
UC Davis
IDAV Publications

Title
Fast Tridiagonal Solvers on the GPU

Permalink
https://escholarship.org/uc/item/7b441610

Authors
Zhang, Yao
Cohen, Jonathan
Owens, John D.

Publication Date
2010

DOI
10.1145/1693453.1693472

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7b441610
https://escholarship.org
http://www.cdlib.org/

Fast Tridiagonal Solvers on the GPU

Yao Zhang

University of California, Davis

yaozhang@ucdavis.edu

Jonathan Cohen

NVIDIA

jocohen@nvidia.com

John D. Owens

University of California, Davis

jowens@ece.ucdavis.edu

Abstract

We study the performance of three parallel algorithms and their
hybrid variants for solving tridiagonal linear systems on a GPU:
cyclic reduction (CR), parallel cyclic reduction (PCR) and recur-
sive doubling (RD). We develop an approach to measure, analyze,
and optimize the performance of GPU programs in terms of mem-
ory access, computation, and control overhead. We find that CR en-
joys linear algorithm complexity but suffers from more algorithmic
steps and bank conflicts, while PCR and RD have fewer algorith-
mic steps but do more work each step. To combine the benefits of
the basic algorithms, we propose hybrid CR+PCR and CR+RD al-
gorithms, which improve the performance of PCR, RD and CR by
21%, 31% and 61% respectively. Our GPU solvers achieve up to a
28x speedup over a sequential LAPACK solver, and a 12x speedup
over a multi-threaded CPU solver.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming–Parallel programming

General Terms Algorithms, Measurement, Performance

Keywords Tridiagonal Linear System, GPGPU, Performance Op-
timization

1. Introduction

In this work, we study the performance of tridiagonal linear sys-
tem solvers on a GPU. We use this study to develop an approach to
measure, analyze, and optimize the performance of GPU programs.
A key observation is that performance is determined by a composi-
tion of several factors including global/shared memory access, bank
conflicts, computational complexity, and the overhead for synchro-
nization and control. For different algorithms, the weight of each
factor’s impact on performance is different. This observation mo-
tivates a comprehensive performance analysis approach, in which
we measure each factor’s impact on overall performance, optimize
the most critical factors, and choose the right tradeoffs between
these factors to improve the performance most effectively. This is
in contrast to a traditional bottleneck GPU performance model, in
which only the improvement on the bottleneck leads to overall per-
formance increase.

By applying the above analysis approach to optimizing tridi-
agonal solvers, we are able to achieve a significant speedup with
hybrid algorithms that we would not have achieved if we stayed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’10, January 9–14, 2010, Bangalore, India.
Copyright c© 2010 ACM 978-1-60558-708-0/10/01. . . $10.00

with the basic algorithms and just tried to remove their bottlenecks.
We characterize the costs of the different algorithms with respect to
computational complexity, number of steps, bank conflicts, vector
hardware utilization, and other factors. By using this approach, we
are able to find a combination of the basic algorithms that mini-
mizes the total costs. Our hybrid algorithms switch between basic
algorithms once the execution reaches a stage where a different ap-
proach will be cheaper.

We make the following contributions in this paper. First, we de-
velop an approach to measure, analyze, and optimize the perfor-
mance of GPU programs. Second, using our analysis approach, we
perform a comprehensive study of three parallel tridiagonal algo-
rithms and their variants on a modern GPU. We propose hybrid
CR+PCR and CR+RD algorithms and show how they achieve bet-
ter performance by reducing the number of inefficient algorithmic
steps, avoiding bank conflicts, and improving the utilization of vec-
tor hardware. The hybrid algorithms improve PCR, RD and CR
by 21%, 31% and 61% respectively, and achieve a 12.5x speedup
over a multi-threaded CPU solver. Third, we perform experiments
to determine the accuracy of various algorithms and give sugges-
tions for improving numerical stability. Fourth, we discuss insights
we gained into GPU optimization strategies while developing these
algorithms. We find that bank conflicts can have a severe impact
on performance for the reduction communication pattern. We also
find that each algorithmic step includes a considerable amount of
overhead due to the synchronization and control.

Fast solutions to a tridiagonal system of linear equations are crit-
ical for many scientific and engineering problems, as well as real-
time or interactive applications in computer graphics, video games
and animation films [19, 20, 25]. The applications of tridiagonal
solvers include alternating direction implicit (ADI) methods [15,
19, 25], spectral Poisson solvers [16], cubic spline approxima-
tions, numerical ocean models [13], semi-coarsening for multi-grid
solvers [24] and preconditioners for iterative linear solvers [12].

Since the 1960s, a variety of parallel algorithms have been
developed for solving tridiagonal systems. Notable among these
are cyclic reduction [6, 16], recursive doubling [27], and partition
methods [22, 32]. These algorithms have typically targeted vector
supercomputers such as the Illiac IV, CDC STAR-100 and Cray-
1. As alternatives to the vector programming model, tridiagonal
solvers have been studied with a message-passing programming
model on the Intel iPSC/1, nCUBE-1, Cray T3E, and a 500-node
IBM cluster [3, 10, 15, 28, 29]. Huang et al. and Climent et al. stud-
ied tridiagonal solvers with the BSP (bulk synchronous parallel)
programming model on Sun workstations and the IBM SP2 [7, 18].

Since 2002, the GPU has evolved from a graphics-specific ac-
celerator to a general-purpose computing vector processor. The
GPU is different from older vector computers mainly in two as-
pects: (1) it has a hierarchical architecture, and (2) it virtualizes all
of its processing cores. Today’s GPU can provide 1 teraFLOPS of
computing power in single precision, which has attracted a great
deal of attention from the scientific community [1]. For example,

Volkov and Demmel performed detailed benchmarking for dense
linear algebra kernels on a GPU, and showed the great potential of
the GPU for scientific computing [30].

The tridiagonal solver was first implemented on a GPU by Kass
et al. [19] to perform efficient depth-of-field blurs. Their solver
was based on cyclic reduction and was written in a GPU shad-
ing language. Sengupta et al. implemented cyclic reduction with
CUDA [23], and applied it to real-time shallow water simula-
tion [20, 25]. Volkov and Demmel accelerated the bisection al-
gorithm on a GPU for finding eigenvalues of symmetric tridiag-
onal matrices [31]. While all previous GPU tridiagonal solvers
that we are aware of use cyclic reduction, we identify four other
techniques that have superior performance on a current genera-
tion GPU, including parallel cyclic reduction, recursive doubling,
and their hybrid variants. In this paper, we focus on the problem
of solving a large number of small tridiagonal systems in paral-
lel, which maps well to the hierarchical and throughput-oriented
architecture of the GPU. This is a common application scenario
arising in ADI methods [15, 19, 25], spectral Poisson solvers [16],
numerical ocean models [13], and semi-coarsening for multi-grid
solvers [24], etc. For both the GPU and CPU solvers, we choose
to use single-precision floating point arithmetic, because today’s
GPU features substantially more single-precision throughput than
double-precision, and single precision is generally sufficient for
the real-time/interactive computer graphics applications and many
of the particular scientific and engineering problems that we cite
above. The performance analysis techniques we developed would
apply equally well to double-precision solvers and will be more
interesting as GPU double-precision performance becomes more
competitive with single-precision performance.

The rest of the paper is organized as follows. Section 2 intro-
duces the basics of the CR, PCR, and RD algorithms. Section 3
presents the hybrid algorithms we propose for GPU implementa-
tion. Section 4 describes the GPU implementation. Section 5 dis-
cusses algorithm complexity, presents our analysis and optimiza-
tion approach, and shows the experimental results and analysis.
Section 6 concludes and describes future work.

2. Preliminaries

We wish to solve a system of n linear equations of the form
Ax = d, where A is a tridiagonal matrix

A =





















b1 c1
a2 b2 c2 0

a3 b3 c3
. . .

. . .
. . .

0
. . .

. . . cn−1

an bn





















.

The classic algorithm to solve such a system is the Thomas algo-
rithm, which is Gaussian elimination in the tridiagonal matrix case.
The algorithm has two phases, forward elimination and backward
substitution. In the first phase, we eliminate the lower diagonal by

c
′

1 =
c1

b1
, c

′

i =
ci

bi − c′
i−1ai

, i = 2, 3, . . . , n− 1

d
′

1 =
d1

b1
, d

′

i =
di − d′i−1ai

bi − c′
i−1ai

, i = 2, 3, . . . , n− 1

The second phase solves all unknowns from last to first:

xn = d
′

n, xi = d
′

i − c
′

ixi+1.

The algorithm is simple, but inherently serial and takes 2n
computation steps, because the calculation of c′i, d

′

i, and xi depends
on the result of the immediately preceding calculation of c′i−1,

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e'
2

e'
4

e'
6

e'
8

x1 x2 x3 x4 x5 x6 x7 x8

x2 x6

e''
4

e''
8

x4 x8

Step 1: Forward Reduction
Reduced to a 4-unknown system

Step 3: Solve 2-unknown system

Step 4: Backward Substitution
Solve the rest 2 unknowns

Step 2: Forward Reduction
Reduced to a 2-unknown system

Step 5: Backward Substitution
Solve the rest 4 unknowns

e'
6

e'
2

x8e
7

e
5x4e

3
e
1

Figure 1. Communication pattern for CR in the 8-unknown case,
showing the dataflow between each equation, labeled e1 to e8.
Letters e′ and e′′ stand for updated equation.

d′i−1, and xi+1. In the following subsections, we introduce three
parallel algorithms for solving a tridiagonal system. In general,
these methods trade more work for fewer steps and are thus better
suited for parallel implementation.

2.1 Cyclic Reduction (CR)

Cyclic reduction was proposed by Hockney [16] and is the only
previously implemented algorithm on a GPU. CR consists of two
phases, forward reduction and backward substitution. The forward
reduction phase successively reduces a system to a smaller system
with half the number of unknowns, until a system of 2 unknowns is
reached. The backward substitution phase successively determines
the other half of the unknowns using the previously solved values.

In each step of forward reduction, we update all even-indexed
equations in parallel with equation i of the current system as a
linear combination of equations i, i+1 and i−1, so that we derive
a system of only even-indexed unknowns. Equation i has the form
aixi−1 + bixi + cixi+1 = di. The updated values of ai, bi, ci and
di are

a
′

i = −ai−1k1, b
′

i = bi − ci−1k1 − ai+1k2

c
′

i = −ci+1k2, d
′

i = di − di−1k1 − di+1k2

k1 =
ai

bi−1

, k2 =
ci

bi+1

In each step of backward substitution, we solve all odd-indexed
unknowns xi in parallel by substituting the already solved xi−1 and
xi+1 values to equation i,

xi =
d′i − a′

ixi−1 − c′ixi+1

b′
i

.

Note that for the sake of simplicity, in the above description, we
disregard the special treatment of the last equation and the first un-
known respectively in the two algorithm phases. Also, we solve a 2-
unknown system between the two algorithm phases. Figure 1 shows
the communication pattern of the algorithm for an 8-unknown sys-
tem.

Both the parallel CR algorithm and the serial Thomas algorithm
perform a number of operations that are linear in the number of
unknowns. The Thomas algorithm performs 8n operations while
CR performs 17n operations. However, on a parallel computer with
n processors, CR requires 2 log2 n − 1 steps while the Thomas
algorithm requires 2n steps.

2.2 Parallel Cyclic Reduction (PCR)

PCR [17] is a variant of CR. In contrast to CR, PCR only has the
forward reduction phase. Although the reduction mechanism and
formula are the same as those of CR, in each reduction step, PCR
reduces each of the current systems to two systems of half size. For

x1 x2 x3 x4 x5 x6 x7 x8

Step 1

Step 1

Step 2

Step 2

Step 3

Step 2

Step 2

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e'
2

e'
4

e'
6

e'
8

e'
1

e'
3

e'
5

e'
7

e''
8

e''
4

e''
2

e''
6

e''
3

e''
7

e''
1

e''
5

Reduced to 2 4-unknown systems

Reduced to 4 2-unknown systems

Solve the 4 2-unknown systems

Figure 2. Communication pattern for PCR in the 8-unknown case,
showing the dataflow between each equation, labeled e1 to e8.
Letters e′ and e′′ stand for updated equations. Equations in a yellow
rectangle form a system. We omit the arrows in step 2 for clarity.

example, for an 8-unknown system, we reduce it to two 4-unknown
systems in step 1 (see Figure 2), then further reduce the two 4-
unknown systems to four 2-unknown systems in step 2, and finally
solve the four systems in step 3. PCR takes 12nlog2n operations
and log2n steps to finish. PCR requires fewer algorithmic steps
than CR but does asymptotically more work per step.

2.3 Recursive Doubling (RD)

Stone [27] proposed the RD algorithm. Egecioglu et al. [10] refor-
mulated the algorithm in the scan (or prefix sum) form. Scan is a
parallel primitive originally developed for vector machines [5, 14]
that can be efficiently implemented on a GPU [8, 25]. A variety of
algorithms have been developed to perform a scan. We choose the
algorithm by Hillis and Steele [14] because we need a step-efficient
algorithm, as will be explained in Section 3.

The basic idea of RD is to express unknowns as the multiplica-
tion of a chain of matrices that can be evaluated in parallel using
the scan primitive. Figure 3 shows the communication pattern of
RD. We first build matrices Bi, 1≤i≤n,

Bi =





− bi

ci
−ai

ci

di

ci

1 0 0
0 0 1



 .

Next we perform a scan operation on Bi, the output of which is a
n-component vector with each component as the multiplication of
a matrix chain,

scan(B1, B1, . . . , . . . , Bn−1, Bn)

= [B1 B2B1 Bn−1. . .B2B1 Bn. . .B2B1]

= [C1 Cn−1 Cn].

Then we have x1 = − c13

c11
, where

Cn =





c11 c12 c13
c21 c22 c23
0 0 1



 .

Finally, all unknowns can be evaluated as, [X2 X3 . . . Xn]
= X1[C1 C2 . . . Cn]

= [X1C1 X1C2 . . . X1Cn] where Xi =





xi

xi−1

1



 .

Our step-efficient version of RD takes 20nlog2n operations and
log2n+ 2 steps to finish.

3. Hybrid Algorithms

We will use CR, PCR, and RD as basic building blocks from
which to build more complex and efficient algorithms. We start

e1 e2 e3 e4 e5 e6 e7 e8

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

1
1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

1
1

1
2

1
3

1
4

2
5

3
6

4
7

5
8

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

x1

x2 x3 x4 x5 x6 x7 x8

Matrix
setup

Solution
evaluation

Solution
evaluation

Scan
Step 1

Scan
Step 2

Scan
Step 3

Figure 3. Communication pattern for RD in the 8-unknown case,
showing the dataflow between each equation, labeled e1 to e8.
Letter m stands for matrix. During the scan phase, a pair of two
numbers (a, b) in a circle stands for

∏

b

i=a
mi.

Forward
Reduction

PCR or RD
solver

Step 4Backward
Substitution

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e'
2

e'
4

e'
6

e'
8

x1 x2 x3 x4 x5 x6 x7 x8

x2 x6 x8e
7

e
5x4e

3
e
1

Figure 4. Hybrid algorithms for an 8-known system. Letter e
stands for equation, and e′ stands for updated equation.

with these three algorithms because they have fine-grained parallel
structures, which are suitable for GPU implementation where a
large number of lightweight threads are available. Other parallel
approaches, such as the sub-structuring method [32] and two-way
Gaussian elimination [15], are coarse-grained methods that map
larger amounts of work per thread. These methods would be more
suitable to a multi-core CPU.

With respect to computational complexity, CR is the best al-
gorithm because it is O(n), while PCR and RD are O(n log2 n).
However, CR suffers from a lack of parallelism at the end of the
forward reduction phase and at the beginning of the backward sub-
stitution phase (see Figure 1); on the other hand, although PCR
and RD have fewer algorithmic steps, they always have more par-
allelism through all steps (see Figure 2 and 3). These two basic ob-
servations lead us to develop hybrid methods on a GPU. The hybrid
methods improve CR by switching to PCR or RD to reduce inef-
ficient steps when there is not enough parallelism to keep a GPU
busy. Sengupta et al. use a similar idea to combine a step-efficient
scan algorithm with a work-efficient one for implementation on a
GPU [26].

The hybrid algorithms first reduce the system to a certain size
using the forward reduction phase of CR, then solve the reduced
(intermediate) system with the PCR/RD algorithm. Finally, they
substitute the solved unknowns back into the original systems using
the backward substitution phase of CR. Figure 4 shows the hybrid
method schematically. In this example, we switch to PCR or RD
before the forward reduction has reached a 2-unknown system,
as opposed to the CR case in Figure 1. PCR and RD enable us
to finish the inefficient middle steps more quickly, because they
have fewer algorithmic steps than CR. In section 5, we perform

Device

Mult iprocessor N

Mult iprocessor 2

Mult iprocessor 1

Device Memory

Shared Memory

I nst ruct ion
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Figure 5. GPU architecture (from CUDA Programming Guide [2])

a quantitative analysis on the complexity of the basic algorithms,
hybrid CR+PCR, and CR+RD algorithms on the GPU.

Note that while the algorithms are performed on NVIDIA hard-
ware in this work, the motivation behind the hybrid algorithms is
to balance work-efficiency against step-efficiency, which will be an
issue on any vector architecture. We are unaware of any research on
hybrid solvers that combines CR with PCR/RD. Other hybrid ap-
proaches have been studied in a CPU cluster environment. Johnsson
and Ho studied hybrid solvers using sub-structuring method, Gaus-
sian elimination and cyclic reduction with the goal of minimizing
overall computation and communication costs [15]. Sun and Zhang
proposed a two-level hybrid method with a first-level solver based
on the Sherman-Morrison modification formula and an application-
dependent second-level solver [29].

4. GPU Implementation

We implement the five tridiagonal solvers on an NVIDIA GTX 280
GPU using the CUDA programming model [23]. GTX 280 is a hi-
erarchical shared-memory vector architecture as shown in Figure 5.
It is made up of 30 multiprocessors, and each multiprocessor con-
tains 8 thread processors and 16 KB of on-chip shared memory.
Shared memory locations are mapped to one of 16 banks with se-
quential 32-bit words going to sequential banks. Therefore, if mul-
tiple threads in a warp (described below) access memory locations
16 words apart, the memory accesses will serialize. See the pro-
gramming guide [2] for more details.

CUDA virtualizes multiprocessors as blocks and processors as
threads, which enables programmers to run thousands of threads
and blocks across different generations of GPUs regardless of the
number of physical processors. A key concept of CUDA program-
ming model is the warp. A warp is a group of 32 threads that exe-
cute in lockstep in a SIMD fashion. Because the GPU architecture
shares a single instruction unit for all threads in a warp, a warp
is the smallest unit of work a GPU issues. This means if we have
less than 32-way parallelism, we will still have 32 threads running,
some of which will not do useful work. This observation is partic-
ularly important in reduction pattern algorithms such as tridiagonal
solvers which have stages of less than 32-way parallelism.

To solve hundreds of tridiagonal systems simultaneously, we
map the solvers to the GPU’s two-level hierarchical architecture
with systems mapped to blocks and equations mapped to threads.
The number of systems we solve is far larger than the number of
multiprocessors, so that all multiprocessors are fully utilized and

the context switching between systems helps hide the memory la-
tency. The total storage consists of five arrays: three for the matrix
diagonals, one for the right-hand side, and one for the solution vec-
tor. These five arrays store the data of all systems continuously, with
the data of the first system stored at the beginning of the arrays, fol-
lowed by the second system, the third system, and so on. For each
system, we load the three diagonals and right-hand side from global
memory to shared memory, solve the system, and store the solution
back to global memory. Therefore global memory communication
only occurs at the beginning and end of all algorithms. With current
hardware, systems of more than 512 equations would exceed the
size of shared memory. Our solvers do support this case at a cost of
roughly 3x performance degradation by using global memory only.
While small systems (up to 512x512) that run at interactive rates
are most common in the graphics community, we could possibly
better accelerate larger systems with several first steps (as in CR)
that reduces the system to fit into shared memory. We anticipate the
most common use of the solvers we have developed is as a compo-
nent of a larger computation on a GPU, which amortizes the cost
of any CPU-GPU data transfers (see section 5.2).

In CR, we start with a total thread number equal to half the num-
ber of equations, reduce the number of active threads by half after
each step of forward reduction, and double the number of active
threads before each step of backward substitution (see Figure 1).
We always use contiguously ordered threads as active threads so
that we do not have unnecessary divergent branches within a SIMD
unit. In PCR, the number of active threads is constant and equal
to the number of equations across all steps (see Figure 2). In RD,
the number of active threads is set to the number of equations ini-
tially, and then gradually reduced to half during the major algorithm
phase scan (see Figure 3). As with CR, we always use a contiguous
chunk of threads as active threads so that we do not have divergent
branches in this case either.

In all three solvers, we keep data in-place during the entire
solution as shown in Figure 1, 2 and 3. This means for the CR
and PCR solvers, we store the reduced systems (updated equations)
at the same memory location; for the RD solver, we perform scan
in-place. The advantage of an in-place approach is that we save
shared memory space so that we can fit multiple blocks running
simultaneously on one multiprocessor. The disadvantage is, for the
CR solver, we have more and more bank conflicts towards the end
of forward reduction and at the beginning of backward substitution.
However, in-place PCR and RD do not suffer from bank conflicts.
For the hybrid solvers, we copy the data from the intermediate
system to another five arrays in shared memory. The copy takes
little time and extra storage space for the intermediate system, but
makes the solver more modular, because we can directly plug the
PCR or RD solver into the intermediate system.

Although all parallel algorithms are general for any system size,
our solvers only handle a power-of-two system size, which makes
thread numbering and address calculation simpler. In the RD solver,
the 3x3 matrices on which we perform scan are special matrices,
which enable us to only store the first two rows of matrices and
save several floating point operations.

5. Performance Evaluation

In this section, we first summarize the algorithms’ complexity on
the GPU, then we present the performance results and analysis for
each algorithm, and finally we compare the accuracy of all CPU
and GPU solvers.

5.1 Characterizing Algorithm Complexity

Table 1 summarizes the computation and communication cost of all
algorithms. For all solvers, the global memory communication hap-
pens only twice for reading input data and writing output results, as

we have discussed in section 4, and most communication happens
between the processing cores and shared memory. As shown in Ta-
ble 1, CR has the least work (shared memory accesses and arith-
metic operations) but the most steps, whereas PCR and RD have
fewer steps but more work. This motivates an approach that takes
advantage of the best parts of both: doing the least work when there
is sufficient parallelism at least of warp size, but then switching to
performing fewer steps when there is not enough parallelism to fill
the machine. The switch is actually even more beneficial because
there are bank conflicts in the CR solver and shared memory ac-
cess dominates the execution time. Because of bank conflicts, we
find that the width at which it is best to switch is actually far larger
than the warp size. We will discuss this issue further in section 5.3.

5.2 Performance Results

We test the performance using a 2.5 GHz Intel Core 2 Q9300 quad-
core CPU, a GTX 280 graphics card with 1 GB video memory,
CUDA 2.0 and the CentOS 5 Linux operating system. The GTX
280 card is an instance of the GT200 architecture with 30 multi-
processors, each with 8 thread processors.

We measure performance using runtime, instead of FLOPS, be-
cause different algorithms use different FLOP counts. An analysis
of performance in terms of FLOPS for each algorithm can be found
in Section 5.3. Figure 6 shows the performance comparison of five
GPU solvers for two cases, with and without the time for the CPU-
GPU data transfer over the PCI-Express bus. The problem sizes we
choose range from 64 64-unknown systems to 512 512-unknown
systems. The hybrid solvers outperform other solvers clearly for
the problem size 512x512, but perform worse than RD and PCR
for the 64x64 and 128x128 cases. This is because for a smaller sys-
tem size, hybrid solvers introduce extra CR steps to PCR or RD,
which offsets the benefits of solving a smaller intermediate system.
We will discuss this in detail in section 5.3.4.

If the CPU-GPU data transfer time is included, since the CPU-
GPU data transfer dominates the entire solution time by 90–95%,
all solvers have similar performance as shown in Figure 6 (right).
Whether or not we should include the cost of the CPU-GPU data
transfer depends on the application scenario. Transfer time can
be ignored if the GPU solver is used locally as a part of a GPU
program (for example, GPU fluid simulation [25] and depth-of-
field effects [19]). It should be considered if the GPU solver is used
as an accelerator for a part of a CPU program.

Figure 7 shows the performance comparison between the best
GPU solver and several CPU solvers. The CPU solvers include a
Gaussian elimination tridiagonal solver without pivoting (GE), a
multi-threaded GE solver (MT), and a Gaussian elimination tridi-
agonal solver with pivoting (GEP). The MT solver is an OpenMP
implementation developed by us with multiple threads solving mul-
tiple systems simultaneously. We use four threads for the MT solver
with each thread running on one CPU core. We note that the prob-
lem size needs to be large for the MT solver to outperform a single-
threaded solver. The GEP solver is from LAPACK [4].

With and without the CPU-GPU data transfer time, the best
speedups we get are 17.2x and 1.5x respectively. If the GPU solver
is used as an accelerator for a part of CPU program, the PCI-
Express bus is certainly the bottleneck. However, the trend is that
the GPU and CPU are becoming increasingly coupled and ulti-
mately may be integrated on the same chip in the future. Notice
that when the problem size increases by 4 times from size 64x64 to
128x128 (or from 128x128 to 256x256), the runtime favorably in-
creases far less than 4 times. This is because the GPU prefers large
amounts of parallelism to take advantage of its parallel hardware
resources and ample bandwidth. The relative performance on the
512x512 problem size is not as high as the 256x256 problem size
because the system size is too large to fit multiple blocks running

simultaneously on a GPU multiprocessor, which hurts the perfor-
mance. Running multiple blocks simultaneously enables the GPU
to switch between blocks, overlap the computation and data trans-
fer, and thus improve the hardware utilization. The number of con-
current blocks depends on the GPU hardware resources (register
count, shared memory size, and maximum number of active warps,
etc) and a program’s requirements on these resources per block.

5.3 Performance Analysis

We analyzed each GPU solver by measuring the time spent on
each part of the algorithm. We find that the overall execution time
depends primarily on the number of algorithmic steps rather than
the amount of work per step. In other words, for this problem on
the GPU, step-efficient algorithms are preferable to work-efficient
algorithms. We use a differential method to measure the time for
each part of the algorithm. We first comment out the whole code,
then uncomment it incrementally in program order and measure
execution time. Finally, we calculate the time difference between
all neighboring timing results. For every algorithmic step in a loop,
we exit the loop early at that step to measure the time spent until
that step. Commenting out part of the code does not affect the
number of concurrent blocks, because we have the same shared
memory usage and the number of concurrent blocks is limited by
the shared memory size rather than register usage in our case.

We also measure the execution time for global memory access,
shared memory access, and computation. Since the global memory
access only occurs at the beginning and end of the program, we
use the same differential method to measure its time. To estimate
shared memory access time, we replace all shared memory accesses
with register accesses, and calculate the shared memory access time
as the time difference between this program and the original pro-
gram. The estimated time might be smaller than the actual time
because shared memory accesses could be overlapped with compu-
tation. We estimate computation time as the total time minus global
memory and shared memory access time. Control and synchroniza-
tion overhead is included in the computation time. Bank conflicts
in shared memory access turn out to have a significant impact on
performance.

5.3.1 Cyclic Reduction

Recall that cyclic reduction has two phases, forward reduction and
backward substitution. Each phase consists of log2 n − 1 steps
where n is the system size. Figure 8 shows the absolute time and
percentage time for all solution phases as well as their internal
steps. Forward reduction takes about twice as much time as back-
ward substitution, since it requires more computations and memory
accesses.

At first glance, the timing for the steps in forward reduction
seems quite surprising. Since we reduce the amount of work by
half each step, we expect the time for each step to decrease as the
algorithm progresses. However, the measured step time does not
decrease but rather increases. Further investigation reveals that this
is caused by bank conflicts. Since the shared memory access stride
is doubled in each step, there are more and more bank conflicts.
One method to avoid bank conflicts is to store the even-indexed and
odd-indexed equations of all reduced systems separately, at the cost
of extra shared memory usage and more complicated addressing1.

Figure 9 shows the time for each of the 8 steps in the forward
reduction phase. For comparison, we measured the time for the
same program modified to enforce a shared memory access stride
of one so that it is bank-conflict-free. This results in an incorrect

1 Independently from our work, Göddeke and Strzodka proposed the same
technique, and showed that it achieves similar performance as our hybrid
CR+PCR solver, at the cost of 50% more shared memory usage [11].

Table 1. Complexity comparison of algorithms. n is the system size. m is the intermediate system size. We assume n and m are powers
of 2.

Algorithm Shared memory accesses Arithmetic operations Algorithmic Steps Global memory accesses

CR 23n 17n, of which 3n are div 2 log2 n− 1 5n
PCR 16n log2 n 12n log2 n, of which log2 n 5n

2n log2 n are div
RD 32n log2 n 20n log2 n; log2 n+ 2 5n

no div in major step scan
CR+PCR 23(n−m) + 16m log2 m 17(n−m) + 12m log2 m 2 log2 n− log2 m− 1 5n
CR+RD 23(n−m) + 32m log2 m 17(n−m) + 20m log2 m 2 log2 n− log2 m+ 1 5n

0

0.2

0.4

0.6

0.8

1

1.2

64x64 128x128 256x256 512x512

CR+PCR

CR+RD

PCR

RD

CR

Time (milliseconds)

problem size

0

1

2

3

4

5

6

64x64 128x128 256x256 512x512

Data transfer

CR+PCR

CR+RD

PCR

RD

CR

Time (milliseconds)

problem size

Figure 6. Performance comparison of five GPU solvers. Left: without the CPU-GPU data transfer time. Right: with the CPU-GPU data
transfer time.

2.7x 5.7x 17.2x 12.5x

0

2

4

6

8

10

12

14

64x64 128x128 256x256 512x512

Best GPU

MT CPU

GE CPU

GEP CPU

Time (milliseconds)

problem size

0.1x 0.3x
1.5x

1.2x

0

2

4

6

8

10

12

14

64x64 128x128 256x256 512x512

Best GPU

MT CPU

GE CPU

GEP CPU

Time (milliseconds)

problem size

Figure 7. Performance comparison between the GPU and CPU solvers. The speedup numbers are comparisons between the best GPU and
the best CPU performance. Left: without the CPU-GPU data transfer time. Right: with the CPU-GPU data transfer time.

algorithm, but is for timing comparison only. Figure 9 shows that
the overall penalty can be as high as 4.8x in the case of 16-way bank
conflicts. This factor includes the penalty for shared memory access
together with the solver computation. The penalty for only shared
memory access should be even higher, as will be shown in section
5.3.2. For the bank-conflict-free case, once the algorithm reaches
32 active threads, the time per step remains almost constant for two
reasons: (1) a warp is the smallest unit of work on the GPU, and
(2) a large portion of the total step time is taken by the overhead
of synchronization and loop control. For the with-bank-conflicts
case, after the algorithm reaches 32 active threads, the time per step
continues to decrease, because all conflicting accesses to shared
memory serialize and thus each step runs faster as fewer threads
access shared memory.

Figure 10 shows the time breakdown for global/shared mem-
ory access and computation. Shared memory accesses dominate
the total execution time due to bank conflicts. The global mem-
ory accesses are contiguous (coalesced) and reach a bandwidth of
48.5 GB/s. We found that the global memory to register bandwidth
could be 25–50% higher than the global memory to shared mem-
ory bandwidth, but in our case, we need the latter. Shared mem-
ory accesses suffer from bank conflicts and reach a bandwidth of
33 GB/s (this does not mean shared memory does not help, because
the stride access pattern is bad for global memory access too). The
computation rate is 15.5 GFLOPS, far below the theoretical peak,
mainly because of low vector hardware utilization during the end
of forward reduction and the beginning of backward substitution, as
well as other factors including a large number of expensive division
operations, synchronizations, and control logic.

0.103, 10%

0.033, 3%

Global memory access Forward reduction

Solve 2-unknown system Backward substitution

Each step avg:

0.038, 3.6%

8 steps total:

0.306, 29%

8 steps total:

0.624, 59%

Each step avg:

0.078, 7.3%

Total time: 1.066

Figure 8. Time breakdown of CR for problem size 512x512. Tim-
ings are in milliseconds.

1.7x

3.1x
3.3x

4.8x
4.8x

3.0x

2.3x
2.3x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(256,8,2) (128,4,4) (64,2,8) (32,1,16) (16,1,16) (8,1,8) (4,1,4) (2,1,2)

No bank conflicts With bank conflicts

(threads, warps, n-way bank conflicts)

Time (milliseconds)

Figure 9. Bank conflicts’ impact on performance in forward re-
duction phase for problem size 512x512.

0.103, 10%,

48.5 GB/s

0.689, 64%,

33GB/s

0.274, 26%,

15.5 GFLOPS

Global memory access Shared memory access Computation

Total time: 1.066

Figure 10. Time breakdown for CR in terms of global/shared
memory access and computation for problem size 512x512. Tim-
ings are in milliseconds.

0.106, 20%

0.019, 4%

Global memory access Forward reduction Solve all 2-unknown systems

Each step avg:

0.051, 9.5%

8 steps total:

0.409, 76%

Total time: 0.534

Figure 11. Time breakdown of PCR for problem size 512x512.
Timings are in milliseconds.

0.106, 20%,

47.2 GB/s

0.163, 30%,

883 GB/s

0.265, 50%,

101.9 GFLOPS

Global memory access Shared memory access Computation

Total time: 0.534

Figure 12. Time breakdown for PCR in terms of global/shared
memory access and computation for problem size 512x512. Tim-
ings are in milliseconds.

5.3.2 Parallel Cyclic Reduction

PCR takes about half the time as CR, mainly because PCR only
has the forward reduction phase. Furthermore, although PCR does
more work during each forward reduction step than CR, the aver-
age step time is less than that of CR as shown in Figure 8 and 11,
because PCR is free of bank conflicts. Only 30% of the total time
is spent on shared memory access compared to 64% in the CR case
(see Figure 10 and 12). The achieved shared memory bandwidth is
883 GB/s, 26 times the bandwidth achieved in the CR case. The fac-
tor of 26 is due to two reasons: the large penalty of bank conflicts
in CR, and the low vector load/store utilization when the thread
count is less than the load/store width of 16. PCR’s 101.9 GFLOPS
computation rate is also higher than CR’s 15.5 GFLOPS (see Fig-
ure 10 and 12) because of PCR’s high vector hardware utilization.
We should note that the comparison of the computation rate and
sustained bandwidth help us understand the interaction between
algorithms and GPU architecture and the algorithms’ efficiency
on GPU, but cannot serve as a measure to compare the perfor-
mance of algorithms, because different algorithms may have differ-
ent complexity in memory access and computation. For example,
CR achieves a lower computation rate, but it also performs fewer
computations than PCR. In comparing the performance of different
algorithms, the only thing that matters is the final timing result.

5.3.3 Recursive Doubling

RD takes slightly more time than PCR. The average per-step time
of RD is similar to PCR but RD has two more step than PCR. Both
RD and PCR are free of bank conflicts. The shared memory access
time of RD is 1.6 times that of PCR (see Figure 12 and 14), which

0.109, 18%

0.019, 3%

Global memory access and matrix setup Scan Solution evaluation

Total time: 0.612

Each step avg:

0.054, 8.7%

9 steps total:

0.484, 79%

Figure 13. Time breakdown of RD for problem size 512x512.
Timings are in milliseconds.

0.109, 18%,

45.9 GB/s

0.262, 43%,

1095 GB/s

0.241, 39%,

186.7 GFLOPS

Global memory access Shared memory access Computation

Total time: 0.612

Figure 14. Time breakdown for RD in terms of global/shared
memory access and computation for problem size 512x512. Tim-
ings are in milliseconds.

follows from the fact that RD has twice as many shared memory
accesses as PCR (see Table 1). RD requires almost twice as many
floating point operations as PCR, but almost no divisions (see Table
1), which gives RD a computation time close to that of PCR, but
twice the computation rate of PCR (see Figure 12 and 14).

5.3.4 Hybrid CR+PCR

The hybrid CR+PCR solver takes 61% and 21% less time than CR
and PCR respectively for the problem size 512x512. There are two
reasons CR+PCR outperforms CR. First, because the intermediate
system is solved by PCR which only has a forward reduction phase,
CR+PCR has fewer steps and thus less control and synchronization
overhead. Second, because the intermediate system is a smaller
system of size 256 (plus PCR is free of bank conflicts), each step
takes less time than a step in CR’s forward reduction phase (see
Figure 8 and 15). The second reason also explains why CR+PCR
outperforms PCR. Although we add one CR forward reduction
step and one backward substitution step, the size of the remaining
(intermediate) system is reduced by half, and therefore takes almost
half of the time per step (see Figure 11 and 15).

As we add more CR steps, we see more overhead per CR step,
but with a smaller intermediate system. We experimented with
different sizes of intermediate systems and found that for size-512
systems, the hybrid solver performs best with size-256 intermediate
systems, as shown in Figure 17. The best switch point of size 256
is far larger than the warp size 32. This is because the switch
is beneficial not only in terms of the improved vector hardware
utilization and fewer steps to solve the intermediate system, but also
results in fewer bank conflicts and fewer total algorithmic steps,

0.104, 25%

0.06, 14%

0.009, 2%

0.023, 6%

0.026, 6%

Global memory access

CR: forward reduction

PCR: copy size-256

intermediate system

PCR: forward reduction

PCR: solve all 2-unknown

systems

CR: backward substitution

Total time: 0.422

Each step avg:

0.029, 6.8%

7 steps total:

0.200, 47%

Figure 15. Time breakdown of CR+PCR for problem size
512x512. Timings are in milliseconds.

0.104, 21%

0.039, 8%

0.069, 14%

0.023, 5%

0.018, 4%

0.024, 5%

0.032, 7%
Global memory access

CR: forward reduction

RD: copy size-128

intermediate system and

matrix setup
RD: scan

RD: soluction evaluation

CR: backward substitution

CR: backward substitution

Total time: 0.488

Each step avg:

0.026, 5.2%

7 steps total:

0.179, 37%

Figure 16. Time breakdown of CR+RD for problem size 512x512.
Timings are in milliseconds.

and thus less overhead of synchronization and control (the earlier
we switch to PCR/RD, the fewer total steps we have; see Table 1).

5.3.5 Hybrid CR+RD

The CR+RD solver is slightly slower than the CR+PCR solver.
The principle for improving performance is the same as for the
CR+PCR solver, and all the analysis in section 5.3.4 applies. One
difference is that the size of the intermediate systems is 128 instead
of 256 in the CR+PCR case, due to the limit of shared memory size.
Since the intermediate system is smaller, the average time per step
is even more reduced, at the cost of extra CR steps.

5.3.6 Summary

So far, we have analyzed and compared all five tridiagonal solvers
on the GPU. We used the differential method to measure and
analyze the time for each part of the algorithm, as well as the time
breakdown for memory access and computation. By doing so, we
have revealed the advantages and limitations of each algorithm. We
found that bank conflicts and control overhead associated with each
step are two factors critical to performance. To further improve the
performance, we used hybrid approaches to combine the benefits of
CR and PCR/RD. The hybrid solutions have fewer steps than CR,
less work per step than PCR/RD, no bank conflicts in solving the
intermediate system, and therefore the best performance.

We also found that the theoretical peak computing power is
hard to reach due to various factors including low vector hardware
utilization, bank conflicts, divisions, synchronizations, and time
to access shared memory. We noticed that being able to running
multiple CUDA blocks concurrently results in better performance,

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 32 64 128 256 512

CR+PCR CR+RD

Intermediate system size

Time (milliseconds)

(PCR/RD)(CR)

Figure 17. Timings for the hybrid solvers with various interme-
diate system sizes (problem size: 512x512). Endpoints mark non-
hybrid implementations; each point in the middle is a hybrid im-
plementation.

overflow overflow

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

GEP GE CR PCR CR+PCR RD CR+RD

Diagonally dominant Close values in a row

Residual

Figure 18. Accuracy comparison of CPU solvers (problem size:
512x512).

because the GPU can switch between blocks for better hardware
utilization.

In contrast to a traditional view that a GPU application is ei-
ther compute-bound or memory-bound, we found that the per-
formance of this particular family of GPU solvers depends on
all factors including global/shared memory access, bank conflicts,
algorithmic steps, and computational complexity. This motivates
a comprehensive performance analysis to reveal the factors that
have the most impact on performance, and then redesign the algo-
rithms/implementation correspondingly to minimize the total costs.
The right tradeoffs between these factors are important. For exam-
ple, the hybrid solvers add extra CR steps to PCR/RD, which intro-
duces bank conflicts and control overhead, but reduce the overall
amount of work and improve the hardware utilization, which re-
sults in better overall performance.

Instead of manually measuring the each factor’s impact on over-
all performance as we have done, we see a future need to develop
automatic methodologies and tools to perform performance evalu-
ation and give programmers prioritized tasks for optimizations. We
are unaware of any such of research on a GPU. In the multi-core
computing domain, Williams et al. developed a model that gives
programmers guidance for optimization [33], and we are currently
investigating GPU-specific models that would aid in such analysis.

5.4 Accuracy Experiments

The numerical instabilities of algorithms come from multiple
sources including round-off errors, arithmetic overflow, and ill-
conditioned problems. All GPU solvers in this work do not include
pivoting; therefore they might fail for a general tridiagonal ma-

trix. The cyclic reduction algorithm is stable without pivoting for
diagonally dominant matrices or symmetric and positive definite
matrices [21]. Recursive doubling is stable for diagonally domi-
nant matrices plus other conditions [9].

In our experiments, we found that for the systems of size larger
than 64, RD favors matrices with close values in rows (thus not di-
agonally dominant), otherwise it might overflow. This is because
during RD’s matrix setup phase, the close values in rows generate
matrices with elements close to 1, which help to prevent the over-
flow of the matrix chain multiplication in RD’s scan phase.

We compare the accuracy of the CPU and GPU solvers by
checking the residual of the solution, i.e., ‖Ax−b‖. We use two sets
of experiments. The first set uses diagonally dominant matrices that
arise from fluid simulation [20], and the second set uses random
matrices with close values in all rows. All CPU and GPU solvers
use single-precision floating point arithmetic.

Figure 18 shows the results of the accuracy experiments. For the
diagonally dominant case, the GPU solvers CR, PCR and CR+PCR
all show good accuracy, while RD and PCR+RD suffer from arith-
metic overflow. One remedy for overflow is to scale the results of
matrix chain multiplication if large numbers are detected, but this
method introduces a considerable amount of control overhead. For
matrices with close values in rows, since the matrices could be
non-diagonally-dominant, the CR, PCR and CR+PCR solvers all
achieve worse accuracy; RD and CR+RD do not achieve good ac-
curacy either but survive from overflow. GEP always has the best
accuracy because it has pivoting. One future work to improve ac-
curacy for the GPU solvers is to incorporate pivoting into these
parallel algorithms.

6. Conclusion

In conclusion, we have studied five tridiagonal solvers that run on
a GPU based on three algorithms, CR, PCR and RD. We develop
an approach to measure, analyze and improve the performance of
GPU programs in terms of memory access, computation and con-
trol overhead. By applying this approach to our GPU tridiagonal
solvers, we show that hybrid algorithms have the best performance,
and why. For solving 512 512-unknown systems, the hybrid solvers
achieve a 12.5x speedup over the multi-threaded CPU solver, and
a 28x speedup over the LAPACK solver. We recommend that the
GPU solvers should be used as a part of a larger GPU applica-
tion to amortize the PCI-Express transfer cost. Our cyclic reduc-
tion solvers are within an order of magnitude of the error of the
LAPACK solver for diagonally dominant matrices, while recursive
doubling solvers are prone to arithmetic overflow.

We performed detailed benchmarks and analysis to understand
the interaction between the GPU architecture and the algorithms’
memory access pattern, step count, and computational complexity.
We found that an algorithm’s performance is not bottlenecked by a
particular source, but limited by a composition of multiple factors
including global/shared memory access, bank conflicts, and com-
putation, synchronization and control overhead. We also showed
how hybrid solutions can achieve better performance by optimiz-
ing these factors.

We see several future research directions: (1) generalize the
solvers for block tridiagonal matrices, (2) incorporate a pivoting
strategy to GPU-based tridiagonal solvers for numerical stability,
and (3) develop tools that can automatically measure various algo-
rithm characteristics’ impact on performance, and thus help pro-
grammers to optimize their GPU applications.

Acknowledgments

Thanks to Dominik Göddeke and Rajesh Bordawekar for their
helpful comments on our paper draft. Thanks to Shubho Sengupta
for the discussions on efficient GPU implementation of the recur-
sive doubling algorithm. Thanks also to our funding agencies, the
HP Labs Innovation Research Program, the National Science Foun-
dation (Award 0541448), and the SciDAC Institute for Ultrascale
Visualization, and to NVIDIA for equipment donations.

References

[1] General-purpose computation using graphics hardware.
http://www.gpgpu.org/.

[2] NVIDIA CUDA compute unified device architecture, pro-
gramming guide, 2009. Version 2.0.

[3] S. Allmann, T. Rauber, and G. Runger. Cyclic reduction
on distributed shared memory machines. Euromicro Confer-
ence on Parallel, Distributed, and Network-Based Processing,
pages 290–297, 2001.

[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK: A portable linear algebra library for
high-performance computers. In Proceedings of Supercom-
puting ’90, pages 2–11. IEEE Computer Society Press, 1990.

[5] G. E. Blelloch. Prefix sums and their applications. Tech-
nical Report CMU-CS-90-190, School of Computer Science,
Carnegie Mellon University, Nov. 1990.

[6] B. L. Buzbee, G. H. Golub, and C. W. Nielson. On direct
methods for solving Poisson’s equations. SIAM Journal on
Numerical Analysis, 7(4):627–656, 1970.

[7] J.-J. Climent, C. Perea, L. Tortosa, and A. Zamora. An over-
lapped two-way method for solving tridiagonal linear systems
in a bsp computer. Applied Mathematics and Computation,
161(2):475–500, 2005.

[8] Y. Dotsenko, N. K. Govindaraju, P.-P. J. Sloan, C. Boyd, and
J. Manferdelli. Fast scan algorithms on graphics processors.
In Proceedings of the 22nd Annual International Conference
on Supercomputing, pages 205–213. ACM, June 2008.

[9] P. Dubois and G. Rodrigue. An analysis of the recursive
doubling algorithm. In D. Kuck, D. Lawrie, and A. Sameh,
editors, High Speed Computer and Algorithm Organization,
pages 299–305. Academic Press, New York, NY, 1977.

[10] Ö. Eǧecioǧlu, C. K. Koc, and A. J. Laub. A recursive dou-
bling algorithm for solution of tridiagonal systems on hyper-
cube multiprocessors. Journal of Computational and Applied
Mathematics, 27:95–108, 1989.

[11] D. Göddeke and R. Strzodka. Accurate mixed-precision GPU-
multigrid solvers on anisotropic grids. Submitted to IEEE
Transactions on Parallel and Distributed Systems, Special
Issue: High Performance Computing with Accelerators.

[12] A. Greenbaum. Iterative Methods for Solving Linear Systems.
SIAM, Philadelphia, 1997.

[13] G. R. Halliwell. Evaluation of vertical coordinate and vertical
mixing algorithms in the HYbrid-Coordinate Ocean Model
(HYCOM). Ocean Modelling, 7:285–322, 2004.

[14] W. D. Hillis and G. L. Steele Jr. Data parallel algorithms.
Communications of the ACM, 29(12):1170–1183, Dec. 1986.

[15] C. T. Ho and S. L. Johnsson. Optimizing tridiagonal solvers
for alternating direction methods on boolean cube multipro-

cessors. SIAM Journal of Scientific and Statistical Computing,
11(3):563–592, 1990.

[16] R. W. Hockney. A fast direct solution of Poisson’s equation
using Fourier analysis. Journal of the ACM, 12(1):95–113,
Jan. 1965.

[17] R. W. Hockney and C. R. Jesshope. Parallel Computers.
Adam Hilger, Bristol, 1981.

[18] Y. Huang and W. F. McColl. Two-way BSP algorithm for
tridiagonal systems. Future Generation Computer Systems,
13:337–347, Mar. 1998.

[19] M. Kass, A. Lefohn, and J. D. Owens. Interactive depth of
field using simulated diffusion. Technical Report 06-01, Pixar
Animation Studios, Jan. 2006.

[20] M. Kass and G. Miller. Rapid, stable fluid dynamics for
computer graphics. In Computer Graphics (Proceedings of
SIGGRAPH 90), pages 49–57, Aug. 1990.

[21] J. J. Lambiotte and R. G. Voigt. The solution of tridiagonal
linear systems on the CDC STAR-100 computer. ACM Trans.
Math. Software, 1(4):308–329, 1975.

[22] S. M. Müller and D. Sheerer. A method to parallelize tridiag-
onal solvers. Parallel Computing, 17:181–188, 1991.

[23] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
parallel programming with CUDA. ACM Queue: Tomorrow’s
Computing Today, 6(2):40–53, Mar. 2008.

[24] M. Prieto, R. Santiago, D. Espadas, I. M. Llorente, and
F. Tirado. Parallel multigrid for anisotropic elliptic equations.
J. Parallel Distrib. Comput., 61(1):96–114, 2001.

[25] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
primitives for GPU computing. In Graphics Hardware 2007,
pages 97–106, Aug. 2007.

[26] S. Sengupta, A. E. Lefohn, and J. D. Owens. A work-efficient
step-efficient prefix sum algorithm. In Proceedings of the
2006 Workshop on Edge Computing Using New Commodity
Architectures, pages D–26–27, May 2006.

[27] H. S. Stone. An efficient parallel algorithm for the solution of
a tridiagonal linear system of equations. Journal of the ACM,
20(1):27–38, Jan. 1973.

[28] X.-H. Sun, H. Zhang, and L. M. Ni. Efficient tridiagonal
solvers on multicomputers. IEEE Transactions on Computers,
C-41(3):286–296, Mar. 1992.

[29] X.-H. Sun and W. Zhang. A parallel two-level hybrid method
for tridiagonal systems and its application to fast Poisson
solvers. IEEE Transactions on Parallel and Distributed Sys-
tems, PDS-15(2):97–106, Feb. 2004.

[30] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, page 31 (11pp), Nov. 2008.

[31] V. Volkov and J. W. Demmel. Using GPUs to accelerate the
bisection algorithm for finding eigenvalues of symmetric tridi-
agonal matrices. LAPACK Working Note 197, Department of
Computer Science, University of Tennessee, Knoxville, Jan.
2008.

[32] H. H. Wang. A parallel method for tridiagonal equations.
ACM Trans. Math. Software, 7:170–183, 1981.

[33] S. Williams, A. Waterman, and D. Patterson. Roofline: an in-
sightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, 2009.

