Fast Timing Closure by Interconnect Criticality Driven

Delay

Relaxation

Love Singhal and Elaheh Bozorgzadeh
Donald Bren School of Information and Computer Sciences
University of California, Irvine, California 92697-3425
Email: Isinghal,eli@ics.uci.edu

Abstract—Due to decreasing transistor sizes and increasing clock
frequency, interconnect delay is a dominant factor in achieving timing
closure in deep sub-micron designs. Techniques like wire pipelining
and retiming can manage delay of timing critical wires. The latency
of the system, however, limits the total pipelining in the design. New
techniques are, thus, needed at synthesis stage to consider the effect of
critical wires in the design. In this work, we propose a novel intuitive
algorithm, Critical Edge Reduction (CER) algorithm, which produces a
maximal delay budgeting solution under fixed latency while minimizing
the number of critical wires. We also present an in-depth analysis of
trade-off between maximum budgeting and critical edge minimization.
We implemented our design flow using a set of MediaBench data paths
on Xilinx VirtexE FPGA devices. Using our algorithm, the Xilinx Place
and Route tool achieved timing closure, on average, 2.8 times faster than
using maximum budgeting. The resulting average clock period using CER
algorithm outperforms the one using maximum budgeting by 6%.

I. INTRODUCTION

Due to increasing design complexity and clock frequency, timing
closure cannot be achieved easily in a design flow and design time
can get unacceptably long. In today’s high performance chip design,
wire delay has a significant impact on timing closure of the design.
The delay of a long wire can be comparable to the delay of logic
gates. This increases the complexity of the design making the task
of routing at physical layout stage harder. In order to reduce the
complexity and design time, interconnect planning must be integrated
in high level synthesis. Our goal in this work is to reduce the number
of timing critical interconnects at the datapath level in order to reduce
the complexity of physical layout stage and leverage that burden on
early stages of design flow.

In order to meet the timing constraints, designers use resource
pipelining by delay budgeting techniques [1]. The extra clock cycle
latency (or budget) assigned to the operations is used for resource
pipelining. Retiming allows the movement of pipeline registers from
resources to timing critical wires or other resources. Hence, wire
pipelining can be equivalently handled by delay budgeting on re-
sources coupled with retiming. In addition to these pipeline registers,
we can add additional pipeline registers to edges that have a slack
of few clock cycles, as the extra registers will not affect latency
constraints but can reduce the wire delay of those edges. If, in a
design, the number of edges with slack is increased, then registers
can be added on more number of wires. We noted that a well placed
register on a wire can reduce the wire delay by 40%.

Figure 1 shows two different delay assignments on a data flow
graph. The number inside a node represents the respective latency
of each node. The latency constraint is 20 clock cycles. Delay
assignment in both graphs is maximal, i.e., no more additional latency
can be allowed at any node. However, the Solution B has fewer
number of critical edges compared to Solution A. The two edges that
have slack in Solution B (shown with shaded arrows) can each be
assigned extra registers. These registers can allow the placement tools
to place the two parallel critical paths far from each other without

Delay Assignment A

Fig. 1. Critical edge minimization during delay assignment.

affecting the clock frequency and clock latency. However, in solution
A, during placement, all the modules have to be placed close to each
other to meet the strict timing conditions and as a result, design
becomes more complicated and may not meet the timing constraint.

Our goal is, therefore, to find more potential locations for adding
registers on wires. Solution B is better than solution A for effective
wire pipelining. None of the existing delay relaxation techniques
consider the criticality of edges during delay assignment on the nodes.
Our goal is to generate such delay assignments that have more number
of non-critical edges along with fully pipelined resources under fixed
latency constraints.

In this paper, we propose a polynomial time algorithm named
CER which minimizes the number of critical edges in a design
at datapath level. We use our algorithm along with resource and
wire pipelining, and retiming on a set of MediaBench applications.
Then we implement our designs on FPGA devices. In FPGAs, the
wire delay is quite significant due to presence of routing switches
in connecting wires. Our experimental results show that increasing
number of non-critical edges and adding registers to non-critical
edges in a design results in 2.8 times speedup in place and route
runtime, on average.

The rest of the paper is organized as follows: Section II gives
an overview of related work in delay budgeting and wire pipelining.
Some preliminaries and the formulation of critical edge minimization
problem are described in Section III. In Section IV, our heuristic
algorithm, Critical Edge Reduction, is presented. In section V, the
experimental flow of applying our method in wire pipelining at the
data-path level is presented. Section VI concludes our paper.

II. RELATED WORK

Designers use delay relaxation techniques to add pipeline registers
in the design. The maximum delay budgeting focuses on maximum
slowdown of components under the given latency constraints. In [2],
polynomial algorithms are proposed. Researchers in [3] proposed a
delay budgeting on sequential circuits. Recently, researchers in [1],
have proposed a polynomial optimal algorithm for maximum delay
budgeting using network flow technique. In all existing work, either

producing optimal solution or not, the output is a design in which
the delay of none of the components can be further increased unless
latency constraint is violated. As a result, the design has more critical
edges (edges with zero slack). Critical edges have tighter timing
constraints in later stages of design flow. Our work, therefore, targets
to minimize the number of critical edges in a design to further reduce
the design complexity while keeping maximal budgets on the nodes.

Wire pipelining has been recently studied extensively [4]-[7].
Although in [8], it is argued that wire pipelining can increase the
control logic of the system, pipelining the global long wires which
dominate the clock frequency can significantly enhance the clock
frequency of the design [6], [7]. In [5], [6], wire pipelining is applied
while considering placement and availability of pipeline registers. In
[5], retiming is applied to distribute the pipeline registers. Though
retiming can redistribute the registers along a path, the total number of
registers along each path or cycle is a constant. This makes the scope
of improvement limited. In our approach, we aim at increasing the
number of non-critical edges which can be used as potential locations
to inject pipeline registers.

III. INTERCONNECT CRITICALITY DRIVEN DELAY ASSIGNMENT

A. Preliminaries

The operations of a data path are represented as nodes of a directed
acyclic graph (DAG) and interconnects are represented by edges of
that graph. The difference between required time and arrival time of
an edge is called slack of that edge. Critical edges have zero slack
and non-critical edges have positive slack. The extra delay assigned
to a node is termed as delay budget on that node. In this paper, we
use delay budget and budget interchangeably.

If after assigning budgets to the nodes, no node can get any more
budget, then the budget assignment is called maximal delay budget
assignment. The slack of each node is zero in a maximal budgeting.
However, slack of all the edges is not necessarily zero. The necessary
and sufficient condition for maximal budgeting is that each node
(except PIs and POs) has at least one critical incoming edge and has
at least one critical outgoing edge. A maximal budgeting solution can
be obtained in polynomial time by applying the existing algorithms

(11, 12, [91.

B. Problem Formulation
The problem of criticality-driven delay budgeting is to obtain a

Maximal Budgeting solution with Minimum Critical Edges (hence-
forth referred to as MB-MCE). Equations 1 to 8 show a 0 — 1 mixed
integer linear programming (MILP) formulation of the problem.
Variable z;; is a binary variable which is 1 if edge e;; is critical
and O otherwise. Variables b;, a;, and d; represents budget, arrival
time, and delay on node v;. Variable s;; represents slack on edge
ei;j. Variable T is latency constraint and variable M is some large
constant. Equation 1 is the objective function. Equation 2 specifies
latency constraints. In a maximal budgeting solution, each node must
have at least one incoming critical edge and one outgoing critical
edge. These constraints are explicitly specified in equations 6 and 7.
Other equations relate arrival times, required times and slack with
the binary variables x;;.

Min > @iy M
e €EE
a; <T Yv; € PO 2)
a; = a; +b; +dj + sij 3)
si5 < M x (1 —xs5) M : Large constant)

—sij < M x (zi;) ®

©

~ -A,
~ 3
Ry

©
-A Py

A, <A,
Parent set Child set Parent set Child set

a) b)

Fig. 2. a) A Critical Bipartite Sub-graph. b) Delay Re-assignment on a
Critical Bipartite Sub-graph. Numbers on node represent their delay budgets.

S oay =1 Yui €V (6)
Vij,e;; €EE

dowy>1 Vu; €V)
Vie; €E

zij; €4{0,1} a4, 805,00 >0)

Though our problem considers maximal budgeting on the nodes, it

does not restrict wire pipelining of edges. The budget from nodes can
be transferred to edges using retiming. However, since in maximal
budgeting, each node has at least one incoming and one outgoing
critical edge, retiming can not add registers to any non-critical
edge of the graph unless retiming removes budget from the nodes
at either of its ends. Hence, this problem tries to find additional
locations for adding registers that retiming could not cover. The time
complexity of this problem for general DAG is an open problem
and it is currently under investigation. To the best of our knowledge,
no polynomial time optimal algorithm is known for the problem.
We have developed a heuristic algorithm, which we call Critical
Edge Reduction (CER) algorithm, to solve the MB-MCE problem.
Although it is not guaranteed to produce an optimal solution, the CER
algorithm is intuitive and, as our experiments show, can be quite close
to optimum.

IV. CER: CRITICAL EDGE REDUCTION ALGORITHM

The CER algorithm starts from a maximal budgeting solution on
a given directed acyclic graph. It then extracts all critical bipartite
subgraphs (explained in Section IV-A) from the given graph, and
reduces the critical edges in those bipartite subgraphs. A systematic
way of reducing the critical edges in critical bipartite subgraphs
is through the use of composite nodes, modeled in Section IV-B.
In Sections IV-C and IV-D, we propose the novel techniques of
doing this task systematically and efficiently. Finally, in Section IV-
E, we give the complete algorithm of reducing critical edges to non-
critical edges on a DAG. Our algorithm does not make any existing
non-critical edge critical and hence, converges fast and generates a
solution close to optimal solution.

A. Budget Re-Assignment on Critical Bipartite Graph

From a given DAG, we extract critical bipartite subgraphs. In
a maximal budgeting, a critical bipartite subgraph is an induced
bipartite subgraph such that all the edges in this subgraph are critical
and the subgraph includes all the critical edges incoming or outgoing
to the nodes in the subgraph. The bipartite graph has two independent
sets of nodes: One set with only outgoing edges (parent set) and the
other set with only incoming edges (child set). The node with only
outgoing edges is referred to as a parent node. The node with only
incoming edges is referred to as a child node. Figures 2 a) and 3 a)
shows examples of such a subgraph.

The shifting of budgets from parent nodes to child nodes or vice
versa is termed as budget reassignment. When there is an unequal

E - 2
3 4 34
0=—0

=

Composite Nodes

a) A,B,C,D b)

A B 2 O .O 5
Composite ~ ~

c D Graph ‘ 3 H 4
~

s+ O——20

ASAS A, A=1,4,=0 ¥

A<A, Ay=1, A.=0 3 H .
©) d)

Fig. 3. Critical Edge Minimization. a) A Critical Bipartite Subgraph
b) Decomposed to four critical bipartite subgraphs (composite nodes). c)
Composite Graph. d) Delay budget re-assignment to convert composite edges
to non-critical edges.

exchange of budget between parent node and child node and latency
constraint is satisfied, the edge connecting the two nodes will get a
positive slack and will become non critical. Figure 2 b) shows that
when the budget on nodes a and b are exchanged by A; and budget
nodes on ¢ and d exchanged by As, and if A; is less than Ag,
then the edge between nodes a and d becomes non-critical. The new
budgeting is still a maximal budgeting as all the nodes are connected
with at least one critical edge. In the new budgeting, nodes a and b,
and nodes ¢ and d form two different critical bipartite subgraphs.

Hence, if we can reduce in this way most number of critical edges
to non-critical in various critical bipartite subgraphs of the graph, we
could solve the MB-MCE problem.

B. Composite Nodes and Composite Edges

In the previous section, we explained how a critical bipartite
subgraph can be decomposed to smaller critical bipartite subgraphs.
Each smaller critical bipartite subgraph is termed composite node.
An edge connecting the two composite nodes, exposed edges be-
tween the decomposed subgraphs, is termed as composite edge. The
graph consisting of composite nodes and composite edges is called
composite graph. The composite edges are potential edges to become
non-critical after delay budget exchange.

Figure 3 shows construction of composite graph and shows com-
posite nodes in the graph.

Before proceeding further into the details of reassigning budgets on
composite graph, we would like to highlight important properties of
the composite nodes. A composite node has the following properties:

o It should be a valid independent critical bipartite graph.

o It should have at least one parent node and one child node.

« Every node in the critical bipartite subgraph should belong to
one and only one composite node.

o The budget exchange between parent nodes and child nodes
in a composite node is equal. This budget exchange inside a
composite node is henceforth referred to as just A for the sake
of brevity. The positive value of A refers to an increase in budget
of parent nodes and decrease in budget of child nodes in a
composite node by the same amount.This ensures the condition
of maximal budgeting after budget reassignment.

The next section gives an algorithm for creating composite graph
from a bipartite graph with an objective to maximize the number of
composite edges.

function construct_composite_graph (Graph G)
¢ = Null;
CG = new CompositeGraph ();
while (G is not empty)
v = find_min_degree_node (G);
if (deg (v) == 0)
c.add (v);
else
¢ =new CompositeNode (v);
c.add (get_all_neighbors (v, G));
CG.add (c);
remove_nodes_from_graph (c, G);
return CG;

Fig. 4. Pseudo-code for constructing composite graph

C. Composite Graph Construction

The idea is to keep least number of edges inside the composite
nodes so that most of the edges that are outside (composite edges)
could become non-critical.

Lemma 1: If there is a directed edge from composite nodes A to
B and A in composite node A is less than A in composite node
B, it is a sufficient case to transform the edge AB to a non-critical
edge.

A composite edge, therefore, imposes a less-than constraint on
values of A at the two end nodes of the edge. This constraint should
be satisfied for every composite edge in the graph. In order to have
a valid ordering on the values of A, the composite graph, therefore,
should not have any cycle. Hence, the problem of constructing
composite graph is to group the parent and child nodes in such a way
that the number of external edges (composite edges) is maximized
and the resulting composite graph is a directed acyclic graph. Figure 3
shows the example of a critical bipartite graph with the corresponding
A values.

We propose a greedy algorithm to generate composite graph from
a given critical bipartite subgraph. Figure 4 shows the pseudo code
of the algorithm. Since the goal is to expose as many edges outside
the composite nodes, the algorithm finds a node with minimum edge
degree as a seed for composite node and adds the neighbors around
the seed.

Lemma 2: Any new composite node created in each iteration of
the algorithm will have either outgoing edges to the remaining graph
(the graph that remains to be clustered) or incoming edges from the
remaining graph; and can not have both incoming or outgoing edges.

From Lemma 2, the following theorem holds true.

Theorem 1: The composite graph created by the algorithm in
Figure 4 is acyclic.

D. Assigning A on composite graph

After the composite graph is constructed, the next step is to assign
A values to the composite nodes such that Lemma 1 is satisfied
for every composite edge. Such an assignment will ensure that all
composite edges become non-critical.

The budget of parent nodes in a composite node is increased by
value of A and budget of child nodes is decreased by value of A.
If budget of any node is increased by A, the slack of non-critical
outgoing edges from that node is decreased by A. So, budget on
any node can not be increased by amount equal to or more than the
minimum slack of its non-critical outgoing edges. Also, if budget of
any node is decreased by A, absolute value of A can not exceed
the current budget on that node. These constraints impose an upper
bound and a lower bound on the value of A for each composite node.

Due to these upper and lower bounds on A for each composite
node, a perfect assignment where Lemma 1 is satisfied for every

function assign_delta (CompositeGraph G)

value = large_number;

while (G is not empty)
S = find_all_output_nodes (G);
value =
find_max_delta_less_than_cur_value

(value, S);

assign_delta_to_nodes (value, S);
remove_nodes (S, G);

Fig. 5. Pseudo code for A assignment.

function CER_impl (Graph G)

find_maximal_budgeting (G);

L = sort_nodes_by_arrival_time (G);

while (L is not empty)
S = find_nodes_with_min_arr_time (L);
P = find_critical_bipartite_subgraph (S, G);
CG = construct_composite_graph (P);
assign_delta (CQG);
update_slack_on_edges (G);
remove_nodes (S, L);

Fig. 6. Pseudo code for CER algorithm

edge may not be possible. Some of the critical edges will, therefore,
remain critical. The problem of finding a A assignment in which
total sum of the weights of composite edges that become non-critical
is maximized is an NP Hard problem. We can reduce Longest Path
[10] problem on planar graphs to the above mentioned problem. The
long proof is, however, out of scope of this paper. The pseudo code
of a heuristic algorithm to solve A assignment problem is given in
Figure 5. The algorithm is similar to reverse breadth first search.

Assignment of A is a generic and important phase in the
overall critical edge reduction (CER) algorithm. The function
find_max_delta_less_than_cur_value in Figure 5 can be modified to
be more circuit aware. The delta allocation stage can use circuit
awareness to assign positive or negative values to delta on each node.
For example, in a design, clock speed of a module is proportional to
the amount of budget on it as that budget determines total stages of
pipeline. So, if a node has the lowest budget (and thus lowest clock
speed), then the delta allocation stage can make sure that the node
gets a positive budget so that its clock speed increases. This function
essentially gives designer a control over assigning budgets to special
nodes.

E. Critical Edge Minimization on a DAG - CER Algorithm

The composite graph construction and then, its subsequent A
assignment can reduce the critical edges on a critical bipartite
subgraph. In order to apply the two algorithms on a general DAG,
the given graph should be decomposed into a set of critical bipartite
subgraphs. The following Lemma holds true.

Lemma 3: A directed acyclic graph with maximal budgeting can
be decomposed into a set of critical bipartite subgraph. Each node
will belong to exactly two critical bipartite subgraphs adjacent to
each other. In one subgraph, the node serves as parent node while in
other set, it serves as a child node.

In order to extract the critical bipartite subgraphs, the CER
algorithm picks up the nodes with minimum arrival time as parent
nodes of the critical bipartite subgraph. The pseudo code of the CER
algorithm is given in Figure 6.

The above algorithm traverses the graph from primary inputs to
primary outputs. In each iteration, arrival times of only parent nodes

are modified and so, we do not need to modify the arrival times of
any other node. Also, the A assignment stage is guaranteed to not
make any non-critical edge critical. This is because it considers the
slack of all the non-critical edges while defining the upper and lower
bounds on A values of composite nodes. A single execution of the
CER algorithm on a graph transfers budgets from primary outputs to
primary inputs. It is found that more critical edges can be reduced if
the algorithm is iteratively executed many times on an input graph.
This is due to rapidly changing topology of critical bipartite graphs in
the graph in each iteration. The algorithm is guaranteed to converge
as it does not increase the number of critical edges in any iteration.
For all our experiments, the algorithm converged in less than 10
iterations and further iterations did not affect circuit topologies. The
CER algorithm is quite efficient and is, therefore, a better alternative
to inefficient ILP based solution.
Lemma 4: The time complexity of CER algorithm is O(V E).

V. EXPERIMENTS

In this work, we apply delay budgeting at data path level and show
optimizations that can be done by adding pipeline registers both on
resources and wires, and improving non-critical paths on FPGAs.
First, in the next subsection, we show the effect of wire delay in
FPGA:s.

A. Wire Delay in FPGAs

In FPGAs, the wire delay is a significant component of total delay.
This is due to the presence of routing switches in connecting wires.
Since wires in FPGAs are prefabricated, nets are connected together
through programmable switches which are basically transistors con-
necting the wires.

In this section, we show the effect of wire delay in FPGA. We
implemented our design on Xilinx VirtexE device. A very simple data
flow graph with two connected multipliers is used, with one multiplier
connected to primary inputs and other to primary output. The two
multipliers are placed at the two diagonally opposite corners of the
FPGA. Table I shows the maximum delay of wires connecting the
two multipliers. The maximum combinatorial delay of multipliers was
found to be 10.66 ns. Table I shows that the wire delay is significant
compared to delay of the multiplier and as the area of chip increases,
wire delay across the chip increases.

Devices xcv200e zcv600e zcv1000e
Wire Delay (in ns) 6.764 7.782 10.021
Devices zcvl600e | xcv2000e | zcv3200e
Wire Delay (in ns) 11.170 12.691 16.173
TABLE I

MAXIMUM WIRE DELAY BETWEEN TWO MULTIPLIERS IN VARIOUS XILINX
VIRTEXE DEVICES.

We, then, inserted a register in the edge connecting the two
multipliers. It was found that the place and route tool automatically
places the register in the middle of the chip. The maximum wire
delay is then reduced to approximately 60% of the delay shown in
table 1. If the registers are added in between the two components,
the two components can be placed away from each other, resulting
in design simplicity and smaller wire delays. However, registers can
not be added indiscriminately as the latency of system is fixed. They
can be only added to non-critical edges. Hence, if we minimize the
number of critical edges and add registers to non-critical edges, the
design will converge faster and will meet timing more constraints
easily.

TABLE I
BENCHMARK DESCRIPTIONS.

Benchmark Description No. of | Latency
Nodes

invl Invert matrix 1 101 9
from Mesa

inv2 Invert matrix 2 215 16
from Mesa

inv3 Invert matrix 3 351 15
from Mesa

jpgl IDCT application 1 57 16
from JPEG

jpg2 IDCT application 2 200 13
from JPEG

matl Matmul application 1 72 10
from Mesa

mat2 Matmul application 2 109 14
from Mesa

rotl Rotate matrix 1 28 6
from Mesa

ASAP DFG

Scheduling
| Pipelining Module
o)

Maximum CPLEX Our Algorithm
| Budgeting ILP Solution (CER)

1

Resource and Wire Pipelining

DFG to Verilog Generator

[Synpicity Synthesis (with retiming) }

Xilinx Place And Route
(with highest PAR effort)

Critical Edge Minimization Experiment Design Flow

Fig. 7. Experimental Design Flow

B. Experimental Setup

We implemented our design flow on a set of 8 dataflow graphs
extracted from MediaBench test suite [11] using SUIF compiler [12]
and machine SUIF [13]. The circuits were implemented on Xilinx
VirtexE FPGA devices. The overall design flow of experiments is
given in Figure 7. The characteristics of the data flow graphs are
mentioned in Table II. Experiments were conducted on Intel Pentium
4 3.2 GHz CPU with hyperthreading and 1 GB RAM, running
Windows XP.

To compare the results of our algorithm, we implemented three
different techniques - ASAP scheduling, maximum budgeting, and
MB-MCE ILP formulation. In ASAP scheduling, each component
was executed fastest without any extra pipeline register. In maximum
budgeting, total budget on nodes was maximized. In order to have a
fair comparison with our algorithm, we added registers on non-critical
wires of maximum budgeting as well. We wanted to show the effect
of our budgeting technique compared to maximum budgeting rather
than the effect of adding registers on wires only. The MB-MCE ILP,
given in Section III-B, was run on CPLEX ILP solver. We added
one more constraint in the ILP that the total budget does not drop
by more than 10% of the maximum budget. We believe that this is
the best case as it gives the design both resource pipelining and wire
pipelining advantages. We, then, assigned resource registers and wire
registers found through the above two techniques, and our algorithm.
The verilog files of the data flow graphs were then created. The
verilog files were then implemented using Synplicity Synplify Pro
7.7.1 and Xilinx 6.3 PAR tool with tight timing constraints, retiming
and highest speed effort. This was done as we wanted to get the best

TABLE IV
AVERAGE NUMBER OF CRITICAL EDGES AND TOTAL DELAY BUDGET

Critical Edges
Max ILP Alg

Average Total Budget
Max ILP Alg

142.1 131.9 | 132.6 135.8 123.3 124.4

TABLE V
AVERAGE CLOCK PERIOD (IN NS) FOR DIFFERENT TECHNIQUES.

Clock period (in ns)
Max | ILP | Our Alg

ASAP

12.14 9.36 8.84 8.79

clock periods of various implementations and see how fast the designs
could meet those constraints. The data paths were 16-bit wide. We
added at most 4 registers in modules that have lot of combinatorial
delay like multiplier.

C. Experimental Results

1) Critical edges and Total Budget: First, we show the number
of critical edges reduced by the MB-MCE ILP (henceforth, referred
to just ILP) and our algorithm. Table IV shows the average number
of critical edges and average total budget in maximum budgeting,
ILP solution, and our CER algorithm. As seen from the table, our
algorithm is able to successfully reduce many critical edges and gives
results close to optimum ILP solution.

2) Effect on clock period: In order to have fair comparisons of
place and route time of all the designs, we ran each benchmark with a
very strict timing constraint and at the highest PAR effort level. Along
with place and route time, it is interesting to see the performance
(clock speed) of each technique in such conditions. Table V shows
the average clock period of various techniques. On average, our
algorithm gives the best clock frequencies of all other techniques.
While average clock period of maximum budgeting with registers
is 6.4% higher than CER algorithm, average clock period of ASAP
scheduling is 36.5% higher than clock period of CER algorithm.
Since ASAP implementation is not pipelined, it has the highest clock
delay. The average clock period of ILP solution is very close to our
algorithm and confirms that a critical edge minimization (ILP) with
budget more than 90% of maximum budget is indeed a good solution
of the design.

3) Effect on Place and Route Time: Table III presents the place and
route time of the benchmarks using various techniques. We compared
only the place and route times of the design flow as this stage takes
the longest time and all other steps take almost same amount of
time. Hence, place and route time can be referred to as the run time
of whole design flow.

As shown in Table III, the place and route of our algorithm is
2.8 times faster than place and route time of maximum budgeting,
on average. This is significant considering that the designs by our
algorithm have lower average clock period as well. The performance
of ILP and our algorithm is almost same. The two techniques
represent two different solutions to same problem of minimizing
critical interconnects. The ILP solution is, however, not a polynomial
time solution.

One interesting observation is that for ILP, though the circuit inv/
had same number of critical edges and almost same budget as CER
algorithm, the PAR runtime was quite higher than our algorithm. We
observed that the ILP solver, being a mathematical tool, only tries
to maximize or minimize the budgets and/or critical edges and gives

TABLE III
PLACE-AND-ROUTE RUNTIME (SEC) RESULTED FROM DIFFERENT TECHNIQUES. RATIO COLUMN REPRESENTS THE RATIO OF PAR TIME OF THE
TECHNIQUE OVER PAR TIME OF CER ALGORITHM.

Place and Route Runtime (sec)
Our Algorithm ASAP Max-Budgeting Minimum Critical
Benchmark (CER Alg) + wire-pipelining Edge ILP
Time Time | Ratio Time Ratio Time Ratio
invl 190 708 3.7 725 38 559 2.9
inv2 271 2335 8.6 861 32 335 1.2
inv3 368 1467 4 1119 3 539 1.5
jpgl 52 267 5.13 28 0.5 46 0.9
jpg2 273 519 1.9 472 1.2 231 0.9
matl 229 928 4.1 578 2.5 100 0.4
mat2 124 77 0.62 547 4.4 203 1.6
rotl 58 279 4.8 56 1 28 0.5
Average 195.6 8225 4.2 548.3 2.8 255.1 1.3

irregular budget distribution. In case of circuit inv/, along a path
while some multipliers got budget of 4, some multipliers got budget
of 2; whereas in case of CER algorithm, all those multipliers got
a uniform budget of 3. The non-uniformity of ILP, in turn, affects
the clock period and makes meeting of timing constraints very hard
for the tool. The CER algorithm, however, allows transfer of budgets
from the paths that have higher budgets to locally present hot-spots
in the design.

For the benchmarks, jpg! and rotl, the PAR time of maximum
budgeting is better than that of CER algorithm. In these small circuits
(refer to Table II for the sizes), the budget of maximum budgeting
is higher than that of CER algorithm and this budget decrease
on multipliers in case of CER algorithm impacted the total clock
frequency and hence, total runtime in meeting timing constraints. We
observed that compared to large circuits, in small circuits, the effect
of budgets on modules is more and the effect of wire delay is less.
This is because wire delay becomes more significant compared to
module delay in larger circuits than in smaller circuits due to higher
overall area of larger circuits. Hence, resource pipelining is more
advantageous than wire pipelining in small circuits.

We observed that, in general, modules in designs using our
algorithm were placed more uniformly compared to designs using
maximum budgeting. The congestion in designs using maximum
budgeting was higher than designs using our algorithm. This is
because modules that have less wire pipelining have to be placed
close to each other to avoid routing overhead.

Overall, the results show that increasing the potential non-critical
edges can improve the design quality. By minimizing critical edges
and adding registers on non-critical edges, both clock period and
design time can come down. The area occupied through our algorithm
was also less than maximum budgeting as area due to additional
registers for resource and wire pipelining is proportional to the total
budget in a design and as shown in Table IV, the average total budget
using our algorithm was less than that of maximum budgeting.

VI. CONCLUSIONS

We introduce a novel critical edge reduction CER algorithm in this
paper. By performing critical path planning at early stage of design,
we are able to reduce the complexity for place and route tools. None
of the existing delay budgeting techniques consider increasing the

non-critical edges to improve timing closure. Using our algorithm,
the Xilinx Place and Route tool is capable of achieving timing closure
faster than by using maximum budgeting.

REFERENCES

S. Ghiasi, E. Bozorgzadeh, S. Choudhary, and M. Sarrafzadeh, “Unified
theory of timing budget management,” in Proc. IEEE International
Conference on Computer-Aided Design, San Jose, California, Nov. 2004.
R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa, “Generation
of performance constraints for layout,” IEEE Trans. Computer-Aided
Design, vol. 8, no. 8, pp. 860-874, Aug. 1989.

C.-Y. Yeh and M. Marek-Sadowska, “Delay budgeting in sequential
circuit with application on fpga placement,” in Proc. IEEE Design
Automation Conference, 2003, pp. 202-207.

A. Sharma, K. Compton, C. Ebeling, and S. Hauck, “Exploration of
pipelined fpga interconnect structures,” in Proc. IEEE International
Symposium on Field Programmable Gate Arrays, 2004.

C. Lin and H. Zhou, “Retiming for wire pipelining in system-on-chip,”
in Proc. IEEE ternational Conference on Computer-Aided Design, San
Jose, California, Nov. 2003.

J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architectural synthesis
integrated with global placement for multi-cycle communication,” in
Proc. IEEE ternational Conference on Computer-Aided Design, San
Jose, California, Nov. 2003, pp. 536-543.

J. Cong, Y. Fan, and Z. Zhang, “Architecture-level synthesis for au-
tomatic interconnect pipelining,” in Proc. IEEE Design Automation
Conference, June 2004, pp. 602-607.

L. P. Carloni and A. L.Sangiovanni-Vincentelli, “On-chip communi-
cation design: roadblocks and avenues,” in Proc. IEEE International
Conference on Hardware-software Codesign and System Synthesis, 2003,
pp. 75-76.

E. Bozorgzadeh, S. Ghiasi, A. Takahashi, and M. Sarrafzadeh, “Optimal
integer delay budgeting on directed acyclic graphs,” in Proc. IEEE
Design Automation Conference, 2003, pp. 920-925.

M. Garey and D. Johnson, Computers and Intractability, A Guide to the
Theory of NP-Completeness. Bell Laboratories, Murray Hill: Freeman
& Co., N.J., USA, 1978.

C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: A tool for
evaluating and synthesizing multimedia and communications systems,”
in Proc. IEEE International Symposium on Microarchitecture, 1997.
M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, L. Shih-Wei,
E. Bugnion, and M. Lam, “Maximizing multiprocessor performance with
the suif compiler,” IEEE Trans. Comput., vol. 29, no. 12, pp. 84-89, Dec.
1996.

M. Smith and G. Holloway, “An introduction to machine suif and its
portable libraries for analysis and optimization,” Division of Engineering
and Applied Sciences, Harvard University, Tech. Rep., 2002.

[1]

[2]

[3]

[4]

[5]

[6

=

[7]

[8]

[9

—

(10]

(11]

(12]

[13]

