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Abstract. The use of Computer Vision techniques for the automatic
recognition of road signs is fundamental for the development of intelli-
gent vehicles and advanced driver assistance systems. In this paper, we
describe a procedure based on color segmentation, Histogram of Ori-
ented Gradients (HOG), and Convolutional Neural Networks (CNN) for
detecting and classifying road signs. Detection is speeded up by a pre-
processing step to reduce the search space, while classification is carried
out by using a Deep Learning technique. A quantitative evaluation of the
proposed approach has been conducted on the well-known German Traf-
fic Sign data set and on the novel Data set of Italian Traffic Signs (DITS),
which is publicly available and contains challenging sequences captured
in adverse weather conditions and in an urban scenario at night-time.
Experimental results demonstrate the effectiveness of the proposed ap-
proach in terms of both classification accuracy and computational speed.

1 INTRODUCTION

The increasing interest towards autonomous vehicles and advanced driver assis-
tance systems is demonstrated by the prototypes developed by Google, Volvo,
Tesla, and other manufacturers. In this paper, we focus on the use of visual
information for traffic sign recognition, which is fundamental for achieving au-
tonomous driving in real world applications.

In recent years, many methods for traffic sign detection (TSD) and recog-
nition (TSR) based on Computer Vision techniques have been proposed. Since
road signs have bright fixed colors (for aiding human detection), some approaches
are based on color segmentation to locate the signs in the input images. Sliding
windows approaches have also been proposed, relying mostly on the use of His-
togram of Oriented Gradients (HOG), Integral Channel Features (ICF) and its
modifications [11] to extract discriminative visual features from the images. Our
method aims at combining the speed of the color segmentation techniques with
the accuracy of sliding windows approaches, in particular HOG.



Color information from high resolution images in input is used to select a set
of regions of interest (ROIs), thus reducing the search space. Then, visual features
are extracted from each ROI and compared with a Support Vector Machine
(SVM) model for detecting road signs. Finally, a Convolutional Neural Network
(CNN) is used for the recognition of the traffic signs. Different architectures for
the network are proposed, starting from the ones presented in [13] and [9]. For
the implementation of the net, we rely on TensorFlow1, a recent open source
framework released by Google.

Quantitative experimental results have been carried out on the publicly avail-
able German Traffic Sign Data set (GTSRB) in order to allow a comparison with
other approaches. Moreover, we have created a novel publicly available data set,
called the Data set of Italian Traffic Signs (DITS), containing Italian traffic signs
captured in challenging conditions (i.e., nigh-time, fog, and complex urban sce-
narios). The results demonstrate that our method achieves good results in terms
of accuracy, requiring only 200 milliseconds per image for processing HD data.

The contributions of this paper are threefold: (i) A new approach for speed-
ing up the traffic sign detection process is proposed. (ii) A complete pipeline,
including sign detection and recognition, is described. (iii) A novel challenging
data set, called DITS, has been created and made publicly available.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of the state-of-the-art methods for traffic signs detection and classifica-
tion in single images. Our method is presented in Section 3. The newly created
DITS data set is described in Section 4, while the experimental results, carried
out both on DITS and on GTSRB, are presented in Section 5. Finally, conclu-
sions are drawn in Section 6.

2 RELATED WORK

The problem of automatically recognizing road signals from cameras mounted
on cars is gaining more and more interest with the advent of advanced driver
assisted systems to help the driver in avoiding potentially dangerous situations.
According to the different tasks in image recognition pointed out by Perona
in [12], the problem of recognizing traffic signs in single images can be divided
into two sub-problems, namely detection and classification.

Detection. Given an image, the goal is to decide if a sign is located somewhere
in the scene and to provide position information about it, i.e., the image patch
containing the sign. Detection can be carried out by analysing images from
single or multiple views. Although traditional systems count on the single view
approach (e.g., [1]), today’s cars are often equipped with multiple cameras, thus
multi-view data are often available. Since existing work on multi-view recognition
consists of single-view sign detection followed by a multi-view fusing step [15],
we will discuss here single-view approaches with the consideration that they can
be conveniently adapted when multiple views are available.

1 http://www.tensorflow.org



Mathias et al. published a recent review on the current state-of-the-art for
single-view methods [10]. Top performance can be reached by using approaches
designed for pedestrian (i.e., HOG features) and face (i.e., Haar-like features)
detection. Another widely used technique in traffic sign detection, which has
been originally developed for pedestrian detection, is based on Integral Channel
Features [4]: multiple registered image channels are computed by using linear and
non-linear transformations of the input image. Features (e.g., Haar-like wavelets
and local histograms) are extracted from each channel along with integral images.
Variants of the Integral Channel Feature detector (e.g., [2,5]) have demonstrated
to reach high speed (i.e., 50 frames per second) maintaining accurate detection.

Classification. Given the image patch extracted in the detection phase, the
classification problem consists in deciding if it contains a sign among the possible
sign categories. A common pipeline for classification [10] is made of three stages:
(i) Feature Extraction, (ii) Dimensionality Reduction, and (iii) Labeling. Ex-
tracting visual features from the image at hand is the first step for classification.
Since traffic signs are designed for colour-blind people, visual features like shape
and inner pattern are more descriptive than color attributes. This is demon-
strated by Mathias et al. [10] in their experiments, where no gain is obtained
by using color-dependent features for classification in place of grayscale features.
Dimensionality reduction plays an important role on classification. Timofte et
al. in [16] present a technique called Locality Preserving Projections (LPP) that
represent an alternative to the classical Principal Component Analysis (PCA).
A LPP variant is the Iterative Nearest Neighbours based Linear Projection
(INNLP) presented in [17]. It uses iterative nearest neighbours instead of sparse
representations in the graph construction.

The labeling step is the last phase in the pipeline. The competition2 on
the German Traffic Sign Recognition Benchmark (GTSRB) has allowed to test
and compare different solutions for road sign classification. Among those, Deep
Learning based methods obtained great results. In particular, Ciresan et al. [3]
won the final phase of the competition using a GPU implementation of a Deep
Neural Network (DNN), further improved in a Multi-Column DNN that makes
the system robust to variations in contrast and illumination. Sermanet et al. [13]
use a Multi-Scale Convolutional Neural Network, obtaining results above the
average human performance. Extreme Learning Machine classifier fed with CNN
features is proposed by Zeng et al. in [20], obtaining competitive results with a
limited computational cost.

3 PROPOSED APPROACH

The functional architecture of the proposed approach is shown in Fig. 1. At the
beginning, a color segmentation step is used for reducing the search space. The
regions of the input image having color attributes similar to the road sign models
are selected, creating an initial set of regions of interest (ROIs). Then, features

2 http://benchmark.ini.rub.de



Fig. 1. The proposed pipeline for automatic traffic sign detection and recognition. Image best
viewed in color.

are extracted from each ROI and represented as HOG descriptors. After that,
a multi-scale detection process, based on a trained SVM model, takes place.
Information about the position and the size of each possible sign are stored for
being used later. At the same time, each detection is passed to the CNN based
recognition module: If a sign is successfully assigned to a class, it is sent to the
final stage of the procedure, otherwise it is processed by using a probabilistic
spatial filtering, whose probabilities are computed among adjacent ROIs. The
ROIs that passed all the processing phases are labeled as recognized signs.

3.1 Traffic Sign Detection

We use a combination of color and shape-based methods for detecting the signs.
The shape-based method includes normalizing operations in addition to multi-
scale image processing, in order to handle the challenges presented in a typical
street scene. Since the pixels belonging to traffic signs usually represent a small
percentage of all the pixels in input, it is desirable to reduce the initial search
space. According to [6], we assume that traffic signs have bright and saturated
colors, in contrast with the surrounding environment, to be recognized easily by
drivers. This assumption helps in covering with the detection windows only a
small subset of the patches extracted from the original image.

The extraction of the ROIs is carried out by utilizing the Improved Hue,
Saturation, and Luminance (IHSL) color space [8], which is useful for taking
into account lighting changes since the chromatic and achromatic components
are independent in IHSL. The original image is transformed from RGB to IHSL
by applying the following thresholding operation:

IHSL(x, y) =



















0, if Max(IR(x, y), IG(x, y), IB(x, y)) = IG(x, y) ∨

(|IR(x, y)− IG(x, y)| < ζ ∧ |IB(x, y)− IG(x, y)| < γ)

Fihsl(IR(x, y), IG(x, y), IB(x, y)), otherwise

(1)

where IHSL(x, y) is the IHSL color space value for the pixel in position
(x, y), having IR, IG, and IB RGB values. The function Fihsl(.) represents the



Fig. 2. The color histogram of the three types of scenes. The dashed lines represents the three
different areas considered over each histogram. This image is best viewed in color.

usual conversion RGBcolorspace → IHSLcolorspace as described in [7]. It is worth
noting that RGB pixels with a considerable percentage of green (e.g., represent-
ing vegetation) are discarded. The ζ and γ thresholds play a significant role in
filtering out further pixels (e.g., belonging to road and sky), thus reducing the
computational time for the IHSL conversion and the subsequent detection steps.

The values for ζ and γ are set based on the lighting conditions in the scene:
the color distribution represented by the RGB histogram is used to detect the
illumination conditions (see Fig. 2). Each RGB histogram is divided into three
equal areas. This division helps to determine where the color information is
condensed and to locate the peak value in each histogram. In daylight conditions,
the color information distribution is located in the right area of the histogram,
with peak values at the most right side. Night-time scenes have a higher number
of pixels located within the left area, while in foggy conditions the greater number
of pixels is distributed over the middle and right areas. More formally, the color
distribution over each histogram area is computed as:

ǫn =

∑

n
H(i), if H(i) ≥ α

∑

∀n
H(i)

(2)

where ǫn represents the distribution of each RGB color channel over one of
the three areas (n ∈ {1, 2, 3}), H(i) is the number of pixels with color value
i ∈ [0, 255], and α is set to 0.3 ∗ max(H(i)), ∀i. The maximum ǫn is used to
detect the lighting condition of the scene and to adapt the values of γ and ζ

according to it.
The final binary image is computed by applying the approach described in

[18], where the Normalized Hue-Saturation (NHS) method and post-processing
steps are used to find the potential pixels belonging to road signs. Erosion and
dilation morphological operators are applied on the binary image for noise re-
moval. The remaining pixels are grouped into contours, which in turns are filtered
according to their size. The bounding box of each extracted contour is computed
and clustered into spatial-classes according to the distances and the overlapping



Fig. 3. Color segmentation and contour extraction. Original images are in the first row. The second
row shows the results of the RGB thresholding, while the third row contains the contour extraction.
In the first column ζ = 15 and γ = 25 are used, in the second ζ = 40 and γ = 25 and in the third
ζ = 15 and γ = 20.

of each bounding box. This procedure is useful for handling partially occluded,
with multiple colors, or damaged road signs. Fig. 3 shows the color segmenta-
tion along with the contour extraction procedure that led to the extraction of
the patches (highlighted in the last row of the figure).

Visual descriptors are then computed over the extracted patches. For HOG,
we use a 40×40 detection window with 10×10 block size and 2×2 striding. Three
rounds of training are performed in total, adding hard negatives to the training
images in every round. For the first round, we used GTSRB positives samples
along with custom negatives: around 2000 samples were added. In the second
round, the same procedure has been applied to DITS data. Positives samples
from both GTSRB and DITS together with all the collected hard negatives from
the previous steps are used for the last round of training. The color segmentation
stage helps in decreasing the false positive detection and to accelerate the overall
procedure.

3.2 Traffic Sign Recognition

Our recognition module is based on CNN and built over the Deep Learning
framework TensorFlow. All images are down-sampled to 28×28. For both DITS
and GTSRB, also jitter (augmented) samples are used. Images are randomly
rotated, scaled and translated. Max values for the perturbations are [−15, 15] for
rotation, [−4, 4] for translation and a factor [0.8, 1.2] for scaling. The augmented
data set is four times bigger than the original.



Fig. 4. Proposed architecture for CNN. In case of multiscale architecture, the output of the first
convolutional layer feeds both the second convolutional layer and the first fully connected one.

The Deep Learning approach has two different architectures (see Fig. 4), a
Single-Scale Convolutional Neural Network and a modified version of the Multi-
Scale architecture proposed by Sermanet et al. for the GTSRB competition. The
single-scale architecture presents two convolutional layers, each one followed by
a pooling layer, and two sequential fully connected layer with rectification. The
last layer is a softmax linear classifier. The multi-scale CNN is based on both
the work by Sermanet and LeCun [13] and the single-scale architecture above
described. The model presents two stages of convolutional layers, two local fully
connected layer with rectified linear activation and a softmax classifier. As for the
single-scale case, each convolutional layer presents a pooling layer. The output
of the first convolutional stage has two ramifications, one feeds the next stage in
a feed-forward fashion, while the other serves as part of the input for the first
of the fully connected layer. The input of such layer is built from the output of
the first stage and the output of the second stage.

3.3 Spatial Neighbourhood Filtering

The last module of our pipeline is in charge of fusing information from the
detection module and the classification one. Algorithm 1 contains the details
about this last step. A probability value is assigned to each one of the patches
that are not recognized as a specific traffic sign, taking into consideration their
position and their neighbour patches.

Algorithm 1: Spatial Neighbourhood Filtering
Input : unrecognised detections α, recognized detections β.
Output: Accepted detection

1 for ∀d: d ∈ β do
2 1: M ←maximum range for d;
3 2: for ∀c: c ∈ α ∧ c in range M do
4 i: pd ← compareSize (d,c);
5 ii: pd ← compareDistance (d,c);

6 end
7 3: if pd > threshold then
8 accept d;
9 else

10 discard d;
11 end

12 end



A thresholding process is further applied over the final probabilities to filter
out untrusted patches from the final list. It is worth noting that in real appli-
cations, such as driver assistance systems, the driver should not be warned due
to false detections. Indeed, although the proposed solution helps to increase the
accuracy by 1-2% depending on the data set, it strongly relies on the recognition
sub-systems, adding a small probability to discard correct detections.

The output of the classification module is divided into classified detections
(i.e., the detections successfully assigned to a class by the CNN) and not-classified
ones. For every element in the not-classified detection set, we define a search
range around it and compute, for every sample in the classified set that lies
within the range, the following two metrics: (i) the similarity between the size
of the not-classified and the classified element and (ii) the distance between
the center of the two elements. If the sum of the two above listed comparison
metrics is below a given threshold, then the not-classified detection is definitively
discarded, otherwise it is accepted.

4 THE DATA SET OF ITALIAN TRAFFIC SIGNS

Since the release of the German Traffic Sign Data set (GTSRB) in 2011, no
other challenging data sets have been released. According to Mathias et al. [10],
the GTSRB have been saturated and there is the need of novel public and
more complex data sets. Here, we present the Data set of Italian Traffic Signs
(DITS), which is a novel data set, generated in part from HD videos (1280×720
frame size recorded at 10 fps) taken from a commercial web-cam and different
smart phones. DITS data can be downloaded at: http://www.dis.uniroma1.
it/~bloisi/ds/dits.html

The aim of DITS is to provide more challenging images than its predecessors.
First, not all the used sensors are intended for outdoor shooting and the quality
of the images is lower if compared with the one in GTSRB. As suggested in [10],
we have increased the difficulty by adding images captured at night time and
in presence of fog (see Fig. 5). A big part of the samples contains complex
urban environments that can increase the presence of false positives. Finally,
DITS presents a new challenging class of traffic signs, named Indication, which

Fig. 5. Two annotated images from the DITS data set captured at night time (left) and with fog
conditions (right). Annotations are shown in green.



Fig. 6. Images from the classification sub set of the DITS data set. DITS contains 58 different
classes.

includes square-like traffic signs. Both detection and classification training and
test sets are present. The detection subset offers 1,416 images for training and
471 for testing, while the classification subset contains 8,048 samples for training
and 1,206 for testing. Currently, DITS is at an early stage and our plan is to
improve it in the next few months.

DITS has been originally generated from 43,289 images extracted from more
than 14 hours of videos recorded in different places around Italy. Images are
then down-sampled to fullfill the following requirements. All the images in the
data set are enclosed in classes. In particular, training images for both detection
and classification are organized in folders, where each folder represents a single
superclass or sub-class. Annotated images are available for testing and text files
with more accurate information and annotations are provided.

About the detection subset, we decided to define three shape-based super-
classes, namely circle, square, and triangle, obtaining the Prohibitive, Indication,
and Warning classes. The bottom threshold for the width and the height of the
samples present is set to 40 pixels for both; images are not necessarily squared.
The classification data set presents 58 classes of signs: each class presents a vari-
able number of tracks where the concept of track collide with the one previously
used in GTSRB [14]. The difference with the GTSRB is on the number of images
present in each track (15) and mainly dictated by the lower frame rate offered
by the sensor used. Tracks presenting a higher number of images are downsized
by equidistant samples; tracks with less than 15 samples are discarded. Images
in the track have different size and, as for the detection subset, they may vary in
aspect ratio. Fig. 6 shows some samples coming from the classification test set.

5 EXPERIMENTAL RESULTS

The approach proposed in this paper has been tested on two different publicly
available data sets, the German Traffic Sign Data set (GTSRB) and the Data



Table 1. Comparison results on the GTSRB data set of our approach with and without
activating the color segmentation (ColSeg).

Method
Prohibitive Danger Mandatory

AUC ∼ Time(ms) AUC ∼ Time(ms) AUC ∼ Time(ms)

HOG 96.33% 693 96.12% 693 89.18% 693
ColSeg+HOG 98.67% 231 96.01% 234 90.43% 243

Table 2. Results on the DITS data set with and without color segmentation (ColSeg).

Method
Prohibitive Danger Indication

AUC ∼ Time(ms) AUC ∼ Time(ms) AUC ∼ Time(ms)

HOG 96.63% 615 98.00% 615 81.06% 615
ColSeg+HOG 97.87% 198 98.12% 197 89.71% 200

set of Italian Traffic Signs (DITS). We have evaluated the proposed approach
for detection on 300 images coming from GTSRB and 471 from DITS. The two
data sets present some differences: (i) only the Danger superclass has a direct
correspondence; (ii) the Mandatory and Prohibitive superclasses of GTSRB are
merged into the Prohibitive superclass for DITS; (iii) DITS has a new Indication
superclass (i.e., square signs).

For both the German and the Italian data sets, we have tuned the param-
eters according to the different settings of the sensors. Most of the images in
GTSRB present a saturated blue sky and low saturation on the red, translat-
ing into a slightly higher value on γ, while DITS data present a less saturated
sky in daylight conditions, while night time images present alterations over the
red and blue channels. Night time images present also a lower accuracy of the
color segmentation process, thus lowering the performance in subsequent phases.
Common street lamps have a color temperature that ranges between 2000 and
3000 Kelvin and this reduces the area discarded by the red-based threshold.
Moreover, car headlights cause a sudden change in brightness that blur the im-
age. In this case, we set ζ = 40 and γ = 25. Fog affects the segmentation process,
slightly increasing the false negative rate. For fog images, we have used ζ = 5
and γ = 5.

After the tuning, results show that we are able to discard, on average, 82%
of the pixels for the images in DITS and 69% for GTSRB data. This strong
reduction allows the next stage of the detection sub-system to process a smaller
portion of the original image, speeding up the analysis up to 5 times. Table 1
and Table 2 show the improvements in accuracy and computational time that
can be obtained by using a pre-classification step based on color segmentation.
Our method obtains comparable results with others existing methods (see [19] for
results obtained by other approaches on GTSDB). Experimental results on DITS
show even higher speed than those obtained on GTSRB. The lower accuracy



Table 3. Recognition results with single scale (sc) and multi scale (ms) CNN.

Method DITS Jit. DITS GTSRB Jit. GTSRB

sc CNN - 93.1% - 97.2%
ms CNN 88.4% 95.0% 95.1% 98.2%

when dealing with the new Indication superclass is due to the high presence of
false positive in urban environment (e.g., square-like object as windows).

Classification results are shown in Table 3. Results for DITS data are com-
pletely new and not comparable. On the GTSRB we reached good results if
compared with those previously published on the German Traffic Sign Recogni-
tion Benchmark page (http://benchmark.ini.rub.de).

The accuracy of the proposed pipeline (detection+classification+spatial fil-
tering) has been evaluated on DITS data. For the detection process, we started
from an overall accuracy of 95.23%, while the recognition subsystem consists
in the single-scale Convolutional Neural Network trained on the jittered data
set. From 347 outputs from the detection, 93% samples have been successfully
assigned to a class. The remaining 7% is processed by our Spatial Neighborhood
Filter to mitigate the error of the classifier. Results show that 1.2% samples are
confirmed, while the other are discarded as false positives. Among the confirmed
samples, only the 0.2% resulted in false positives.

6 CONCLUSIONS

In this paper, we have described a fast and accurate pipeline for road sign recog-
nition. The proposed approach combines different state-of-the-art methods ob-
taining competitive results on both detection and classification of traffic signs.
Particular attention has been given to the detection phase, where color segmen-
tation is used to reduce the portion of the image to process, thus reducing the
computational time.

Quantitative experimental results show an 82% average reduction of the
search space, which speed up the process without affecting the detection accu-
racy. The CNN architecture allows to further discard false positives by combining
the outputs from the detection and the recognition modules.

Moreover, we have presented a novel data set, called the Data set of Italian
Traffic Signs (DITS), which presents some innovations over existing data sets,
such as night-time and complex urban scenes. Since available data sets already
reached saturation (over 99% accuracy), we believe that the development of a
novel data set with more challenging data is an important contribution of this
work. As future directions, we intend to extend DITS with additional images,
captured under adverse weather conditions (e.g., rain and snow).
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