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ABSTRACT

Motivation: Flux variability analysis (FVA) is an important tool to further

analyse the results obtained by flux balance analysis (FBA) on

genome-scale metabolic networks. For many constraint-based

models, FVA identifies unboundedness of the optimal flux space.

This reveals that optimal flux solutions with net flux through internal

biochemical loops are feasible, which violates the second law of

thermodynamics. Such unbounded fluxes may be eliminated by

extending FVA with thermodynamic constraints.

Results: We present a new algorithm for efficient flux variability (and

flux balance) analysis with thermodynamic constraints, suitable for

analysing genome-scale metabolic networks. We first show that

FBA with thermodynamic constraints is NP-hard. Then we derive a

theoretical tractability result, which can be applied to metabolic

networks in practice. We use this result to develop a new constraint

programming algorithm Fast-tFVA for fast FVA with thermodynamic

constraints (tFVA). Computational comparisons with previous methods

demonstrate the efficiency of the new method. For tFVA, a speed-up

of factor 30–300 is achieved. In an analysis of genome-scale

metabolic networks in the BioModels database, we found that in

485 of 716 networks, additional irreversible or fixed reactions could

be detected.

Availability and implementation: Fast-tFVA is written in Cþþ and

published under GPL. It uses the open source software SCIP and

libSBML. There also exists a Matlab interface for easy integration

into Matlab. Fast-tFVA is available from page.mi.fu-berlin.de/

arnem/fast-tfva.html.

Contact: arne.mueller@fu-berlin.de; Alexander.Bockmayr@fu-berlin.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Flux Balance Analysis (FBA) is a widely used method to analyse

the capabilities of a metabolic network (Durot et al., 2009;

Mahadevan and Schilling, 2003; Orth et al., 2010; Price et al.,
2004; Schuster et al., 2007; Terzer et al., 2009; Teusink et al.,

2009; Varma and Palsson, 1994). The strength of FBA is

that it allows predicting growth rates of cells accurately

(Edwards et al., 2001). FBA is based on the steady-state assump-

tion, i.e. every metabolite that is produced, must also be con-

sumed at the same rate. Flux through the network is enabled by

exchange reactions, such as uptake of nutrients and production

of biomass. Usually, next to bounds on the fluxes, stoichiometric

constraints are the only constraints given, and optimal produc-

tion of biomass can be computed by solving a linear program

(LP).

Frequently, there is not only one optimal flux distribution that

achieves optimal biomass production. FBA, however, computes

only one such solution. Elementary flux modes (Schuster and

Hilgetag, 1994; Schuster et al., 2000) or extreme pathways

(Schilling et al., 2000) are commonly used tools to analyse the

whole flux space. But, in practice, the number of elementary flux

modes grows exponentially with the number of reactions in the

network. Hence, enumeration of elementary flux modes becomes

infeasible for genome-scale networks. In addition, we are usually

not interested in the raw data of all elementary flux modes

(resp. extreme pathways), but only in specific properties

(Driouch et al., 2012; Haus et al., 2008; Orman et al., 2012;

Schwartz and Kanehisa, 2006). Therefore, sampling methods

(Schellenberger and Palsson, 2009), elementary flux patterns

(Kaleta et al., 2009) and flux variability analysis (FVA)

(Burgard et al., 2001; Mahadevan and Schilling, 2003) have

been developed.

FVA determines the maximum and minimum values of all the

fluxes that will satisfy the constraints and allow for the same

optimal objective value. For example, it is known that FBA is

unreliable in predicting the flux value of by-products

(Khannapho et al., 2008). In such cases, FVA can be applied

to predict the range of possible by-product production rates

under maximal biomass production, which can be linked to

gene expression data (Bilu et al., 2006). Variations of FVA can

also be used to determine blocked or unessential reactions

(Burgard et al., 2004).
In FVA, however, the following problem arises: It can happen

that the network contains internal cycles, i.e. there exist non-zero

steady-state fluxes involving only internal reactions. In most

metabolic models, only bounds on the flux value of exchange

reactions are given (in addition to the zero bounds for the

irreversible reactions). This leads to unbounded fluxes through

reactions contained in such internal cycles, which is of course

not realistic. To remove this issue, a general form of

thermodynamic constraints can be added to the model*To whom correspondence should be addressed.
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(Beard et al., 2002; Qian and Beard, 2005), extending the stand-

ard non-negativity constraints for thermodynamic irreversibility

of individual reactions. It has been shown that the flux values

computed with thermodynamic constraints are more consistent,

for example, with respect to gene expression data (Feist et al.,

2007; Fleming et al., 2009; Jol et al., 2012; Price et al., 2006;

Schellenberger et al., 2011a). In recent years, there has been

increasing interest in thermodynamic constraints, as they can

also be used to link metabolite concentrations to flux modes

(Henry et al., 2006; Hoppe et al., 2007; Kümmel et al., 2006a,

b; Singh et al., 2011).
In this article, we present a new method for efficient thermo-

dynamically constrained FBA and FVA. We will work with the

relaxed form of thermodynamic constraints, as it was introduced

by Beard et al. (2004). There, thermodynamic constraints are

formulated as follows:

SJ ¼ 0 steady-state assumption ð1Þ

‘ � J � u flux bounds, e:g: irrev: ð2Þ

��iJi50 _ Ji ¼ 0 8i 2 I thermodynamic constraint ð3Þ

��T ¼ �TSI potential differences ð4Þ

J 2 R
R, � 2 R

M, �� 2 R
I

Here S denotes the stoichiometric matrix, J the flux vector,M

the set of metabolites, R the set of all reactions, E the set of

exchange reactions, I ¼ R n E the set of internal reactions and

� the chemical potential of each metabolite (Gibbs free energy of

formation). The operator �T denotes transposition. If the concen-

trations and equilibrium constants are known (Jankowski et al.,

2008; Mavrovouniotis, 1990; Noor et al., 2012a), it is possible to

further constrain �. However, because this information is often

not available, we will work here without additional constraints

on �.
In a thermodynamically constrained flux balance problem, we

maximize a linear objective function cTJ, where c 2 R
R, with re-

spect to the constraints (1)–(4). In thermodynamically constrained

flux variability analysis (tFVA), we analyse the flux variability

within the feasible (respectively optimal) solutions of a thermo-

dynamically constrained flux balance problem, i.e. for all i 2 R,

we solve the optimization problems maxf�Jijð1Þ�ð4Þg (respect-

ively maxf�Jijð1Þ�ð4Þ, c
TJ ¼ optg).

To simplify notation, we do not only use reactions as indices

(e.g. Ji to denote flux through reaction i) but also sets of reac-

tions to index sub-vectors. For example, JI denotes the flux

vector on the internal reactions only and SI contains only the

columns corresponding to internal reactions.

DEFINITION 1 (Thermodynamically Feasible Flux). A flux

vector J is called thermodynamically feasible if there exists a

vector � such that (1), (3) and (4) are satisfied. If additionally

(2) holds, J will be called a thermodynamically feasible flux that

satisfies bounds ‘ and u.

By multiplying �T from the left side with SI , the

potential differences for internal reactions are obtained. This is

equivalent to the often found formulation K�� ¼ 0, where K is

the null-space matrix of SI . The motivation behind Equation (3)

is that normally a chemical reaction carries flux if and only if it

reduces Gibbs free energy (Alberty, 2003; Beard et al., 2002;

Qian and Beard, 2005). Since many reactions are catalysed by

enzymes, however, it can happen that an enzyme is not present,

for example because of regulatory control and hence,

the corresponding reaction is not possible and does not carry

flux, even if there is a negative potential difference. Thus,

zero flux in Equation (3) is always allowed as well. Note that

other formulations of thermodynamic constraints, for

example the one used by Fleming et al. (2012), do not have

this property. Hence, the different results have to be applied

with care.
Using Boolean variables a 2 f0, 1gI , a sufficiently large con-

stant M40 and a small constant "40, this formulation can be

translated into a mixed integer linear program (MILP), where

ai ¼ 0 indicates that a forward flux Ji40 on reaction i is not

allowed, and ai ¼ 1 forbids a backward flux Ji50. This is done

by replacing (3) with the inequalities (5) and (6):

SJ ¼ 0

‘i � Ji � ui 8i 2 R

‘ið1� aiÞ � Ji � uiai 8i 2 I ð5Þ

�Mai þ " � ��i �Mð1� aiÞ � " 8i 2 I ð6Þ

��T ¼ �TSI

J 2 R
R, � 2 R

M, �� 2 R
I , a 2 f0, 1gI

This formulation is used in a similar form by Schellenberger et al.

(2011a) for the COBRA toolbox and many others (Beard et al.,

2004; Cogne et al., 2011; Henry et al., 2007; Hoppe et al., 2007).

It can be shown that if S does not contain any zero-columns,

this MILP formulation is equivalent to the original one

(Müller, 2012). Although solving MILPs is NP-hard in general,

practical tests have shown that current MILP solvers are able

to optimize flux with respect to the above formulation also on

genome-scale networks like the iAF1260 reconstruction

of Escherichia coli (Schellenberger et al., 2011a).
Beard et al. (2004) observed that a steady-state flux

vector J [i.e. which satisfies Equation (1)] is thermodynamically

feasible if and only if there is no internal cycle contained by

J. A sketch of the proof using oriented matroids can be found

in (Beard et al., 2004). A detailed version using LP-duality is

available in Müller (2012) and was also recently published by

Noor et al. (2012b). This result is used by Yang et al. (2005) to

detect reactions that are irreversible due to thermodynamic

constraints. In particular, one of their methods simply runs

tFVA.
This article is organized as follows: In Section 2.1, we show

that the thermodynamically constrained flux balance problem is

NP-complete, and thus, MILP is an appropriate tool. In Section

2.2, we derive a tractability result and analyse how much this

applies to current genome-scale models. These theoretical results
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are the backbone of a new algorithm, which is described in

Section 3. In Section 4, we apply our new method to study the

importance of thermodynamic constraints in the analysis of

genome-scale metabolic networks.

2 METHODS

2.1 NP-completeness

In FVA, a series of optimization problems are solved. The flux through

each reaction in the network is maximized and minimized. In the follow-

ing, we will see that already determining whether there exists a positive

flux through a given reaction is NP-complete. Thus, the optimization

problem is NP-hard, and it is unlikely that an efficient algorithm exists

for the general case.

Problem 1 (THERMOFLUX).

� Instance:

� Metabolic network N ¼ M, R ¼ I _[E, S 2 Q
M�R

� �

� Objective reaction r 2 R

� Question: Does a thermodynamically feasible flux J 	 0 with Jr40

exist?

THEOREM 1. THERMOFLUX is NP-complete.

The proof of this result can be found in the Supplementary Material.

2.2 Tractability

It was observed early on by Price et al. (2002) that a thermo-

dynamically infeasible flux can be turned feasible by removing

internal cycles. For the following tractability result, it is important to

understand when these internal cycles can be removed without

changing the flux through the objective reactions. Reactions that are

contained in internal cycles and reactions that are flux-forcing are

problematic.

DEFINITION 2. Let N ¼ M, R ¼ I _[E, S 2 R
M�R

� �
be a

metabolic network. A reaction r 2 R is contained in an internal

cycle if there exists a J 2 R
I with SIJ ¼ 0 and Jr40.

Given lower and upper flux bounds ‘, u 2 R
R, a reaction r is

called flux-forcing if ‘r40 or ur50.
For a linear objective function c 2 R

R, a reaction r is called

objective if cr 6¼ 0.

THEOREM 2. Let N ¼ M, R ¼ I _[E, S 2 R
M�R

� �
be a meta-

bolic network with lower and upper flux bounds ‘, u 2 R
R and

a linear objective function c 2 R
R. Let C 
 I be the set of reac-

tions contained in internal cycles, let F 
 R be the set of reactions

that are flux-forcing and let O 
 R be the set of objective

reactions.
Given a steady-state flux J with ‘ � J � u, a thermodynamic-

ally feasible flux J� with cTJ ¼ cTJ� and ‘ � J� � u can be com-

puted in polynomial time w.r.t. the size of the network N if

C \ ðF [OÞ ¼ ;.

The key to the proof of Theorem 2 is Algorithm 1, which gives the

wanted polynomial-time algorithm. The complete proof can be found in

the Supplementary Material.

Algorithm 1: This algorithm computes a thermodynamically feasible flux

out of a possibly thermodynamically infeasible flux, if the conditions of

Theorem 2 are satisfied. It runs in polynomial time. (1 denotes a vector

where all entries are 1.)

Input: A steady-state flux J

repeat

Iþ :¼ fi 2 I : Ji 	 0g

I� :¼ fi 2 I : Ji � 0g

L :¼ argmax
1LIþ � 1LI� : SIL ¼ 0,

JI� � LI� � 0,
JIþ 	 LIþ 	 0

8<
:

9=
;

JI :¼ JI � L

until 1LIþ � 1LI� ¼ 0

return J

It should be noticed that this theorem is similar to the result by

Fleming et al. (2012). Although these authors use a different definition

of thermodynamic feasibility, they also propose a method that keeps the

flux through exchange reactions invariant.

Since we can compute optimal steady-state fluxes in polynomial time

by solving an LP, it follows that we can compute an optimal thermo-

dynamically feasible flux in polynomial time, if all of the reactions con-

tained in internal cycles are neither flux-forcing nor contained in the

objective function. In practice, however, there will be reactions contained

in internal cycles, and we have also to consider this case.

For the following result, we need to quantify how often a reaction is

contained in internal cycles. For this, it comes in very handy that internal

cycles are simply steady-state flux vectors that do not use exchange

reactions. Hence, we can describe the space of all internal cycles by

elementary flux modes (Schuster and Hilgetag, 1994; Schuster et al.,

2000). The elementary flux modes that do not contain exchange reactions

will be called internal circuits or simply circuits. They may also be

interpreted in terms of oriented matroid theory, which was introduced

into metabolic network analysis by Oliveira et al. (2001) and used by

Beard et al. (2004) to describe the internal circuits. The number of in-

ternal circuits containing the given reaction will be the quantification

measure.

We observed that the number of internal circuits is small for many

genome-scale networks. See the Supplementary Materials for more

details.

THEOREM 3. If the number of internal circuits containing flux-

forcing or objective reactions is bounded by a constant, the thermo-

dynamically constrained flux balance (and flux variability) problem

can be solved in polynomial time w.r.t. the size of the network.

PROOF. Let F resp. O denote again the set of flux-forcing

resp. objective reactions. Let C be the set of internal circuits

that contain a reaction of F [O.
We know that the optimal thermodynamically feasible solution

must not contain any internal circuits. Hence, in every internal

circuit C 2 C, we can find a reaction that does not carry any flux

in the direction of the circuit. Any such set of reaction/circuit

direction pairs will be called a blocking set B � R� f�,þg (cf.

Figs 1 and 2). We can enforce such a blocking set by adding sign

constraints to the reactions in B, i.e. if ðr,þÞ 2 B, we add Jr � 0

to the problem and if ðr,�Þ 2 B, we add Jr 	 0.
It follows that after we enforced a blocking set, there exist no

internal circuits that contain reactions of F [O anymore. Hence,

by Theorem 2 we can use linear programming to solve the

thermodynamically constrained flux balance problem.
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By brute force, we only need to enumerate all blocking sets to

find one giving us the optimal solution (see Algorithm 2). For

each C 2 C, we have at most jCj � 1 reactions that can be

blocked (it does not make sense to block flux-forcing or objective

reactions). This way, we only need to enumerate at mostQ
C2C ðjCj � 1Þ blocking sets. Since the size of each circuit is

bounded by the number of reactions and the number of circuits

is bounded by assumption, we obtain a polynomial running time

algorithm. œ

Algorithm 2: General solving procedure

Input: objective function c, lower bounds lb, upper bounds ub

maxFlux :¼ �1

for all blocking set B do

‘ :¼ lb, u :¼ ub

for each ði,þÞ 2 B do ui :¼ 0

for each ði,�Þ 2 B do ‘i :¼ 0

J ¼ solve ordinary FBA with bounds ‘, u

maxFlux ¼ maxðmaxFlux, cTJÞ

end for

return maxFlux

In case of the E.coli iAF1260 model, the bound of Theorem 3 tells

us that we only need to analyse at most 1680 different blocking

sets (for optimization on one reaction without internal flux-forcing

reactions).

3 IMPLEMENTATION

To implement Algorithm 2 and use the result of Theorem 3,

we still have to find a way for enumerating all blocking sets.

To do this, we used the constraint integer programming (CP)

framework Scip (Achterberg, 2009). Scip can not only solve

mixed integer programs (Wolsey, 1998) but also offers an inter-

face for adding more general and complex constraints. Hence,

we implemented a constraint handler and primal heuristic for

Scip.

Algorithm 3: Sketch of the constraint handler that enforces thermody-

namic feasibility

Input: objective function c, flux bounds ‘, u

Run ordinary FBA to compute a steady-state flux J.

Find internal cycle L containing an objective reaction / a flux-forcing

reaction by maximizing flux through the respective reactions w.r.t.

SIL ¼ 0, 1 	 signðJiÞLi 	 0 8i 2 I .

if no non-zero internal cycle L is found then run heuristic (Algorithm 1)

else

for i : Li40 do

if ‘i � 0 then create child node with ui ¼ 0.

end for

for i : Li50 do

if ui 	 0 then create child node with ‘i ¼ 0.

end for

Add created child nodes to branch and bound tree and continue

solving nodes.

end if

Our algorithm (see Algorithm 3) works directly on the flux

variables and does not use artificial Boolean variables. It basic-

ally implements a branch-and-bound strategy. As we have seen

in Theorem 3, we need not block all internal circuits, but only

those that contain objective or flux-forcing reactions.

� With highest priority, the constraint handler branches on

circuits that contain objective reactions. If this is achieved,

every flux through objective reactions must be sourced by

exchange reactions. This usually bounds the flux to realistic

values, and we may be able to reject the current blocking set,

because a better solution has already been found.

� If no circuits containing objective reactions are left, we

branch on circuits containing flux-forcing reactions.

� It never happens that we need to branch on circuits that

contain neither objective reactions nor flux-forcing reac-

tions. This is because of the heuristic we also implemented.

The heuristic basically runs Algorithm 1. This means, if the

network contains no circuits with objective or flux-forcing reac-

tions, the heuristic will output an optimal flux, and the current

branch of the search tree does not need to be analysed further. If

the network contains circuits with objective reactions, we usually

have a large flux through an internal cycle and thus, a bad dual

bound. Although Algorithm 1 may also find an optimal solution

in this case, the solver will not know it (the dual bound will be

larger than the value of the solution found). To prove optimality,

the solver will have to do the branching nonetheless. This is why

we do not run the heuristic in this case. The heuristic may also

fail if the network does contain circuits with flux-forcing reac-

tions and no circuits with objective reactions. However, we may

be lucky, and Algorithm 1 produces a solution that still satisfies

the flux bounds. This solution is thus proven to be optimal.

Therefore, we implemented a slight modification of Algorithm

3 that additionally runs the heuristic if there exist circuits with

flux-forcing reactions, but no circuits with objective reactions.
Thus, the heuristic is run at those nodes of the search-tree that

do not contain any circuits with objective reactions. This way, we

usually only need to branch on circuits containing objective

Fig. 1. Blocking set (dashed arrows) for a given thermodynamically feas-

ible flux (marked in black). Reversible reactions are drawn using two

arrows. The bold arrow indicates the objective reaction

Fig. 2. If a ‘wrong’ blocking set is chosen, only suboptimal flux (here: no

flux) may be possible
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reactions, sometimes on circuits containing flux-forcing reactions

and never on circuits containing none of the two.
Next to the actual solving routine, the result of Theorem 2 can

also be used to speed-up tFVA significantly. Gudmundsson and

Thiele (2010) observed that for ordinary FVA, a speed-up of

factor 100 could be achieved by simply warm starting the LP

computation necessary for FBA. Previous implementations

always created new instances of the LP problem that

the LP-solver had to solve from scratch. In warm starting, the

LP-solution of the previous iteration is used as the starting

point of the simplex algorithm used by the LP-solver. In the

case of tFVA, however, we do not solve LPs anymore, hence

this result is not directly applicable. On the other hand, many

genome-scale metabolic models only contain few reactions

involved in internal cycles, see Figure 3 and Table 1. By

Theorem 2, it follows that for most reactions, the LP-solution

can easily be transformed into a thermodynamically feasible one

without having to start any MILP- or CP-solver. Thus, the

warm-starting effect can also be used for tFVA.

4 DISCUSSION

4.1 Run time

We tested the correctness and run time of our implementation on

various networks of the BiGG database (Schellenberger et al.,

2011b). For tFVA, we compared our results with those generated

by the COBRA toolbox and obtained a difference of the order

10�3. This difference is likely due to numerical issues of the

big-M formulation (Bradley et al., 1977), as the results of our

code for different orderings of the reactions and metabolites only

vary in the order of 10�8. The E.coli iAF1260model was used for

a more detailed analysis. We compared the CP approach with

two different kinds of MILP formulations found in the literature;

we did not compare it with non-linear formulations, as most

non-linear solvers do not return globally optimal solutions. All

computations were run on an Intel Core i5-2400S (2.5 GHz, 4

cores, 6 MiB L3 cache) with 4GB RAM. Both MILP formula-

tions were solved using Gurobi (www.gurobi.com); the CP for-

mulation was solved using Scip together with the public-domain

solver Soplex (Achterberg, 2009). As can be seen in Figure 3 of

the Supplementary Material, the CP approach outperforms the

MILP formulations in nearly all cases.
We also performed run time tests for tFVA and compared our

algorithm with the one implemented in the COBRA toolbox

(Schellenberger et al., 2011a). The CP algorithm is 30–300 times

faster than the COBRA implementation (see Table 1). The only

trouble maker is the Homo sapiens reconstruction that did not

finish within 2h in our implementation. We were also not able

to confirm the run time result by Schellenberger et al. (2011a) on

that network, because COBRA (version 2.0.3) with Gurobi 5.0.0

terminated with an error message, probably due to numerical

instabilities of the MILP formulation in the Gurobi solver.

4.2 Irreversible and fixed flux rates due to

thermodynamics

In a second study, we analysed how much information on irre-

versibility and fixed flux rates of reactions can be gained by

adding thermodynamic constraints. Fixed reactions are some-

times the focus of network analysis, as in Hädicke et al. (2011).

We used the genome-scale networks in the BioModels database

(http://www.ebi.ac.uk/biomodels-main, available on September

17, 2012). Nearly all of these networks contain reactions in in-

ternal cycles (see Fig. 3). Hence, nearly every network of the

BioModels database has reactions where FVA cannot predict

bounds different from those given in the original FBA problem.

These bounds tend to be uninformative, as usually the only small

bounds are given on exchange reactions. tFVA, however, will

compute bounds for these internal reactions that depend on

the bounds on the exchange reactions, in particular the bounds

on nutrient uptake. Therefore, the bounds obtained by tFVA for

reactions contained in internal cycles will be better than the

bounds computed by ordinary FVA by orders of magnitude.

Irreversible reactions and reactions with fixed fluxes are a special

kind of reactions with improved bounds, which we now investi-

gate in more detail.
As explained in Section 2, our algorithm works best if the

number of reactions in internal cycles is small. In addition, as

it can be seen in Figure 3, the genome-scale networks in the

BioModels database may be divided into two categories: net-

works with5600 reactions in internal cycles and networks with

significantly more reactions. In what follows, we analysed those

networks with5600 reactions in internal cycles. For each net-

work, we ran FVA and tFVA on the whole flux space. If the

model also contained an objective function on some reaction

(e.g. biomass production), we also analysed the optimal flux

space with FVA and tFVA. We ran the computations of FVA

and tFVA for at most 30 min.
We obtained that 829 (45% of all genome-scale networks in

the BioModels database) had �600 reactions in internal cycles.

Of these, we were able to analyse 716 networks in the given time

limit. For the whole (resp. the optimal) flux space, we obtained

the following results:

� In 386 (resp. 387) networks, flux through at least one reac-

tion was additionally fixed due to thermodynamic

constraints.
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Fig. 3. The genome-scale networks available in the BioModels database

seem to separate into two classes: Networks with few (5600) reactions in

internal cycles and networks with many more reactions in internal cycles
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� In 481 (resp. 485) networks, at least one additional reaction

was detected to be irreversible due to thermodynamic

constraints.

In Figure 4, we provide further information on the number of

additionally fixed or irreversible reactions when analysing the

whole flux space. The plot looks similar for the optimal flux

space. Additional details can be found in the Supplementary

Material.
Finally, we ran the same analysis for the networks of the BiGG

database and obtained that in all of them, except Staphylococcus

aureus iSB619, additional fixed and irreversible reactions were de-

tected, see Table 2. In the optimal flux space, also in S. aureus

iSB619, additional fixed and irreversible reactions were found.

These results show that thermodynamic constraints provide

useful information even for well-curated models like those in

the BiGG database. Using our algorithm, tFVA can now be

performed in a routine manner.

5 CONCLUSION

We presented a new algorithm for thermodynamically con-

strained FVA. Compared with previous implementations, an

enormous speed-up was obtained. tFVA can now be performed

for a large number of networks and as a subroutine for other

methods. As shown in our experiments, many network recon-

structions, in particular also well-curated models, may be im-

proved by executing our algorithm.

Table 1. Running times of FVA on different metabolic networks

Model Method Internal

circuits

Reactions

(in internal circuits)

Whole flux

space

Only optimal fluxes

w.r.t. biomass production

Escherichia coli iJR904
CP

19 1075 (40)
11 s 11 s

COBRA 963 s Error

Escherichia coli iAF1260
CP

38 2382 (68)
71 s 51 s

COBRA 11162 s 15 049 s

Escherichia coli iJO1366
CP

46 2583 (76)
92 s 79 s

COBRA 25869 s Error

Helicobacter pylori iIT341
CP

8 554 (22)
4 s 4 s

COBRA 122 s 176 s

Homo sapiens Recon. 1
CP

? 3742 (958)
42h 42h

COBRA Error Error

Methanosarcina barkeri iAF692
CP

31 690 (30)
7 s 7 s

COBRA 204 s 332 s

Mycobacterium tuberculosis iNJ661
CP

66 1025 (53)
22 s 19 s

COBRA 844 s 1316 s

Staphylococcus aureus iSB619
CP

3 743 (7)
3 s 2 s

COBRA 179 s 198 s

Saccharomyces cerevisiae iND750
CP

43 1266 (64)
44 s 34 s

COBRA 1662 s Error

FVA was performed on the whole flux space and on the subspace of the fluxes with optimal biomass production rate. The COBRA implementation used the Gurobi solver.

The COBRA method sometimes failed to produce a solution, because Gurobi returned infeasible for problems that are actually feasible.
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Fig. 4. Distribution of networks with additional fixed (resp. irreversible)

reactions

Table 2. Number of additionally fixed and irreversible reactions due to

thermodynamic constraints

Model Fixed Opt.

fixed

Irrev. Opt.

Irrev.

E. coli iJR904 11 30 6 5

E. coli iAF1260 9 41 8 6

E. coli iJO1366 13 44 8 7

H. pylori iIT341 6 16 3 4

M. barkeri iAF692 1 7 8 9

M. tuberculosis iNJ661 6 13 8 13

S. aureus iSB619 0 5 0 1

S. cerevisiae iND750 5 15 13 19

Opt. fixed and Opt. irrev. denote the number of additionally fixed, resp. irreversible,

reactions in the space of fluxes with optimal biomass production.
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Our current algorithm works without additional information
on metabolite concentrations. However, in more and more cases,
such information becomes available. In future work, we plan to
extend our method by incorporating metabolite concentrations

and other experimental data (Kümmel et al., 2006a; Pey et al.,
2011; Shinar and Feinberg, 2010).
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