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Fast TV Regularization for 2D Maximum
Penalized Likelihood Estimation

George O. MOHLER, Andrea L. BERTOZZI,
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Total Variation-based regularization, well established for image processing applica-

tions such as denoising, was recently introduced for Maximum Penalized Likelihood

Estimation (MPLE) as an effective way to estimate nonsmooth probability densities.

While the estimates show promise for a variety of applications, the nonlinearity of the

regularization leads to computational challenges, especially in multidimensions. In this

article we present a numerical methodology, based upon the Split Bregman L1 mini-

mization technique, that overcomes these challenges, allowing for the fast and accurate

computation of 2D TV-based MPLE. We test the methodology with several examples,

including V-fold cross-validation with large 2D datasets, and highlight the application

of TV-based MPLE to point process crime modeling. The proposed algorithm is im-

plemented as the Matlab function TVMPLE. The Matlab (mex) code and datasets for

examples and simulations are available as online supplements.

Key Words: Crime; Density estimation; Spatial point process; Split Bregman mini-

mization; Total Variation.

1. INTRODUCTION

We consider the following problem, referred to as density estimation, in this article:

given an iid sample y1,y2, . . . ,yN ∈ R
d with common probability density u(x),x ∈ R

d ,

construct from the sample an estimate û of the unknown density u. Maximum Penalized

Likelihood Estimation (MPLE) provides a general framework for constructing such an

estimate, in which a regularized version of the log-likelihood function is maximized:

û(x) = argmax
v(x)≥0,‖v‖1=1

{

N
∑

i=1

log(v(yi)) − αR(v)

}

. (1.1)
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The first term on the right of (1.1) is the log-likelihood function and the second term is

introduced to enforce the probability density estimate to possess regularity (Eggermont and

LaRiccia 2001). While a variety of penalty functionals R(v) have appeared in the literature

(for a review of MPLE see Eggermont and LaRiccia 2001), many standard methods of both

MPLE and non-MPLE type perform poorly when the underlying probability density of the

data has sharp gradients (Sardy and Tseng 2006).

To improve estimates in the case of nonsmooth densities, Koenker and Mizera (2006)

and Sardy and Tseng (2006) proposed taking the penalty to be the Total Variation (TV) of

the density,

û(x) = argmax
v(x)≥0,‖v‖1=1

{

N
∑

i=1

log(v(yi)) − α

∫

|∇v(x)|dx

}

. (1.2)

In the work of Sardy and Tseng (2006), the estimate given by (1.2) was shown to outper-

form estimators such as the taut string (Davies and Kovac 2004), logspline (Kooperberg

and Stone 2002), and rectangular kernel with global bandwidth (Sheather and Jones 1991)

for a variety of nonsmooth target densities. However, the results in the work of Sardy

and Tseng (2006) are for single-variable probability densities and, in the multidimensional

setting, the efficient solution of the optimization problem on the right side of (1.2) is non-

trivial.

Similar types of optimization problems arise in image processing and a number of com-

putational methods have been developed for their solution. For example, the Rudin–Osher–

Fatemi (ROF) model,

û(x) = argmin
v(x)

{

μ

2

∫

(f (x) − v(x))2 dx +

∫

|∇v(x)|dx

}

, (1.3)

constructs the denoised estimate û(x) of u(x) from an observed noisy image f (x) =

u(x) + ξ (Rudin, Osher, and Fatemi 1992). Here the noise ξ is assumed to be Gaussian,

though similar models can be constructed for other types of noise (Le, Chartrand, and

Asake 2007). There is a large body of literature on techniques for solving (1.3) and many

of the techniques approach the problem by either solving a regularized form of (1.3) di-

rectly, or by attacking the differentiable dual formulation of the problem, which requires

the enforcement of linear inequality constraints and may require the solution of nonlinear

equations.

In this article we present a novel computational method for the fast solution of (1.2)

in d = 2 spatial dimensions based upon a Split Bregman method developed for image

processing applications in the article by Goldstein and Osher (2009). The method is

straightforward to implement and solves (1.2) quickly, in O(n2) operations where n2 is

the number of grid points in the discretization of the spatial domain. Thus computation-

ally intensive parameter selection techniques such as V-fold cross-validation are feasible,

even for larger values of V when (1.2) must be solved hundreds or thousands of times.

The organization of the article is as follows: In Section 2, we review the Split Bregman

methodology as a general technique for L1 minimization. In Section 3, we formulate the

methodology for TV-based MPLE, using a spatially discretized approximation in place of
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(1.2). In Section 4, we illustrate the efficiency of the Split Bregman method, as well as the

potential benefits of TV-based MPLE in the context of crime modeling.

1.1 NOTATION

In our discussion of discrete optimization problems, we employ the following “vector

norm” notation to avoid cumbersome summation. Consider a grid function vi,j defined at

grid points (i, j) in some rectangular domain �. Here we assume for simplicity that � has

grid spacing �x = �y = 1. We shall use the following norm and inner product notations:

‖v‖1 =
∑

(i,j)∈�

∣

∣v(i,j)

∣

∣, ‖v‖2
2 =

∑

(i,j)∈�

∣

∣v(i,j)

∣

∣

2
.

We will also use “∇” to denote the first-order discrete gradient operator and BV norms as

follows:

(∇v)i,j = (vi+1,j − vi,j , vi,j+1 − vi,j ), ‖∇v‖1 =
∑

(i,j)∈�

|(∇v)i,j |.

In some circumstances, we wish to consider grid functions that are vector-valued at each

pixel. For the sake of clarity, we shall use the “arrow” superscript to denote such vector-

valued quantities. For example, we may write �d = ∇v to emphasize that the value of �d at

each grid location is an ordered pair.

2. THE SPLIT BREGMAN METHOD: A GENERAL L1

MINIMIZATION TECHNIQUE

The Split Bregman method (Goldstein and Osher 2009) is a technique for solving gen-

eral L1-regularized problems of the form

argmin
v

{‖�v‖1 + H(v)}, (2.1)

where v ∈ Rn, � :Rn → Rm is a linear operator, and H(·) :Rn → R is convex. For exam-

ple, choosing � = ∇ and H(v) = μ
2
‖v − f ‖2

2 yields the ROF model.

This Split Bregman method has the advantage that it does not require regularization,

continuation, or the enforcement of inequality constraints (Goldstein and Osher 2009).

Furthermore, the technique has been shown to be an extremely efficient solver for L1-

regularized denoising problems, as well as a large class of problems from compressed

sensing.

The Split Bregman method works by “decoupling” the L1 and L2 terms in (2.1), using

a splitting originally introduced by Yin et al. (2008b). When we introduce the auxiliary

variable �d ← �v, the problem (2.1) becomes

argmin
v

{‖ �d‖1 + H(v)} such that �d = �v. (2.2)

For example, if we choose � = ∇ , where v is a two-dimensional array, then �d = (dx, dy) =

∇v. To solve this constrained problem, we convert it to an unconstrained problem using a
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quadratic penalty function:

argmin
v, �d

{

‖ �d‖1 + H(v) +
λ

2
‖ �d − �v‖2

2

}

. (2.3)

This formulation of the problem is advantageous because the unconstrained prob-

lem (2.3) can be solved using a simple alternating minimization scheme (Yin et al. 2008b;

Goldstein and Osher 2009). The first step of this alternating scheme is to minimize with

respect to v. When H(·) is differentiable, this can usually be done directly by solving a

system of equations, or else an approximate solver (such as Gauss–Seidel) can be used to

obtain an approximate solution. We next minimize (2.3) with respect to �d . This optimiza-

tion problem is element-wise decoupled, and the solution can be written explicitly as

�d∗ = shrink(�v,1/λ), (2.4)

where

shrink(�z,λ)i = max{‖zi‖2 − λ,0}
�zi

‖zi‖2
.

Note that the quadratic penalty function in (2.3) only approximately enforces the con-

straint �d = �v. We wish to enforce this constraint exactly. A standard approach to this

problem is to use a continuation scheme: solve (2.3) with an increasing sequence of penalty

parameters, λ1 < λ2 < · · · < λn. Unfortunately, for large values of λ, minimization with re-

spect to v in (2.3) becomes ill-conditioned and the alternating minimization scheme stalls.

To avoid these difficulties, the Split Bregman approach uses a fixed value for λ, and

enforces the constraint �d = �v using a Bregman iteration technique (Goldstein and Osher

2009). For a detailed discussion of this approach, we refer the reader to the works of Chang,

He, and Fang (2006), Osher et al. (2005), and Yin et al. (2008a). An in-depth description

of the application of this technique to the Split Bregman method can be found in the article

by Goldstein and Osher (2009).

To apply Bregman iteration to problem (2.3), we add a vector, �bk , inside of the quadratic

penalty function. We then solve a sequence of unconstrained problems defined by

(ûk, �dk) = argmin
v, �d

{

‖ �d‖1 + H(v) +
λ

2
‖ �d − �v − �bk−1‖2

2

}

, (2.5)

�bk = �bk−1 + �ûk − �dk. (2.6)

After the alternating minimization scheme approximately solves each unconstrained prob-

lem, the Bregman vector is updated using the rule (2.6). This rule is the analog of the

“adding back the noise” technique, which has been used to enhance image denoising (Os-

her et al. 2005). When the minimization (2.5) is (approximately) solved with one iteration

of alternating minimization, this scheme becomes

ûk = argmin
v

{

H(v) +
λ

2
‖ �dk−1 − �v − �bk−1‖2

2

}

, (2.7)

�dk = shrink(�ûk + �bk−1,1/λ), (2.8)

�bk = �bk−1 + �ûk − �dk. (2.9)
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In the articles by Goldstein and Osher (2009) and Osher et al. (2005), it is shown that

(under sufficient assumptions) this algorithm converges in the sense that, as k → ∞, we

have ‖ �dk − �ûk‖2 → 0 and ‖ûk − û‖2 → 0 where û is some solution to (2.1).

3. SPLIT BREGMAN IN THE CONTEXT OF TV-BASED MPLE

For our purposes, we wish to solve a discretized problem of the form

argmin
v≥0

{‖∇v‖1 + μh(v)} such that
∑

i,j

vi,j = 1, (3.1)

where h(v) = −
∑

i,j wi,j log(vi,j ) and wij is the point count in bin (i, j) of the spatial

discretization. To apply the Split Bregman method, we begin by introducing the auxiliary

variable �d ← ∇v, and adding the corresponding quadratic penalty function as is done in

(2.3). However, unlike the formulation (2.3), we have an additional equality constraint

because the function v must integrate to unity. To eliminate this constraint, we add an

additional quadratic penalty function to get

argmin
v≥0, �d

{

‖ �d‖1 + μh(v) +
λ

2
‖ �d − ∇v‖2

2 + γ

(

1 −
∑

i,j

vi,j

)2}

, (3.2)

where λ and γ are positive constants.

To enforce the equality constraints exactly, we add “Bregman vectors” inside of the

penalty functions. These vectors are updated after each unconstrained minimization prob-

lem is (approximately) solved. The resulting formulation is

(ûk, �dk) = argmin
v≥0, �d

{

‖ �d‖1 + μh(v) (3.3)

+
λ

2
‖ �d − ∇v − �bk−1‖2

2 + γ

(

1 −
∑

i,j

vi,j − bk−1
1

)2}

, (3.4)

�bk = �bk−1 + �ûk − �dk, (3.5)

bk
1 = bk−1

1 +
∑

i,j

ûk
i,j − 1. (3.6)

All that remains is to describe the solution of the unconstrained optimization problem

(3.3)–(3.4). Note that only an approximate solution needs to be computed at each step.

We approximately solve this minimization problem using one iteration of the alternating

scheme described above. To minimize with respect to �d , we use the explicit formula (2.4).

To compute an approximate minimizer with respect to v, we use one sweep of element-

wise descent. To derive the element-wise descent formula, we begin by computing the first

variation of (3.3) with respect to v. The resulting optimality condition for vi,j is

−
μwi,j

vi,j

− λ�vi,j + λ(∇T �bi,j − ∇T �di,j ) + γ
(

∑

vi,j + b1 − 1
)

= 0. (3.7)
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This equation simplifies to a quadratic equation in vi,j , which can be written component-

wise as

(4λ + γ )v2
i,j − αi,jvi,j − μwi,j = 0, (3.8)

where

αi,j = λ(vi+1,j + vi−1,j + vi,j+1 + vi,j−1) (3.9)

+ λ(dx,i−1,j − dx,i−1,j + dy,i,j−1 − dy,i,j ) (3.10)

+ λ(bk
x,i−1,j − bk

x,i−1,j − bk
y,i,j−1 + bk

y,i,j ) (3.11)

+ γ

(

1 − bk
1 −

∑

(i′,j ′)�=(i,j)

vi′,j ′

)

. (3.12)

Element-wise minimization is performed by solving this equation at each grid point, and

then selecting the positive root. Note that the energy (3.3)–(3.4) is convex with respect to

vi,j for vi,j > 0. It follows that (3.8) will always have a unique nonnegative root.

Minimization of (3.1) with Dirichlet boundary conditions is accomplished by apply-

ing the element-wise minimization formula (3.8) only to interior grid points. To achieve

Neumann boundary conditions, we use a slight modification of (3.8). We first adopt the

convention that vi,j = di,j = bi,j = 0 whenever the point (i, j) does not lie in the grid

domain. We also replace the coefficient (4λ + γ ) in (3.8) with the coefficient (βi,jλ + γ )

where βi,j is the number of grid points in the set {(i +1, j), (i −1, j), (i, j +1), (i, j −1)}

that lie in the grid domain.

The choice of parameters λ and γ has a significant impact on the convergence rate

of the algorithm. It is desirable to choose large values for these parameters in order to

strongly enforce the equality constraints. On the other hand, assigning large values to these

parameters may make the optimization problem (3.7) ill-conditioned, and slows down the

iterative solver. A simple rule for setting these parameters is derived by considering the

linearization of (3.7):

(

μwi,j

v2
i,j

− λ�

)

vi,j + γ
(

∑

vi,j + b1 − 1
)

= λ(∇T �di,j − ∇T �bi,j ). (3.13)

Note that the first term in the linearization, μwi,j/v
2
i,j , contributes only to the diagonal

of the system. To guarantee that the problem (3.7) remains well-conditioned, we choose λ

and γ such that the sum of the magnitudes of the off-diagonal terms in the system (3.13)

remains comparable to this diagonal term. For an n × n problem, we expect elements of

v to be O(n−2) (because they sum to unity). We therefore expect the magnitude of the

leftmost, diagonal term in the linear system (3.13) to be O(n4μ). The second term in

(3.13), −λ�v, makes an O(λ) contribution of the off-diagonal terms, and so we must

choose λ = O(μn4). The third term involves a summation over all values of v, and makes

an O(γn2) contribution to the off-diagonal terms, and so we must choose γ = O(μn2).

Empirically, we have found that choosing λ = 2μn4 and γ = 2μn2 works well.
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4. RESULTS

We first test the Split Bregman method using the Weighted Uniform target density

plotted in Figure 1. The target density u(x),x ∈ [0,1] × [0,1], takes on three values,

u = 2.6060 (square region), u = 0.7818 (outer region), and u = 0 (circular region), and

has jump discontinuities across the boundaries separating the three regions.

We discretize the 2D spatial region using a 128 × 128 resolution and estimate the target

density using 10-fold cross-validation (Sardy and Tseng 2006) for sample sizes of 1000,

4000, and 16,000 points. Letting ûk denote the Split Bregman estimate of u at step k, we

iterate the Split Bregman method until the stopping criterion,

‖ûk+1 − ûk‖2 + ‖bk+1 − bk‖2 + ‖bk+1
1 − bk

1‖2 ≤ tol, (4.1)

is reached. During cross-validation, we use the strictly positive approximate estimate, ûǫ =

(1 − ǫ)û + ǫ, where ǫ is a small constant. The reason for this adjustment is that û takes on

zero values in the circular region and we find that a small number of isolated points near the

boundary of the region dominate the log-likelihood function and result in oversmoothed

estimates. In this example we take ǫ = 10−12 and find the oversmoothing to be greatly

reduced.

In Table 1, we list the Mean Integrated Squared Error (MISE), E[
∫

(u(x)− ûǫ(x))2 dx],

along with the average runtime per sample to complete cross-validation and the average

runtime of the Split Bregman method. Using a simple bisection method to find the optimal

value of the smoothing parameter, the cross-validation typically requires around 25 para-

meter values to be evaluated. Since we use 10-fold cross-validation, 10 Split Bregman calls

are required per parameter value; however, cross-validation only takes 1–2 min per sample

due to the efficiency of the Split Bregman method. Because the grid size is fixed, we actu-

ally observe a decrease in the runtime for larger sample sizes due to improved conditioning

in the element-wise descent step given by (3.8). For all examples the parameter estimation

routines are implemented in MATLAB and the Split Bregman routine is implemented in C

(and called from MATLAB).

We point out that using a fast method such as Split Bregman is essential if cross-

validation is to be feasible. For example, a classical optimization method such as gradient

descent (Rudin, Osher, and Fatemi 1992) with the regularization ‖∇v‖1 ←
√

(∇v)2 + β2

(Acar and Vogel 1994) is appealing for the minimization of (1.2), as it is straightforward

Figure 1. Left: Contour plot of 2D target density. Middle: Sample size of 1000 points from the target density.

Right: Contour plot of the Split Bregman estimate with smoothing parameter selected using hand and eye.
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Table 1. Computational results for the Split Bregman method.

# of points MISE ± SE Avg. runtime/CV Avg. runtime/SB

1000 0.140 ± 0.004 113.86 sec 0.45 sec

4000 0.103 ± 0.003 63.98 sec 0.26 sec

16,000 0.057 ± 0.001 58.47 sec 0.23 sec

to implement. However, we find that the minimization requires several minutes using such

an approach and thus cross-validation, where (1.2) needs to be solved hundreds of times,

would take hours or days.

In Figure 2, we compare contour plots of the Split Bregman method, fixed bandwidth

Gaussian kernel smoothing, and the average shifted histogram method (Scott 1992) applied

to sample sizes of 1000, 4000, and 16,000 points from the target density. For the average

shifted histogram we use a biweight kernel (Scott 1992) for the weight distribution. Kernel

density estimation (Silverman 1986) is often used for spatial density estimation in fields

such as seismology and ecology and has the advantage that it is straightforward to im-

plement (though the method can have high computational cost for large datasets). Similar

estimates are obtained using the average shifted histogram, which can be viewed as an ap-

proximation to kernel density estimation. The advantage of such a method, however, is that

the computational cost scales linearly with the size of the data.

In Figures 1 and 2, the Split Bregman method is able to resolve the sharp gradients

of the target density, whereas the kernel density estimate and average shifted histogram

(also obtained through 10-fold CV) oversmooth in these regions. We note that the Split

Bregman estimate is moderately noisy for low point counts, but this is due in part to the

parameter selection process. For instance, we can obtain better qualitative results for lower

point counts if the parameter is selected by hand and eye (see Figure 1). As the number of

points in the sample increases, the noise disappears from the Split Bregman estimates and

the method is able to capture both the sharp gradients and the flat regions quite well (see

Figure 2).

TV-BASED MPLE AND CRIME MODELING

Next we highlight an application of the Split Bregman method using residential burglary

data collected by the Los Angeles Police Department for the years 2004–2005 within an

18 km × 18 km region of the San Fernando Valley in Los Angeles (see Figure 3). The data

consist of the spatial location where the crime occurred (geocoded from the residential

address) as well as a time window in which the crime occurred (typically a several-hour

window, for instance the time a victim was at work and the house was unoccupied).

Criminological research suggests that victims of personal or property crimes are more

likely to be victimized in the near future (see Farrell and Pease 2007; Short et al. 2009)

and in the case of residential burglary, evidence indicates that this elevated risk spreads to

neighboring houses as well (Johnson et al. 2007). One explanation of this phenomenon is

that burglars will often return to the same house, or a neighboring house, shortly after a

burglary and commit another offense.
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Figure 2. Top row: Sample sizes of 1000, 4000, and 16,000 points from the target density. Second row: Contour

plots of the Split Bregman estimate obtained through 10-fold CV. Third row: Contour plots of the Gaussian

kernel estimate obtained through 10-fold CV. Fourth row: Contour plots of the average shifted histogram estimate

obtained through 10-fold CV.

In the work of Mohler et al. (2008), a 2D self-exciting point process N(t, x, y) is used

to model this type of behavior, where the conditional intensity of N is given by

λ(t, x, y) = μ(x, y) +

∫ t

t0

∫

x′

∫

y′
ν(t − t ′, x − x′, y − y′) dN(t ′, x′, y′). (4.2)

The first term μ represents the intensity of background events, independent of previous

events, and the second term models the intensity of offspring events triggered by either the

background events or other offspring.

One method for estimating μ is to assume μ = μ · u where u is a probability density

estimated from the spatial coordinates of the data. The time interval of the data can then
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Figure 3. Spatial distribution of residential burglaries occurring during 2004 in an 18 km×18 km region of the

San Fernando Valley in Los Angeles.

be split into two intervals and one can maximize the log-likelihood function over the more

recent data while constructing the density from the older data (Peng, Schoenberg, and

Woods 2005). We apply this methodology to the burglary data, fitting u to the data from

2004 and maximizing the log-likelihood function over the 2005 data in order to choose

an optimal smoothing parameter. Similarly to the previous example, we take ǫ = 10−3 in

order to prevent a small number of isolated points from dominating the likelihood function.

We point out that μ is typically estimated concurrently with the kernel ν; however, for

simplicity we take ν = 0 in this example. In Figure 4, we display contour plots of the Split

Bregman estimate of the density of burglaries, a Gaussian kernel estimate, and average

shifted histogram estimate for comparison.

Similar types of self-exciting models are used in seismology to describe the distribution

of earthquake aftershocks (Ogata 1998) and standard methods for estimating the back-

ground intensity μ include spline, kernel smoothing, and Voronoi estimation (Silverman

1986; Ogata and Katsura 1988; Okabe et al. 2000). In the case of crime, however, sharp

gradients in μ need to be accounted for due to the specific structure of cities. For example,

in Figure 3 sharp boundaries exist between residential areas (where the points are distrib-

uted), commercial areas (upper middle region), and public parks (lower middle and bottom

regions). While a method such as kernel smoothing may provide a good fit according to a

measure like the Akaike Information Criterion, if events are distributed in unrealistic re-

gions then forecasts based on the method may be met with skepticism by police and other

practitioners. Thus we believe TV-based MPLE may be a good alternative to standard

methods for the purpose of point process crime modeling, as it can be seen in Figure 4 that

the method is able to resolve the sharp boundaries in the crime data, while away from the

boundaries undersmoothing is kept relatively low. The Gaussian kernel density estimate

and average shifted histogram, by comparison, oversmooth the density into the middle and

lower regions where crime cannot occur.
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Figure 4. Top left: A contour plot of the Split Bregman estimate of the spatial density of residential burglaries

on a logarithmic scale. Top right: A contour plot of a Gaussian kernel estimate of the spatial density of residential

burglaries on a logarithmic scale. Bottom: A contour plot of an average shifted histogram estimate of the spatial

density of residential burglaries on a logarithmic scale.

5. CONCLUDING REMARKS

We presented an efficient computational methodology for Maximum Penalized Likeli-

hood Estimation when the penalty is chosen as the Total Variation of the estimate, with

applications to the estimation of nonsmooth 2D probability densities. The method allows

for the fast approximation of TV-based MPLE on standard 2D grids, even for large sample

sizes and computationally intensive parameter selection procedures.

In the future it may be of interest to consider other regularizations for MPLE along the

lines of the Total Variation penalty. A number of extensions to (1.3) have been proposed

in the image processing literature, for example, choosing the smoothing parameter to be

spatially dependent. Whereas variable bandwidth kernel estimates can improve upon fixed

bandwidth estimates, this may also be the case for TV-based MPLE.

Other classical statistical problems, such as multivariate regression, may also be ap-

proached using techniques similar to those developed in this article. In cases where a given

dataset exhibits sharp peaks or jump discontinuities, Maximum Penalized Likelihood Re-

gression with a Total Variation penalty may outperform standard regression techniques.
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Last, we believe that TV-based MPLE will find wide application in the point process

modeling of crime. Further studies in this area will focus on the incorporation of back-

ground intensity estimates obtained through TV-based MPLE into the self-exciting point

process framework.

SUPPLEMENTAL MATERIALS

Matlab TVMPLE routine: The Matlab (mex) code “TVMPLE.c” and datasets used in

the first example are contained in the zip file TVMPLE.zip available online. Please

refer to the readme file for a description of how to compile and run the code and of the

datasets contained in the zip file. (TVMPLE.zip, zip archive)
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