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Abstract

In this paper, we aim to learn a mapping (or embedding)

from images to a compact binary space in which Hamming

distances correspond to a ranking measure for the image

retrieval task. We make use of a triplet loss because this has

been shown to be most effective for ranking problems. How-

ever, training in previous works can be prohibitively expen-

sive due to the fact that optimization is directly performed

on the triplet space, where the number of possible triplets

for training is cubic in the number of training examples.

To address this issue, we propose to formulate high-order

binary codes learning as a multi-label classification prob-

lem by explicitly separating learning into two interleaved

stages. To solve the first stage, we design a large-scale

high-order binary codes inference algorithm to reduce the

high-order objective to a standard binary quadratic prob-

lem such that graph cuts can be used to efficiently infer

the binary codes which serve as the labels of each training

datum. In the second stage we propose to map the origi-

nal image to compact binary codes via carefully designed

deep convolutional neural networks (CNNs) and the hash-

ing function fitting can be solved by training binary CNN

classifiers. An incremental/interleaved optimization strat-

egy is proffered to ensure that these two steps are interac-

tive with each other during training for better accuracy. We

conduct experiments on several benchmark datasets, which

demonstrate both improved training time (by as much as

two orders of magnitude) as well as producing state-of-the-

art hashing for various retrieval tasks.

1. Introduction

With the rapid development of big data, large-scale near-

est neighbor search with binary hash codes has attracted

much more attention. Hashing methods aim to map the

original features to compact binary codes that are able to

preserve the semantic structure of the original features in

the Hamming space. Compact binary codes are extremely

suitable for efficient data storage and fast search.
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Figure 1: The Hamming distances calculated using the proposed hashing

framework between pairs of faces. Each row represents a triplet of sam-

ples and the face pairs enclosed by a rectangle are from the same identity.

Here each face image is represented by a 128-dimensional binary codes

vector. We can see that a threshold of about 63 can correctly classify

same-identity and different-identity pairs of faces.

A few hashing methods in the literature incorporate the

triplet ranking loss to learn codes that preserve relative sim-

ilarity relations [15, 16, 22, 38, 39]. In these works usu-

ally a triplet ranking loss is defined, followed by solving

an expensive optimization problem. For instance, Lai et

al. [15] and Zhao et al. [39] map original features into bi-

nary codes via deep convolutional neural networks (CNNs).

Both use a triplet ranking loss designed to preserve rela-

tive similarities, with the key difference being in the ex-

act form of the loss function used. Similarly, FaceNet [25]

uses the triplet loss to learn a real-valued compact embed-

ding of faces. All these methods suffer from huge training

complexity, because they directly train the CNNs using the

triplets, the number of which scales cubically with the num-

ber of images in the training set. For example, the training

of FaceNet [25] took a few months on Google’s computer

clusters. Other work like [32] simply subsamples a small

subset to reduce the computation complexity.

To address this issue, we employ a collaborative two-

step approach, originally proposed in [18], to avoid di-

rectly learning hash functions based on the triplet ranking

loss. This two-step approach enables us to convert triplet-

based hashing into an efficient combination of solving bi-

nary quadratic programs and learning conventional CNN
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classifiers. Hence, we don’t need to directly optimize the

loss function with huge number of triplets to learn deep hash

functions. The result is an algorithm with computational

complexity that is orders of magnitude lower than existing

work such as [25, 39], but without sacrificing accuracy.

The two-step approach to hashing advocated by [17, 18]

uses decision trees as hash functions in combination with

the design of efficient binary code inference methods. The

main difference of our work is as follows. The work

in [17, 18] only preserves the pairwise similarity relations

which do not directly encode relative semantic similarity

relationships that are important for ranking-based tasks. In

contrast, we use a triplet-based ranking loss to preserve rel-

ative semantic relationships. However it is not trivial to ex-

tend the first step (binary code inference) in [17] to triplet-

based loss functions. The formulated binary quadratic prob-

lem (BQP) in [17] can be viewed as a pairwise Markov

random field (MRF) inference problem, while in our case

we need to solve large-scale high-order MRF inference.

We here propose an efficient high-order binary code infer-

ence algorithm, in which we equivalently convert the binary

high-order inference into the second-order binary quadratic

problem, and graph cuts based block search method can be

applied. In the second step of hash function learning, the

work of [17, 18] relies on training classifiers such as linear

SVM or decision trees on handcrafted features. We instead

fit deep CNNs with incremental optimization to simultane-

ously learn feature representations and hash codes.

Our contributions are summarized as follows.

• To address the issue of prohibitively high computa-

tional complexity in triplet-based binary code learning,

we propose a new efficient and flexible framework for

interactively inferring binary codes and learning the

deep hash functions, using a triplet-based loss func-

tion. We show how to convert the high-order loss in-

troduced by the triplets into a binary quadratic problem

that can be optimized efficiently in the manner of [17],

using block-coordinate descent with graph-cuts. To

learn the mapping from images to hash codes, we de-

sign deep CNNs capable of preserving their semantic

ranking information of the data.

• We propose a novel incremental group-wise training

approach, that interleaves finding groups of bits of the

hash codes, with learning the hash functions. We show

experimentally that this approach improves the qual-

ity of hash functions while retaining the advantage of

efficient training.

• We demonstrate that our method outperforms many

existing state-of-the-art hashing methods on several

benchmark datasets by a large margin. We also demon-

strate our hashing method in the context of a face

search/retrieval system. We achieve the best reported

results on face search under the IJB-A protocol.

1.1. Related work

Hashing methods may be roughly categorized into

data-dependent and data-independent schemes. Data-

independent methods [6,10,14] focus on using random pro-

jections to construct random hash functions. The canonical

example is the locality-sensitive hashing (LSH) [6], which

offers guarantees that metric similarity is preserved for suf-

ficiently long codes based on random projections. Recent

research focuses have been shifted to data-dependent meth-

ods, which learn hash functions in a either unsupervised,

semi-supervised, or supervised learning fashion. Unsuper-

vised hashing methods [2, 7, 20, 27, 34, 35] try to map the

original features into hamming space while preserving sim-

ilarity relations between the original features using unla-

belled data. Supervised methods [5, 13, 16, 19, 26] use la-

belled training data for the similarity relations, aiming to

preserve the “ground truth” similarity in the hash codes.

Semi-supervised hashing methods incorporate ground-truth

similarity information for the subset of the training data

for which it is available, but also use unlaballed data. Our

proposed method belongs to the supervised hashing frame-

work.

Recently hashing using deep learning has shown great

promise. The authors of [15, 39] learn hash bits such that

multilevel semantic similarities are kept, taking raw pixels

as input and training a deep CNN. This has the effect of si-

multaneously learning an image feature representation (in

the early layers of the network) and the hash bits, which

are obtained by thresholding the outputs of the last network

layer, or hash layer at 0.5. Note that these methods suffer

from huge computation complexity introduced by the triplet

ranking loss for hashing. In contrast, our proposed method

is much more efficient in training, as shown in our experi-

ments.

2. The proposed approach

Our general problem formulation is as follows. Let

D = {(i, j, k) | s(xi,xj) > s(xi,xk)} be a set of training

triplet samples, in which s(·, ·) is some semantic similarity

measures, xi is the i-th training sample and xi is semanti-

cally more similar to xj than to xk. Let h(x) ∈ {−1, 1}q be

the q-bit hash codes of image x. We simplify the notation

by rewriting h(xi), h(xj) and h(xk) using zi, zj and zk,

respectively. Our goal is to learn embedding hash functions

h(·) to preserve the relative similarity ranking order for the

images after being mapped into the binary Hamming space.

For that purpose, we define a general form of loss functions:

min
Z

∑

(i,j,k)∈D

L(zi, zj , zk), s.t. Z ∈ {−1, 1}
q×n. (1)

Here Z is the matrix that collects binary codes for all the n
data points and q is the bit length. L is a triplet loss function.
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Unlike approaches such as [39], our method shares the

advantage of [18] that we are not tied to a specific form of

the loss. One typical example of losses that could be used

include the Hinge ranking loss:

L(zi, zj , zk) = max(0, q/2− (dH(zi, zj)− dH(zi, zk)).
(2)

Here dH(·, ·) is the Hamming distance.

We propose an approach to learning binary hash codes

that proceeds in two stages. The first stage uses the labelled

training data to infer a set of binary codes in which the ham-

ming distance between codes preserves the semantic rank-

ing between triplets of data. The second stage uses deep

CNNs to learn the mapping from images to the binary code

space (i.e. to learn the hash functions). A similar two-stage

approach was advocated in [17], but that work used only

pairwise data, and used boosted decision trees rather than

deep CNNs to learn the hash functions.

There are various difficulties associated with direct ap-

plication of triplet losses, and of CNNs to the problem.

First, the binary code learning stage requires optimization

of Eq. (1) which is in general NP-hard. In Sec. 3, we de-

scribe how to infer binary codes with triplet ranking loss by

reducing the problem to a binary quadratic program. The

use of triplets considerably complicates this process and

so this is one of our significant contributions in this paper.

Second, while the two-stage approach gains significantly in

training time, it has the disadvantage that the learning of the

codes and the hash functions do not interact and therefore

cannot be mutually beneficial. We propose a method to in-

terleave the code and hash function learning into groups of

bits, a process that retains much of the training efficiency,

but improves the quality of the codes and hash functions

considerably. We explain our use of CNNs and this inter-

leaved and incremental learning in Sec. 4 below.

3. Inference for binary codes with triplet rank-

ing loss

Since simultaneously infer multiple bits are intractable in

inference task, inspired by the work of [17], we sequentially

solve for one bit at a time conditioning on previous bits.

When solving for the r-th bit, the previous r − 1 bits are

fixed. The binary inference problem becomes minimization

of the following objective:
∑

(i,j,k)∈D

L(zr,i, zr,j , zr,k; z
(r−1)
i , z

(r−1)
j , z

(r−1)
k ),

=
∑

(i,j,k)∈D

ℓr(zr,i, zr,j , zr,k), (3)

where ℓr is the loss function output of the r-th bit condi-

tioned on the previous bits. zr,i is the binary code of the

i-th data point and the r-th bit, z
(r−1)
i is the binary code

vector of the previous r − 1 bits for the i-th data point.

3.1. Solving high­order binary inference problem

Directly optimizing the loss function which involves

high-order relations (more than pairwise relations) in

Eq. (3) is difficult since the optimization involves an ex-

tremely large number of triplets, and so can be computa-

tionally intractable. To address this problem, we show here

how to convert the high-order inference task to a second-

order problem which is much more feasible to be optimized.

The key “special properties” of the binary space that we rely

on are: (i) the possibility of enumerating all possible inputs

(there are 23 = 8); (ii) the symmetry of the hamming dis-

tance d(., .). Based on this, the triplet loss can be decom-

posed into a set of second-order combinations as:

ℓr(zr,i, zr,j , zr,k) = αiizr,izr,i + αijzr,izr,j + αikzr,izr,k
+αjizr,jzr,i + αjjzr,jzr,j + αjkzr,jzr,k + αkizr,kzr,i
+αkjzr,kzr,j + αkkzr,kzr,k,

(4)

where α.. are the coefficients of the corresponding second-

order combinations. Then we will show that there exists

a solution for α to make it a valid decomposition. Here

we ignore the redundant terms in Eq. (4), hence it can be

rewritten as

ℓr(zr,i, zr,j , zr,k) = αiizr,izr,i + αijzr,izr,j

+ αikzr,izr,k + αjkzr,jzr,k = α
T
v,

(5)

where, α = [αii, αij , αik, αjk],

v = [zr,izr,i, zr,izr,j , zr,izr,k, zr,jzr,k].

ℓr has 8 possible input combinations for (zr,i, zr,j , zr,k) (or

equivalently v has 8 possible value combinations), leading

to 8 constraints of the form of (5). Because the loss is de-

fined on Hamming distance/affinity, changing the sign of

every input leads to identical value of the loss, thus some

of these combinations lead to redundant constraints. Elim-

inating all these redundant combinations leaves only four

independent equations (5). Stacking these so that each v

forms a row of a matrix yields the follow set of equations:









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









α =









ℓr(1, 1, 1)
ℓr(1, 1,−1)
ℓr(1,−1, 1)
ℓr(1,−1,−1)









. (6)

which can be easily inverted to yield the unique solution of

α. This shows that for a given triplet loss function, we can

decompose it into a set of pairwise terms for each triplet.

We now seek a solution for z(r) – the rth bit of the

code for every data point – that optimizes the triplet rela-

tions. Because the triplet relations are now encoded as pair-

wise relations, we can solve for z(r) as follows. We define

W ∈ Rn×n as a weight matrix in which (i, j)-th element
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Figure 2: Overview of the proposed hashing framework for training one group of binary codes. The framework includes two steps: binary code inference

and hash function learning with multi-label CNNs. The inferred binary codes are needed by the multi-label layer of the deep hash functions. The CNN

structure of the first a few layers is same as the VGG-16 network.

Algorithm 1: Greedy method for constructing blocks

Input: Training images: {x1, ...xn}; Relation weights

matrix: W.

Output: Sub-modular blocks: {S1,S2,...}.
1 U← {x1, ...,xn}; t = 0;

2 while U 6= ∅ do

3 t = t+ 1; St ← ∅; choose an arbitrary xi from U;

4 Let H be U ∪ {xj |wij < 0}
5 for each xj in H do

6 if wjk ≤ 0 for k = 1, 2, ..., |St| then

7 Add xj to St; If xj ∈ U, remove it;

of W, wij , represents a relation weight between the i-th
and j-th training points. Specifically, each element of W is

computed as

wij =
∑

∀(i,j)

αij , (7)

where αij are the coefficients corresponding to the pair

(i, j). There will be one such αij for every triplet in which

data points xi and xj appear.

The triplet optimization problem in Eq. (3) can now be

equivalently formulated as

min
z(r)∈{−1,1}n

z
T
(r)Wz(r). (8)

Note that the coefficients matrix W is sparse and symmet-

ric, therefore Eq. (8) is a standard binary quadratic problem.

Although we have now shown how to convert the third-

order objective in Eq. (3) into a second-order formulation

amenable to BQP, a further issue remains: the quadratic ob-

jective above contains non-submodular terms, and is there-

fore difficult to optimize.

To address this, we follow the proposal in [17]. This

proceeds by creating a set of sub-problems (or “blocks”)

each involving a subset of the variables z(r) in which the

pairwise relations are all sub-modular. The sub-problems

Algorithm 2: Two-step approach for learning deep bi-

nary embedding networks

Input: Training images: {x1, ...xn}; Relation map:

M; group length: a; number of groups: b.
Output: The deep hash functions: h(·).

1 for i = 1, ...b do

2 for j = 1, ...a do

3 Solve linear equations to construct the relation

weight matrix W;

4 Apply Block Graph-Cut algorithm [17] to

solve ((i− 1)× a+ j)-th bit hash codes;

5 Learn the deep hash functions h(·) based on i× a
bits hash codes;

6 Simultaneously update i× a bits hash codes by

the output of h(·).

are then solved in turn, treating the variables that are not

involved in the current block as constants. The inference

problem for one block is written as

min
zr∈{−1,1}n

∑

i∈S

uizr,i +
∑

i∈S

∑

j∈S

vijzr,izr,j , (9)

where, ui = 2
∑

j /∈S

wijzr,j , vij = wij ,

and S is the block to be optimized. Since the above infer-

ence problem for one block is sub-modular, we can solve it

efficiently using graph cuts.

Algorithm (1) details how the blocks are defined. It is

subtly different from [17]; because we are using a triplet

loss, the criterion for inclusion in a block is to ensure wij <
0 for each pair xi,xj in the block, which guarantees sub-

modularity for all pairs.

3.2. Loss function

The discussion above provides a general framework for

learning the binary codes using a triplet loss, but is agnostic
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to the exact form of the loss. In the experiments reported in

this paper, we use ℓr as the triplet-based hinge loss function

defined in Eq. (2):

ℓr(...) = max(0, r/2−∆d
(r−1)
H −∆drH), (10)

where,

∆d
(r−1)
H = dH(z

(r−1)
i , z

(r−1)
j )− dH(z

(r−1)
i , z

(r−1)
k ),

∆drH = dH(zr,i, zr,j)− dH(zr,i, zr,k).

4. Deep hash functions learning

Our general scheme now requires that we learn hash

functions h(.) that map from data points xi to binary codes.

We propose to do this using deep CNNs because they have

repeatedly been shown to be very effective for similar tasks.

The straightforward approach is then to use the training

samples, and their known codes as the labelled training set

for a standard CNN. As we have noted this two-stage ap-

proach yields significant training time gains.

However a major disadvantage is that because the binary

codes are determined independently of the hash functions,

and the hash functions have no possibility to influence the

choice of binary codes. Ideally these stages would interact

so that the choice of binary hash codes is influenced not only

by the ground-truth relative similarity relations but also by

how hard the training points are.

To address this, we propose an interleaved process where

we infer a group of bits within a code, followed by learning

suitable hash functions for that set of bits and its predeces-

sors, followed in turn by inference of the next group of bits,

and so on. This provides a compromise between indepen-

dently learning the codes and hash functions, and a more

end-to-end – but very expensive – approach such as [15].

4.1. Incremental optimization

Our key idea here is to optimize the hashing framework

in an incremental group-wise manner. More specifically, we

assume there are b groups of bits and each group has a bits

(e.g., for 64-bit codes we may break this into 8 groups of 8

bits each). For convenience, we shall refer to inference of

the p-th group binary codes followed by learning the deep

hash functions, as the “p-th training stage”. In the p-th train-

ing stage, we first infer the a bits of the p-th group one bit

at a time (as described in Sec. 3) and then train the network

parameters θ so that it minimizes the cross-entropy loss:

−
r

∑

ρ=1

n
∑

i=1

[δ(zρ,i = 1) log z′ρ,i+δ(zρ,i = −1) log(1−z
′
ρ,i)],

(11)

where δ(·) is the indication function. Here at the p-th stage

we are targetting the first r = pa bits of the code; z′ρ,i is

the ρ-th output of the last sigmoid layer for the i-th train-

ing sample; zρ,i is the corresponding bit of the binary code

obtained from the inference step which serves as the target

label of the multi-label classification problem above. Note

that in the p-th training stage, the bits from all p groups are

used to guide the learning of the deep hash functions.

Having completed training the hash functions, we then

update the binary codes for all p groups by the output of

the learned hash functions. The effect of this is to ensure

that the error in the learned hash functions will influence

the inference of the next group of hash bits.

This incremental training approach adaptively regulates

the binary codes according to both the fitting capability of

the deep hash functions and the properties of the training

data, steadily improving the quality of hash codes and the fi-

nal performance. Finally, we summarize our hashing frame-

work in Algorithm 2.

4.2. Network architecture

The network of learning deep hash functions consists of

multiple convolutional, pooling, and fully connected layers

(we follow the VGG-16 model), and a multi-label loss layer

for multi-label classification.

We use the pre-trained VGG-16 [28] model for initializa-

tion, which is trained on the large-scale ImageNet dataset.

The multiple convolution-pooling and fully connected lay-

ers are used to capture mid-level image representations. The

intermediate output of the last fully connected layer are

mapped to a multi-label layer as the feature representation.

Then neurons in the multi-label layer are activated by a sig-

moid function so that the activations are approximated to

[0, 1], followed by the cross-entropy loss of Eq. (11) for

multi-label classification.

5. Experiments

Experimental settings We test the proposed hashing

method on two multi-class datasets, one multi-label dataset

and one face retrieval dataset. For multi-class datasets, we

use the MIT Indoor dataset [23] and CIFAR-10 dataset [12].

The MIT Indoor dataset contains 67 indoor scene cate-

gories, and 6,700 images for evaluation. CIFAR-10 con-

tains 60,000 small images in 10 classes. For multilevel sim-

ilarity measurement, we test our method on the multi-label

dataset NUS-WIDE [4]. The NUS-WIDE dataset is a large

database containing 269,648 images annotated with 81 con-

cepts. We compare the search accuracies with four recent

state-of-the-art state-of-the-art hashing methods, including

SFHC [15] (the recent deep CNNs method), FSH [17] (two-

step hashing approach using decision trees), KSH [19] and

ITQ [7].

For fair comparison, we evaluate the compared hashing

methods FSH, KSH and ITQ on the features obtained from

the activations of the last hidden layer of the VGG-16 model

pre-trained on the ImageNet ILSVRC-2012 dataset [24].

We find that using deep CNN features in general improve
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the performance for these three hashing methods, compared

with what was originally proposed. We initialize our CNN

using the pre-trained model and fine-tune the network on

the corresponding training set.

Again for fair comparison, for the deep CNN approach

SFHC, we replace its network structure (convolution-

pooling, fully-connected layers) with the VGG-16 model

and end-to-end train the network based on the triplet hinge

loss used in the original paper. We implement SFHC using

Theano [1] and train the model using two GeForce GTX

Titan X. The triplet samples are randomly generated in the

course of training, following [15].

For the NUS-WIDE dataset, we construct two compari-

son settings, setting-1 and setting-2. For setting-1, follow-

ing the previous work [15, 20], we consider the 21 most

frequent tags and the similarity is defined based on whether

two images share at least one common tag. For setting-2,

we use the similarity precision evaluation metric to evaluate

pairwise and triplet performance. As in [32], similarity pre-

cision is defined as the % of triplets being correctly ranked.

Given a triplet image set (xi,xj ,xk), where s(xi,xj) >
s(xi,xk). We assume xi as the query, if the rank of xj is

higher than xk, then we say triplet is correctly ranked. We

first randomly sample 1000 probe images from all the data

sharing the selected 21 attributes in setting-1. Then we ob-

tain a ranking list for each probe image according to how

many attributes it shares with the data and randomly gen-

erate 50 triplets per probe image according to the ranking

list to form the test set. For the triplet-based methods, the

sampled training data is the same as in setting-1. For the

compared pairwise-based methods, we directly use the hash

functions learned in setting-1 since semantic ranking infor-

mation cannot be incorporated into the pairwise-based in-

ference pipeline. For CIFAR-10 and NUS-WIDE setting-1,

we use the same experimental setting as described in [15].

We use two evaluation metrics: Mean Average Precision

(MAP) and the precision of the top-K retrieved examples

(Precision), where K is set to 100 in CIFAR-10 and NUS-

WIDE setting-1 and set to 80 in MIT Indoor dataset. For

NUS-WIDE setting-1, we calculate the MAP values within

the top 5000 returned neighbors. The results are represented

in Figure 3 and Figure 4.

5.1. Implementation details

We implement the network training based on the CNN

toolbox Theano. Training is done on a standard desktop

with a GeForce GTX TITAN X with 12GB memory. In all

experiments, we set the mini-batch size for gradient descent

to 50, momentum 0.9, weight decay 0.0005 and dropout rate

0.5 on the fully connected layer to avoid over-fitting. The

number of binary codes per group is set to 8.

Figure 5: The similarity precision curves on NUS-WIDE setting-2.
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Figure 6: Evaluation of the inference performance on three datasets.
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5.2. Analysis of retrieval results

On all the three datasets, our proposed method shows

superior performance in terms of MAP and precision eval-

uation metrics against the most related work SFHC (deep

CNN) and FSH (two-step hashing with boosted trees). As

expected, the training speed of our method is much faster

than SFHC, and the result is summarized in Table 1. Rather

than simply end-to-end learn the hash functions, our method

incorporates hash functions learning with a collaborative in-

ference step, where the image representation learning and

hash coding can benefit each other through this feedback

scheme.

Compared to FSH, the results demonstrate the effective-

ness of incorporating relative similarity information as su-

pervision. Note that FSH is based on pairwise information

while ours uses triplet based ranking information to learn

hash codes. The triplet loss may be better for retrieval tasks

because it is directly linked to retrieval measure such as the

AUC score. The pairwise loss used by FSH encourages all

images in one category to be projected onto a single point

in the Hamming space. The triplet loss maximizes a mar-

gin between each pair of same-category images and images

from different categories. As argued in [25, 33], this may

enable images belonging to the same category to reside on

a manifold; and at the same time to maintain a distance from

other categories.
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Figure 3: The precision curves on three datasets. We compare several state-of-the-art algorithms including ITQ [7], KSH [19], FSH [17] with features

extracted from VGG-16 model which is fine-tuned on the corresponding training set and SHFC [15] which is implemented using the VGG-16 network

structure.
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Figure 4: The mean average precision curves on three datasets. Settings are the same as in Figure 3.

Table 1: Training time of the proposed method and the method SFHC [15]

on three datasets. In terms of training time, our method is significantly

faster than SFHC.

Method
Training Time (hours)

Number of GPUs
MIT Indoor CIFAR-10 NUS-WIDE setting-1

Ours-Triplet 18 15 32 1

SFHC 186 174 365 2

5.3. Triplet vs. pairwise

From the results shown in Figure 5, we can clearly ob-

serve the superiority of triplet-based methods on the rank-

ing based evaluation metric. Thanks to the high quality

binary codes and the strong fitting capability of our deep

model, our proposed method provides much better perfor-

mance than pairwise methods by a large margin.

Since the two triplet-based methods (Ours-Triplet and

SFHC) simultaneously learn feature representations and

hash codes while considering the semantic ranking infor-

mation, they are more likely to learn hash functions that

are tailored for the ranking-based retrieval metric than the

pairwise-based methods (Ours-pairwise and FSH).

5.4. Evaluation of binary codes quality

We evaluate the binary codes quality on CIFAR-10, MIT

Indoor and NUS-WIDE setting-1 datasets (see Figure 6).

To evaluate the effectiveness of the binary codes inference

pipeline, we infer 64 binary bits without learning the deep

hash functions. Then the training database is used as both

the probe set and the gallery set for evaluating the inference

performance. For the three datasets, we calculate the MAP

values within the returned neighbors. We can observe that

for CIFAR-10, the binary codes converge very fast at around

10-th bits. MIT Indoor dataset converges slightly slower

due to the fact that it has more classes. The binary codes

can still perfectly separate all the training samples from dif-

ferent classes. This is because the relations between training

points are very simple due to the multi-class similarity rela-

tionships. In contrast, due to the complicated relationships

between the multi-label training samples, the accuracy of

NUS-WIDE setting-1 keeps improving up to 64 bits and is

lower than those multi-class datasets. We can see that the

code quality is directly proportional to the final retrieval per-

formance. This makes sense since the deep hash functions

are learned to fit the binary codes, so the performance of the

inference pipeline has a direct impact on the quality of the

learned deep hash functions.

5.5. Face retrieval

We implement the face search application as follows.

Data preprocessing. The preprocessing pipeline is: 1)

detect the face region using the robust face detector [21]

and find 68 face landmarks using the (state-of-the-art) face

alignment algorithm [36]; 2) select the middle landmark

between two eyes and the middle landmark of the mouth

as alignment-anchor points, and align/scale the face image

such that distance between the landmarks is 40 pixels; 3)

finally we crop a 160× 160 region around the mid-point of

the two landmarks in (2).

Supervised pre-training. We pre-train the VGG-16 [28] net-

work (using Caffe [9]) to classify all the 10575 subjects in
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Table 2: Face search accuracies under the IJB-A protocol. Results for GOTS and OpenBR are quoted from [11]. Results are reported as the average ±

standard deviation over the 10-fold cross validation sets specified in the IJB-A protocol.

Algorithm
CMC (closed-set search) FNIR @ FPIR (open-set search)

Rank-1 Rank-5 0.1 0.01

GORS 0.443± 0.021 0.595± 0.020 0.765± 0.033 0.953± 0.024
OpenBR 0.246± 0.011 0.375± 0.008 0.851± 0.028 0.934± 0.017

Deep Face Search [31] 0.820± 0.024 0.929± 0.013 0.387± 0.032 0.617± 0.063
Proposed Method 0.831± 0.020 0.937± 0.015 0.369± 0.028 0.598± 0.048

Table 3: Face search accuracies of the proposed method under the IJB-A

protocol using different bits per group.

Group length
CMC (closed-set search) FNIR @ FPIR (open-set search)

Rank-1 Rank-5 0.1 0.01

8 bits 0.831± 0.020 0.937± 0.015 0.369± 0.028 0.598± 0.048
32 bits 0.818± 0.023 0.920± 0.016 0.385± 0.030 0.612± 0.052
64 bits 0.793± 0.024 0.908± 0.018 0.398± 0.036 0.627± 0.061

128 bits 0.778± 0.023 0.889± 0.020 0.415± 0.035 0.645± 0.058

the CASIA dataset [37]. This dataset has 494414 images

of the 10575 subjects, and we double the number of train-

ing examples by horiozontal mirroring, making the feature

representation more robust to pose variation.

We test the pre-trained model’s discriminative power

on the LFW verification data as follows. We use the last

4096-dimensional fully-connected layer as the feature rep-

resentation and then use PCA to compress it into a 160-

dimensional feature vector. Then CNN features are centered

and normalized for evaluation. Under the standard LFW [8]

face verification protocol, for a single network using only

cosine similarity, we achieve an accuracy of 97.03% ±
0.98%. Using the joint Bayesian method [3] for face veri-

fication, we achieve an accuracy of 98.18%± 0.96%.

Despite using only publicly available training data and

one single network, the performance of this model is com-

petitive with state-of-the-art [25, 29, 30, 37].

Face search. We then use the above pre-trained CNN model

to initialize the deep CNN that models the hash functions

of our proposed hashing method. We test the face search

performance on the IARPA Janus Benchmark-A (IJB-A)

dataset [11] which contains 500 subjects with a total of

25,813 face images. This dataset contains many challenging

face images and defines both verification and search proto-

cols. The search task (1:N search) is defined in terms of

comparisons between templates consisting of several face

images, rather than single face images. For the search pro-

tocol, which evaluates both closed-set and open-set search

performance, 10-fold cross validation sets are defined based

on both the probe and gallery sets consisting of templates.

Given an image from the IJB-A dataset, we first detect and

align the face following the data preprocessing pipeline. Af-

ter processing, the final training set consists approximately

1 million faces and 1 billion randomly sampled triplets.

Clearly, such a large-scale training dataset may render most

existing triplet-based hashing methods computationally in-

tractable. The deep hash functions are learned based on the

proposed two-step hashing framework. After the deep hash

functions are learned, we generate 128 bits hash codes for

each input face image for fast face retrieval. The defini-

tions of CMC, FNIR and FPIR are explained in [11, 31].

The results of the proposed method along with the com-

pared algorithms are reported in Table 2. In [31], a face

is represented by the combined features extracted by 6 deep

models. However, in our paper, 128 bits binary codes are di-

rected extracted by a single deep model for face representa-

tion which enjoys both faster searching speed and less stor-

age space. Also, although using the same training database,

the searching accuracy on two protocols both demonstrate

the effectiveness of our hashing framework.

5.6. Evaluation of the incremental learning

We evaluate different group lengths used in the incre-

mental learning to prove the effectiveness of such an op-

timization strategy. We implement the experiments on the

face retrieval task as described above since there are suffi-

cient training examples and faces are difficult for the deep

architecture to fit because of the relatively weak discrimi-

native information they share. The results are reported in

Table 3. From the results, we clearly see that smaller group

length corresponds to better search accuracies, demonstrat-

ing our assertion that incremental optimization helps in

terms of code quality and the final performance.

6. Conclusion

In this paper, we develop a general supervised hashing

method with triplet ranking loss for large-scale image re-

trieval. Instead of directly training on the extremely large

amount of triplet samples, we formulate learning of the

deep hash functions as a multi-label classification problem,

which allows us to learn deep hash functions orders of mag-

nitude faster than the previous triplet based hashing meth-

ods in terms of training speed. The deep hash functions are

learned in an incremental scheme, where the inferred bi-

nary codes are used to learn image representations and the

learned hash functions can give feedback for boosting the

quality of binary codes. Experiments demonstrate that the

superiority of the proposed method over other state-of-the-

art hashing methods.
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