sparse dictio-

naries, we introduce a learning framework to represent and

retrieve activity proposals. We demonstrate the capabilities

of our method in not only producing high quality proposals

but also in its efficiency. Finally, we show the positive im-

pact our method has on recognition performance when it is

used for action detection, while running at 10FPS.

1. Introduction

With the growth of online and personal media archives,

people are generating, storing and consuming very large

collections of videos. A need that arises from such large

sources of video is the ability to process them for content-

based indexing and search. In particular, many such appli-

cations would benefit from automatic recognition of events,

actions, and activities in continuous video streams. To

achieve this, computer vision algorithms are required to

temporally localize the activities of interest within long

video sequences. Such visual recognition setting corre-

sponds to the well-known task of action/activity detection.

Current methods for action temporal localization rely on

applying action classifiers at every time location and at mul-

tiple temporal scales, in a temporal sliding window fashion.

Timeline
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Figure 1. Visualization of temporal action proposals for a sample long

video of five minutes. Our method is not only able to retrieve the temporal

locations of actions with high recall but also it generates proposals quickly.

However, due to the computational complexity of such clas-

sifiers and the large number of possible temporal locations

and scales, the sliding window approach is computationally

infeasible for large-scale video analysis applications.

In order to avoid this exhaustive evaluation of video clas-

sifiers, a number of researchers have recently introduced the

idea of spatial or spatiotemporal proposals for the task of ac-

tion recognition [31, 35, 20, 13, 10]. Within this paradigm,

a video is first processed to produce a set of candidate video

segments or proposals, which are likely to contain a human

action or activity as Figure 1 illustrates. These proposals

are then used as a reduced candidate set, on which more so-

phisticated action classifiers can be applied for recognition.

A good method for generating proposals should therefore

have the following properties: (a) it should recover the true

temporal locations of actions with high recall and relatively

good precision, and (b) it should produce proposals quickly.

These two requirements make proposal generation a

computationally challenging vision task. In addition, the

proposal algorithm should be versatile enough to find can-

didates for any action or activity class, and simultaneously

provide potential starting and ending times for each can-

didate activity. The large variation in motion, scenes, and

objects involved, styles of execution, camera viewpoints,

camera motion, background clutter and occlusions impose

additional burden to the proposal generation process.

Although the concept of action proposals in video has
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been introduced in previous work, most existing methods

target spatiotemporal proposals, which are very helpful in

localizing and disambiguating actions that occur in the same

time. However, as we will see in the experimental sec-

tion, these methods only achieve marginal recall improve-

ment over simple baselines, such as uniform random sam-

pling, and are too computationally expensive to scale to

large datasets like THUMOS [14] or ActivityNet [4]. These

two observations motivate our proposed work on localizing

proposals only in time, which we expect to be a fundamental

building block in the development of scalable and practical

action/activity detection algorithms in the future.

Contributions. In this paper, we introduce a new

method that produces temporal proposals in untrimmed

videos. Our work has the following contributions. First,

we propose a sparse learning framework for scoring tem-

poral segments according to how likely they are to contain

an action. Second, we experimentally show that current

and state-of-the-art proposal methods are not well suited for

generating temporal proposals in realistic and large-scale

scenarios. Third, we show empirical evidence that our pro-

posed sparse learning framework achieves high recall and

efficiency on several benchmark datasets. Finally, we in-

corporate our proposal generation method into a standard

activity detection framework and show that it can signifi-

cantly boost the overall action detection performance.

2. Related Work

We first describe the importance of using candidate re-

gions from the object domain perspective. Then, we relate

our work with previous approaches on action proposals.

For object detection in images, the use of a sliding win-

dow (exhaustive search) strategy to localize objects is no

longer popular due to the high computational cost that it en-

tails. Instead, generic or class-specific object proposals are

used to quickly find possible locations of an object in an

image. Only these locations are in turn tested by an object

classifier to recognize whether or not they contain a specific

class of object. Since these proposal methods have very

high recall and a low false positive rate, their use in ob-

ject detection has significantly reduced the runtime of oth-

erwise slow object classifiers [9]. Some popular object pro-

posal methods are SelectiveSearch [30], MCG [2], Object-

ness [1], and EdgeBoxes [41]. We refer the reader to [12]

for an extensive review of the advances in object proposals

in the image domain.

Only very recently have proposal methods been extended

to the video domain. For example, several works attempt

to produce spatiotemporal tubes as proposals for objects in

video [22, 7]. However, very limited research has targeted

temporal proposals for activities in video; even though a

proposal generation method would be crucial for efficient

activity detection in long untrimmed videos. Currently, ac-

tivity detection methods simply apply a computationally

expensive activity classifier to a temporally sliding win-

dow (or randomly sampled temporal chunks). Very recent

work generates spatiotemporal proposals in video, includ-

ing tubelets [13], action tubes [10], the actionness measure

[6], proposals from dense trajectories [31], the fast proposal

method [35], and Bag of Fragments [20]. All these methods

rely either on dense trajectories or use hierarchical grouping

approaches for generating the proposals. This tends to vio-

late efficiency constraints for creating action proposals in a

large-scale scenario.

Moreover, previous action proposal methods are not de-

veloped or designed to propose temporal segments where a

human activity can be confined. In fact, current approaches

have not been evaluated beyond simple short videos. So,

their scalability and detection performance in real-world

scenarios is uncertain. To overcome the existing limitations,

our proposed algorithm generates temporal activity candi-

dates using an efficient scoring function that can be adapted

to varying activity types of interest.

3. Temporal Activity Proposals

To be applicable at large-scales and in practical scenar-

ios, a useful activity proposal method is driven by two com-

peting goals. (i) The proposal method must be computation-

ally efficient, in representing, encoding, and scoring a tem-

poral segment. (ii) The proposal method must be discrim-

inative of activities that we are interested in, so as to only

retrieve temporal segments that contain visual information

indicative of these activity classes. On one hand, sampling

a long video uniformly without using any content-based in-

formation can generate proposals very quickly; however,

more often than not, this strategy will retrieve segments that

are not related to the activity classes we seek. On the other

hand, executing the most successful activity recognition

methods in the literature will not be feasible. Although ex-

tracting dense trajectories and encoding them using Fisher

vectors have become the defacto standard in the majority

of state-of-the-art methods for trimmed activity recognition

[14, 24, 5, 32, 3], this strategy is too slow for extracting

activity proposals, especially at large-scale. In this work,

we propose a temporal proposal strategy that is a successful

and, more importantly, tunable tradeoff between these two

goals. In what follows, we give a detailed account of our

proposed method and emphasize how each goal is mind-

fully considered in its design.

Fig 2 shows an overview of our approach for generating

temporal activity proposals. Given a set of training videos,

we extract features that captures spatial and temporal ap-

pearance. We next learn a universal dictionary that encodes

discriminative information for a set of activity classes. Af-

ter constructing this dictionary, we can use it to efficiently
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Figure 2. At training time, our approach describes trimmed action instances using STIPs and learns a dictionary that encodes their visual contents. Given

a test sequence, we first generate a large set of candidate temporal segments. These candidates are described using STIPs and ranked using the learned

dictionary. Finally, a subset of the candidate segments set is selected as our activity proposals based on the predicted activity proposal ranking.

encode temporal segments in unseen video sequences. To

do this, we first generate a large set of candidates temporal

segments. To output the final temporal activity proposals,

these segments are efficiently ranked according to how well

they are represented by the dictionary and only the most

representative among them are retrieved.

3.1. Candidate Proposals

Our method starts with an initial set of candidates, from

which we eventually select and retrieve proposals. This can-

didate proposal set is usually much larger in cardinality than

the generated proposals. In what follows, we describe how

these candidate proposals are extracted and represented.

Generating candidate proposals: Within an input

video sequence, we sample temporal segments of differ-

ent lengths from the entire video. This sampling is done

uniformly over time, but we sample likely proposal lengths

from a distribution compiled from a set of training videos

containing temporally localized activity classes. In doing

so, we partition the input video into a large pre-defined

number of proposal candidates, which can overlap in time.

Feature extraction: As a tradeoff between computa-

tional efficiency and representation/discrimination power,

we decide to use Spatio Temporal Interest Points (STIPs)

[17], which are extracted in the aforementioned proposal

candidates. We follow the standard practice and encode

each STIP point using Histogram of Oriented Gradients

(HOG) and Histogram of Optical Flow (HOF) to charac-

terize its spatial and temporal appearance. Note that STIPs

have been successfully applied in previous work to action

recognition [27] and video summarization [40]. In prac-

tice, we further speedup this extraction and representation

process by performing it in parallel across the entire set

of candidates. As such, each proposal candidate is repre-

sented as a set of feature descriptors xi ∈ R
172, which

can be concatenated for convenience in matrix form as

Xk = [x1| · · · |xnk
], where nk is the total number of STIPs

detected in the kth proposal candidate.

3.2. Learning to Represent Proposals

Inspired by seminal works in image classification [34]

and action recognition [11], we assume that each STIP fea-

ture in a proposal candidate Xk can be represented linearly

using a sparse set of dictionary/vocabulary elements, which

are learned offline from a large video corpus with tempo-

rally annotated activity instances. Moreover, we expect

that the representations of different STIP features within the

same proposal candidate, which originate from a particular

activity class, would not be independent, but instead share

commonalities. In fact, the merits of representing inter-

est points jointly instead of independently are well-studied

in the image classification literature [8, 28]. To combine

all these requirements together, two design choices emerge,

both of which we will explore. (a) class-independent pro-

posal learning: We seek to compute an over-complete dic-

tionary that can jointly represent STIP features within the

same proposal candidate using a sparse set of dictionary

elements. Here, the focus is solely on representation and

is agnostic to any supervised information that is possibly

available. (b) class-induced proposal learning: We seek a
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dictionary similar to the one in (a), but that also leads to a

proposal representation that is discriminative of the activity

classes we are interested in. Both choices are viable and

each has its own merits [19, 21]. However, for the purpose

of retrieving meaningful activity proposals to be used in ac-

tivity detection, we will experimentally show in Section 4

that (b) is superior to (a). Previous work in image classifi-

cation has also reached this conclusion [15, 16].

3.2.1 Class-Independent Proposal Learning

From the training set, we compile all temporal segments Xl

that belong to annotated activities to form the data matrix
X = [X1| · · · |Xl], where l corresponds to the total number
of trimmed instances in the training set. Then, we cast the
dictionary learning problem of DU as follows.

(DU ,A
∗) = argmin

D,A

1

n
‖X−DA‖2F + λ‖A‖2,1, (1)

where X ∈ R
172×n, D ∈ R

172×d, A ∈ R
d×n with d equal

to the number of dictionary elements, and n equal to the

total number of STIP points in the training subset. Note

that, A = [A1| · · · |Ak] is a stacked matrix that contains

the reconstruction coefficients for all STIPs in all the ac-

tivity instances. Inspired by the results of [40] on video

summarization, we use a ℓ1/ℓ2 matrix regularizer to en-

courage joint sparsity in the representations of each activ-

ity instance. In fact, this regularization scheme encourages

that the STIPs in each temporal segment Xk share the same

sparse support in representation, i.e. they use similar dic-

tionary elements for reconstruction. We control the recon-

struction quality with the tradeoff parameter λ which we set

in practice to λ = 0.05. This joint representation scheme is

a form of multi-task learning (MTL), where tasks that share

dependencies in features or learning parameters are jointly

solved in order to capitalize on their inherent relationships.

In our case, coding each individual STIP is considered a sin-

gle task. Note that this type of learning has been success-

fully applied to classical problems (e.g. image annotation

[25], image classification [37], and object tracking [39, 38])

and has outperformed state-of-the-art methods that resort to

independent learning.

To solve Eq (1), we follow a conventional strategy of

fixed point optimization, which iteratively updates each of

the variables DU and A separately by fixing one of them at

a time. So at every iteration, two update steps are required

and we summarize them next. We initialize DU using K-

Means. The iterative method is terminated when the relative

change in objective is smaller than a pre-defined threshold.

Updating A: This is referred to as the coding step. It
requires the solution to Eq 2, which is a non-smooth convex
program that can be optimized using the Alternating Direc-

tion Method of Multipliers (ADMM).

min
A

1

n
‖X−DA‖2F + λ‖A‖2,1 (2)

Updating DU : This update requires the solution to Eq (3),
which is a linear least squares problem in matrix form. It
can be optimized by solving a set of linear systems.

min
D

‖X−DA‖2F (3)

3.2.2 Class-Induced Proposal Learning

The second design choice for the dictionary learning is to
incorporate supervised information (i.e. activity class la-
bels) into the learning process. Here, we describe how we
learn a universal dictionary in a supervised fashion using
the available class labels in the training set. We formulate
the problem in Eq (4).

(DS ,A
∗

,W
∗) = argmin

D,A,W

1

n
‖X−DA‖2F + λ1‖A‖2,1

+ λ2‖W
T
A−Y‖2F + λ3‖W‖2F , (4)

where W ∈ R
d×c, and Y ∈ {0, 1}c×n with c equal to the

number of classes. Here, Y is the label matrix for all the

STIPs in the training set, whereby each STIP inherits the la-

bel of the activity instance it belongs to. The matrix W is a

column-wise concatenation of c one-vs-all linear classifiers.

The main difference between this formulation and Eq (1) is

the training classification loss term, ‖WT
A−Y‖2F , which

empowers the dictionary DS with discriminative properties.

Of course, different forms of this loss term can be used, in-

cluding the hinge loss used in SVMs or the logistic loss

used in logistic regression. We choose this simple ℓ2 loss

for computational reasons. To be less sensitive to overfit-

ting and for better classifier generalization, we add an en-

ergy regularizer on W. Similar to class-independent pro-

posal learning, we use alternating optimization to solve Eq

(4) and the same initialization for DS .

Updating W: This requires solving Eq (5), which is a
linear least squares problem. The classifiers learned in this
step will not be used for activity recognition later. They are
merely intermediate variables that guide the dictionary to
being more discriminative.

min
W

‖WT
A−Y‖2F + λ2‖W‖2F (5)

Updating A: This coding step requires solving Eq (6),
which can be solved using ADMM.

min
A

1

n
‖X−DA‖2F + λ1‖A‖2,1 + λ2‖W

T
A−Y‖2F (6)

Updating D: This step is the same as Eq (3).
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3.3. Retrieving Proposals

Once we have learned a dictionary-based proposal rep-

resentation, our aim is to retrieve activity proposals from

unseen input videos which contain a human activity that

is similar to activity instances in the training set. As de-

scribed in Section 3.1, this input video is segmented into a

large number of proposal candidates. Then, we jointly en-

code each proposal candidate by solving Eq (7) using the

learned dictionary D (either DU or DS). Since this pro-

cedure is done online, we achieve further speedup by us-

ing the sparse codes Ak of one proposal candidate Xk as

an initialization to the sparse codes Aj of another proposal

candidate Xj that overlaps with it. This is valid, since Eq

(7) is convex and it is guaranteed to converge to the global

solution no matter what the initialization. Finally, the aver-

age reconstruction error 1

nk

‖Xk −DAk‖
2

F is used to rank

the proposal candidates. A small error value indicates that

the candidate Xk can be represented well with the learned

dictionary and thus it is likely to belong to one of the ac-

tivity classes belonging to the training set. Obviously, we

retrieve the final activity proposals as the candidates with

lowest reconstruction error.

A
∗

k = argmin
Ak

1

nk

‖Xk −DAk‖
2

F + λ‖Ak‖2,1. (7)

4. Experimental Results

In this section, we test our proposal generation method

under two different settings. We generate and rank propos-

als using a dictionary learned in an class-independent (Sec-

tion 3.2.1) fashion, as well as, using a dictionary learned in

a class-induced setting (Section 3.2.2).

We evaluate the performance of our temporal activity

proposal method from three perspectives. First, we study

the quality of our activity proposals by measuring the abil-

ity of our method to retrieve proposals that overlap with the

occurrence of actions in long videos in Section 4.2. Second,

we evaluate the processing speed of our method to assess

how quickly it can generate activity proposals in Section

4.3. Finally, we apply our proposal generation method to

the task of action detection in Section 4.4, and show how

our method can contribute to improving the performance

of existing methods in the action detection task. Through-

out the experiments, we compare our method to baseline

and state-of-the-art proposal methods. Our results show that

our framework consistently achieves improved performance

over the state-of-the-art.

4.1. Experimental Setup

Datasets: We test our proposal method on two differ-

ent datasets for action temporal localization. First, we con-

duct experiments on the MSR-II Action dataset [36]. It

contains 54 video sequences with an average length of 51
seconds each. These videos depict three action classes:

Boxing, Clap, and Wave. Following the standard evalua-

tion protocol, we use videos in the KTH [27] dataset for

training. Second, we test the quality of our method on the

labeled untrimmed videos from the challenging THUMOS

2014 Detection Challenge dataset [14]. This dataset com-

piles videos from YouTube from 20 sport actions, and is

considered one of the most challenging datasets for action

detection. Videos in this dataset have an average length of

3 minutes with the actions usually confined to a small frac-

tion of the video. We use 200 untrimmed videos from the

validation subset to train our proposal method. For testing,

we evaluate on the remaining 213 videos that are provided

with temporal activity annotations.

Baselines: We compare our methods to two baselines

and three state-of-the-art techniques. (1) Uniform sampling:

it ranks each candidate proposal uniformly at random. (2)

Binary Proposal Classifier (BPC): from the raw video de-

scriptors, a binary linear classifier is learned to discrimi-

nate between action vs non-action. We use STIPs from the

trimmed video as positive instances and STIPs from back-

ground segments as negative instances. To rank propos-

als, we perform mean pooling over all the classifier scores

within each candidate proposal. The same candidate pro-

posal generation approach described in Section 3.1 is used

to feed (1) and (2). (3) Action localization Proposals from

dense Trajectories (APT) [31]; (4) Fast Action Proposals

for Human action Detection and Search (FAP) [35]; and (5)

Bag of Fragments (BoFrag) [20]. Note that APT and FAP

are originally designed to generate spatiotemporal propos-

als, so we project their resulting proposals to the temporal

dimension only and discard the spatial information. This

process may result in highly overlapping or duplicate tem-

poral proposals, so we remove these for a more fair compar-

ison against our method. While these methods target spa-

tiotemporal proposals and not directly compute temporal-

only proposals, we choose to compare to them as they are

the closest methods in the literature that are applicable to

our problem. We obtain the pre-computed proposals for

APT and FAP on MSR-II directly from the authors. On

Thumos14, we run an implementation of APT available on-

line to extract proposals, we obtain pre-computed proposals

for BoFrag directly from the authors, but we were not able

to obtain an implementation for FAP.

Matching criterion: In order to evaluate the quality of

proposals generated by each method, we measure the over-

lap between each proposal and the ground truth temporal

annotations. To do this, we compute the temporal Intersec-

tion over Union (tIoU) as the intersection over union of the

two time intervals. If the tIoU of a proposal is above a pre-

defined threshold, the proposal is considered a true positive.
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Figure 3. Recall rate at different tIoU thresholds.
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Figure 4. Average recall rate against average selected number of propos-

als. The recall is averaged over multiple tIoU thresholds from 0.5 to 1.

4.2. Recall Analysis

As discussed earlier, a good action proposal method

should retrieve as many true activity segments in a video as

possible, i.e. it should achieve a high recall rate. We analyze

the quality of our temporal proposals from two perspectives.

First, we study how tight our proposals are in comparison

to the ground truth temporal locations. Second, we evalu-

ate the quality of our proposal ranking by measuring recall

on the top-ranked proposals generated by our method. All

throughout, we report the performance of the baselines and

state-of-the-art methods for comparison.

4.2.1 Proposal Localization Quality

In this experiment, we obtain a fixed number of proposals

from each method and measure recall by comparing the re-

trieved proposals to the ground truth at various tIoU thresh-

olds. We only allow one detection per ground truth instance.

Figure 3 plots the recall of each method against the tIoU

threshold. Consider for instance the results on the MSR-

II dataset in Figure 3 (left). For a tIoU threshold of 0.8,

we see that our class-induced method achieves a recall of

80%, while the second-best is APT with a recall of 65%.

We observe the same behaviour across the entire range of

tIoU thresholds for both datasets, which indicates that our

proposal generation method achieves the highest action lo-

calization quality.

As expected, the proposals scored with the class-

independent approach achieve lower recall rates than the

ones scored in the class-induced fashion. We attribute

the resulting gap in the curves to the fact that our class-

induced approach is empowered with discriminative prop-

erties. Moreover, our approach clearly outperforms the Uni-

form sampling baseline. For example, when tIoU is fixed

to 0.8, our class-induced method achieves improvements in

recall of 40% and 38% on MSR-II and Thumos14 respec-

tively with respect to that baseline. We note that the BPC

baseline obtains good recall at low tIoU thresholds; how-

ever, this behavior is not consistent at high tIoU thresholds.

From Figure 3 (left), it is clear that the Fast Proposals

(FAP) approach is not well suited for proposing temporal

segments at high tIoU thresholds. When the tIoU threshold

is greater than 0.4 the recall rate decreases dramatically. For

example, its recall rate is 0.6 at a tIoU of 0.5, which is lower

than what we obtained by uniform sampling.

As compared to APT, the quality of our class-induced

proposals is clearly better, since they achieve significant

recall improvement at higher tIoU thresholds. As refer-

ence, our method obtains a 30% improvement in recall over

APT when tIoU is fixed to 0.5 in Thumos14. Interestingly,

BoFrag achieves a high recall at lower tIoU thresholds.

However, our class-induced proposals outperform BoFrag

by a large margin for tIoU thresholds greater than 0.4.

4.2.2 Proposal Ranking Quality

In this experiment, we study the performance of our method

in terms of recall when only a limited number of proposals

is retrieved. To do this, we select a set number of top-ranked

proposals generated by each method and measure the aver-

age recall between tIoU 0.5 to 1. As such, the average re-

call measure summarizes proposal performance across tIoU

thresholds and it correlates with detection performance as

shown in [12]. Notice that APT, BoFrag and FAP produce a

fixed not scored number of proposals; therefore, we ran-

domly select the number of retrieved proposals for these

two methods. Results of this experiment are depicted in

the recall curves in Figure 4. In these plots, we gradually

increase the number of retrieved proposals and record the

recall rate of each method. For example, in Figure 4 (left),

when retrieving only the top-50 proposals per video, our

class-induced method reports a recall of 0.7 on MSR-II out-

performing all other methods. This shows that our method

ranks proposals better than competing methods, which re-

sults in higher recall when a small number of proposals is

retrieved. Such behavior is important to guarantee an ac-

ceptable recall rate for time-sensitive detection tasks.

We also note that our class-induced proposal method per-

forms better than the class-independent method. In this

case, the class-induced proposals reach a high recall faster.

Compared to the BPC baseline, we are able to obtain a
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Time [seconds] Speedup FPS

Feature Proposal Total

BPC 191.1 307.3 498.4 15.9 10.8

APT 2828.5 5120.3 7948.8 1.0 0.68

Ours 191.1 342.5 533.6 14.9 10.2

Table 1. Time comparison between our class-induced method and other

approaches. Reported times correspond to the average processing time for

a single 3-minute video from the Thumos14 dataset, which contains a total

of 141 hours of video.

higher recall rate, no matter how many proposals are re-

trieved. As shown in Figure 4 (right), our method can

achieve a recall of 0.5 with only 1000 proposals, as com-

pared to 0.35 obtained by the BPC.

In comparison to state-of-the-art approaches, our class-

induced method produces temporal proposals with higher

specificity. Similar to the localization quality analysis, FAP

shows low recall performance at a small number of propos-

als. Notice also that FAP tends to generate a relatively small

number of proposals. For example, on MSR-II, it generates

an average of ≈ 50 proposals. Additionally, we observe

than BoFrag produces a modest performance when using a

small number of proposals which is an indication of a poor

ranking quality. On the other hand, APT shows an accept-

able performance when using a small number of propos-

als. However, our method obtains higher recall with much

smaller number of proposals.

4.3. Efficiency Analysis

In this experiment, we measure the processing speed of

our method and compare it against competing approaches

on the Thumos14 dataset. As a reminder, proposal genera-

tion methods are used to reduce the computational burden of

applying expensive action classifiers exhaustively in a slid-

ing window fashion. Therefore, it is important for these

methods to process video segments efficiently.

Table 1 summarizes the running time of our proposed

method in comparison with competing approaches. The re-

ported time is the average time needed to generate the max-

imum number of proposals from a single video in the Thu-

mos14 dataset. Note that the average length of this video

is 180 seconds. Our method achieves the best recall per-

formance while keeping an attractive computational time.

In fact, when comparing our method against APT, we are

able to generate the same number of proposals 15 times

faster while obtaining higher recall. Our method signifi-

cantly speeds up the required time for generating proposals,

while leveraging visual features that can be computed faster.

4.4. Application to Action Detection

The end goal of our temporal proposals is to improve

the detection of human activities in long, untrimmed video

sequences. To analyze the merits of our method towards

this goal, we incorporate our method into an action detec-

tion pipeline as follows. First, we train action classifiers

using the trimmed action instances available in the train-

ing set of each dataset. At the testing stage, we process in-

put video to generate temporal proposals with each method.

We then apply the trained action classifiers to each tempo-

ral proposal. We evaluate the detection performance of this

pipeline by measuring the mean Average Precision (mAP).

We run the same pipeline with each proposal generation

method to compare the final action detection performance.

For MSR-II, we first extract improved dense trajecto-

ries [32]. Then, we encode the obtained descriptors using

Fisher vectors [26]. As in [31], we learn a Gaussian Mixture

Model with 128 components. We also use PCA to reduce

the descriptors dimensionality to the half. For training, we

use a one-vs-all linear SVM classifier. As for the large-scale

experiment in Thumos14, we use the features provided in

the action detection challenge [14]. Next, we learn a χ2

kernel SVM within a Multi-Channel approach as in [18].

In Table 2, we summarize the mAP detection results ob-

tained by the various methods on both datasets. As stated

earlier, we randomly retrieve proposals for APT and FAP

from the initial subset of proposals they generate. This is

because their lack of scored proposals. We demonstrate that

our class-induced proposals provide a significant benefit to

the action detection pipeline. In both datasets, our proposals

obtain better performance compared to more computation-

ally demanding approaches such as APT. Additionally, the

results show that our method is able to obtain an acceptable

mAP with only a small number of proposals.

Table 3 compares our temporal action detection results

to the state-of-the-art on the Thumos14 detection challenge

[23, 33, 29]. Our Class-Induced proposals achieve a 13.5%
mAP score at 0.5 overlap threshold, as compared to 14.3%
obtained by the top performer in Thumos14 [23]. Although

the computation time of the latter method is not available

for direct comparison, we estimate it to be higher than APT,

as it uses a sliding window approach. Therefore, this re-

sult is encouraging considering that our method scans less

temporal windows and provides a faster detection pipeline.

Method Sun et al. [29] Wang et al. [33] Oneata et al. [23] Ours

mAP 4.4% 8.3% 14.3% 13.5%

Table 3. Comparison to the state-of-the-art on the Thumos14 detection

challenge. We report the mean Average Precision (mAP) at 0.5 threshold.

Our Class-Induced proposal method achieves a competitive performance

while keeping an attractive computational complexity.

4.5. Qualitative Results

In Figure 5, we present a qualitative analysis of proposals

generated by our class-induced method. We show the Top-5

highest ranked and the Bottom-5 worst ranked proposals.

Notice the ability of our method to highly score propos-

als that are related with a previously seen action. For ex-
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Baselines Previous Work Our Method

Uniform Sampling BPC FAP [35] APT [31] Class-Independent Class-Induced

tIoU 0.125 0.5 0.8 0.125 0.5 0.8 0.125 0.5 0.8 0.125 0.5 0.8 0.125 0.5 0.8 0.125 0.5 0.8

# Proposals MSR-II

10 45.3 29.7 11.5 65.8 46.3 18.9 68.9 27.1 12.1 66.5 45.1 22.1 56.7 32.3 18.3 72.9 55.4 26.3

50 50.1 31.3 13.2 73.1 49.9 21.1 71.3 28.2 12.3 72.7 49.8 28.7 58.3 33.7 18.9 76.1 57.7 29.1

100 52.2 30.9 9.7 75.1 55.2 21.3 − − − 74.1 54.5 33.7 58.6 34.1 19.2 80.1 60.3 33.9

Thumos14

10 9.1 2.4 0.9 22.7 6.2 3.5 − − − 22.2 5.8 3.2 15.4 3.5 1.7 25.7 9.5 4.1

100 12.1 3.2 1.3 29.7 8.7 4.3 − − − 27.1 7.9 4.1 19.1 5.9 2.9 33.5 12.1 6.9

1000 19.1 3.1 1.9 32.1 9.9 5.1 − − − 30.7 9.1 4.8 21.8 6.7 3.3 35.7 13.5 7.5

Table 2. Detection performance (mAP) for different approaches and datasets. Given the lack of available implementation, results for FAP in Thumos14 are

not reported.

Top-5 best ranked proposals Bottom-5 worst ranked proposals

Figure 5. Left: Top-5 best ranked proposals from entire Thumos14 testing set. Right: Bottom-5 worst ranked proposals from entire Thumos14 testing set.

False positive proposal Ground truthTrue positive proposal

Figure 6. Two illustrative examples where our proposal method correctly

covers the ground truth, and one example where it fails.

ample, all the five best ranked proposals are related with

one of the 20 classes on Thumos14. As illustrated by the

figure, our proposal method is able to tightly localize the

actions. Additionally, our method ranks unseen actions

with low scores, as exemplified in the proposal that con-

tains frames from a penalty kick foul. Interestingly, we find

an incomplete high jump action ranked in the bottom. This

is evidence that our proposal method is able to discard low

quality proposals.

In general, as showed in Section 4.2, our proposal

method is able not only to retrieve proposals with good lo-

calization but also to rank them with high score. In Figure

6, we show two illustrative examples where the Top-3 best

ranked proposals correctly match the ground truth, and one

example where it fails to retrieve the actions.

5. Conclusions

We introduced a framework that generates temporal ac-

tion proposals on untrimmed videos. We demonstrated that

our method is able to generate high quality proposals in

term of: localization and ranking. From the efficiency point

of view, our proposal method was able to generate propos-

als 15 times faster than previous approaches, as it runs at

10FPS. We also showed that our proposals can serve an im-

portant role in an end-to-end action detection pipeline by

improving its overall performance on a large-scale bench-

mark. For future work, we are interested in further improv-

ing the efficiency of our proposal method by interleaving or

combining the feature extraction and proposal representa-

tion stages, which are currently done independently.
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