
USENIX Association

Proceedings of
USENIX ’05:
General Track

Anaheim, California, USA

April 10-15, 2005

Copyright to this work is retained by the authors. Permission is granted for the
noncommercial reproduction of the complete work for educational or research purposes.

Fast Transparent Migration for Virtual Machines

Michael Nelson, Beng-Hong Lim, and Greg Hutchins

VMware, Inc.

Palo Alto, CA 94304

Abstract

This paper describes the design and implementation of

a system that uses virtual machine technology [1] to

provide fast, transparent application migration. This is

the first system that can migrate unmodified

applications on unmodified mainstream Intel x86-based

operating system, including Microsoft Windows, Linux,

Novell NetWare and others. Neither the application nor

any clients communicating with the application can tell

that the application has been migrated. Experimental

measurements show that for a variety of workloads,

application downtime caused by migration is less than a

second.

1 Introduction

Fast transparent migration can improve global system

utilization by load balancing across physical machines,

and can improve system serviceability and availability

by moving applications off machines that need

servicing or upgrades. This paper describes a migration

system, named VMotion, that has been shipping since

2003 as an integral part of the VMware VirtualCenter

product [2]. Future VMware products will utilize

VMotion to automate load balancing across large

numbers of servers.

This paper makes the following contributions.

• It describes the first system to provide transparent

virtual machine migration of existing applications

and operating systems; neither the applications nor

the operating systems need to be modified.

• It is the first paper to provide performance

measurements of hundreds of virtual machine

migrations of concurrently running virtual machines

with standard industry benchmarks.

• It characterizes the overheads and resources required

during virtual machine migration.

2 Virtual Machine Migration

Virtual machine migration takes a running virtual

machine and moves it from one physical machine to

another. This migration must be transparent to the

guest operating system, applications running on the

operating system, and remote clients of the virtual

machine. It should appear to all parties involved that

the virtual machine did not change its location. The

only perceived change should be a brief slowdown

during the migration and a possible improvement in

performance after the migration because the VM was

moved to a machine with more available resources.

The migration system presented in this paper is part of

the VMware VirtualCenter product that manages

VMware ESX Server [3]. VMware ESX Server

consists of two main components that implement the

virtual platform: the virtual machine monitor (VMM)

and the vmkernel. A guest operating system such as

Windows or Linux runs on top of this virtual platform

(see Figure 1). The VMM handles the execution of all

instructions on the virtual CPU and the emulation of all

virtual devices. The vmkernel schedules the VMM for

each virtual machine and allocates and manages the

resources needed by the virtual machines.

Virtual machines provide a natural platform for

migration by encapsulating all of the state of the

hardware and software running within the virtual

machine. There are three kinds of state that need to be

dealt with when migrating a VM:

1) The virtual device state including the state of the

CPU, the motherboard, networking and storage

adapters, floppy disks, and graphics adapters.

2) External connections with devices including

networking, USB devices, SCSI storage devices,

and removable media such as CD-ROMs.

3) The VM’s physical memory.

The actual migration process involves several steps:

1) Initiating the migration by selecting the VM to

migrate and its destination.

2) Pre-copying the memory state of the VM to the

destination while the VM is running on the source.

hardware

Physical Hardware

vmkernel

…
Virtual

interface

Figure 1. VM platform layers in VMware ESX Server.

Guest OS Guest OS

VMM VMM

2005 USENIX Annual Technical Conference USENIX Association 391

3) Quiescing the VM and sending the non-memory

state.

4) Transferring control of the VM to the destination

and resuming it at the destination.

5) Sending any remaining memory state and

removing the dependency on the source machine.

The remainder of this section describes the steps

involved in migrating three of the most important

components of a VM: networking, SCSI storage

devices, and physical memory.

Networking In order for a migration to be transparent

all network connections that were open before a

migration must remain open after the migration

completes. The VMware ESX Server virtual

networking architecture makes this possible.

A virtual Ethernet network interface card (VNIC) is

provided as part of the virtual platform. Like a physical

NIC, the VNIC has a MAC address that uniquely

identifies it on the local network. Each VNIC is

associated with one or more physical NICs that are

managed by the vmkernel. The VNICs of many VMs

can be attached to the same physical NIC.

Since each VNIC has its own MAC address that is

independent of the physical NIC’s MAC address,

virtual machines can be moved while they are running

between machines and still keep network connections

alive as long as the new machine is attached to the same

subnet as the original machine.

SCSI Storage We rely on storage area networks

(SAN) or NAS to allow us to migrate connections to

SCSI devices. We assume that all physical machines

involved in a migration are attached to the same SAN

or NAS server. This allows us to migrate a SCSI disk

by reconnecting to the disk on the destination machine.

Physical Memory The physical memory of the virtual

machine is the largest piece of state that needs to be

migrated. Pausing a VM while the entire memory state

is transferred will result in the VM being inaccessible

for too long. We address this problem by copying the

physical memory state from the source machine to the

destination machine while the VM is running. This is

possible because of the way that we manage the

physical memory of the VM [3].

Each virtual machine expects to have a fixed set of

physical address ranges that map to physical memory.

VMware ESX Server dynamically allocates the real

machine’s physical memory to the running virtual

machines. This requires adding a level of indirection to

provide the physical memory layout expected by a

guest operating system. All direct accesses to the VM’s

physical memory, as well as all writes to memory

mapping hardware and page tables, are intercepted by

the VMM. The VMM then translates these physical

addresses into the actual machine addresses. Once the

VM’s memory mapping hardware and page tables are

properly set up, the VM can run without any additional

physical-to-machine address translation overhead.

We use this level of indirection to iteratively pre-copy

the memory [4] while the VM continues to run on the

source machine. The first step copies over the entire

physical memory of the VM. Before each page is

copied, it is marked read-only so that any modifications

to the page can be detected by the VMM. When the

first step is completed, some memory will have been

modified by the still-running VM. The modified pages

are then copied again to the destination while the VM

continues to run. This procedure is then repeated until

either the number of modified pages is small enough or

there is insufficient forward progress. Currently we

terminate the pre-copy when there are less than 16

megabytes of modified pages left or there is a reduction

in changed pages of less than 1 megabyte.

3 Performance Measurements

This section investigates the performance

characteristics of the virtual machine migration scheme

described above. It presents measurements of the time

to migrate a VM and the period during which the VM is

unavailable. It also characterizes the effect of CPU

resource allocation. Most importantly, it shows that for

a variety of workloads VM migration can be fast and

transparent to applications and operating systems.

3.1 Experimental Setup

All experiments were performed on a pair of identical

Dell 1600SC servers each with two 2.4GHz Intel Xeon

processors and 1 GB of RAM. The servers are

connected to an EMC CLARiiON SAN via Qlogic

2300 HBAs. Intel Pro/1000 Gbit NICs are used to

transfer the state of the VMs.

Each experiment migrates a single VM 50 times

between two servers with 5-second intervals. The

numbers reported are the average of the 50 migrations.

The experiments use the following VM workloads:

• idle: An idle Windows 2000 Server.

• kernel-compile: Linux kernel compilation in

RedHat 7.2.

• iometer: Iometer [7] running on Windows 2000

Server. Iometer was configured to run disk I/O

2005 USENIX Annual Technical Conference USENIX Association392

with 3 worker threads each performing I/O to a

500MB file with up to five outstanding writes.

• memtest86: Memtest86 [5], which continuously

reads and writes memory, running test #1 in a loop

• dbhammer: Database Hammer [6], a client/server

database load generator running on Windows 2000

Server. The server was migrated while the client

was running on a third physical machine.

Except for the measurements in Section 3.4, the VM

being migrated was the only VM running on the source

machine and there were no VMs running on the

destination machine.

3.2 Migration Time

Migration proceeds in several distinct steps. We are

most interested in the downtime during which the VM

is unavailable. This period must be short enough to

avoid any noticeable loss of service from the VM. We

are also interested in the total end-to-end time of a

migration during which machine resources are

consumed to perform the migration.

Downtime The total downtime consists of the time

necessary to quiesce the VM on the source, transfer the

device state to the destination, load the device state, and

copy over all the remaining memory pages

concurrently with loading the device state.

Figure 2 shows that the total downtime is less than one

second for all workloads except memtest86 and rises

minimally with increasing memory sizes. memtest86 is

a pathological case where all the memory was modified

during the pre-copy so that the VM downtime equals

the time necessary to send the VM’s entire memory.

End-to-end Time Figure 3 shows that the total end-to-

end time depends strongly on the size of the VM’s

memory, and confirms the need to keep the VM

running during most of this time. With pre-copying,

the VM continues to run while memory is being

transferred to the destination.

The number of pre-copy iterations required to migrate

each workload was small. All workloads except for

memtest86 took 1 or 2 rounds before the number of

modified pages was small enough to terminate the pre-

copy. It took 2 or 3 rounds before the pre-copy was

aborted because of lack of progress for memtest86.

3.3 Effect of Pre-copy

Figure 4 shows the effect of pre-copying memory on

network throughput as measured by the dbhammer

client during a window of three back-to-back

migrations of the dbhammer server. The three large

drops in throughput correspond to the downtime.

The smaller 20% drops in throughput are caused by the

Figure 2: Downtime during migration for various

workloads and VM memory sizes.

Downtime

6.878313.71282

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

64M 128M 256M 512M

VM Memory Size

D
o

w
n

ti
m

e
 (

s
e

c
o

n
d

s
)

kernel compile

idle (w2k)

iometer

dbhammer

memtest

Total Migration Time

0

2

4

6

8

10

12

14

16

18

64M 128M 256M 512M
VM Memory Size

T
o

ta
l

T
im

e
 (

s
e

c
o

n
d

s
)

kernel compile

idle (w2k)

iometer

dbhammer

memtest

Figure 3. Total end-to-end time for a migration.

Dbhammer Client Network Throughput

0

100

200

300

400

500

600

700

00
:0

0

00
:1

0

00
:2

0

00
:3

0

00
:4

0

00
:5

0

01
:0

0

01
:1

0

01
:2

0

01
:3

0

01
:4

0

01
:5

0

02
:0

0

02
:1

0

02
:2

0

Time

K
il
o

b
y
te

s
 T

ra
n

s
fe

rr
e
d

Network throughput

Downtime

Pre-copy Pre-copyPre-copy

Downtime
Downtime

Figure 4. Effect on network throughput as seen by

the client of a migrating dbhammer server.

2005 USENIX Annual Technical Conference USENIX Association 393

pre-copy. This drop is caused by the overhead of

marking the pre-copied pages as read-only, which

involves halting all virtual CPUs, and the overhead of

handling any protection faults to the read-only pages.

3.4 Resource Management

To monitor the effect of resource management, the

source physical machine was loaded with the equivalent

of 20 CPU-bound virtual machines, and the time to

migrate an idle 512MB Windows 2000 Server VM was

measured under different resource reservations. Figure

5 shows that reserving 30% of a CPU for migration

minimizes the pre-copy time. This implies that it takes

around 30% of a CPU to attain the maximum network

throughput over the gigabit link.

Even though the pre-copy time increased when

insufficient CPU was reserved for the migration, the

downtime remains small regardless of the amount of

reserved CPU. It requires little CPU time to quiesce the

VM and transfer over the non-memory state.

4 Related Work

There is large amount of previous work done on

transparently migrating processes. Zap [8] is a recent

system that provides process migration and contains a

good discussion of previous work in this area.

The only other system that migrates virtual machines is

described by Hansen and Jul in [9]. The fundamental

difference between their work and ours is that they

require guest OS modifications in order to perform the

migration. Whereas our system can migrate any OS

that runs on the Intel x86 architecture including closed-

source operating systems such as Microsoft Windows,

their system can only migrate operating systems that

can be modified to work in their environment.

5 Conclusions

Previous attempts at application migration have had

limited success primarily because of the difficulty of

encapsulating the state of a running application. Virtual

machines solve this problem by allowing not only an

application to be encapsulated, but the operating system

and the hardware as well. We have described a

migration implementation that allows an entire running

VM to be migrated from one physical machine to

another. The migration is completely transparent to the

application, the operating system and remote clients.

The method for migrating the physical memory of a

VM is critical to providing transparent migration. It

takes many seconds, even over fast networks, and

significant CPU resources to transfer large memories.

We have shown that transferring the memory while a

VM is running minimizes the downtime. Our

measurements show that a VM normally experiences

less than one second of down time. Also, the end-to-

end time of the migration and the impact on other VMs

running on the machines involved in the migration can

be controlled by properly managing CPU resources.

References

1. R. Goldberg. “Survey of Virtual Machine

Research,” IEEE Computer, 7(6), June 1974.

2. “Building Virtual Infrastructure with VMware

Virtual Center,”

http://www.vmware.com/pdf/vi_wp.pdf.

3. C. Waldspurger. “Memory Resource Management

in VMware ESX Server,” Proc. Of the 5
th

Operating Systems Design and Implementation,

December 2002.

4. M. Theimer, K. Lantz, and D. Cheriton.

“Preemptable Remote Execution Facilities for the

V-System,” Proc. Of the 10
th

Symposium on

Operating System Principles, December 1985.

5. “Memtest86 - A Stand-alone Memory

Diagnostic,” http://www.memtest86.com/.

6. “Microsoft SQL Server: Resource Kit,”

http://www.microsoft.com/sql/techinfo/reskit.

7. “Iometer Project,” http://www.iometer.org/.

8. S. Osman, et al. “The Design and Implementation

of Zap: A System for Migrating Computing

Environments,” Proc. Of the 5
th

Operating Systems

Design and Implementation, December 2002.

9. J.G. Hansen and E. Jul, “Self-migration of

Operating Systems,” Proc. Of the 11
th

ACM

European SIGOPS Workshop, September 2004.

Figure 5. Effect of CPU reservation on migration

from a heavily loaded source machine.

Resources Reserved vs Migration Time

0

5

10

15

20

25

0 10 20 30 40 50

% CPU Reserved

S
e

c
o

n
d

s

Precopy

Downtime

2005 USENIX Annual Technical Conference USENIX Association394

