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ABSTRACT With the increasing growth of multimedia data, the current real-world video sharing websites

are being huge in repository size, more specifically video databases. This growth necessitates to look for

superior techniques in processing video because video contains a lot of useful information. Temporal video

segmentation (TVS) is considered essential stage in content-based video indexing and retrieval system. TVS

aims to detect boundaries between successive video shots. TVS algorithm design is still challenging because

most of the recent methods are unable to achieve fast and robust detection. In this regard, this paper proposes

a TVS algorithm with high precision and recall values, and low computation cost for detecting different

types of video transitions. The proposed algorithm is based on orthogonal moments which are considered

as features to detect transitions. To increase the speed of the TVS algorithm as well as the accuracy, fast

block processing and embedded orthogonal polynomial algorithms are utilized to extract features. This

utilization will lead to extract multiple local features with low computational cost. Support vector machine

(SVM) classifier is used to detect transitions. Specifically, the hard transitions are detected by the trained

SVM model. The proposed algorithm has been evaluated on four datasets. In addition, the performance

of the proposed algorithm is compared to several state-of-the-art TVS algorithms. Experimental results

demonstrated that the proposed algorithm performance improvements in terms of recall, precision, and F1-

score are within the ranges (1.31 - 2.58), (1.53 - 4.28), and (1.41 - 3.03), respectively. Moreover, the proposed

method shows low computation cost which is 2% of real-time.

INDEX TERMS Temporal video segmentation, shot boundary detection, orthogonal polynomials,

orthogonal moments.

I. INTRODUCTION

The immense growth of computer performances and the low

cost of storage devices during the past decades led to the

dominance of multimedia data in the cyberspace, rise in the

volume of transmitted data, and the size of repositories [1].

However, video, among multimedia data, is considered the

most consumed concerning the storage space [2]. Nowadays,

the size of video databases is dramatically increasing annu-

ally. For example YouTube, one of the popular VSW glob-

ally [3], approximately 300 video hours every minute were

uploaded in 2019 and 5 billion videos watched every day [1].

Video indexing and retrieval are used to appropriately and

swiftly save and arrange video data [4]. Thus, and due to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

enormous of video databases, a necessity for automated and

robust analysis of video content is demanded [4]–[7]. Video

content analysis comprises video indexing and retrieval with

respect to their spatiotemporal, visual and semantic contents

[8]. Content based video indexing and retrieval (CBVIR)

have various and wide applications. For example, browsing

videos, management in video sharing websites, digital muse-

ums, news event analysis, and video surveillance [4].

A video shot is the basic building block of the video [1],

[9]. Video shot is defined as a consecutive sequence of frames

that have temporal and scene connection. Frames of video

shot are picked out by a single camera operation [5], [10],

[11]. These frames are combined to form a scene during video

production process. In addition, scenes are aggregated to form

the entire video. Boundaries between shots is known as a shot

transition. There are two main types of shot transitions: hard
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and soft transitions. Hard transition (HT) is the process of

aggregating two shots directly. On the other hand, soft transi-

tion (ST) is the process of aggregating two shots by involving

multiple frames [12]. Generally, frames involved in a transi-

tion are not preferred for video indexing or summarization

processes because they have low information content [7].

TVS, named also shot boundary detection, aims to partition

a video into shots by detecting transitions between them.

Then, video shots are forwarded to the CBVIR [13], [14].

In other words, TVS is utilized as an initial and substantial

stage in CBVIR; where, its performance affects the results of

the next CBVIR stages [7], [15], [16].

Detection of transitions in TVS algorithms is performed

by the statistical machine learning-based and/or rules-based

techniques. The machine learning-based technique includes

supervised and unsupervised learning [17]. Feature extraction

process is a substantial step in TVS algorithms which aims

to acquire significant depiction of the visual information

[12]. Feature extraction can be categorized based on the

algorithm processing domain into: compressed and uncom-

pressed domains [18]. TVS algorithms are primarily cen-

tered on the uncompressed domain, for instance, pixel-based

algorithms [19]. Then they are developed to encompasses

other approaches such as: edge information [20], histogram

of video frames [21], transform coefficients [22], and local

keypoint [1]. Several researchers employed the coefficients

of discrete transforms as a feature extraction tool, such as

discrete Fourier transform, discrete Wavelet transform, and

discrete Walsh-Hadamard transform. These methods exhibits

a good performance in detecting video shot transitions [23];

however, their computational cost is considered high [17].

Generally, the ranking of a TVS algorithm depends on the

algorithm ability to swiftly detect the shot transition (shot

boundary). That is, the performance of TVS algorithms can

be calculated by their accuracy in discovering correct transi-

tion and the time required to detect transitions [23], [24]. In

addition, improvement in terms of the detection accuracy for

HTs and STs is still demanded [17].

Motivated by these issues, this paper proposes a fast

and accurate TVS algorithm based on discrete orthogonal

moments. Where, fast block processing to extract is used

to extract local discrete orthogonal moments. To increase

the performance of the TVS algorithm, the embedded image

kernel is used and combined with the fast block processing

algorithm to extract multiple features.

This paper is organized as follows: Section II presents a

survey on the related work. Section III describes the funda-

mentals of OPLs and their moments. Section IV provides the

proposed TVS algorithm to detect HT. Section V displays

the results that highlight the effectiveness of proposed TVS

algorithm. Finally, Section VI concludes the paper.

II. RELATED WORK

The performance of TVS algorithms show a trade-off

between the computation cost and accuracy [24]. The existing

TVS algorithms either show high recall at the expense of

FIGURE 1. General TVS modules.

high false detection rate, i.e. low precision, or low false

detection rate at the expenses of low recall [23]. The other

significant factor that influences TVS performance is the

algorithm computation cost which is always required to be

lessen, i.e. the speed of TVS algorithm needs to be increased.

Note that, within a shot, frames are very comparable in their

content. Therefore, when a transition occurs, a variation in the

values of te similarity will appear [24]. However, in a scene,

the rate of change is very low; thus, miss detection is occurred

[24]. In addition to that, there are special effects that occur in

video scene such as; flashlights or light variations, object and

camera motion, and camera operation. These effects impact

on TVS algorithm performance. For better TVS algorithm

performance, TVS algorithms during transition detection pro-

cess should be able to detect transitions, minimize false alarm

rate within a shot, and lessen miss detects. Accordingly,

design of a TVS algorithm, which can combine the solutions

to these problems, becomes a necessity.

Generally, TVS module encompasses three sub-modules

(see FIGURE 1) [24]: (1) feature extraction of visual informa-

tion content, (2) establishing a similarity/dissimilarity values,

and (3) classification of the similarity/dissimilarity values

[25]. The previously mentioned modules may contain pre-

processing and/or post-processing steps.

The features are extracted from video frame sequence to

characterize the visual content of video frame. Visual con-

tent representation comprises several types based on pixel,

histogram, edge, local key point, and transform.

TVS algorithms based on pixel information directly utilize

pixel intensities of video frame sequence for video content

characterization. Thus, they are considered fast and simple

algorithms. Despite that, these algorithms are rated to be

responsive to camera motion, object motion, global motion,

and diverse types of camera operations [26]. Generally, high

sensitivity of any algorithm lead to high false detection;

accordingly low precision rate. In addition to their high sen-

sitivity, pixel-based algorithm suffers from missed detection

of transitions.

TVS algorithms based on histograms reflect the number of

frame’s intensities that are registered in a predefined range.

Histograms are considered a substitution for algorithms based

on pixel intensities because the former do not consider spatial

information. Hence, histograms, partly, are considered con-

stant to small local and global motions compared with pixel-

based algorithms [4], [27], [28]. TVS algorithms based on

histogram assumes that the histograms are comparable for

two consecutive frames having stationary object and back-

ground.
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Compared to algorithms based on pixel intensities,

histogram-based algorithms are not responsive to object

motion and camera motion [24]. However, large object

motion and camera motion make a variation in the similar-

ity/dissimilarity values. Thus, a false detection is declared

[13], [29]. In addition, flash light occurrence, panning, tilting,

and zooming leads to false positives [30]. Consequently,

employing histogram to detect HTs without false positives

and negatives is considering insufficient [4], [25].

Edge-based techniques (EBTs) considered a low-level fea-

ture of a frame and more invariant to illumination changes.

EBTs are designed to detect HTs. In EBTs, a transition is

detected when a large distance between edges are exhibited

between the current and previous frames. The required pro-

cesses for computing edge changes are: edge detection for

both current and previous frames, edge change ratio, and

motion compensation [31]. EBTs are less reliable in terms of

computational cost and performance when compared to other

algorithms [24]. EBTs are prone to high rates of false alarms

due to different factors, such as camera operations [24].

Local key point (LKP) and their descriptors are employed

by many computer vision applications. Surrounding region

of LKP is scale-invariant and LKP descriptor can be com-

puted from that area. Speeded up robust features (SURF)

[32], scale-invariant feature transform (SIFT) [33], andHarris

corner detector [34] are methods for LKP extraction. The

idea behind using local descriptors is that the LKP matching

of objects or background within intra-shot frames are high,

while LKP shows high variation within inter-shot frames.

To find dissimilarity (DS), LKPs were extracted and matched

for two successive frames. The alteration in the number of

matched LKPs, i.e. DS, were observed in order to detect tran-

sitions. One of the earliest LKP implementation is proposed

in [35]. They utilized SIFT for TVS algorithm by assuming

high NoMK within shot and close zero between shots.

Discrete transform allows to view signals in different

domains and gives the ability to analyze the components of

various signals [36]. Discrete transforms such as DFT and

DCT are characterized by their EC capability and localization

property. Transform-based techniques (TBTs), transform a

frame from the spatial domain into the transform domain

[24]. For example, [37] used FFT, while [22], [38] employed

Wlash-Hadamard Transform. Although this approach has

good detection accuracy, they are considered consuming in

terms of computational cost.

III. PRELIMINARIES

In this section the utilized orthogonal polynomials (OPLs)

and their mathematical model are introduced. In addition,

the mathematical expression for the computation of orthogo-

nal moments is illustrated.

A. ORTHOGONAL POLYNOMIALS

Orthogonal polynomial is a square matrix with two axes,

namely polynomial order (n) and signal index (x). The

values of the matrix coefficient is called orthogonal

polynomial coefficients (OPCFs). Generally, These coeffi-

cients is defined by hypergeometric series and gamma func-

tion. Tchebichef polynomials (TPLs) and Krawtchouk poly-

nomials (KPLs) are widely used for their ability in signal

compression and image representation [39], [40]. Due to their

powerful capability, different hybrid are formed from them

such as Krawtchouk-Tchebichef polynomial (KTP) [36] and

sqaured Krawtchouk-Tchebichef polynomial (SKTP) [41].

In this paper, SKTP is employed as an OPL because of its

performance in terms of energy compaction and localization

property over other existing OPLs [41]. The SKTP (U ) is

expressed as follows:

Un(x; p) =

N−1
∑

i=0

N−1
∑

j=0

N−1
∑

k=0

Kj(i; p)Tj(x)Kl(n; p)Tl(i)

n, x = 0, 1, · · · ,N − 1 (1)

where K and T are the KPLs and TPLs functions, respec-

tively, and p is the controlling parameter. The normalized

KPL functions are defined as follows [42]:

Kn(n; p) =

√

ωK (x)

ρK (n)
2F1

(

−n, −x; −N + 1;
1

p

)

(2)

where ρK , ωK are the norm and eight functions of the

KPL, respectively. The normalized TPL functions are given

by [43]:

Tn(x) =

√

ωT (x)

ρT (n)
(1 − N )n 3F2 (−n, −x, 1 + n; 1 − N ; 1)

(3)

where ρK ωK are the norm and eight functions of the TPL,

respectively.

To compute the KPL and TPL, the three-terms recurrence

relations are utilized. The computing KPL and TPL which

are employ Equations (2) and (3) are computationally cost

and unstable because of the hypergeometric series (2F1 and

3F2) and gamma functions [41], [44].

B. ORTHOGONAL MOMENTS

Orthogonal moments (OMs) are defined as set of scalar

quantities which are efficient and superior data descriptor

[45]. They are utilized for signal information representa-

tion without redundancy. In addition, OMs are employed to

reveal small variations in the signal intensity [46]. Generally,

the most energy of the signal (information) are contained in

the low-order moments contain, whereas the signal details are

carried out by the higher-ordermoments [47]. For a 2D signal,

the SKTP moments (Mnm) are computed as follows:

Mnm =

N1−1
∑

x=0

N2−1
∑

y=0

Un(x; p,N1)Um(y; p,N2)f (x, y)

n =
N1

2
− 1,

N1

2
, . . . ,

N1 − On

2
,
N1 + On

2
− 1

m =
N2

2
− 1,

N2

2
, . . . ,

N2 − Om

2
,
N2 + Om

2
− 1 (4)
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where On and Om are the maximum order of moments which

are used to represent the signal, and f (x, y) represents the 2D

signal (image). In practice, matrix multiplication can be used

to compute moments, as follows:

M = U1 FU
T
2 (5)

where F represents the matrix form of the image f (x, u),

M demonstrates the matrix form of the moments Mnm, and

U1 and U2 represent the matrix form of OPLs (Un and Um),

respectively. It is noteworthy that the basis functions of OPs

can be utilized as an approximate solution for differential

equations [48].

IV. THE PROPOSED TVS METHOD

In this section, the TVS algorithm is presented. The presented

TVS algorithm involves three stages. These stages are: 1)

feature extraction, 2) dissimilarity signal representation, and

3) transition detection. The significant stage in any TVS

algorithm is the feature extraction (first stage). The feature

extraction is based on fast block processing OPLs and embed-

ding image kernels. In most TVS algorithms, the features

are extracted from the entire image (video frame). However,

in the presented algorithm, frame active area is suggested to

lessen the effect of persistent and variable visual materials.

This is done by considering the frame region that holdmost of

the information and eliminate regions that affect the accuracy

of transition detection.

A. FRAME ACTIVE AREA

In different types of video, there are two types of embedded

visual materials: persistent and variable visual materials. Per-

sistent materials such as fixed station logo, persistent subtitle,

and persistent regions which is fixed intensity (commonly

black) area usually appears at the upper and lower portion

of the frame as shown in FIGURE2.

These visual materials are obviously similar within inter-

shot and intra-shot frames and thus additional similarity

between features is collected in the CDSS process. On the

other hand, variable visual materials such as: animated logo,

animated subtitle, and transcript are dissimilar within inter-

shot and intra-shot frames as shown in FIGURE3.

Hence, the DS may increase or decrease (conversely, sim-

ilarity signal (SS) may decrease or increase). Frame active

area is suggested to alleviate the effect of the aforementioned

visual materials by considering a frame region that hold most

of the visual information and eliminate regions that affect the

DS/SS.

For an image (video frame) I of size N1 × N2, where its

pixels are defined in the region [0,N1 − 1] and [0,N2 − 1] in

the y- and x- directions, respectively; the frame active area is

defined as follows:

FAAy ∈

[

N1

8
,N1 −

N1

8
− 1

]

(6)

FIGURE 2. Persistent visual material extracted from (a) Video ID 01 from
Dataset TRECVID 2005, and (b) Video ID 01 from Dataset TRECVID 2006.

FAAx ∈

[

N2

16
,N2 −

N2

16
− 1

]

(7)

where FAAy, and FAAx are the active region in y and

x-directions, respectively. Mathematically, the active image

dimension is N1A × N2A = 7
8
N1 × 3

4
N2. FIGURE4 demon-

strates the considered frame active area from which the

features are extracted and utilized in the proposed TVS

algorithm. Besides, features extracted from frame active area

are more reliable to that in the inactive or uninformative

region. These inactive regions are usually at the frames bor-

der, thus eliminating these regions will positively determine

the active region of the frame without affecting the significant

visual information.

Briefly, frame active area is suggested to lessen the effect

of persistent and variable visual materials by considering the

frame region that hold most of the information and elim-

inate regions that affect the DS/SS. In addition, features

extracted from frame active area are more informative com-

pared to that exist in the inactive or uninformative region.

These inactive regions are usually at the frames border,

thus eliminating these regions will definitely determine the

active region of the frame without affecting the significant

visual information. This will not only consider the important

frame information but also increase the speed of the TVS

algorithm.
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FIGURE 3. Variable visual material within intra-shot frames extracted
from (a) Video ID 09 from Dataset TRECVID 2005, (b), (c), and (d) Video ID
08, 09, and 12 from Dataset TRECVID 2006, and (e) Video ID 17 from
Dataset TRECVID 2007. Note: The orange arrow shows the change in visual
information.

B. CANDIDATE SEGMENTS SELECTION BASED ON SKTP

Generally, a video frames sequence, in this paper termed

as video-frame-level-0 (VFL0), has multiple shots separated

by transitions. Each shot has multiple non-transition frames

and there are no or some transition frames between consec-

utive shots. In this work, the first step toward TVS is the

selection of candidate transition segments. The main goal

of this stage is to exclude the non-transition frames which

in turn minimizes the computation cost. Commonly, in a

small shot portion, the frames within that period is generally

have a high similarity [49]–[51]. Therefore, a segment with

a high correlation between first and last segment frames is

considered a non-transition segment.While, a low correlation

is considered as inter-shot frames.

The candidate transition selection technique presented in

[11], [49] is modified and utilized as a first stage in the

proposed TVS algorithm. The modified technique is based

on a new adaptive threshold, inequalities criteria, and features

extracted using SKTP. The modified adaptive threshold and

criteria are proposed to select all the transition segments. The

candidate transition segment selection can be performed as

follows:

I. Video frame sequence is segmented into Nskip-frames

by considering one overlap frame between consecutive

segments for DS computation. i.e., last frame of the

FIGURE 4. Frame active area (a) Schematic diagram, and (b) active area
examples.

current segment is the first frame in the next segment.

The total number of segments,Nsegment , for video under

processing are ⌈
Nf
Nskip

+1⌉. WhereNf is the total number

of video frames.

II. Compute the distance between the first and last frame

for each segment. To compute the distance, these

frames are first transformed into moment domain

using SKTP. The entire frame is used to compute

the moments (global moments) to obtain a high DS

between all inter-shot frames. Only the high energy

moments are extracted and considered in the distance

measure. The distance of the kth segment is computed

as follows:

D(kNskip, (k + 1)Nskip)

=

On
∑

i=1

Om
∑

j=1

∣

∣M(fkNskip, i, j) − M(f(k + 1)Nskip, i, j)
∣

∣

k = 0, 1, · · · ,Nsegement − 1 (8)

where M(fi) is the moments of the ith frame that is

computed using (5) by preset the highest order of the

SKTP.On andOm are themaximummoment orders in n

andm direction. For convenience, the distance measure

for each segment will be denoted asDNskip(k) instead of

D(kNskip, (k + 1)Nskip).

III. For each 10 group of segments, an adaptive thresh-

old (ThCS ) is computed using the following suggested
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formula:

ThCS = mL +

√

mG

sL
mL (9)

where mG is the global mean of all computed distances

in the video.mL and sL are the local mean and standard

deviation for each grouped segment, respectively. The

above adaptive threshold formula is proposed to select

all segments that have transitions frames.

IV. Minor of transition segments distances have evident

increase or decrease, they are missed falsely because

their distances are less than the adaptive threshold.

Therefore, the distance values between neighboring

segments must be taken into account. This is performed

using the following nested criteria:

DNskip (k) > 5DNskip (k − 1)
⋃

DNskip(k)

> 5DNskip(k + 1)
⋃

DNskip(k) > 0.7mG (10)

The distance values that satisfy the above criteria are

labeled as candidate transition segments.

In this stage, false alarms are considered better than miss

detected transitions [11], [49]. This is because all candidate

segments are processed in the following stages in which false

alarms can be discarded, therefore, post-processing stages

are employed. While segments that do comprise transitions

if discarded directly as non-transition segments, they cannot

simply be retrieved.

The candidate segment selection algorithm is illustrated in

FIGURE5. Note that the frames in the candidate segments are

termed as video-frame-level-1 (VFL1).

C. FEATURE EXTRACTION

Local features are utilized to lessen the effect of object and

camera motion within shots [2]. In the traditional meth-

ods, the image is partitioned into blocks, then each block

is individually processed to extract features. Note that,

the extracted features is located in a matrix, such that the

features and image block are located correspondingly. There-

after, the extracted features are processed. Similarly, the local

moments are extracted from image blocks. This process is

performed sequentially [12]. In addition, partitioning the

image into blocks during themoments (features) computation

is translated into irregular access patterns which in turn lead

to high cache misses and replacements. Therefore, the com-

putational cost of features extraction process is increased

which lead to an increases in the processing time for TVS

algorithm. Thus, a fast block processing (FBP) algorithm for

moment computation [12] is utilized in this paper to reduce

the computation time for the computation of moments. The

mathematical form of the FBP is given by:

M = UB1 × F × U
T
B2

(11)

where UB1 ∈ R
Ord ·v1×N1 and UB2 ∈ R

Ord ·v2×N2 , and F ∈

R
N1×N2 . The matrices UB1 and UB2 are established from

RB1 ∈ R
Ord×B1 and RB2 ∈ R

Ord×B2 . B1 × B2 is the image

block size and v1×v2 represents the number of blocks, where

v1 = N1/B1 and v2 = N2/B2.

The proposed algorithm for HT detection is based

on moments computed (features) using SKTP. However,

smoothed image are considered better to extract features [26]

because they show less sensitivity to OCM [52]. In addition,

gradient images are used to extract features because they

are invariant to illuminance change [53]. Thus, moments

are extracted from the aforementioned versions of images,

namely moments of smoothed images (MoSI) and moments

of gradient images (MoGI). Instead of smoothing video

frames (images) and computing the gradient of images prior

to extract features (MoSI and MoGI), the orthogonal embed-

ding image kernel (OEIK) algorithm [54] is utilized. The

mathematical model used to compute MoSI using OEIK is

given by [54]:

MS = UYS × F × U
T
XS (12)

where UYS and UXS represent the OP embedded with

smoothed image kernels in y− and x−directions, respec-

tively. The embedded OPs are computed as follows [54]:

UYS = R1 × HYS (13)

UXS = R2 × HXS (14)

whereHYS andHXS are the Toeplitz matrices of the smoothed

image kernels hys and hxs, respectively. To compute theMoGI

in x− and y−directions, the aforementioned model can be

employed but the image kernels are replaced by the gradi-

ent image kernels. However, to reduce the computation cost

for computing MoGIs, this can be performed by computing

MoGIs from the MoSI [54]. The MoGIs can be computed

from MoSI as follows [54]:

MGX = MS × UXSG (15)

MGY = UYSG × MS (16)

whereMGX andMGY are theMoGIs in x− and y−directions,

respectively, and UXSG and UYSG are computed as follows:

UXSG = UXS × U
T
XG (17)

UYSG = UYG × U
T
YS (18)

In this paper, to reduce the computation of computing

local features of MoSI and MOGIs, the OEIK algorithm and

combined with FBP algorithm are used. The flow process of

the presented algorithm is as follows:

I. For an input video (V ), the video information are

acquired. These information include: the video frame

size (N1 and N2) and number of frames (Nf ).

II. The local moments are extracted for the frame active

area of sizeNA1×NA2 with a number of blocks equal to

v1×v2, i.e. video frame block of size equal toB1×B2 =

NA1/v1 × NA2/v2. Gaussian smoothing operators hxs
and hys are defined as follows:

hxs =
1

2πσ 2
x

e
−

(x−µx )
2

2σ2x (19)

72352 VOLUME 8, 2020



S. H. Abdulhussain et al.: Fast TVS Based on Krawtchouk-Tchebichef Moments

FIGURE 5. The flow diagram of candidate segment selection.

hys =
1

2πσ 2
y

e
−

(y−µy)
2

2σ2y (20)

where σ is the standard deviation and µ is the mean

of the distribution. The used gradient operators are

hGX = [−1, 1] and hGY = [−1, 1]T and the moment

orders are On and Om. Then, the SKTP polynomials

for block processing UXS , UYS , UXSG, and UYSG are

implemented. The flow process is shown in FIGURE

6.

III. For each frame (f ) in the candidate segments, i.e.

VFL1, the local MoSI and MoGIs are computed using

(12), (15), and (16).

D. COMPUTATION OF DISSIMILARITY SIGNAL

For eachmoment set in the group of moments (MS ,MGX , and

MGY ) in the VFL1, the dissimilarity signal between moments

of consecutive frames (fk and fk+1) is computed using city-

block distance as follows:

FV = DS
(

M(fk ),M(fk+1)
)

=

On
∑

i=1

Om
∑

j=1

‖M(fk , i, j) − M(fk+1, i, j)‖ (21)

where FV represents the DS. FV is considered a feature

vector for the next step. For each moment group, a corre-

sponding feature vector is computed using Equation (21),

such thatFV S ,FV GX , andFV GY are computed fromMS ,

MGX , andMGY , respectively. The size of each feature vector

is 1 × NFCSi, where NFCSi is the number of frames in the

ith candidate segment. Note that, the total number of frames

(NTFCS ) are the sum of all frames in each candidate segment

(NTFCS =
∑NCS

i=1 NFCSi ). where NCS is the total number of

segments obtained from candidate segment selection stage.

The feature vectors FV S , FV GX , and FV GY are con-

catenated to form a single feature vector FV SG as follows:

FV SG =





FV S

FV GX

FV GY





=





FV S (1) FV S (1) · · · FV S (NFCSi )

FV GX (1) FV GX (2) · · · FV GX (NFCSi )

FV GY (1) FV GY (2) · · · FV GY (NFCSi )





(22)

Obviously, the size of the feature vector FV SG is 3 ×

NFCSi . Contextual information is considered a significant

factor to detect transitions [26]. In contextual information,

the features of the previous and next frames are considered

to improve the accuracy of a TVS algorithm [2]. Therefore,
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FIGURE 6. The flow process of the OPs generation which are employed for feature extraction.

the contextual information of previous (NPRE ) and next

(NPOS ) frames features are considered. The feature vector

(FV Z ) used for training and detection phases is given by

the following mathematical expression:

FV Z =

































FV SG(k − NPRE )

FV SG(k − NPRE + 1)
...

FV SG(k − 1)

FV SG(k−)

FV SG(k + 1)
...

FV SG(k + NPOS − 1)

FV SG(k + NPOS )

































(23)

The size of the feature vector (FV Z ) is (NPRE + NPOS +

1) × NFCS .

E. HTS DETECTION PROCESS

Support vector machine (SVM) is utilized to detect HTs,

because of its ability in classification [55], [56]. The grid-

search methods are utilized used to achieve the optimal SVM

kernel parameters.

The normalization of the feature vector is a substantial

process; thus, it should be utilized for both training and testing

feature vectors [26], [57]. The utilization of feature vector

normalization because features values lie within different

ranges, hence the impact of large features values dominate

small features values [26], [58]. To tackle this problem,

the normalization of features is utilized so that features values

lies within a similar ranges. This can be performed by trans-

forming the kth feature FV Z of mean µFV Z
and standard

deviation σFV Z
into the desired mean µdes and standard

deviation σdes as follows:

FV ZN (k) =
(

FV Z (k) − µFV Z
(k)

)

(

σdes

σFV Z

)

+ µdes

(24)

To sum up, FIGURE 7 shows the process of the suggested

HTs detection method based on SKTP.

V. RESULTS AND DISCUSSION

This section provides systematic assessments to show the

capability of the proposed TVS stages.

The dataset used in the evaluation of the proposed TVS

algorithms is important and their examination and selection

is required [26]. Standard datasets is suitable in the evaluation

process; however, the datasets provided by researchers are

limited by factors [26]. TRECVID evaluation [59] is co-

sponsored by the National Institute of Standards and Tech-

nology (NIST). Thus, the most famous datasets of TRECVID

(TRECVID 2001, TRECVID 2005, TRECVID 2006, and

TRECVID 2007) are utilized to evaluate the performance of

the proposed TVS algorithm.

TRECVID 2001 video dataset contains 6 videos. In these

videos, there are 97,808 frames with a frame size of 240×352

and has 301 HTs. TRECVID 2005 includes 12 videos which

comprises 744,593 frames with a size of 240 × 352. There

are 2813 of HTs. TRECVID 2006 dataset contains 13 videos

which has 597,042 frames with a size of 240 × 352. There

are 1907 HTs in TRECVID 2006 dataset. Finally, TRECVID

2007 dataset includes 17 videos which have 637,738 frames

with a size of 288×352. This dataset comprises 2253 of HTs.

TABLE 1 summarize the TRECVID datasets.
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FIGURE 7. The proposed HTs detection method.

TABLE 1. TRECVID datasets details.

Candidate segment selection is considered a preprocess-

ing stage for transition detection in which the non-transition

frames are eliminated to lessen the number of frames to be

processed. To evaluate the performance of the proposed can-

didate segment section (CSS) technique based on SKTP, three

preprocessing techniques used for comparison purpose which

are improved pixel wise based candidate segment selection

technique (IPW) [11], and modified pixel wise based can-

didate segment selection technique (MPW) [60]. TABLE 2

reports the results of the percentage of HTs (HT%) in the

candidate segment to the total transitions for all videos in

each dataset. In addition to that, the percentage value of the

total frames in the candidate segments to the total frames for

videos in the dataset (Frame%) is also reported. The block

sizeB1×B2 is selected to be equal to the image sizeNA1×NA2,

i.e. the number of blocks v1×v2 is equal to 1×1. In addition,

5% of the moments coefficient (On, and Om) are used. The

algorithm is implemented on HP dv6 with core i7-2670QM

CPU and 8GB of RAM.

The reported results of the two techniques show compa-

rable computation time compared to the modified technique.

For instance, the total time needed to process all the datasets

is 118.92 sec for the modified technique, while for other

techniques is ≈116 sec. However, the modified technique

shows higher percentage of HTs and STs detection in candi-

date segments than the two techniques. For example, the total

results of the modified technique show that the detection

percentage are 99.92% for HTs in the candidate segment,

while the best results of the other techniques is 96.16% for

HTs in the candidate segments. In addition, the frames to be

processes in the subsequent stages are less in the modified

technique, which are 39.72% compared to ≈42.8% for the

other techniques. To sum up, the results in TABLE 2 show that

the modified technique based on adaptive threshold, nested

criteria, and features based on SKTP affects positively on the

candidate segment selection stage.

The candidate segments resulted from the previous stage

(VFL1) contains HTs. The aim of this stage is to detect HTs
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TABLE 2. Comparison of candidate segment selection techniques.

TABLE 3. Feature vectors parameters setting.

in the candidate segments. The moments order is selected

such that only 5% of the moments coefficient are extracted.

The selection of 5% of moment coefficient is based on the

fact that high energy moments using SKTP are adequate for

representing video frames and at the same time providing less

computation time [41]. The parameters settings for comput-

ing the feature vectors for this stage are listed in TABLE 3.

However, the contextual information parameters NPRE and

NPOS have four different values to show their effect on recall

(R), precision (P), F1-score (F1), and computation time.

The recall, precision, and F1-score are computed as follows:

R =
NCorrect

NCorrect + NMSD
=
NCorrect

NGorund
(25)

P =
NCorrect

NCorrect + NFAM
=
NCorrect

NTD
(26)

F1 =
2RP

R + P
=

2NCorrect

NTD + NGorund
(27)

The design of the HT detection stage comprises SVM

model. To obtain SVM model, training dataset is required

in the SVM training phase. The training dataset is selected

from the video datasets in which 30% of the videos are used

for training phase and 70% for evaluation (testing) phase.

The selected videos for training phase are listed in TABLE

4. The remaining videos (test videos) are used for evaluation

TABLE 4. The training video set.

TABLE 5. The details of the test videos for each dataset.

TABLE 6. Experimental results of HT detection for different NPRE and
NPOS values.

phase and their description is shown in TABLE 5 for the four

datasets.

The test videos are used as inputs to the obtained SVM

models. The experimental results of the HTs detection for

different values ofNPRE andNPOS are listed in TABLE 6with

the total processing time including moment extraction.

It can be concluded from TABLE 6 that when the contex-

tual information is increased, the precision, recall, and F1-

score measures are also increased. In turn the number of

false positive decrease and the number of MSD decrease.

For example, in TABLE 6 (NPRE = 1 and NPOS = 1) for

2005 dataset results, the number of false positives are 138 and

miss detected transition are 32. While for NPRE , NPOS =

2 the number of false positives are 77 and miss detected

transition are 19. For NPRE , NPOS = 3 and NPRE , NPOS = 4,

comparable results are obtained when NPRE , NPOS = 2.

To realize the optimum value of NPRE and NPOS that pro-

vide maximum accuracy and less computation cost, FIGURE

8 is plotted. In this Figure, the total F1-score and computation

time, excluding the moment extraction process time, are plot-

ted against the parameters of contextual information (NPRE
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FIGURE 8. The effect of NPRE and NPOS on the accuracy and computation
time.

TABLE 7. Experimental results for different number of blocks.

and NPOS ). From FIGURE 8, it is obvious that NPRE = 2

and NPOS = 2 are a reasonable choice to give an acceptable

tradeoff between accuracy and computation time, and are

considered in the following sections.

On the other hand, the effect of number of blocks v1 ×

v2 is also discussed. The parameter setting considered in this

experiment is similar to that of TABLE 3 with two different

values for number of blocks v1 × v2 = 8× 8 and 4× 4. That

is, the block size for former is less than that of the later. The

achieved results are reported in TABLE 7. It is clear that when

the number of blocks is increased, the detection accuracy is

increased and vice versa as shown in TABLE 7.

Note that, the computation time for both cases are equiv-

alent because of implementing the FBP algorithm for com-

puting moments. While in previous works such as [22],

the computational cost has reduced by reducing the number

of blocks; however, the accuracy is also decreased. Hence,

in the proposed TVS algorithm, NPRE = 2 and NPOS = 2,

v1 × v2 = 8 × 8 will be considered.

To evaluate the performance of the proposed TVS algo-

rithm, the proposed algorithm is compared to the state-

of-the-art algorithms. The state-of-the-art algorithm are:

TVS algorithm based on Non-Subsampled Contourlet Trans-

form and SVM (NSCT) [23], TVS algorithm based on

TABLE 8. Accuracy comparison and computation time using
TRECVID2007 dataset.

TABLE 9. Accuracy comparison and computation time using
TRECVID2005 dataset.

Walsh-Hadamard transform (WHT) [22], TVS algorithm

based on concatenated block based histograms (CBBH) [61],

and TVS algorithm based on orthogonal polynomial and FBP

(OPFBP) [12]. The comparison is presented in TABLE 8 and

TABLE 9 in terms of computation cost and accuracy. Tables 8

and 9 reveal that the proposed TVS algorithm in terms of

F1-score has a comparable results to to NSCT and WHT

algorithms, and demonstrates an improvement to OPFBP

and CBBH algorithms. On the other hand, the proposed

TVS algorithm exhibits an advancement in terms of the time

required to process video frames (please see TABLE 8 and

TABLE 9).

VI. CONCLUSION

In this paper, a newTVS algorithm is proposed. This work has

different stages, where each stage has a significant impact on

the performance of the proposed TVS algorithm. MoSI and

MoGIs are used to reduce the effect of disturbance factors

such as noise, object motion, camera motion, and flash lights.

The proposed frame active area effecting in improving the

performance of accuracy as well as the computational cost

of the TVS algorithm. In addition, the modified CSS algo-

rithm remarkably reducing the computational time through

selecting video segments which contain transitions. The com-

bination of FBP and OEIK algorithm highly reduced the

computational cost of the TVS algorithm. The results shows

that the proposed algorithm outperforms the state-of-the-art

algorithms. Our future work is going towards the detection

of soft transitions which in turn guarantee that the proposed

algorithm can be utilized for detecting different types of

transitions.
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