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Transform image processing methods are methods that work in domains of image transforms, such as Discrete Fourier, Discrete
Cosine, Wavelet, and alike. �ey proved to be very e	cient in image compression, in image restoration, in image resampling, and
in geometrical transformations and can be traced back to early 1970s. �e paper reviews these methods, with emphasis on their
comparison and relationships, from the very �rst steps of transform image compression methods to adaptive and local adaptive
�lters for image restoration and up to “compressive sensing” methods that gained popularity in last few years. References are made
to both �rst publications of the corresponding results and more recent and more easily available ones. �e review has a tutorial
character and purpose.

1. Introduction: Why Transforms?
Which Transforms?

It will not be an exaggeration to assert that digital image
processing came into being with introduction, in 1965 by
Cooley and Tukey, of the Fast Fourier Transform algorithm
(FFT, [1]) for computing the Discrete Fourier Transform
(DFT). �is publication immediately resulted in impetuous
growth of activity in all branches of digital signal and image
processing and their applications.

�e second wave in this process was inspired by the
introduction into communication engineering and digital
image processing, in the 1970s, of Walsh-Hadamard trans-
form and Haar transform [2] and the development of a large
family of fast transforms with FFT-type algorithms [3–5].
WhereasWalsh-Hadamard andHaar transformshave already
been known in mathematics, other transforms, for instance,
quite popular at the time Slant Transform [6], were being
invented “from scratch.”�is development wasmainly driven
by the needs of data compression, though the usefulness
of transform domain processing for image restoration and
enhancement was also recognized very soon [3]. �is period
ended up with the introduction of the Discrete Cosine

Transform (DCT, [7, 8]), which was soon widely recognized
as the best choice among all available at the time transforms
and resulted in JPEG and MPEG standards for image, audio,
and video compression.

�e third large wave of activities in transforms for signal
and image processing was caused by the introduction, in the
1980s, of a family of transforms that was coined the name
“wavelet transform” [9]. �e main motivation was achieving
a better local representation of signals and images in contrast
to the “global” representation that is characteristic to Discrete
Fourier, DCT, Walsh-Hadamard, and other fast transforms
available at the time. During 1980s–1990s a large variety of
discrete wavelet transforms were suggested [10] for solving
various tasks in signal and in image processing.

Presently, fast transforms with FFT-type fast algorithms
and wavelet transforms constitute the basic instrumentation
tool of digital image processing.

�e main distinctive feature of transforms that makes
them so e	cient in digital image processing is their energy
compaction capability. In regular image representations, in
form of sets of ordered pixels, some pixels, for instance, those
that belong to object borders, are more important than the
others and there are always some pixels in each particular
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Table 1: Register of relevant fast transforms, their main characteristic features, and application areas.

Relevance to imaging
optics

Main characteristic features Main application areas

Discrete Fourier
Transforms

Represents optical
Fourier Transform

Cyclic shi� invariance vulnerable
to boundary e�ects

(i) Analysis of periodicities.
(ii) Fast convolution and
correlation.
(iii) Fast and accurate image
resampling.
(iv) Image compression.
(v) Image denoising and
deblurring.
(vi) Numerical reconstruction of
holograms.

Discrete Cosine
Transform

Represents optical
Fourier Transform

Cyclic shi� invariance (with
double cycle);
virtually not sensitive to
boundary e�ects

Discrete Fresnel
Transforms

Represent optical Fresnel
Transform

Computable through DFT/DCT
Numerical reconstruction of
holograms

Walsh-Hadamard
Transform

No direct relevance

Binary basis functions.
Provides piece-wise constant
separable image band-limited
approximations

(i) Image compression
(marginal).
(ii) Coded aperture imaging.

Haar Transform and
other Discrete Wavelet
Transforms

Subband decomposition

Binary basis functions.
�e fastest algorithm.
Multiresolution.
Shi� invariance in each
particular scale.

(i) Signal/image wideband noise
denoising.
(ii) Image compression.

image that are of no such importance and can be dropped out
from image representation and restored from the remaining
“important” pixels. But the problem is that one never knows
in advance which pixels in the image are “important” and
which are not.

�e situation is totally di�erent in image representation
in transform domain. For orthogonal transforms that feature
good energy compaction capability, a lion share of total
image “energy” (sum of squared transform coe	cients) is
concentrated in a small fraction of transform coe	cients,
which indices are, as a rule, known in advance for the given
type of images or can be easily detected. It is this feature of
transforms that is called their energy compaction capability. It
allows replacing images with their “band-limited,” in terms of
a speci�c transform, approximations, that is, approximations
de�ned by a su	ciently small fraction of image transform
coe	cients.

�e optimal transform with the best energy compaction
capability can be de�ned for groups of images of the same
type or ensembles of images that are subjects of process-
ing. Customarily, the “band-limited” image approximation
accuracy is evaluated in terms of the root mean square
approximation error (RMSE) for the image ensemble. By
virtue of this, the optimal transform that secures the least
band limited approximation error is de�ned by the ensemble
correlation function, that is, image autocorrelation function
averaged over the image ensemble. For continuous (not
sampled) signals, this transform is called theKarhunen-Loeve
Transform [11, 12]. Its discrete analog for sampled signals is
called the Hotelling transform [13] and the result of applying
this transform to sampled signals is called signal principal
component decomposition. Karhunen-Loeve and Hotelling

transforms provide the theoretical lower bound for compact
(in terms of the number of terms in signal decomposition)
signal discrete representation for RMS criterion of signal
approximation.

However, being optimal in terms of the energy com-
paction capability, Karhunen-Loeve and Hotelling trans-
forms have, generally, high computational complexity: the
per pixel number of operations required for their compu-
tation is of the order of image size. �is is why for prac-
tical needs only fast transforms that feature fast transform
algorithms with computational complexity of the order of
the logarithm of image size are considered. A register of
the most relevant fast transforms, their main characteristic
features, and application areas is presented in Table 1. �eir
mathematical de�nitions are given in Table 2.

Di�erent fast transforms have di�erent energy com-
paction capability for di�erent types of images. Figure 1
illustrates the energy compaction capabilities of Discrete
Fourier, Discrete Cosine, Walsh, and Haar transforms on
a particular test image. It shows that for this image DCT
demonstrates the best energy compaction capability: 95% of
the image energy is contained in only 9.5%of all DCT spectral
coe	cients, whereas for DFT, Walsh and Haar transforms
these fractions are 11%, 15%, and 9.8%, correspondingly.
Note also that, though for Haar Transform the fraction
of the “meaningful” transform coe	cients (9.8%) is close
to that for DCT, quality degradations of the band-limited
approximation to the image are noticeably more severe.

Experience shows that DCT is in most applications
advantageous with respect to other transforms in terms of
the energy compaction capability. �is property of DCT has
a simple and intuitive explanation.
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Table 2: Selected fast transforms most relevant for digital image processing and their computational complexity (in 1D denotations).

Name De�nition

Computational complexity

(operations per signal sample)

“Global”:
applied to entire
signal of� samples

“Local”: applied
in mowing
window of��� pixels

Discrete Cosine Transform
(DFT)

�� = 1√�
�−1∑
�=0

	� cos(2�� + 1/2� 
) Real number
operations��DCT log�

Real number
operations��DCT(<WSz)

Discrete Fourier Transforms

Canonic DFT �� = 1√�
�−1∑
�=0

	� exp(�2��
�) Complex
number
operations��DFT log�

Complex
number
operations��DFT(<WSz )

General Shi�ed Scaled DFT

�� = 1√�
�−1∑
�=0

	� exp [�2� (� + �) (
 + V)�� ];
�, V—shi� parameters that indicate shi�s �Δ�, VΔ� of sampling

lattices in signal and spectrum domains;�—sampling scale parameter (Δ�Δ� = 1/��)

Discrete Fresnel Transforms
(DFrT)

Canonic DFrT
�� = 1√�

�−1∑
�=0

	� exp [�2�(�� − 
/�� )]; � ≥ 1 Complex
number
operations��DFrT log�

n/a� = √��/�Δ�2
Convolutional DFrT �� = 1√�

�−1∑
�=0

	� exp[�2� (� − 
)2�2� ]; � ≤ 1
Walsh-Hadamard Transform

Hadamard Transform
�� = 1√�

�−1∑
�=0

	�had� (
);
had� (
) = (−1)∑�−1�=0 ���� Addition

operations only��WHT log� n/a

� = �−1∑
	=0

�	2	; 
 = �−1∑
	=0


	2	;� = 2�

Walsh Transform

�� = 1√�
�−1∑
�=0

	�wal� (
);
wal� (
) = (−1)∑�−1�=0 ��������	
��−�−1
��
��
���−	−1 —binary digits of Gray code of 
 taken in bit reversal order

Haar Transform
(the simplest discrete wavelet
transform)

�� = 1√�
�−1∑
�=0

	�har� (
);
har� (
) = 2msb(−1)��−1−msb (
mod 2msb − ⌊21−msb�⌋)

Msb—index of the most signi�cant nonzero bit of binary code of
msb; ⌊⋅⌋—residual of (⋅)

Addition
operations only��Haar n/a

DCT of a discrete signal is essentially, to the accuracy of
an unimportant exponential shi� factor, DFT for the same
signal extended outside its border to a double length by
means of its mirrored, in the order of samples, copy [15, 16].
�is way of signal extension has a profound implication on
the speed of decaying to zero of signal DCT spectra and is
a paramount and fundamental reason of the good energy
compaction capability of DCT.DFT implies periodical exten-
sion of signals, which may cause severe discontinuities at
signal borders and thus may require intensive high frequency
components to reproduce them. DCT also implies periodical
extension, however extension of not the signal itself but of

its above-described extended copy. �anks to such an “even”
extension, the extended signal has no discontinuities at its
borders, as well as at borders of the initial signal. �erefore
such an extended signal is “smooth” and its DFT spectrum
decays to zero faster than DFT spectrum of the initial, not
extended signal.

It is noteworthy to mention that introducing DCT in [7]
was motivated not by the above reasoning but by the �nding
that basis functions of DCT provide a good approximation to
the eigenvectors of the class of Toeplitz matrices with entries{��,� = *|�−�|}; * = 0.9; �, - = 0, 1, . . .; that is, DCT can be
considered as a good approximation to the Karhunen-Loeve
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DCT = 0.095; DFT = 0.11; Walsh = 0.15; Haar = 0.098

fraction of spectral coec�ents of total energy 0.95:

(f)

Figure 1: Illustration of the energy compaction capability of Discrete Fourier, Discrete Cosine, Walsh, and Haar transforms for a test image
shown in the upper le� corner. �e rest of images show band-limited approximations of the test image in the domain of corresponding
transforms for the approximation error variance equal to 5% of image variance. Graphs on the plot in the bottom right corner present energy
contained in fractions of transform coe	cients for di�erent transforms.
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Transform for signals with the Toeplitz correlation matrix.

In fact, the above-mentioned fundamental reason for good
energy compaction capability of DCT is hidden in the even
symmetry of the Toeplitz matrix.

In the family of orthogonal transforms, DFT and DCT

occupy a special place. DFT and DCT are two discrete
representations of the Integral Fourier Transform, which
plays a fundamental role in signal and image processing as
a mathematical model of signal transformations and of wave
propagation in imaging systems [17, 18]. �anks to this, DFT
and DCT are applicable in much wider range of applications
than the other fast transforms (see Table 1).

In conclusion of this section, come back to the common
feature of fast transform, to the availability for all of these

transform of fast algorithms of FFT type. Initially, fast
transforms were developed only for signals with the number
of samples equal to an integer power of two. �ese are the
fastest algorithms. At present, this limitation is overcome, and

fast transform algorithms exist for arbitrary number of signal
samples. Note that 2D and 3D transforms for image and video
applications are built as separable; that is, theywork separably
in each dimension. Note that the transform separability is
the core idea for fast transform algorithms. All fast transform
algorithms are based on representation of signal and trans-
form spectrum sample indices as multidimensional, that is
represented by multiple digits, numbers.

�e data on computational complexity of the transform
fast algorithms are collected inTable 2.�ese data aremore or
less commonly known. Not as widely known is the existence
of so-called pruned algorithms for the cases, when transform
input data contain substantial fraction of zero samples and/or
one does not need to compute all transform coe	cients [15–
24]. �ese algorithms are useful, for instance, in numerical
reconstruction of holograms and in interpolation of sampled
data by means of transform zero padding [17, 25, 26].

In some applications it is advisable to apply transforms
locally in running window rather than globally to entire
image frames. For such application, Discrete Cosine and
Discrete Fourier Transforms have an additional very useful
feature. Computing these transforms in running window can
be carried out recursively: signal transform coe	cients at
each window position can be found by quite simplemodi�ca-
tion of the coe	cients found at the previous window position
with per pixel computational complexity proportional to the
window size rather than to the product of the window size
and its logarithm, which is the computational complexity of
the fast transforms [17, 26–28].

�e rest of the paper is arranged as follows. In Section 2,
applications of fast transforms for image data compression
are reviewed. In Section 3, we proceed to transformmethods
for image restoration and enhancement. In Section 4, we
show how DFT and DCT can be applied for image perfect,
that is, error less, resampling. And �nally in Section 5, we
address the usage of fast transforms for solving a speci�c task
of image resampling, the task of image recovery from sparse
and irregularly taken samples, and, in particular, compressive
sensing approach to this problem.

2. Image Compression

2.1. Dilemma: Compressive Discretization or Compression.
Ideally, image digitization, that is, converting continuous
signals from image sensors into digital signals, should be
carried out in such a way as to provide as compact image
digital representation as possible provided that quality of
image reproduction satis�es given requirements. Due to
technical limitation, image digitization is most frequently
performed in two steps: discretization, that is, converting
image sensor signal into a set of real numbers, and scalar
quantization, that is rounding o�, of those numbers to a set
of �xed quantized values [15, 18].

Image discretization can, in general, be treated as obtain-
ing coe	cients of image signal expansion over a set of
discretization basis functions. In order to make the set of
these representation coe	cients as compact as possible, one
should choose discretization basis functions that secure the
least number of the signal expansion coe	cients su	cient
for image reconstruction with a given required quality. One
can call this general method of signal discretization “Com-
pressive discretization” because it secures the most compact
discrete representation of signals, which cannot be further
compressed. Note that this term should not be confused with
terms “Compressive sensing” and “Compressive sampling,” that
gained large popularity in recent years [29–36]. We will
discuss the “compressive sensing” approach later in Section 5.

�ere are at least two examples of practical implemen-
tation of the principle of general discretization by means
of measuring transform domain image coe	cients: Coded
Aperture Imaging and Magnetic Resonance Imaging (MRI).
In coded aperture imaging, images are sensed through
binary masks that implement binary basis functions. In MRI
imaging, coe	cients of Fourier series expansion of sensor
data are measured.

However, by virtue of historical reasons and of the
technical tradition, image discretization is most frequently
in imaging engineering is implemented as image sampling
at nodes of a uniform rectangular sampling lattice using
sampling basis functions, which are formed fromone “mother”
function by its shi�s by multiple of �xed intervals called
“sampling” intervals.

�e theoretical foundation of image sampling is the sam-
pling theorem. �e traditional formulation of the sampling
theorem states that signals with Fourier spectrum limited
with bandwidth 3 can be perfectly restored from their
samples taken with sampling interval Δ� = 1/3, commonly
called the Nyquist sampling interval [37–39].

In reality no continuous signal is band-limited, and the
image sampling interval is de�ned not through specifying, in
one or another way, of the image bandwidth, but directly by
the requirement to reproduce smallest objects and borders of
larger objects present in images su	ciently well. �e selected
in this way image sampling interval Δ� speci�es image base
band 3 = 1/Δ�.

Since small objects and object borders usually occupy
relatively small fraction of the image area, vast portions of
images are oversampled, that is, sampled with redundantly
small sampling intervals. Hence, substantial compression of
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Figure 2: Flow diagrams of image transform coding and reconstruction.

image sampled representation is possible. It can be imple-
mented by means of applying to the image primary and
redundant sampled representation a discrete analog of the
general compressive discretization, that is, by means of image
expansion over a properly chosen set of discrete optimal
bases functions and limitation of the amount of the expansion
coe	cients. �is is exactly what is done in all transform
methods of image compression.

2.2. Transform Methods of Image Compression. Needs of
image compression were the primary motivations of digi-
tal image processing. Being started in 1950s from various
predictive coding methods (a set of good representative
publications can be found in [40]), by the beginning of 1970s
image compression research began concentrating mostly on
what we call now “transform coding” [41, 42], which literally
implements the compressed discretization principle.

�e principle of image transform coding is illustrated by
the �ow diagrams sketched in Figure 2.

According to these diagrams, set of image pixels is �rst
subjected to a fast orthogonal transform. �en low intensity
transform coe	cients are discarded, which substantially
reduces the volume of data. �is is the main source of image
compression. Note that discarding certain image transform
coe	cients means replacement of images by their band-
limited, in terms of the selected transform, approximations.
�e remaining coe	cients are subjected, one by one, to
optimal nonuniform scalar quantization that minimizes the
average number of transform coe	cient quantization levels.
Finally, quantized transform coe	cients are entropy encoded
to minimize the average number of bits per coe	cient. For
image reconstruction from the compressed bit stream, itmust
be subjected to corresponding inverse transformations.

In 1970s, main activities of researches were aimed at
inventing, in addition to known at the time Discrete Fourier,
Walsh-Hadamard, andHaarTransforms, new transforms that
have guaranteed fast transform algorithms and improved
energy compaction capability [3–5].

�is transform invention activity gradually faded a�er
introduction, in a short note, of the Discrete Cosine trans-
form [7], which, as it was already mentioned, was �nally
recognized as the most appropriate transform for image

compression due to its superior energy compaction capability
and the availability of the fast algorithm. But the true break-
through happened, when it was realized that much higher
image compression e	ciency can be achieved, if transform
coding is applied not to entire image frames but blockwise
[41, 42].

Images usually contain many objects, and their global
spectra are a mixture of object spectra, whereas spectra of
individual image fragments or blocks are much more speci�c
and this enables much easier separation of “important”
(most intense) from “unimportant” (least intense) spectral
components. �is is vividly illustrated in Figure 3, where
global and block wise DCT power spectra of a test image
are presented for comparison. Although, as one can see in
the �gure, spectral coe	cients of DCT global spectrum are
more sparse (spectrum sparsity of this image, i.e., fraction of
spectral coe	cients that contain 95% of the total spectrum
energy, is 0.095) than, on average, those of image of 16 × 16
pixel fragments (average sparsity of spectra fragments is 0.14),
spectra of individual fragments are certainly more speci�c
and their components responsible for small objects and object
borders havemuch higher energy than in the global spectrum
andwill not be lostwhen 95%of themost intense components
are selected.

Blockwise image DCT transform compression proved to
be so successful, that, by 1992, it was put in the base of
the image and video coding standards “JPEG” and “MPEG”
[43–46], which eventually resulted in the revolution in the
industry of photographic and video cameras and led to the
emergence of digital television as well [47].

�ough the standard does not �x the size of blocks,
blocks of 8 × 8 pixels are used in most cases. Obviously, the
compression may, in principle, be more e	cient, if the block
size is adaptively selected in di�erent areas of images; hence
the use of variable size of blocks was discussed in number of
publications (see, for instance, [48]).

3. Transform Domain Filters for
Image Restoration and Enhancement

3.1. Transform Domain Scalar Empirical Wiener Filters.
Very soon a�er the image transform compression methods
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Figure 3: Comparison of global and local (blockwise) image DCT spectra.
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Figure 4: Flow diagram of transform domain �ltering.

emerged, it was recognized that transforms represent a very
useful tool for image restoration from distortions of image
signals in imaging system and for image enhancement [49,
50]. �e principle is very simple: for image improvement,
image transform coe	cients are modi�ed in a certain way
and then the image is reconstructed by the inverse transform
of modi�ed coe	cients (Figure 4). �is way of processing is
called transform domain 	ltering.

For the implementation of modi�cations of image trans-
form coe	cients, two options are usually considered.

(i) Modi�cation of absolute values of transform coe	-
cients by a nonlinear transfer function; usually it is a
function that compresses the dynamic range of trans-
form coe	cients, which redistributes the coe	cients’
intensities in favor of less intensive coe	cients and
results in contrast enhancement of image small details
and edges.

(ii) Multiplication of transform coe	cients by scalar
weight coe	cients; this processing is called transform
domain “scalar 	ltering” [49].

For de�ning optimal scalar �lter coe	cients, a Wiener-
Kolmogorov [51, 52] approach of minimization of mean
squared �ltering error is used and thus �lters implement
empirical Wiener �ltering principles [17, 18, 26].

�ree modi�cations of the �lters based on this principle
are (i) proper Empirical Wiener Filters, (ii) Signal Spectrum
Preservation Filters, and (iii) Rejecting Filters [18]. For image



8 Advances in Electrical Engineering

Before

(a)

A�er

(b)

Figure 5: Image cleaning from moire noise.

denoising from additive signal independent noise and image
deblurring, they modify input image Fourier spectra �4inp

at each frequency component according to the equations
correspondingly.

Empirical Wiener Filter

�4out = 1
ISFR

max(0, 77777�4inp

777772 − �4noise77777�4inp

777772 )�4inp; (1)

Signal Spectrum Preservation Filter

�4out = 1
ISFR

max(0, 77777�4inp

777772 − �4noise77777�4inp

777772 )
1/2

�4inp; (2)

Rejecting Filter

�4out = {{{
�4inp

ISFR
, if

77777�4inp

777772 > �4noise,0, otherwise, (3)

where �4out is Fourier spectrum of output image, �4noise is
power spectrum of additive noise, assumed to be known
or to be empirically evaluated from the input noisy image
[15–18], and ISFR is the imaging system frequency response
assumed to be known, for instance, from the imaging system
certi�cate.

As one can see in these equations, all these �lters elimi-
nate image spectral components that are less intensive than
those of noise and the remaining components are corrected
by the “inverse” 	lter with frequency response of 1/ISFR.
Division of image spectra by ISFR compensates image blur in
the imaging system due to imperfect ISFR; that is, it performs

image deblurring. It is applicable in processing speci�cally
in domains of DFT or DCT, which are, as it was already
mentioned, two complementing discrete representations of
the integral Fourier Transform.

In addition, empirical Wiener �lter modi�es image spec-
trum through deampli�cation of image spectral components
according to the level of noise in them; spectrumpreservation
�lter modi�es magnitude of the image spectrum as well by
making it equal to a square root of image power spectrum
empirical estimate as a di�erence between power spectrum of
noisy image and that of noise. Rejecting �lter does notmodify
remaining, that is, not rejected, spectral components at all.
In some publications, image denoising using the spectrum
preservation �lter is called “so
 thresholding” and rejecting
�ltering is called “hard thresholding” [53, 54].

Versions of these �lters are �lters that combine image
denoising-deblurring and image enhancement by means ofB-lawnonlinearmodi�cations of the corrected signal spectral
components

�4out = {{{{{
1

ISFR
77777�4inp

77777(1−�) �4inp, if
77777�4inp

777772 > �4noise,
0, otherwise, (4)

where B ≤ 1 is a parameter that controls the degree of
spectrumdynamic range compression and, by this, the degree
of enhancement of low intensity image spectral components
[18].

�e described �lters proved to be very e	cient in
denoising so-called narrow band noises, that is, noises, such
as “moirè noise” or “banding noise,” that contain only few
nonzero components in its spectrum in the selected trans-
form. Some illustrative examples are given in Figures 5 and
6.

However for image cleaning from wideband or “white”
noise, above transform domain �ltering applied globally to
entire image frames is not e	cient. In fact it can even worsen
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Figure 6: Cleaning aMars satellite image from banding noise bymeans of separable (row-wise and column-wise) high pass rejecting �ltering.
Fiducial marks seen in the le� image were extracted from the image before the �ltering [14].

the image visual quality. As one can see from an illustrative
example shown in Figure 7, �ltered image loses its sharpness
and contains residual correlated noise, which is visually more
annoying than the initial white noise.

�e reason for this ine	ciency of global transform
domain �ltering is the same as for the ine	ciency of
the global transform compression, which was discussed in
Section 2.2: in global image spectra low intensity image
components are hidden behind wideband noise spectral
components. And the solution of this problem is the same:
replace global �ltering by local fragment wise �ltering. �is
idea is implemented in local adaptive linear 	lters. Being
applied locally, �lters are becoming locally adaptive, as their
frequency responses are determined, according to (1)–(4), by
local spectra of image fragments within the �lter window.
Local adaptive linear �lters date back to mid-1980s and were
re�ned in subsequent years [16, 18, 26, 55]. As a theoretical
base for the design of local adaptive �lters, local criteria of
processing quality were suggested [56].

It is instructive to note that this is not an accident that the
evolution of human vision came up with a similar solution. It
is well known that when viewing image, human eye’s optical
axis permanently hops chaotically over the �eld of view and
that the human visual acuity is very nonuniformover the �eld
of view. �e �eld of view of a man is about 30∘. Resolving
power of man’s vision is about 1�. However such a relatively
high resolving power is concentrated only within a small
fraction of the �eld of view that has size of about 2∘ (see, for
instance, [57]); that is, the area of the acute vision is about
1/15th of the �eld of view. For images of 512 × 512 pixels this
means window of roughly 35 × 35 pixels.

�emost straightforwardway to implement local �ltering
is to do it in a hopping window, just as human vision does,
and this is exactly the way of processing implemented in
the transform image coding methods. However “hopping

window” processing, being very attractive from the com-
putational complexity point of view, su�ers from “blocking
e�ects,” arti�cial discontinuities that may appear, in the result
of processing, at the edges of the hopping window. Blocking
e�ects are artifacts characteristic for transform image coding.
�e desire to avoid them motivated the advancement of
“Lapped” transforms [58], which are applied blockwise with
the half of the block size overlap. Obviously, the ultimate
solution of the “blocking e�ects” problem would be pixel by
pixel processing in sliding window that scans image row-
wise/column/wise.

�us, local adaptive linear �lters work in a transform
domain in a sliding window and, at each position of the
window, modify, according to the type of the �lter de�ned
by (1)–(4), transform coe	cients of the image fragment
within the window, and then compute an estimate of the
window central pixel bymeans of the inverse transform of the
modi�ed transform coe	cients. As an option, accumulation
of estimates of the all window pixels overlapping in the
process of image scanning by the �lter window is possible
as well [59]. As for the transform for local adaptive �ltering,
DCT proved to be the best choice in most cases. Figures
8 and 9 give examples of local adaptive �ltering for image
deblurring and enhancement.

Local adaptive �lters can work with color and multicom-
ponent images and videos as well. In this case, �ltering is
carried out in the correspondingmultidimensional transform
domains, for instance, domains of 3D (two spatial and one
color component coordinates) spectra of color images or
3D spectra of a sequence of video frames (two spatial and
time coordinates). In the latter case �lter 3D window scans
video frame sequence in both spatial and time coordinates.
As one can see from Figures 10 and 11, the availability of
the additional third dimension substantially adds to the �lter
e	ciency [18, 55, 60].
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Test image

(a)

Noisy test image, PSNR=10(.noise St. Dev = 25)

(b)

Filtered image

(c)

Di�erence between original test and �ltered images.
Standard deviation 10.8

(d)

Figure 7: Denoising of a piece-wise test image using empirical Wiener �lter applied globally to the entire image.

Certain further improvement of image denoising capa-
bility can be achieved if, for each image fragment in a given
position of the sliding window, similar, according to some
criterion, image fragments over the whole image frame are
found and included in the stack of fragments, to which the
3D transform domain �ltering is applied.�is approach in its
simplest formwas coined the name “nonlocal means” �ltering
[61–63]. In fact, similarmethod has beenmuch earlier known
as the correlational averaging (see, for instance, [64]). It
assumes �nding similar image fragments by their cross-
correlation coe	cient with a template object and averaging of
similar fragments, that is, leaving only the dc component of
the 3D spectra in this dimension. In [65] the simple averaging
was replaced by full scale 3D transform domain �ltering.
One should, however, take into account that the correlational
averaging is prone to produce artifacts due to false image
fragments that may be erroneously taken to the stack just
because of the presence of noise that has to be cleaned [66].

Obviously, image restoration e	ciency of the sliding
window transform domain �ltering will be higher, if the
window size is selected adaptively at each window position.
To this goal, �ltering can be, for instance, carried out in
windows of multiple sizes and, at each window position, the
best �ltering result should be taken as the signal estimate at
this position using methods of statistical tests, for instance,
“intersection of con	dence intervalsmethod” described in [67].
Another option inmultiple window processing is combining,
in a certain way (say, by weighted summation or by taking a
median or in some other way), �ltering results obtained for
di�erent windows. All this, however, increases correspond-
ingly the computational complexity of the �ltering, which
may become prohibitive, especially in video processing.

In conclusion of this section note that DFT and DCT
spectra of image fragments in sliding window form the
so called “time-frequency representation” of signals, which
can be traced back to 1930s-1940s to Gabor and Wigner
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(a)

A�er

(b)

Figure 8: Denoising and deblurring of a satellite image by means of local adaptive �ltering. Top row: raw image and its fragments magni�ed
for better viewing (marked by arrows); bottom row: resulting image and its corresponding magni�ed fragments.

Before

(a)

A�er

(b)

Figure 9: Enhancement of an astronomical image by means of Bth law modi�cation of its spectrum.
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(a) (b) (c)

Figure 10: 2D and 3D local adaptive �ltering of a simulated video sequence: (a) one of noisy frames of a test video sequence (image size256 × 256 pixels); (b) a result of 2D local adaptive empirical Wiener �ltering (�lter window 5 × 5 pixels); (c) a result of 3D local adaptive
empirical Wiener �ltering (�lter window 5 × 5 pixels × 5 frames).

(a) (b)

Figure 11: 3D local adaptive empiricalWiener �ltering for denoising and deblurring of a real thermal video sequence: (a) a frame of the initial
video sequence; (b) a frame of a restored video sequence. Filter window is (5 × 5 pixels) × 5 frames; image size is 512 × 512 pixels.

and works on “visible speech” [68–70]. For 1D signals, the
dimensionality of the representation is 2D; for images, it is
3D. Such representation is very redundant and this opens
an interesting option of applying to it image (for 1D signals)
and video (for 2D signals) processing methods for signal
denoising and, in general, signal separation.

3.2. Wavelet Shrinkage Filters for Image Denoising. In 1990s,
a speci�c family of transform domain denoising �lters, the
so-called wavelet shrinkage �lters, gained popularity a�er
publications [53, 54, 71, 72]. �e �lters work in the domain
of one of wavelet transforms and implement, for image
denoising, the above-mentioned Signal Spectrum Preserva-
tion Filter (2) and Rejecting Filter (3), except that they do
not include the “inverse �ltering” component (1/ISFR) that
corrects distortions of image spectra in imaging systems.
As it was already mentioned, the �lters were coined in

these publications the names “so
 thresholding” and “hard
thresholding” �lters, correspondingly.

Basis functions of wavelet transforms (wavelets) are
formed by means of a combination of two methods of build-
ing transform basis functions from one “mother” function,
shi�ing and scaling. �anks to this, wavelets combine local
sensitivity of shi� basis functions and global properties of
“scaled” basis functions and feature such attractive properties
as multiresolution and good localization in both signal and
transform domain. �us, the wavelet shrinkage �lters, being
applied to entire image frames, possess both global adaptivity
and local adaptivity in di�erent scales and do not require for
the latter speci�cation of the window size, which is necessary
for the sliding window �lters.

�ese �lters did show a good denoising capability. How-
ever, a comprehensive comparison of their denoising capabil-
ity with that of sliding window DCT domain �lters reported
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in [59] showed that even when for particular test images the
best wavelet transform from a transform set [73] was selected,
sliding window DCT domain �lters demonstrated in most
cases better image denoising results.

�e capability of wavelets to represent images in di�erent
scales can be exploited for improving the image denoising
performance of both families of �lters and for overcoming
the above-mentionedmain drawback of slidingwindowDCT
domain �lters, the �xed window size that might not be
optimal for di�erent image fragments. �is can be achieved
by means of incorporating sliding window DCT domain
(SWTD) �lters into the wavelet �ltering structure through
replacing so�/hard thresholding of image wavelet decompo-
sition components in di�erent scales by their �ltering with
SWTD �lters working in the window of the smallest size 3×3
pixels. �is idea was implemented in hybrid wavelet/SWTD
�lters and proved to be fruitful in ([74], see also [55]).

3.3. Local Adaptive Filtering and Wavelet Shrinkage Filtering
as Processing of Image Subband Decompositions. Obviously,
sliding window transformdomain andwavelet processing are
just di�erent implementation of the scalar linear �ltering in
transformdomain.�ismotivates their uni�ed interpretation
in order to gain a deeper insight into their similarities and dis-
similarities.�e common base for such uni�ed interpretation
is the notion of signal subband decomposition [75]. One can
show that both �lter families can be treated as special cases
of signal subband decomposition by band-pass �lters with
point spreads functions de�ned by the corresponding basis
functions of the transform [26, 55]. From the point of view of
signal subband decomposition, the main di�erence between
slidingwindow transformdomain andwavelet signal analysis
is arrangement of bands in the signal frequency range. While
for sliding window transform domain �ltering subbands are
uniformly arranged with the signal base band, subbands
of the wavelet �lters are arranged in a logarithmic scale.
Hybrid wavelet/SWDCT �ltering combines these two types
of subband arrangements: “coarse” subband decomposition
in logarithmic scale, provided by wavelet decomposition, is
complemented with “�ne” uniformly arranged sub-subbands
within eachwavelet subband, provided by the sliding window
DCT �ltering of the wavelet subbands.

It is curious to note that this “logarithmic coarse—
uniform �ne” subband arrangement resembles very much
the arrangements of tones and semitones in music. In Bach’s
equal tempered scale, octaves are arranged in a logarithmic
scale and 12 semitones are equally spaced within octaves [76].

4. Image Resampling and Building
‘‘Continuous’’ Image Models

As it was indicated in the introductory section, Discrete
Fourier and Discrete Cosine Transforms occupy the unique
position among other orthogonal transforms. �ey are two
versions of discrete representation of the integral Fourier
Transform, the fundamental transform for describing the
physical reality. Among applications speci�c for DFT and
DCT are signal and image spectral analysis and analysis of

periodicities, fast signal and image convolution and correla-
tion, and image resampling and building “continuous” image
models [17, 18, 26].�e latter is associated with the e	ciency,
with which DFT and DCT can be utilized for fast signal
convolution.

Image resampling is a key operation in solving many
digital image processing tasks. It assumes reconstruction
of an approximation of the original nonsampled image by
means of interpolation of available image samples to obtain
samples “in-between” the available ones. �e most feasible
is interpolation by means of digital �ltering implemented as
digital convolution. A number of convolutional interpolation
methods are known, beginning from the simplest and the
least accurate nearest neighbor and linear (bilinear, for 2D
case) interpolations to more accurate cubic (bicubic, for 2D
case) and higher order splinemethods [77, 78]. In some appli-
cations, for instance, in computer graphics and print art, the
simplest nearest neighbor or linear (bilinear) interpolation
methods can provide satisfactory results. In applications that
are more demanding in terms of the interpolation accuracy,
higher order spline interpolation methods gained popularity.
�e interpolation accuracy of spline interpolation methods
grows with the spline order. However their computational
complexity grows as well.

�ere exists a discrete signal interpolation method that is
capable, given �nite set of signal samples, to secure virtually
error free interpolation of sampled signals, that is, themethod
that does not add to the signal any distortions additional to
the distortions caused by the signal sampling.�is method is
the discrete sinc-interpolation [18, 25]. Interpolation kernel for
the discrete sinc-interpolation of sampled signals of � sam-
ples is the discrete sinc-function sincd� = sin�/� sin(�/�).
�is function replaces, for sampled signals with a �nite
number of samples, the continuous sinc-function sinc � =
sin�/�, which, according to the sampling theory, is the ideal
interpolation kernel for reconstruction of continuous signals
from their samples provided that the number of samples is
in�nitely large. Note that the discrete sinc-function should
not be confused with a windowed or truncated sinc-function
with a �nite number of samples, which is very commonly
believed to be a good replacement in numerical interpolation
of the continuous sinc-function.�ewindowed sinc-function
does not secure interpolation error free signal numerical
interpolation, whereas the discrete sinc-interpolation does.

Fast Fourier transform and fast Discrete Cosine trans-
form are the ideal computational means for implementing
the convolutional interpolation by the discrete sinc-function.
Of these two transforms, FFT has a substantial drawback:
it implements the cyclic convolution with a period equal to
the number � of signal samples, which is potentially prone
to causing heavy oscillations at signal borders because of a
discontinuity which is very probable between signal values
at its opposite borders. �is drawback is to a very high
degree surmounted when signal convolution is implemented
through DCT [18, 26]. As it was already indicated, convolu-
tion through DCT is also a cyclic convolution but with the
period of 2� samples and of signals that are evenly extended
to double length by their inversed, in the order of samples,
copies. �is completely removes the danger of appearance
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of heavy oscillations due to discontinuities at signal borders
that are characteristic for discrete sinc-interpolation through
processing in DFT domain.

Several methods of implementation of DFT/DCT based
discrete sinc-interpolation. �e most straightforward one is
DFT/DCT spectrum zero padding. Interpolated signal is gen-
erated by applying inverse DFT (or, correspondingly, DCT)
transform to its zero pad spectrum. Padding DFT/DCT
spectra of signals of� samples with F(�−1) zeroes producesF� samples of the discrete sinc interpolated initial signal with
subsampling rate F, that is, with intersample distance 1/F of
the initial sampling interval. �e computational complexity
of this method is G(log F�) per output sample.

�e same discrete sinc interpolated F times subsampled
signal can be obtained more e	ciently computation-wise
by applying to the signal F times the signal perfect shi
ing
	lter [25, 79] with shi�s by �/F at each �th application
and by subsequent combining the shi�ed signal copies. �e
computational complexity of this method is G(log�) per
output sample.

�e method is based on the property of Shi
ed DFT
(SDFT, [18, 26, 80]): if one computes SDFT of a signal
with some value of the shi� parameter in signal domain
and then computes inverse SDFT with another value of the
shi� parameter, the result will be a discrete sinc interpolated
copy of the signal shi�ed by the di�erence between those
values of the shi� parameter. In order to avoid objectionable
oscillations at signal borders, the DCT based version of this
�lter is recommended [81–83].

Image subsampling using the perfect shi�ing �lter can
be employed for creating “continuous” image models for
subsequent image arbitrary resampling with any given accu-
racy [18, 84]. It can also be used for computing image
correlations and image spectral analysis with a subpixel
accuracy [18, 26]. Particular examples of using created in this
way continuous signal models for converting image spectra
from polar coordinate system to Cartesian coordinate system
in the direct Fourier method for image reconstruction from
projections and for converting (rebinning) of image fan beam
projections into parallel projections one can �nd in [18].

Except for creating “continuous” image models, the per-
fect shi�ing �lter is very well suited for image sheering in the
three-step method for fast image rotation by means of three
subsequent (horizontal/vertical/horizontal) image sheerings
[85].

Perfect interpolation capability of the discrete sinc-
interpolation was demonstrated in a comprehensive com-
parison of di�erent interpolation methods in experiments
with multiple 360∘ rotations reported in [25]. �e results
of experiments illustrated in Figure 12 clearly evidence that,
in contrast to other methods, including high order spline
interpolation ones [78, 86, 87], discrete sinc-interpolation
does not introduce any appreciable distortions into the
rotated image.

In some applications, “elastic” or space variant image
resampling is required, when shi�s of pixel positions are
speci�ed individually for each image pixel. In these cases,
the perfect shi�ing �lter can be applied to image fragments
in sliding window for evaluating interpolated value of the

window central pixel at each window position. Typical
application examples are imitation of image retrieval through
turbulent media (for illustration see [88]) and stabilization
and superresolution of turbulent videos [89–91].

Being working in DCT transform domain, “elastic”
resampling in sliding window can be easily combined with
above-described local adaptive denoising and deblurring
[25]. Yet another additional option is making resampling
in sliding window adaptive to contents of individual image
fragments bymeans of switching between the perfect shi�ing
and another interpolation method better suited for speci�c
image fragments. �is might be useful in application to
images that contain very heterogeneous fragments such as
photographs and binary drawings and text [25].

A certain limitation of the perfect shi�ing �lter in creating
“continuous” image models is its capability of subsampling
images only with a rate expressed by an integer or a rational
number. In some cases, this might be inconvenient, for
instance, when the required resampling rate is a value
between one and two, say 1.1, 1.2, or alike. For such cases,
there exists the third method of signal resampling with
discrete sinc-interpolation. It is based on the general Shi�ed
Scaled DFT, which includes arbitrary analog shi� and scale
parameters. Using Shi�ed Scaled (ShSc) DFT, one can apply
to the imageDFT spectrum inverse ShScDFTwith the desired
scale parameter and obtain a correspondingly scaled discrete
sinc interpolated image [82, 83]. Being the discrete sinc-
interpolation method, this method also does not cause any
image blurring, which other interpolationmethods are prone
to do. Figure 13 illustrates this on an example of multiple
iterative image zooming-in and zooming-out.

�e Shi�ed Scaled DFT can be presented as a convolution
and, as such, can be computed using Fast Fourier or Fast
Cosine Transforms [18, 26]. �us, the computational com-
plexity of the method isG(� log�) per output signal sample,
where � is the scale parameter. As in all other cases, the use of
DCT guaranties the absence of severe boundary e�ects. �is
method is especially well suited for numerical reconstruction
of digitally recorded color holograms, when it is required to
rescale images reconstructed from holograms recorded with
di�erent wave lengths of coherent illumination [82].

Among the image processing tasks, which involve “con-
tinuous” image models, are also signal di�erentiation and
integration, the fundamental tasks of numerical mathematics
that date back to such classics of mathematics as Newton
and Leibnitz. One can �nd standard numerical di�erentiation
and integration recipes in numerous reference books, for
instance, [92, 93]. All of them are based on signal approxi-
mation through Taylor expansion. However, according to the
sampling theory, approximation of sampled signal by Taylor
expansion is not optimal, and the direct use of these methods
for sampled signals may cause substantial errors in cases,
when signals contain substantial high frequency components.
In order to secure su	ciently accurate signal di�erentiation
and integration by means of those standard algorithms, one
must substantially oversample such signals.

�e exact solution for the discrete representation of
signal di�erentiation and integration provided by the sam-
pling theory tells that, given the signal sampling interval
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(rotation by 1080
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(b)

Bilinear interpolation

(rotation by 1080
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(c)

(rotation by 1080
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(rotation by 18000
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(rotation by 18000
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Figure 12: Discrete sinc-interpolation versus other interpolation methods: results of multiple image rotations.
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[original image, bilinear intrp; bicubic intrp; discr-sinc

intrp]; Nit = 75

Figure 13: Discrete sinc-interpolation versus bilinear and bicubic interpolations in image iterative zoom-in/zoom-out with the scale
parameter√2.
and signal sampling and reconstruction devices, discrete
frequency responses (in DFT domain) of digital �lters for
perfect di�erentiation and integrations should be, corre-
spondingly, proportional and inversely proportional to the
frequency index [18, 26]. �is result directly leads to fast
di�erentiation and integration algorithms that work in DFT
or DCT domains using corresponding fast transforms with
computational complexity G(log�) operation per signal
sample for signals of� samples. As in all cases, realization of
the integration and, especially, di�erentiation �lters in DCT
domain is preferable because of much lower, for DCT, border
e�ect artifacts associated with the �nite number of signal
samples.

�e comprehensive comparison of the accuracy of stan-
dard numerical di�erentiation and integration algorithms
with perfect DCT-based di�erentiation and integration
reported in [25, 94] shows that the standard numerical
algorithms in reality work not with original signals but with
their blurred to a certain degree copies. �is conclusion is
illustrated in Figure 14 on an example of multiple alternative
di�erentiations and integrations of a test rectangular impulse.

Computational e	ciency of the DFT/DCT based inter-
polation error free discrete sinc-interpolation algorithms is
rooted in the use of fast Fourier and Fast DCT transforms.
Perhaps, the best concluding remark for this discussion of
the discrete sinc-interpolation DFT/DCT domain methods
would be mentioning that a version of what we call now Fast
Fourier Transform algorithm was invented more than 200
hundred years ago byGauss just for the purpose of facilitating
numerical interpolation of sampled data of astronomical
observation [95].

5. Image Recovery from Sparse and
Irregularly Sampled Data

5.1. Discrete Sampling 
eorem Based Method. As we men-
tioned at the beginning of Section 2, image discretization is
usually carried out by image sampling at nodes of a uniform
rectangular sampling lattice. In this section we address using
fast transforms for solving the problem closely associated
with the general compressive discretization: how and with
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Figure 14: Comparison of results of iterative alternated 100 di�erentiations and integrations of a test rectangular signal using the DCT-based
algorithms (le�) and standard numerical algorithms (right, di�erentiation �lter with point spread function [−0.5, 0, 0.5] and trapezoidal rule
integration algorithm).

what accuracy can one recover an image from its sparse and
irregularly taken samples.

�ere are many applications, where, contrary to the
common practice of uniform sampling, sampled data are
collected in irregular fashion. Because image display devices
as well as computer so�ware for processing sampling data
assume using regular uniform rectangular sampling lattice,
one needs in all these cases to convert irregularly sampled
images to regularly sampled ones.

Generally, the corresponding regular sampling grid may
containmore samples than it is available, because coordinates
of positions of available samples might be known with a
“subpixel” accuracy, that is, with the accuracy (in units of
image size) better than 1/H, where H is the number of
available pixels.�erefore one can regard availableH samples
as being sparsely placed at nodes of a denser sampling lattice
with the total amount of nodes� > H.

�e general framework for recovery of discrete signals
from a given set of their arbitrarily taken samples can be
formulated as an approximation task in the assumption that
continuous signals are represented in computers by theirH < � irregularly taken samples and it is believed that
if all � samples in a regular sampling lattice were known,
they would be su	cient for representing those continuous
signals [18, 96]. �e goal of the processing is generating,
out of an incomplete set of H samples, a complete set of� signal samples in such a way as to secure the most
accurate, in terms of the reconstruction mean square error
(MSE), approximation of the discrete signal, which would be
obtained if the continuous signal it is intended to represent
were densely sampled at all� positions.

Above-described discrete sinc-interpolation methods
provide band-limited, in terms of signal Fourier spectra,
approximation of regularly sampled signals. One can also
think of signal band-limited approximation in terms of their
spectra in other transforms. �is approach is based on the
Discrete Sampling 
eorem [18, 96, 97].

�e meaning of the Discrete Sampling �eorem is very
simple. Given H samples of a signal one can, in principle,
compute H certain coe	cients of a certain signal transform
and then reconstruct � samples of a band-limited, in this
transform, approximation of the signal by means of inverse
transform of those H coe	cients supplemented with �-H zero coe	cients. If the transform has the highest, for
this particular type of signals, energy compaction capability
and selected were those nonzero transform coe	cients that
concentrate the highest, for this particular transform, signal
energy, the obtained signal approximation will have the least
mean square approximation error. If the signal is known to
be band-limited in the selected transform and the computed
nonzero coe	cients corresponded to this band limitation,
signal will be reconstructed precisely.

�e discrete sampling theorem is applicable to signals
of any dimensionality, though the formulation of the signal
band-limitedness depends on the signal dimensionality. For
2D images and such transforms as Discrete Fourier, Discrete
Cosine, and Walsh Transforms, the most simple is compact
“low-pass” band-limitedness by a rectangle or by a circle
sector.

It was shown in ([96], see also [18, 97]) that, for 1D
signal and such transforms as DFT and DCT, signal recovery
from sparse samples is possible for arbitrary positions of
sparse samples. For images signals, the same is true, if band-
limitation conditions are separable over the image dimen-
sions. For nonseparable band-limitations, such as circle or
circle sector, this may not be true and certain redundancy in
the number of available samples might be required to secure
exact recovery of band-limited images.

As it was indicated, the choice of the transform must
be made on the base of the transform energy compaction
capability for each particular class of images, to which the
image to be recovered is believed to belong. �e type of the
band-limitation also must be based on a priori knowledge
regarding the class of images at hand.�e number of samples
to be recovered is a matter of a priori belief of how many
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samples of a regular uniform sampling lattice would be
su	cient to represent the images for the end user.

Implementation of signal recovery/approximation from
sparse nonuniformly sampled data according to the dis-
crete sampling theorem requires matrix inversion, which
is, generally, a very computationally demanding procedure.
In applications, in which one can be satis�ed with image
reconstruction with a certain limited accuracy, one can
apply to the reconstruction a simple iterative reconstruction
algorithm of the Gerchberg-Papoulis [98, 99] type, which,
at each iteration step, alternatively applies band limitation
in spectral domain and then restores available pixels in
their given positions in the image obtained by the inverse
transform.

Among reported applications, one can mention super-
resolution from multiple video frames of turbulent video
and superresolution in computed tomography that makes
use of redundancy of object slice images, in which usually a
substantial part of their area is an empty space surrounding
the object [96].

5.2. “Compressive Sensing”: Promises and Limitations. �e
described discrete sampling theorem based methods for
image recovery from sparse samples by means of their
band-limited approximation in a certain transform domain
require explicit formulation of the desired band limitation
in the selected transform domain. While for 1D signal this
formulation is quite simple and requires, for most frequently
used low pass band limitation, speci�cation of only one
parameter, signal bandwidth, in 2D case formulation of the
signal band limitation, requires speci�cation of a 2D shape of
signal band-limited spectrum.�e simplest shapes, rectangle
and circle sector ones, may only approximate, with a certain
redundancy, real areas occupied by the most intensive image
spectral coe	cients for particular images. Figure 15 illustrates
this on an example of spectral binary mask that corresponds
to 9.5% of the DCT spectral coe	cients of the test image
shown in Figure 3 that contain 95% of the spectrum energy
and a rectangular outline of this mask, which includes 47% of
the spectral coe	cients.

In the cases, when exact character of spectrum band
limitation is not known, image recovery from sparse samples
can be achieved using the “compressive sensing” approach
introduced in [29–32]. During last recent years, this approach
to handling sparse spectral image representation has obtained
considerable popularity [33–36].

�e compressive sensing approach assumes obtaining
a band-limited, in a certain selected transform domain,
approximation of images as well, but it does not require
explicit formulation of the image band-limitation and
achieves image recovery from an incomplete set of samples by
means of minimization of F0 norm of the image spectrum in
the selected transform (i.e., of the number of signal nonzero
transform coe	cients), conditioned by preservation in the
recovered image of its available pixels.

However, there is a price one should pay for the uncer-
tainty regarding the band limitation: the number I of
samples required for recovering � signal samples by this

Spectrum mask; spectrum sparsity 0.095

Spectrum sparsity for the rectangle 0.47

Figure 15: Spectral binary mask (shown white with the dc compo-
nent in the le� upper corner) that indicates components of DCT
spectrum of the image in Figure 3, which contain 95% of the total
spectrum energy and its rectangular outline.

approach must be redundant with respect to the given
number H nonzero spectral coe	cients: I = H log�
[30]. In real applications, this might be a serious limitation.
For instance, for the test image of 256 × 256 pixels shown
in Figure 3 spectrum sparsity (relative number of nonzero
spectral components) on the energy level 95% is 0.095,
whereas log� = log(256 × 256) = 16, which means that
the “compressive sensing” approach requires in this casemore
signal samples (16 ⋅ 9.5% = 152%) than it is required to
recover.

5.3. Discrete Signal Band-Limitedness and the Discrete Uncer-
tainty Principle. Signal band-limitedness plays an important
role in dealing with both continuous signals and discrete
(sampled) signals representing them. It is well known that
continuous signals cannot be both strictly band-limited and
have strictly bounded support. In fact, continuous signals
neither are band-limited nor have strictly bounded support.
�ey can only be more or less densely concentrated in
signal and spectral domains. �is property is mathematically
formulated in the form of the “uncertainty principle” [100]

J�� × 3�� > 1, (5)

where J�� and 3�� are intervals in signal and their Fourier
spectral domains that contain a su	ciently large fraction KL
of signal energy.

In distinction to that, sampled signals that represent
continuous signals can be sharply bounded in both sig-
nal and spectral domains. �is is quite obvious for some
signal spectral presentation, such as Haar signal spectra:
Haar basis functions are examples of sampled functions
sharply bounded in both signal and Haar spectral domains.
But it turns out that there exist signals that are sharply
bounded in both signal and their spectral domains of DFT
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(a) (b)

Figure 16: Space-limited image “C. Shannon” (le�) and its band-limited DFT spectrum (right; shown centered at the signal dc component).

or DCT, which are discrete representations of the Fourier
integral transform. An example of a space-limited/band-
limited image is shown in Figure 16. Such images can be
generated using the above-mentioned iterative Gershberg-
Papoulis type algorithm which, at each iteration, applies to
images alternatively space limitation in image domain and
band limitation in transform domain. Such images are very
useful as test images for testing image processing algorithms.

In a similar way one can generate space-limited and band-
limited analogs of the discrete sinc-function, i.e. functions,
which form band-limited shi� bases in the given space
limits. In [97] such functions were coined a name “sinc-lets.”
Figure 17 shows an example of a sinc-let in its three positions
within a limited interval and, for comparison, the discrete
sinc-function for the same band limitation.

�e following relationship between signal bounds in
signal and DFT spectral domains can be derived:

�sign × �spect < �, (6)

where �sign is the number of signal nonzero samples, �spect

is the number of its nonzero spectral samples, and � is the
number of samples in the signal sampling lattice.�is is what
one can call the discrete uncertainty principle.

6. Conclusion

Two fundamental features of fast transforms, the energy
compaction capability and fast algorithms for transform
computation, make them perfect tool for image compres-
sion, restoration, reconstruction, and resampling. Of all fast
transforms, Discrete Fourier Transform and Discrete Cosine
Transform are themost important as they are complementing
each other discrete representations of the integral Fourier
transform, one of the most fundamental mathematical mod-
els for describing physical reality, and, in addition, they enable
fast digital convolution. From these two transforms, DCT
is preferable in most applications thanks to its ability to

very substantially reduce processing artifacts associated with
image discontinuities at the borders.

Modern tendency in the imaging engineering is compu-
tational imaging. Computer processing of sensor data enables
substantial price reduction and sometimes even complete
removal of imaging optics and similar imaging hardware.
It also gives birth to numerous new imaging techniques in
astrophysics, biology, industrial engineering, remote sensing,
and other applications. No doubts, this area promises many
new achievements in the coming years. And it is certain that
fast transformswill remain to be the indispensable tool in this
process.

Nomenclature

	�: Image samples��: Image spectral coe	cients� = 0, . . . , � − 1;
 = 0, . . . , � − 1: pixel and, correspondingly, spectra
coe	cient vertical and horizontal
indices�(⋅): Various constantsΔ�: Image sampling intervalsΔ�: Sampling interval in the transform
domain�: Total number of image samples�: Wavelength of coherent radiation�: Distance between object plane and
hologram.

Abbreviations

DCT: Discrete Cosine Transform
DFT: Discrete Fourier Transform
DFrT: Discrete Fresnel Transform
PSNR: Peak Signal-to-Noise Ratio: ratio of signal

dynamic range to noise standard deviation
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Figure 17: Examples of a “sinc-let” (red plots) and, for comparison, of the discrete sinc-function for the same band limitation (blue plots) in
their three di�erent positions within the interval of 103 samples of 512 samples (boxes a–c). Plots of their DFT spectra are shown in boxes
(d–f).
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RMSE: root mean square error
SNR: Signal-to-Noise Ratio (ratio of signal and

noise variances).
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