
In Proceedings of the 17th International Symposium on High Performance Computer Architecture (HPCA 2011)

Fast Thread Migration via Cache Working Set Prediction

Jeffery A. Brown Leo Porter Dean M. Tullsen
University of California, San Diego

La Jolla, CA 92093-0404

Abstract

The most significant source of lost performance when a
thread migrates between cores is the loss of cache state. A
significant boost in post-migration performance is possible
if the cache working set can be moved, proactively, with the
thread.

This work accelerates thread startup performance af-
ter migration by predicting and prefetching the working set
of the application into the new cache. It shows that sim-
ply moving cache state performs poorly, and that moving
the instruction working set can be even more critical than
data. This paper demonstrates a technique that captures
the access behavior of a thread, summarizes that behavior
into a compact form for transfer between cores, and then
prefetches appropriate data into the new caches based on
the summary. It presents a detailed study of single-thread
migration effects, and then demonstrates its utility on a
speculative multithreading architecture.

Working set prediction as much as doubles the perfor-
mance of short-lived threads, and in a full speculative mul-
tithreading implementation, the technique is also shown to
nearly double the effectiveness of the spawned threads.

1. Introduction
As we progress into the manycore era, we become in-

creasingly dependent on high levels of thread-level paral-
lelism for performance scaling. This will require new pro-
gramming and execution models that expose more paral-
lelism. An important barrier to the viability of many pro-
posed execution models is an inability to efficiently execute
short threads, due to the overhead of copying a thread’s
cache state between cores. Several new execution models
significantly decrease the mean core occupancy times of
threads, or otherwise increase the frequency of thread state
transfers between cores.

Such new models will be significantly more effective
if they have the freedom to exploit parallelism in chunks
which are tens to hundreds of instructions long. However,
current machines cannot profitably move or fork execution
between cores at ranges below tens to hundreds of thou-
sands of instructions; a great deal of potential parallelism is
unavailable due to the cost of moving and forking threads.

We also see frequent state migration with traditional par-
allelization, both at loop-level (where threads spawned for
a loop iteration inherit the state of the serial code leading to
the loop) and at task-level (where parallel tasks inherit the
state of the callers). Less traditional uses of parallel hard-
ware also demand frequent migration. Speculative multi-
threading [32, 14, 27, 34] breaks serial execution into poten-
tially parallel threads, each thread inheriting the execution
context of the previous thread. Helper threads [7, 11, 40]
also utilize parallel hardware for speedup, without actually
offloading computation; each new helper thread executes
within the same address space as the main thread, inherit-
ing its memory state.

Heterogeneous multi-core proposals [18, 19] move
threads between cores to exploit power-performance-area
trade-offs. Those proposals use frequent sampling, via
heavy thread migration, to discover good mappings of
threads to cores. They migrate threads conservatively due
to the high cost of migration; presumably, as we lower that
cost, such architectures can adapt more quickly, increasing
potential gains.

Other research migrates threads when thread-level par-
allelism changes [1] or at each system call [22, 5]. Soft-
ware data spreading [17] frequently migrates threads at
compiler-determined points in order to effectively utilize
the aggregate capacity of multiple private caches. Even
when multi-cores are not exploited for performance, thread
migration may be demanded, e.g. for schemes which use
core-hopping for thermal management [6].

These techniques all share the property that a thread be-
gins or resumes execution on one core after its working set
has been built up on another core. In current systems, the
primary mechanism for working set migration (WSM) is
executing code on the new core, causing demand misses
which retrieve data from either another core, shared cache,
or memory. This is a particularly inefficient mechanism for
building a working set, since the rate at which data migrates
is directly tied to the speed of the “migration engine” —
the executing code. The time when execution is most sen-
sitive to cold-cache effects – just after migration – is the
very time when execution generates addresses most slowly,
because performance suffers due to those same effects.

We explore mechanisms for predicting and prefetching
the future working set of threads as they migrate between



cores. We introduce a three-step approach to WSM: first,
we augment each core with simple hardware to capture the
access behavior of threads as they execute. Next, when de-
activating or forking a thread, we summarize the captured
behavior to represent likely future instruction and data ac-
cesses, then transfer that summary along with other thread
state. Finally, we apply the summary data with a prefetcher
at the new core.

Our primary purpose is to evaluate a diverse set of mech-
anisms which capture access behavior, and measure how
effectively each predicts future accesses. Though we eval-
uate schemes of varying complexity, we achieve our best
results using very inexpensive schemes. We realize useful
performance gains at low cost with small, low-complexity
tables, maintained using only the address stream of execut-
ing threads.

We also demonstrate the utility of WSM by adding it to
a speculative multithreading architecture, where it signifi-
cantly boosts the effectiveness of speculative threads.

This research makes the following contributions: We
show that demand-fetching is not an effective mechanism
for filling caches after migration. We show that conven-
tional hardware prefetchers are not useful over the time in-
tervals in which performance loss is the most dire. We show
that in many scenarios I-stream misses are much more crit-
ical to post-migration performance than D-stream misses.
We demonstrate that bulk transferring the private caches is
surprisingly ineffective, and in many cases is worse than do-
ing nothing. With the addition of a few small, simple tables
to monitor access activity, and a prefetcher driven by those
tables, we achieve as much as a 2X performance boost for
short (100-instruction) threads. We show that some of these
techniques directly apply to the problem of lost locality due
to frequent thread spawning in a speculative multithreading
architecture.

2. Background and Related Work
Previous work [3, 38] describes support mechanisms for

migrating register state in order to decrease the latency of
thread activation and deactivation; however, performance
subsequent to migration still suffers due to cold-cache ef-
fects. Our work is complimentary; we specifically address
the post-migration cache misses which limit the gains of
those techniques. Choi, et al., explore the complementary
problem of branch prediction for short-lived threads [8].

Stream buffers [16, 24] introduce small associative struc-
tures which track data access patterns. Additional work [31]
extends this idea, allowing an advanced predictor to be
shared among many streams. We model a discrete hard-
ware predictor-directed stream buffer in the style of [31],
omitting the shared Markov predictor, as part of our base-
line. We also add the ability to transfer stream-buffer state
as a candidate working set prefetcher.

Sair, et al. [29] survey several prefetchers, and intro-
duce a method for classifying memory access behaviors in
hardware: the memory access stream is matched against
behavior-specific tables operating in parallel. We utilize
some similar structures in the capture stage of our migra-
tion system.

Speculative Precomputation [40, 11] targets memory in-
structions which degrade performance due to poor cache
behavior, using alternate contexts on multithreaded or
CMP [4] architectures. Focusing on misses, these schemes
target the subset of the future working set which is not
currently cached. Dependence-following schemes [2, 10]
prefetch by following dependence chains through memory.
While valuable, these techniques alone are of limited util-
ity immediately after a migration, due to their serial pro-
gression. (We incorporate this style of prefetching with our
pointer-chase table.)

Runahead Execution [23] prefetches by speculatively ex-
ecuting the application, but ignoring dependences on long-
latency misses. This seems well-suited to our need to
prefetch what would normally be cache hits in addition
to misses, and to cover a substantial amount of working-
set with little metadata overhead. However, this scheme is
hamstrung in the post-migration environment by the lack of
I-cache state at the target core; I-cache miss stalls serialize
short-term prefetching.

Dead-block prediction [20] predicts when L1 D-cache
blocks are no longer needed before replacement; an addi-
tional table is used to predict likely successors for early-
evicted blocks. They use the dead-block predictor and cor-
relations it exposes to prefetch likely misses, and use the
freed L1 storage as a prefetch buffer. Their work motivates
ours; we also find that caches often hold data irrelevant to
future accesses.

Data Marshaling [36] mitigates inter-core data misses in
Staged Execution models. In contrast to our approach, DM
targets scheduled stage transitions using compile-time flag-
ging of producer instructions, hardware to track writes by
flagged instructions, and a new instruction which triggers
data transfers.

3. Baseline Multicore Architecture
We study a four-core chip multiprocessor (CMP). Each

core has a four-way superscalar out-of-order execution en-
gine. Given their ability to exploit memory level paral-
lelism, these cores will be less sensitive to cache migration
effects than those of a conservative design. Our cores have
private first-level I- and D-caches, and a private second-
level unified cache; see Figure 1. Off-chip memory is
accessed via a shared four-channel off-chip memory con-
troller. Specific parameters of the core and memory sub-
systems are detailed in §6.1. The four cores communicate
over a shared bus. Caches are kept coherent with a MESI



Figure 1: Baseline multicore processor

coherence protocol [25] and snooping; our techniques read-
ily apply to systems with scalable interconnects and more
cores.

The cores of our CMP feature hardware support for
thread activation and deactivation, as found in prior studies
of thread scheduling [3, 38]. While those works used hard-
ware support to implement scheduling and time-sharing
policies, we use it simply for adding and removing threads
from cores. Traditional software-driven migration has much
higher overhead, which would dominate cache migration
costs; we believe that direct OS involvement in all thread
movement is ceasing to be a viable model, but even the OS
overhead for migration can be significantly reduced from
current levels [35].

4. Motivation
Many execution scenarios require the working set of a

thread to migrate between cores: load balancing, thread
spawning, loop-level parallelization, task-level paralleliza-
tion, helper threads, speculative multithreading, hetero-
geneous multicore adaptation, thermal management, etc.
These will become more common as core counts increase;
each of these mechanisms will be even more effective with
decreased migration cost. Although the principles of this
work apply in all of these cases, for clarity of evaluation
we focus first on single-thread migration at arbitrary points
in the program. We later apply our technique to a specu-
latively multithreaded, transaction-based parallel workload,
improving overall performance.

To initially evaluate migration mechanisms on our
single-thread workloads, we repeatedly move a single
thread among a set of cores. There are several costs incurred
in migrating a thread: transferring register state, transfer-
ring TLB state, recreating branch predictor state, etc.; how-
ever, the largest amount of program state on a core resides
in the caches. As a result, the cost of transferring cached
state dominates thread re-start performance. In addition,
cache state is moved very slowly, because it is only demand-
fetched as the thread executes on the new core, but after mi-
gration that thread is executing (and demand-fetching) ex-
tremely slowly.

Figure 2: The cost of migration, in reduced in-
struction throughput, for various assumptions
about the migration of data. The baseline is in-
stant replication of all private caches.

Figure 2 gives the result of an experiment that illustrates
the cost of migration and the potential to reduce the cache-
related portion of that cost. We force a single thread to mi-
grate round-robin among four cores, moving every 1 million
commits, and record the time it takes to start-up and commit
the next 1, 10, 100, . . . 106 instructions after each migration.
We perform this experiment across the SPEC2000 bench-
mark suite, with varying amounts of architectural (and ora-
cle) support for migration. We show slowdown relative to
the ideal case where all cache contents are instantly trans-
ported to the new core for free. It takes, on average, 7 times
as long to commit the 100th instruction in the default mi-
gration case – “no help” – compared to cost-free cache mi-
gration. (We initially assume that a background workload
causes cache state to be evicted before a thread returns to
a previous core, and which does not otherwise impair the
thread; we revisit this assumption in §7.6.)

Considering the feasible schemes of Figure 2, “copy
I+D” bulk-copies both first-level caches by transferring a
list of their tags to the new core and fetching blocks via
core-to-core transfers; “copy stream info” transfers just the
metadata from the first core’s hardware stream buffer to
the second, allowing it to resume following known streams.
For the idealized schemes, “oracle prefetch” uses perfect
knowledge of future accesses to fetch required blocks at
the new core, requesting them via the memory hierarchy
as the thread restarts and modeling the costs of these re-
quests; “instant-copy I+D” instantly transfers the contents
of the first-level I- and D-caches to the new core, cost-free;
finally, “instant-copy L1+L2” instantly transfers all cached
data, cost-free.

This graph provides several key insights. First, we see
that unless a thread executes on a core for many instructions
before being migrated, the cost of migration is not amor-
tized in the realistic schemes. At 10,000 commits, the cost
is still very high (2X slowdown); for shorter threads, mi-
gration cost is extreme. Note that several speculative multi-



threading proposals routinely execute threads under 100 in-
structions [21], as do helper-threads [39]; several transac-
tional memory programs (for Transactional Coherency and
Consistency) showed average transaction lengths in the low
hundreds [9].

We also see that copying entire caches proactively – the
“copy I+D” case – is not effective: there is too much data,
much of it irrelevant. This is worse than doing nothing
over short intervals, and takes about 10,000 instructions to
be amortized enough to approach break-even. While not
shown, the cost of copying the larger L2-resident state is
even higher.

We see that copying stream buffer state – the “copy
stream info” case – is more effective over short terms than
moving the entire L1 cache state; the stream buffer is small
and directly targets future accesses. This is still not partic-
ularly effective, since it represents only a small fraction of
the future working set: the stream buffer is built to target
future misses in the D-stream; what we really want is some-
thing similar to the stream buffer, but trained on the entire
access stream. Furthermore, this scheme does not prefetch
for the I-stream. Immediately after migration, there is great
demand for instructions; the lack of I-stream prefetching is
exacerbated by the inability to overlap multiple I-misses.

At the short time scales we’re most interested in for mi-
gration support, conventional hardware prefetchers are un-
able to contribute much (we observe this, because hardware
prefetchers are included in our baseline architecture): they
don’t have enough time to train on an incoming thread’s be-
havior, since the thread itself is struggling to execute.

5. Architectural Support for WSM
In §4 we demonstrated that characterizing the miss

stream is not sufficient to cover many migration-related
misses; we need to characterize the access stream. We con-
struct a working set predictor which works in three stages.
First, we observe the access stream of a thread and capture
patterns and behaviors. Second, we summarize this behav-
ior and transfer the summary data to the new core. Third,
we apply the summary via a prefetch engine on the target
core, to rapidly fill the caches in advance of the migrated
thread.

We begin by describing a set of possible capture engines.
We start out concerned less with the implementation cost,
and more with exploring a variety of possibilities. After
evaluating tables that capture a wide variety of access pat-
terns, we find that we get excellent performance with very
few, very small tables, each with simple index functions,
utilizing only post-commit PCs and memory addresses.

5.1. Memory logger
To each core we add a memory logger, a specialized

unit which records selected details of each committed mem-
ory instruction and I-cache access. This unit passively ob-

Figure 3: A memory logger implementation with
multiple table types.

serves the current thread as it executes, but does not di-
rectly affect execution; it can be implemented outside of
the main pipeline where it need not influence critical timing
paths, and is tolerant of any additional latency needed for
buffering. If a conservatively-implemented memory logger
becomes swamped with input, records may safely be dis-
carded; this will degrade the accuracy of later prefetching.
We model a memory logger which can keep up with execu-
tion.

The memory logger is implemented with small (32-
entry) content-addressable memory (CAM) tables, each
with associated control logic. These tables are indexed us-
ing various portions of the information from each memory
operation. We examine a variety of potential table types,
each tailored to capture a specific class of access pattern:
one table tracks striding accesses, another tracks pointer
traversals, etc. Figure 3 shows an overview of a potential
memory logger architecture with multiple tables. As men-
tioned, we find in §7.3 and §7.4 that we get excellent perfor-
mance with a few simple tables, and very little information
extracted from the pipeline.

Each table within the memory logger targets a specific
type of access pattern; we next describe each type we con-
sider. (We are not proposing these tables as novel prefetch-
ing schemes; several of the underlying ideas are discussed
in §2, and [29] surveys several more.)

Next-block-{Inst,Data}: These detect sequential block
accesses; entries are advanced by one cache block on a hit.
We maintain separate next-block tables for the I- and D-
streams.

StridePC: This tracks individual instructions which walk
through memory in fixed-sized steps; only D-stream ac-
cesses are tracked, using the PC values and access ad-
dresses.

Pointer, Pointer-chase: These capture active pointers
and pointer traversals, respectively, by detecting when the
data output of a load matches the address of a later mem-
ory access, similar to pointer-cache [10] and dependence-



Figure 4: Summary generator
based [28] prefetching. Pointer tracks loaded values used
as addresses without following them, while Pointer-chase
replaces each entry with the target value when a load match
is observed.

Same-object: This captures accesses to ranges of mem-
ory from a common base address, as is common for struc-
ture and object access code. This takes advantage of the
common “base+offset” addressing mode, tracking mini-
mum and maximum offsets for each base address, while
ignoring accesses relative to the global pointer or stack
pointer.

SPWindow, PCWindow: These don’t actually use tables;
we just record the value of the stack pointer and PC, respec-
tively, and use them to prefetch a window of data blocks
near the top of the stack, or a window of instructions near
the first post-migrate instruction.

{Inst,Data}-MRU: These record the most recent blocks
accessed from the I- and D-streams. These operate at four-
cache-block granularity, allowing them to cheaply cover a
larger number of blocks without increasing MRU mainte-
nance.

BTB, BlockBTB: These capture taken branches and their
targets, recording the most recent inbound branch for each
target. BlockBTB is a block-aligned variant of BTB; branch
and target PCs are block-aligned, allowing a greater amount
of the instruction working set to be characterized at a given
table size.

RetStack: This maintains a shadow copy of the processor
return stack, prefetching blocks of instructions near the top
few control frames.

5.2. Summary generator
The summary generator, depicted in Figure 4, activates

when a core is signaled to migrate a thread. As introduced in
§3, our baseline core design assumes hardware support for
thread swapping; at halt-time, the core collects and stores
the register state of the thread being halted.

While register state is being transferred, the summary
generator reads through the tables populated by the mem-
ory logger and prepares a compact summary of the thread’s

Figure 5: Summary-driven prefetcher

likely future working set. This summary is transmitted af-
ter the architected thread state, and is used to prefetch the
thread’s working set when it resumes on the new core. Dur-
ing summarization each table entry is inspected to deter-
mine its usefulness by observing whether its age-adjusted
hit counter exceeds a threshold. Output summaries are
packed into cache-line size blocks for efficient transfer.

Table entries are summarized for transfer by generating
a sequence of block addresses from each, following the be-
havior pattern captured by that table (e.g. prefetching an
object’s blocks for a Same-object entry, or the successor
block for a Next-Block entry). We encode each sequence
with a simple linear-range encoding, <start-address, stride,
length>, which tells the prefetcher to fetch length cache
blocks, starting at start-address, with stride stride. We con-
servatively allocate 64 bits for each tuple; this could be
reduced with even rudimentary compression. The length
bound is necessary because we prefetch directly into the
caches, dependence-free, as fast as the memory subsys-
tem allows. This does not have the natural pacing present
in, for example, stream buffers; while finite MSHR and
cache ports limit overall prefetcher throughput, judicious
length restrictions help individual summaries share those re-
sources. Overall, we’ve tuned lengths to roughly transfer
enough data to cover the first 1,000 instructions.

5.3. Summary-driven prefetcher
Rounding out our working-set migration hardware is the

summary-driven prefetcher, depicted in Figure 5. When a
previously-suspended thread is activated on a core, its sum-
mary records are read by the prefetcher. Each record is ex-
panded to a sequence of cache block addresses, which are
submitted for prefetching as bandwidth allows. While the
main execution pipeline reloads register values and resumes
execution, the prefetcher independently begins to prefetch
a likely working set. Prefetches search the entire memory
hierarchy, and contend for the same resources as demand
requests. Once the register state has been loaded, the thread
resumes execution and competes with the prefetchers for
memory resources. Communication overlap and contention



for interconnect and caches is modeled among transfers of
register state, table summaries, prefetches, and the service
of demand-misses.

We model the prefetch engine as submitting virtually-
addressed memory requests at the existing ports of the I-
and D-caches, utilizing the existing memory hierarchy for
service. While these requests compete with the thread it-
self, we find that most prefetching immediately after mi-
gration occurs while the thread would otherwise be stalled
for memory access; thus we do not require additional cache
porting.

6. Methodology
We evaluate the prefetching coverage and overall per-

formance of our working-set migration system using an
execution-driven, out-of-order processor and memory sys-
tem simulator.

6.1. Simulator configuration
We start with a multi-core version of SMTSIM [37],

configured with single-threaded cores. Our four cores are
clocked at 2.0 GHz, with timing for other structures re-
ported in terms of this clock rate. Table 1 lists the most
significant parameters of the baseline system used in our
experiments. Our memory subsystem layout and latencies
are based on that of recent Intel Nehalem-based proces-
sors [15]; bandwidth constraints are based on benchmark-
ing of Nehalem-based systems and on the specifications of
DDR3-1600.

Our system details MSHRs, queues, banking, and port-
ing for each cache, with per-bank and port latency and band-
width accounting. We model latency and bandwidth for
each DRAM channel with a simple queue, “QILM” in the
parlance of [33], without detailed memory controller mod-
eling. In this study, virtually all post-migration misses are
serviced core-to-core rather than off-chip; consequently, the
memory hierarchy beyond the L2 caches has no significant
impact on our results. (We confirm this in §7.8, where our
results are unaffected by adding a shared L3 cache, and
again in §8 where our overall speedups are unaffected by
large changes in DRAM latency.)

Atop this baseline, we implement and evaluate the
working-set migration architecture described in §5. The
InstMRU and DataMRU CAMs have 16 entries each; all
other logger CAMs have 32 entries. We use an easily-
implemented round-robin replacement policy, which skips
replacement of entries with recent hits (within the last 500
lookups), avoiding the complexity of LRU.

6.2. Workloads
Evaluating the speed of migration is not straightforward.

We could examine a particular environment which bene-
fits from fast migration (e.g. speculative multithreading, a

Parameter Value
Clock rate 2.0 GHz
Fetch width 4
Reorder buffer 128 entries
Integer window 64 insts
FP window 64 insts
Max issue width 4
Integer ALUs 4
FP ALUs 2
Load/store units 2
Branch predictor 4 Kbit gshare
BTB 256-entry, 4-way
Cache block size 32 B
Page size 8 KB
L1 I-cache size/assoc. 32 KB/4-way
L1 I-MSHR 16 entries, 32 waiters each
L1 D-cache size/assoc. 32 KB/4-way
L1 D-cache ports 2 read/write
L1 D-MSHR 16 entries, 32 waiters each
L2 cache size/assoc. 512KB/8-way, per-core
L2 cache ports 8 banks, 1 port ea.
ITLB entries 48
DTLB entries 128
Load-use latency, L1 hit 2 cyc
Load-use latency, L2 hit 14 cyc
Load-use latency, memory 176 cyc
Load-use latency, cross-core 34 cyc
TLB miss penalty 160 cyc
L1 I-cache ideal b/w 60 GB/s
L1 D-cache ideal b/w 60 GB/s
L2 cache ideal b/w 60 GB/s
Bus ideal b/w 30 GB/s
Mem ideal b/w 30 GB/s R, 20 GB/s W
Thread activate latency 15 cyc, to first fetch
Thread deactivate latency 44 cyc, to fetch available
L1 D stream buffer 8 streams, 4 blocks/stream
L1 D stream buffer stride table 256-entry, 4-way

Table 1: Baseline processor parameters

shared-thread multiprocessor), but the results would be spe-
cific to those execution models; instead, we first model a
generic environment to produce techniques that are useful
in the general case. While there are many potential reasons
for a particular migration (as discussed in §1), any migra-
tion in a real system will be subject to some or all of the
overheads we characterize in this work.

We start with all individual benchmarks from the
SPEC2000 suite, running standalone on a four-core pro-
cessor. Each benchmark is simulated for 200 million com-
mits during its main phase of execution. To evaluate per-
formance subsequent to migration, we force threads to mi-
grate round-robin around cores, triggering a migration ev-
ery 1 million commits. We measure the time to commit 10

n

instructions after each migration, n ∈ {0 . . . 6}. Examin-
ing performance across this wide range of intervals offers
insight into how long it takes to amortize the cost of a mi-
gration, and the expected throughput for short, medium, and
long-lived threads.

We initially assume that caches are empty when a mi-
grating thread returns to a given core. This is a simpli-
fied model of an environment where unrelated background



threads occupy other cores, evicting the blocks of the thread
under study during its absence; this allows evaluation ab-
sent noise from other threads. We also present data from
more realistic scenarios with background threads simulated
in §7.6 and §7.7. In those cases, we use random sets of the
other benchmarks running on the idle cores, with threads on
the other cores migrating among cores about as often as the
thread under measurement.

In addition to the detailed evaluation of post-migrate be-
havior described in this section, we also demonstrate the
overall benefit of working-set migration on a particular ar-
chitecture, speculative multithreading. Because those ex-
periments introduce several new properties, that methodol-
ogy is discussed in §8.

6.3. Metrics
Performance evaluation presents another challenge: we

wish to gauge the impact of our changes on performance in
the immediate wake of migration operations, which we re-
peatedly induce. By triggering fairly infrequently and cap-
turing the post-migration behavior over a wide range of in-
tervals, we capture both the short-term and long-term im-
pact of each migration. Our measured migrations are inde-
pendent of any particular system condition other than over-
all commit progress; this ensures that the results at each
time interval are comparable across various migration poli-
cies, since migrations occur at the exact same points in each
simulation.

Our performance metric is based on the time it takes to
commit an interval of 10

n instructions immediately follow-
ing each migration operation, for n ∈ {0 . . . 6}. We mea-
sure time from the first post-migrate fetch until 10

n instruc-
tions commit. We report results in terms of speedups rela-
tive to the same intervals on our baseline system.

7. Analysis and Results
This section examines a number of mechanisms for pre-

dicting the future working set of a migrating thread, ranging
from simple to complex, ideal to realistic.

7.1. Bulk cache transfer
The most straightforward predictor of the future working

set is the existing contents of the caches. We can copy those
contents in bulk immediately after moving register state.
We saw in Figure 2 that this was not effective, at least over
the short intervals, due to the quantity of data transferred
and the fraction of data that does not turn out to be useful.
To perform bulk cache transfers at migration time – while
the source core’s pipeline is retrieving register values for
transfer – we read out the set of cache tags belonging to the
subject thread, and pack them into a message for transfer to
the target core.

Figure 6 shows the impact of bulk cache transfers on
our single-threaded workloads, broken down by individual

Figure 6: Impact of adding bulk cache transfers to
single-threaded workloads. Speedups are relative
to no migration support.

cache. Over the shorter intervals, performance is signifi-
cantly worse, as the dependence-free prefetch traffic con-
sumes most available request bandwidth. In the baseline
case, the thread is already hamstrung by the low rate at
which it can generate new memory references; adding bulk
cache requests increases the contention for MSHRs and re-
quest ports, and confuses the cache replacement priority,
worsening the short-term situation. Over longer intervals,
we do see benefit from bulk-transferring the I-cache, and
from transferring both L1 caches together.

Moving the D-cache by itself has almost no positive ef-
fect. This is a recurring theme in our results: the I-cache is
more critical to post-migration performance, if both caches
start empty. I-cache misses progress serially, while D-cache
misses can often be serviced in parallel with each other,
making the I-stream the clear bottleneck. In the case where
all three caches are bulk copied, we see performance gains
at large intervals primarily because the I-cache is included,
and in fact this is less effective than copying the I-cache
alone. Due to the size of the L2 cache, the transfer cost is
not amortized even over 1 million commits (I + D + L2 is
never better than I + D).

7.2. Limits of prefetching
Our next experiment explores the potential of post-

migration prefetching. Here, we rely on an oracle prefetcher
which has perfect knowledge of all future L1 block ac-
cesses. It prefetches these in order, looking far enough
ahead to fill each of the L1 caches halfway. This result is
shown in Figure 7. We see that the potential gains are high;
despite incurring the full cost of sending the summaries and
transferring the data, the oracle’s perfect accuracy allows
it to approach the performance of free transfers – and ac-
tually doing better at 10

3 commits and beyond – while far
outpacing cache copying. This demonstrates that the under-
lying memory system has sufficient bandwidth to support
efficient thread migration; performance depends primarily
on the accuracy of our working-set summaries.



Figure 7: Impact of a future oracle prefetcher,
compared to instant transfer and bulk cache copy.

Figure 8: Impact of realistic I-stream prefetchers,
combined with an oracle D-stream prefetcher.

7.3. I-stream prefetching
I-stream prefetching and D-stream prefetching are syn-

ergistic; we saw this earlier, where fetching the D-stream
was useless if the I-cache was empty. Therefore, to eval-
uate the tables of our memory logger which target the I-
stream, we first assume a good solution for the D-stream.
In this section, we evaluate the different I-stream tables in
combination with an oracle D-stream prefetcher. The oracle
still incurs overhead, but has perfect knowledge of the 1000
commits following each migration.

We see these results in Figure 8. We can’t conclude much
yet in terms of realistic speedup, but we do see that two very
simple approaches – PCWindow and InstMRU – are quite
effective over both the short and medium term. The latter
has a significant advantage over moving the entire cache
because it can be more timely: by requesting a subset of the
cache, it moves the most relevant instructions more quickly.

7.4. D-stream prefetching
As we prefetch the I-stream into the new caches, the D-

stream then becomes the bottleneck. Complementing §7.3
above, here we evaluate the tables of our memory logger
which target the D-stream, temporarily assuming an oracle
I-stream prefetcher with perfect knowledge of 1000 com-
mits into the future.

Figure 9: Impact of realistic D-stream prefetchers,
combined with an oracle I-stream prefetcher.

Figure 10: Impact of various combinations of real-
istic I- and D-stream prefetchers.

Figure 9 shows these results. Here, the variations are
lower than in the I-stream case, partially because of the di-
versity of access patterns, but also because of overlap be-
tween schemes: several of these tables track the same ac-
cesses in different ways. Again, very simple tables suffice;
DataMRU and StridePC both perform well over a range of
intervals, the former slightly better for shorter threads, the
latter slightly better for longer threads.

7.5. Combined prefetchers
Next, we examine combinations of realistic I- and D-

stream prefetchers, with no oracle knowledge. For the I-
stream, we use a combination of PCWindow and InstMRU.
(Results with just InstMRU were quite similar, because In-
stMRU partially subsumes PCWindow: the current PC is
always in the MRU table.) However, by combining their
behaviors, we can prefetch a larger window of instructions
around the current PC than we do for the other addresses.

We combine these with several of our D-stream predic-
tors in Figure 10. Again, we see the StridePC and DataMRU
predictors each give excellent performance overall. For
threads as short as 100 instructions, we achieve speedups
as high as 2X using this working set prediction framework.

Table 2 shows the transfer intensity and the accuracy of
several prefetching schemes: the best two prefetch com-



Prefetcher Blocks/migrate Accuracy
InstMRU+PCWindow+StridePC 212 64.00%
InstMRU+PCWindow+DataMRU 110 59.44%
Bulk transfer I+D 1195 48.63%

Table 2: Prefetcher activity and accuracy, mean
over 200 migrations.

Figure 11: Realistic prefetchers, with previous-
instance cache reuse and background thread
movement.

binations from Figure 10, as well as bulk-copy of the L1
caches. We see from these results that our proposed migra-
tion support provides both more accurate and more directed
prefetching than moving the cache state itself.

In summary, we see that a combination like In-
stMRU+PCWindow+DataMRU uses only two 16-entry ta-
bles, one watching the I-stream and one watching the D-
stream, and enables us to as much as double the throughput
of short threads.

7.6. Cross-migration data reuse
We’ve been migrating individual threads in an otherwise

idle system, in order to evaluate prefetching absent interfer-
ence from other threads. However, with no other threads, a
frequently-migrating thread would quickly build up copies
of its working set on each core, and gain less from prefetch-
ing. To simulate cache interference from other threads, thus
far we’ve assumed that when a thread is migrated to a core,
its entire working set has been evicted.

For a more realistic scenario, in this section we remove
that restriction on cached data re-use. In order to provide
cache replacement pressure on the cores which are not run-
ning the thread under evaluation, we schedule an indepen-
dent workload on each (chosen randomly from SPEC2000),
and move these background threads among cores periodi-
cally, outside of our prefetch-evaluation time periods. Fig-
ure 11 shows the resulting performance. Compared to
Figure 10, our gains are reduced, but overall performance
trends are similar. For example, mean suite-wide speedup
for the DataMRU combination over 100 post-migrate com-
mits has dropped from about 2.00 to 1.61. This drop is from
the combination of additional cache re-use along with con-
tention for interconnect and memory resources. However,
the available performance gains are still quite high.

7.7. Impact on other threads
The experiments in §7.6 also allow us to evaluate the im-

pact of these short bursts of prefetches on unrelated threads
running on other cores. In the short term, the impact is mea-
surable – 4% slowdown of other threads during the time the
migrated thread executes its first 100 instructions – but is
dwarfed by the gains of the migrated thread. The slowdown
tapers off quickly, to 0.1% slowdown at 10,000 instructions.

7.8. Adding a shared last-level cache
To demonstrate that our gains are largely insensitive to

memory latencies beyond the core-to-core transfers that
dominate during migration, we model the addition of a
shared L3 cache. We add an 8MB 16-way associative L3,
with an overall load-use latency of 40 cycles (L2 latency re-
mains 14 cycles). With this L3 added to both the baseline
and experimental cases, we find that performance is nearly
identical; compared to e.g. the “StridePC” experiments de-
scribed for Figure 10, adding the L3 to both the baseline
and the system with working set prediction, decreases the
achieved speedup by a mean of 0.1% for 100 post-migrate
commits, and mean 1.0% across all time scales. (In §8
we also show that overall benefits are insensitive to large
changes in main-memory latency itself.)

7.9. Simple hardware prefetchers
All of our results thus far use a baseline with a fairly

aggressive hardware stream-buffer based prefetcher. This
prefetcher is rendered relatively ineffective during post-
migration startup because it needs to learn stride patterns.
It could be argued that in a system that expects frequent
short threads, a simpler hardware prefetcher that ramped up
more quickly might be more appropriate and could render
our techniques less necessary. In fact, we find that not to be
true.

For these results, we add next-block prefetchers to both
L1 caches: these prefetch the successor to each block, at the
first touch after that block is filled. Using these prefetchers
instead of our proposed migration-targeting prefetchers, we
observed only 1.010 mean speedup over 100 post-migrate
commits. Over longer time scales, the benefits ramp up, to
e.g. 1.104 mean speedup over 10000 post-migrate commits.

We find that over the short time scales we’re most inter-
ested in for migration support, even these simple prefetch-
ers are unable to contribute: they still fall prey to the nascent
thread’s slow progress, which prevents them being trained
quickly enough to help, because they are being trained by
demand misses. In contrast, our prefetchers are already
trained at the time of migration.

8. WSM for Speculative Multithreading
We’ve demonstrated our techniques to be effective at

mitigating the loss of cache state during thread migration



in a framework that forces frequent migrations for the sole
purpose of measurement. To demonstrate a practical appli-
cation of working-set migration, we evaluate its ability to
improve Speculative Multithreading.

In Speculative Multithreading (SpMT), loss of cache
state impedes performance as execution migrates across
cores [12, 13, 26]. This is a well-documented and long-
standing problem. Execution that would ordinarily reside
on a single core is now spread across several, creating
misses and invalidate traffic where the original code experi-
enced hits in a single cache. Additionally, coherence-based
speculative multithreading requires certain data to be inval-
idated in caches for both squashed and committed threads,
exacerbating the problem.

The SpMT scenario is different from our generic mi-
gration experiments of previous sections in three important
ways. Thread start points are more deterministic (we fre-
quently start threads at the same PC), we have less interfer-
ence from other applications (we assume an idle core is not
made available to other applications while waiting to spawn
a new SpMT thread), and because spawned threads repre-
sent future execution, the memory loggers will experience a
gap in memory addresses between the spawn point and the
execution of the spawned thread. The first two differences
mean that I-stream prefetching is less critical, since I-caches
warm to the code of recurring threads and stay warm. Ad-
dressing the third difference is the subject of future work;
however, despite all these challenges, we still see significant
gains from working-set prediction on SpMT architectures.

We obtained the Speculative Multithreading framework
used to evaluate a number of Hardware Transactional Mem-
ory designs [26] and modified it to include our working set
migration techniques. In this framework, loops and function
calls are identified for speculative parallelization entirely in
hardware. Register dependencies between threads are pre-
dicted by a live-in predictor and the values are predicted
using an increment predictor [21]. Memory dependencies
are addressed via a modified form of Hardware Transac-
tional Memory, specifically the OFWI design recommended
by [26]. This memory design is aware of thread ordering,
forwards values between threads, and detects conflicts at
word granularity. Since the protocol creates invalidations,
write-sharing can cause additional cache misses. We per-
form working-set-prediction prefetches non-transactionally,
so they do not impact the read/write sets of transactions.

We evaluate the full SPEC 2000 benchmark suite with
reference inputs. Each benchmark is executed using 100M-
instruction simulations based on SimPoint [30]. We model
dual-core execution using architectural parameters similar
to [26]; these parameters include a shared L2 cache, which
decreases the penalty for transferring data between cores. A
lower cost of cache-to-cache transfers also lessens the criti-

Figure 12: SPECint SpMT mean speedup across
migration techniques and memory configurations.
“I+D Combo” uses InstMRU, PCWindow, and
DataMRU.

cality of migrating the working-set. Nevertheless, working
set migration significantly boosts performance.

Speculative threads (both committed and squashed) were
spawned, on average, approximately every 275 instructions.
Averaged across our benchmarks, speculative threads com-
mitted 57–67 instructions before committing, depending on
the working set migration support. Our migration tech-
niques, specifically DataMRU, resulted in the most com-
mitted instructions per thread, contributing to the improved
performance.

Figure 12 explores the effectiveness of our WSM tech-
niques on the integer subset (SPECint). Focusing on
the leftmost group, we see that baseline SpMT execu-
tion achieves an average speedup of 1.10, and D-stream
WSM nearly doubles the overall effectiveness of specu-
lative threading, increasing the gain from 10% to 18%.
Across the entire SPEC benchmark suite, WSM increases
overall gain from 24% to 32% (not pictured). When com-
paring the combination of prefetching both I- and D-streams
(“I+D Combo”) against that of data alone (“DataMRU”),
we see that I-stream prefetching slightly degrades perfor-
mance, since the I-caches are already warm. Although in-
struction prefetches are likely to be hits, they can impede
the thread because they occupy cache request ports.

Figure 12 also shows results for an oracle D-prefetcher,
which, at each spawn point, prefetches the memory blocks
used by the next 100 instructions (the average speculative
thread length is 59). This oracle achieves a 1.23 speedup on
SPECint. Since this oracle prefetcher should almost entirely
solve the cache locality problem for SpMT, we find that our
realistic working-set prefetcher achieves most of the gains
(1.18 speedup) available.

SpMT speedup is significantly hampered by the increase
in average memory access time (AMAT) that occurs when
we spread the computation among multiple cores. How-
ever, data working set prediction significantly mitigates the



Figure 13: SPECint per benchmark average mem-
ory delay slowdown from SpMT and from SpMT
with DataMRU.

AMAT inflation, as shown in Figure 13. In some cases,
it reduces AMAT to near, or even below, the single-thread
AMAT. In nearly all other cases, prefetching significantly
reduces AMAT. As a result, overall SpMT performance im-
proves significantly.

The one anomalous result is mcf. The performance of
mcf is completely dominated by a small number of hard-
to-predict “delinquent” loads [11]. SpMT benefits mcf less
from the successful completion of spawned threads, as from
the prefetching provided by those threads, which bring in
hard-to-predict data. Hence, for mcf, speculative threads al-
ready succeed at performing critical prefetches; those criti-
cal prefetches are delayed by the extra traffic generated by
DataMRU prefetching.

As mentioned in §6.1, post-migrate performance is dom-
inated by cache-to-cache transfers. Prior work [33] shows
that memory simulation models such as ours can underes-
timate latency by up to 25%. Since main memory access
patterns are largely unaffected by WSM, the details of that
simulation should not impact our relative speedups. In Fig-
ure 12 the center and right groups show the performance of
SpMT and WSM with DRAM access latencies increased by
11% and 90%, respectively. The overall trends in this sec-
tion are shown to be insensitive to large increases in mem-
ory latency.

To model a more aggressive SpMT system, we also eval-
uate the SpMT framework using a perfect register value pre-
dictor to determine if our results remain consistent without
thread squashes caused by register mispredictions. Again,
we see significant gains from the DataMRU working set
predictor, which improves SPECint SpMT speedup from
1.24 to 1.34.

9. Summary and Conclusions
In this paper we describe a working set predictor which

greatly speeds up post-migration execution. As we proceed
further into the multicore era, migrations – loosely defined
as scenarios where the state of a thread on one core needs to
migrate to another core – will occur with greater frequency.

Accelerating migration will make many proposed execution
models more effective, and will make finding exploitable
pockets of parallelism easier.

In this work we show that it’s critical to address I-stream
performance, post-migration; otherwise, the I-cache is left
to be filled by serial demand-misses. However, we improve
the delivery of both instructions and data to boost the perfor-
mance of short threads. We also show that simply copying
cache contents is extremely ineffective over the short term:
it moves too much data, at too much expense, and much
of that data is not useful over the short term. We demon-
strate techniques that as much as double the performance
for short threads. We also demonstrate these techniques
are successful at significantly improving the effectiveness
of speculative multithreading. These solutions require only
small, simple tables to monitor the access streams of a run-
ning thread on each core.

Acknowledgments
The authors would like to thank the anonymous review-

ers for their helpful insights. This research was supported
in part by NSF grant CCF-1018356 and Semiconductor Re-
search Corporation Grant 2005-HJ-1313.

References

[1] M. Annavaram, E. Grochowski, and J. Shen. Mitigating
Amdahl’s Law through EPI throttling. In 32nd International
Symposium on Computer Architecture, pages 298–309, June
2005.

[2] M. Annavaram, J. M. Patel, and E. S. Davidson. Data
prefetching by dependence graph precomputation. In 28th
International Symposium on Computer Architecture, pages
52–61, July 2001.

[3] J. A. Brown and D. M. Tullsen. The shared-thread multipro-
cessor. In 21st International Conference on Supercomput-
ing, pages 73–82, June 2008.

[4] J. A. Brown, H. Wang, G. Chrysos, P. H. Wang, and J. P.
Shen. Speculative precomputation on chip multiprocessors.
In 6th Workshop on Multithreaded Execution, Architecture
and Compilation, pages 35–42, Nov. 2002.

[5] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computa-
tion spreading: Employing hardware migration to specialize
CMP cores on-the-fly. In 12th International Conference on
Architecture Support for Programming Languages and Op-
erating Systems, pages 283–292, Oct. 2006.

[6] P. Chaparro, J. González, and A. González. Thermal-aware
clustered microarchitectures. In 22nd IEEE International
Conference on Computer Design, pages 48–53, Oct. 2004.

[7] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N.
Patt. Simultaneous subordinate microthreading (SSMT). In
26th International Symposium on Computer Architecture,
pages 186–195, May 1999.

[8] B. Choi, L. Porter, and D. M. Tullsen. Accurate branch pre-
diction for short threads. In 13th International Conference
on Architecture Support for Programming Languages and
Operating Systems, pages 125–134, Mar. 2008.



[9] J. Chung, H. Chafi, C. C. Minh, A. McDonald, B. D. Carl-
strom, C. Kozyrakis, and K. Olukotun. The common case
transactional behavior of multithreaded programs. In 12th
International Symposium on High-Performance Computer
Architecture, pages 266–277, Feb. 2006.

[10] J. D. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer
cache assisted prefetching. In 35th International Symposium
on Microarchitecture, pages 62–73, Nov. 2002.

[11] J. D. Collins, H. Wang, D. M. Tullsen, C. J. Hughes, Y.-F.
Lee, D. M. Lavery, and J. P. Shen. Speculative precompu-
tation: Long-range prefetching of delinquent loads. In 28th
International Symposium on Computer Architecture, pages
14–25, July 2001.

[12] S. L. Fung and J. G. Steffan. Improving cache locality for
thread-level speculation. In 20th International Parallel and
Distributed Processing Symposium, Apr. 2006.

[13] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative
versioning cache. In 4th International Symposium on High-
Performance Computer Architecture, Feb. 1998.

[14] L. Hammond, M. Willey, and K. Olukotun. Data specula-
tion support for a chip multiprocessor. In 8th International
Conference on Architecture Support for Programming Lan-
guages and Operating Systems, pages 58–69, Oct. 1998.

[15] Intel. First the tick, now the tock: Next generation Intel
microarchitecture (Nehalem). Intel white paper, 2008.

[16] N. P. Jouppi. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache and
prefetch buffers. In 17th International Symposium on Com-
puter Architecture, pages 364–373, June 1990.

[17] M. Kamruzzaman, S. Swanson, and D. M. Tullsen. Soft-
ware data spreading: Leveraging distributed caches to im-
prove single thread performance. In ACM SIGPLAN 2010
Conference on Programming Language Design and Imple-
mentation, June 2010.

[18] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA heterogeneous multi-core archi-
tectures: The potential for processor power reduction. In
36th International Symposium on Microarchitecture, pages
81–92, Dec. 2003.

[19] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA heterogeneous multi-core archi-
tectures for multithreaded workload performance. In 31st
International Symposium on Computer Architecture, pages
64–75, June 2004.

[20] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction
& dead-block correlating prefetchers. In 28th International
Symposium on Computer Architecture, pages 144–154, July
2001.

[21] P. Marcuello and A. González. Thread-spawning schemes
for speculative multithreading. In 8th International Sym-
posium on High-Performance Computer Architecture, pages
55–64, Feb. 2002.

[22] J. C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and
V. Talwar. Using asymmetric single-ISA CMPs to save en-
ergy on operating systems. IEEE Micro, 28(3):26–41, May
2008.

[23] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead
execution: An alternative to very large instruction windows
for out-of-order processors. In 9th International Symposium
on High-Performance Computer Architecture, pages 129–
140, Feb. 2003.

[24] S. Palacharla and R. E. Kessler. Evaluating stream buffers as
a secondary cache replacement. In 21st International Sym-
posium on Computer Architecture, pages 24–33, Apr. 1994.

[25] M. S. Papamarcos and J. H. Patel. A low-overhead coher-
ence solution for multiprocessors with private cache memo-
ries. In 11th International Symposium on Computer Archi-
tecture, pages 348–354, June 1984.

[26] L. Porter, B. Choi, and D. M. Tullsen. Mapping out a path
from hardware transactional memory to speculative multi-
threading. In 18th International Conference on Parallel
Architectures and Compilation Techniques, pages 313–324,
Sept. 2009.

[27] C. G. Quiñones, C. Madriles, F. J. Sánchez, P. Mar-
cuello, A. Gonzáles, and D. M. Tullsen. Mitosis com-
piler: An infrastructure for speculative threading sed on pre-
computation slices. In ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation, pages
269–279, June 2005.

[28] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based
prefetching for linked data structures. In 8th International
Conference on Architecture Support for Programming Lan-
guages and Operating Systems, pages 115–126, Oct. 1998.

[29] S. Sair, T. Sherwood, and B. Calder. Quantifying load
stream behavior. In 8th International Symposium on High-
Performance Computer Architecture, pages 197–208, Feb.
2002.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
10th International Conference on Architecture Support for
Programming Languages and Operating Systems, pages 45–
57, Oct. 2002.

[31] T. Sherwood, S. Sair, and B. Calder. Predictor-directed
stream buffers. In 33rd International Symposium on Mi-
croarchitecture, pages 42–53, Dec. 2000.

[32] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In 22nd International Symposium on Computer
Architecture, pages 414–425, June 1995.

[33] S. Srinivasan, L. Zhao, B. Ganesh, B. Jacob, M. Espig, and
R. Iyer. CMP memory modeling: How much does accuracy
matter? In 5th Workshop on Modeling, Benchmarking and
Simulation, pages 24–33, June 2009.

[34] J. G. Steffan and T. C. Mowry. The potential for us-
ing thread-level data speculation to facilitate automatic par-
allelization. In 4th International Symposium on High-
Performance Computer Architecture, pages 2–13, Jan. 1998.

[35] R. D. Strong, J. Mudigonda, J. C. Mogul, N. L. Binkert,
and D. M. Tullsen. Fast switching of threads between
cores. ACM SIGOPS Operating Systems Review, 43(2):35–
45, Apr. 2009.

[36] M. A. Suleman, O. Mutlu, J. A. Joao, Khubaib, and Y. N.
Patt. Data marshaling for multi-core architectures. In 37th
International Symposium on Computer Architecture, pages
441–450, June 2010.

[37] D. M. Tullsen. Simulation and modeling of a simul-
taneous multithreading processor. In 22nd International
Computer Measurement Group Conference, pages 819–828,
Dec. 1996.

[38] E. Tune, R. Kumar, D. M. Tullsen, and B. Calder. Balanced
multithreading: Increasing throughput via a low cost mul-
tithreading hierarchy. In 37th International Symposium on
Microarchitecture, pages 183–194, Dec. 2004.

[39] C. B. Zilles and G. S. Sohi. Understanding the backward
slices of performance degrading instructions. In 27th Inter-
national Symposium on Computer Architecture, pages 172–
181, June 2000.

[40] C. B. Zilles and G. S. Sohi. Execution-based prediction us-
ing speculative slices. In 28th International Symposium on
Computer Architecture, pages 2–13, June 2001.


