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Abstract

To support large vocabulary handwriting recognition in
standard computer platforms, a fast algorithm for hidden
Markov model alignment is necessary. To address this prob-
lem, we propose a non–heuristic fast decoding algorithm
which is based on hidden Markov model representation of
characters. The decoding algorithm breaks up the compu-
tation of word likelihoods into two levels: state level and
character level. Given an observation sequence, the two
level decoding enables the reuse of character likelihoods to
decode all words in the lexicon, avoiding repeated compu-
tation of state sequences. In an 80,000–word recognition
task, the proposed decoding algorithm is about 15 times
faster than a conventional Viterbi algorithm, while main-
taining the same recognition accuracy.

1 Introduction

Considerable progress has been made in handwriting
recognition over the last few years [10]. Many systems
are already available, however they usually work on well–
defined application environments, such as ZIP code recog-
nition [1, 7, 9] and bankcheck processing [3, 4, 8], where a
number of constraints can be imposed to facilitate the recog-
nition task such as the restricted size of the vocabulary or the
reduced number of classes [5, 6, 10]. Most of the research

effort on handwriting recognition has primarily been in im-
proving recognition accuracy of such systems. The simple
extension of these techniques used in this small–scale but
complex problems to deal with large vocabularies is not ef-
ficient. While recognition rates as high as 90% are achieved
for vocabularies of hundreds of words, such an accuracy
drops to less than 80% for vocabularies of ten thousands of
words [5, 6]. The negative effects are also observed on the
recognition speed. While the recognition time is on the or-
der of tens of seconds for small vocabularies, it increases to
few minutes for very large vocabularies.

In order to be practically useful, large vocabulary hand-
writing recognition systems have to be efficient in their
usage of computational resources and deliver reasonable
recognition accuracy as well. Therefore, there are two ba-
sic problems in large vocabulary handwriting recognition:
recognition speed and recognition accuracy. Recognition
speed is defined as the time required to recognize an input
word and recognition accuracy is defined as the percentage
of input words correctly recognized among all input words
presented to the recognizer. However, these two aspects of
performance are in mutual conflict. It is relatively easy to
improve recognition speed while trading away some accu-
racy and vice versa.

Speed concerns are related to the decoding algorithms
as well as to the dimension of many parameters (vocabu-
lary size, models, length of the feature vector, etc) [5]. Dy-
namic programming (DP) methods are the search strategies



used more often in small and medium vocabulary applica-
tions. Although, calculating the probabilities in this manner
is computationally expensive, particularly with large mod-
els or long observation sequences. Other search techniques
such as A*, beam search, and multi–pass have not been used
widely in handwriting recognition. Because they are faster,
generally they are less accurate, providing sub–optimal so-
lutions [5]. Most of the techniques that have been used are
based on pruning mechanisms that attempt to reduce the
number of word hypotheses prior to the recognition [5].

The aim of this paper is to introduce a novel decoding
algorithm to speedup the recognition process while main-
taining the recognition accuracy. The idea is to take into
account the particularities of the architecture of the hidden
Markov models (HMM), feature extraction, segmentation
and lexicon–driven recognition to eliminate the repeated
computation steps and develop fast search strategies.

This paper is organized as follows. Section 2 presents
the modeling of characters by hidden Markov models. Sec-
tion 3 states the recognition problem and presents the fast
two–level HMM decoding algorithm. Section 4 presents
the experimental results of using the proposed algorithm in
the recognition of unconstrained handwritten words consid-
ering different sizes of vocabularies. The conclusions of the
paper are presented in the last section.

2 HMM Modeling

We assume that the front–end parameterization of the
recognition system provides high–level features in the form
of a sequence of observations. After a preprocessing step,
a segmentation–recognition strategy is used to loosely seg-
ment (oversegmented) words into sub–word units (charac-
ters or pseudo–characters). These sub–word units are mod-
eled in a probabilistic framework by elementary HMMs.
The sequence of segments obtained by the segmentation
process is transformed into a sequence of symbols by con-
sidering two sets of features where the first feature set is
based on global features, namely loops, ascenders, and de-
scenders and the second feature set is based on the analysis
of the bidimensional contour transition histogram of each
segment in the horizontal and vertical directions [2]. There
are also five segmentation features that try to reflect the way
segments are linked together.

We assume that observations are produced by transi-
tions rather than by states. The character models use dis-
crete HMMs where transitions with no output are also in-
corporated into the model. The compact notation isλ =
{A,A′, Π}, whereA = {az

ij} is the probability distribution
associated with transitions from statesi to statesj and at the
same time producing observation symbolz, A′ = {a′Φij } is
the probability distribution associated with null transitions
from statesi to statesj and at the same time producing null

observation symbolΦ, andΠ = {πi} is the initial state
distribution. Note thataz

ij anda′Φij obey the stochastic con-
straint:

N∑

j=1

[a′Φij +
M∑

z=1

az
ij ] = 1 i = 1, 2, . . . , N (1)

Considering a discrete symbol observation withM sym-
bols, a character HMM where the number of states is de-
noted asN , and a recognition vocabulary represented by
a lexiconL which containsV words in which the average
length isL characters, word models, denoted asλ̂, regarded
as a “super–HMM” can be built by the concatenation ofL
sub–word HMMs, i.e.:

λ̂ = λ1 ⊕ λ2 ⊕ . . .⊕ λl ⊕ . . .⊕ λL (2)

The goal of the training phase is to estimate the best pa-
rameter values of the character models, sayA andA′ for all
modelsλ, given a set of training examples and their associ-
ated word labels. Since the exact orthographic transcription
of each training word image is available, the word model,
denoted aŝλ, is made up of the concatenation of the appro-
priate character models (Equation 2), whereL is the number
of characters that form a word. In such a scheme, the final
state of an HMM becomes the initial state of the next one,
and so on. A variant of the Baum–Welch algorithm is used
for training in which the segments produced by the segmen-
tation algorithm need not be manually labeled [2].

3 Recognition

The basic problem in large vocabulary handwriting
recognition is given a word to recognize represented by a
sequence of observationsoT

1 = (o1o2 . . . oT ) whereT is the
number of observations in the sequence, and a recognition
vocabulary represented byL corresponding toV unique
words, find the wordw ∈ L that best matches to the in-
put pattern. The standard approach is to assume a simple
probabilistic model of handwriting production whereby a
specified word,w, produces an observation sequenceoT

1

with probability P (w|oT
1 ). The goal is then to decode the

word, based on the observation sequence, so that the de-
coded word has the maximuma posteriori (MAP) proba-
bility, i.e.:

ŵ 3 P (ŵ|oT
1 ) = max

w∈L
P (w|oT

1 ) (3)

The a posterioriprobability of a wordw can be rewritten
using Bayes’ rule:

P (ŵ|oT
1 ) = max

w∈L
P (oT

1 |w)P (w) (4)



whereP (w) is the prior probability of the word occurring,
which depends on the vocabulary used, and it is determined
by frequency counts in the training dataset. The way we
computeP (oT

1 |w) for large vocabularies is to build statis-
tical models for sub–word units (characters) in an HMM
framework, build up word models constrained to spellings
in a lexicon, and then evaluate the model probabilities via
standard concatenation methods. However, in HMM the
T–length observation sequenceoT

1 is connected to theL–
length character sequence via the state sequencesT

1 , then
we computeP (oT

1 |cL
1 ) as follows.

P (oT
1 |cL

1 ) = Σ
sT
1

P (oT
1 , sT

1 |cL
1 )

= Σ
sT
1

T

Π
t=1

P (ot, st+1|st, c
L
1 )

(5)

and applying the maximum approximation we obtain:

P (oT
1 |cL

1 ) = max
sT
1

T∏
t=1

P (ot, st+1|st, c
L
1 ) (6)

However, theP (oT
1 |cL

1 ) can also be computed as:

P (oT
1 |cL

1 ) = max
sT
1

L∏

l=1

T∏
e=1

T∏

b=1

P (oe
b, s

e
b|cl) (7)

whereP (oe
b, s

e
b|cl) corresponds to the likelihood of each in-

dividual character modelcl for each possible state sequence
starting at a given initial state (sI ) and ending at a given
final state (sF ) against each possible portion of the obser-
vation sequence delimited by a range of beginning obser-
vations1 ≤ b ≤ T and ending observations1 ≤ e ≤ T .
Figure 1 illustrates the decoding of a 3–state HMM and a
7–observation sequence.

The main advantage of using Equation 7 instead of Equa-
tion 6 in a lexicon–driven word recognition scheme is that
given an observation sequence, character likelihoods can be
computed once and reused further to compute the likeli-
hoods of all words in a lexicon with no loss of optimal-
ity. This reusability of character likelihoods is very inter-
esting in the case of large vocabularies and brings about a
fast recognition scheme.

3.1 The Fast Two–Level Decoding Algorithm

We have developed a novel algorithm that finds recur-
sively theP (oT

1 |cL
1 ) by computing Equation 7 and which

is namedfast two–level decoding algorithm(FTLDA). This
algorithm breaks up the computation into two levels. At the
first level character HMMs are decoded considering each
possible entry and exit point and the result (best state se-
quences and likelihoods) is stored in an array for further

use. At the second level words are decoded but reusing the
likelihoods pre–computed at the first level. So, only the
character boundaries are decoded without the necessity of
going through the HMM states.

3.1.1 First Level: Decoding of Character Models

The idea underneath the proposed search strategy lies in
avoiding repeated computation of state sequences of sub–
word HMMs. Given a set of sub–word modelsΥ =
{λ1, . . . , λm, . . . , λM} whereλm models character classes
(letters, digits, and symbols) and a sequence of observations
oT
1 , at the first level we evaluate the matching betweenoT

1

and eachλm. To do that, we assume that each character
HMM has only one initial state (or entry state) and only
one final state (or exit state) and we compute the best state
sequences between initial and final states, considering one
possible beginning frame at each time, which is denoted as
b, for all possible ending frames, which are denoted ase.
Furthermore, we store in an array the best state sequences
and likelihoods of all pairs of beginning and ending frames
(b, e). The complete decoding algorithm for finding the best
state sequences of each character HMM is presented as fol-
lows.

1. Initialization: for1 ≤ b ≤ T + 1, i = 1:

δb(1) = 1
ωb(1) = 0

δb(j) = max
1≤i≤N

[
δb(i)a′Φij

]

ωb(j) =arg max
1≤i≤N

[
δb(i)a′Φij

]
(8)

2. Recursion: forb ≤ t ≤ T + 1, 1 ≤ j ≤ N :

δt(j) = max
{

max
1≤i≤N

[
δt−1(i)a

ot−1
ij

]
; max
1≤i≤N

[
δt(i)a′Φij

]}

ωt(j) =





arg max
1≤i≤N

[
δt(i)a′Φij

]
if ij is null

arg max
1≤i≤N

[
δt−1(i)a

ot−1
ij

]
otherwise

ζt(j) =
{

1 if ij is null
0 otherwise

(9)
3. Termination: ifj = N :

e = t
χ(b, e) = δt(N)

q∗e = N
(10)

4. Path Backtracking: fort = e − 1, e − 2, . . . , b, q∗t is
determined recursively by:

q∗t = ωt+1(q∗t+1) (11)
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Figure 1. Decoding of a 3–state HMM for T=7, b=1, e=3,4,. . . ,7, sI=1, and sF =3. The resulting likeli-
hoods are χ(1, 3), χ(1, 4) . . . χ(1, 7).

However, a new variable that accounts for the presence
of null transitions, denoted asq′t is introduced. After com-
puting q∗t we have to check if the variableζ indicates the
presence of a null transition, that is,ζt(q∗t ) = 1. In such
a case, without decreasing the time indext, q′t is computed
as:

q′t = ωt(q∗t ) if ζt(q∗t ) = 1 (12)

Following the presence of a null transition during the
backtracking procedure, that isζt+1(q∗t+1) = 1, the com-
putation ofq∗t is modified slightly as follows (now with a
decrease in the time indext):

q∗t = ωt+1(q′t+1) if ζt+1(q∗t+1) = 1 (13)

So, the best state sequence denoted asε(b, e) will be
given by:

ε(b, e) = (q∗eq′eq
∗
e−1q

′
e−1 . . . q∗b+1q

′
b+1q

∗
b q′b) (14)

So, for a given observation sequenceoT
1 we end up with

M arrays that keep the best likelihoodsχ(b, e) and the best
state sequencesε(b, e). Doing that, the likelihoods of the
character models are totally independent of the context (the
word within the character may appear) and may be reused
unrestrictedly to decode all words in a lexicon.

3.1.2 Second Level: Decoding of Word Models

Considering our primary problem, that is to find the word
w ∈ L that best matches with the sequence of observa-
tionsoT

1 . Words are formed by the concatenation of single
character HMMs (Equation 2), but we no longer have ob-
servation sequences and character models but instead pre–
decoded character arraysχl(b, e) that hide the notion of ob-
servations and states.

The decoding of words is carried out from left to right
and since words have well–defined initial and terminations,

the initialization condition specifies that for the first char-
acter of the word represented by the arrayχ1(b, e) the only
valid entry point is atb = 1. Here we make use of the in-
dex l to denote the position of the character models within
a word, and now we can throw away the indexb and keep
only the paths for whicĥδt(l) is maximal. The complete
decoding algorithm for the second level is given as follows.

1. Initialization: for1 ≤ l ≤ L, 1 ≤ t ≤ T :

δ̂t(l) =





χ(1, t) if l = 1

max
1≤b≤T

[
δ̂b(l − 1)χ(b, t)

]
if 2 ≤ l ≤ L

ω̂t(l) =





1 if l = 1

arg max
1≤b≤T

[
δ̂b(l − 1)χ(b, t)

]
if 2 ≤ l ≤ L

(15)
2. Termination: forl = L, t = T :

P̂ ∗ = δ̂T (L)
q̂∗(L) = ω̂T (L)

(16)

3. Character Backtracking: forL− 1, L− 2, . . . , 1:

q̂∗(l) = ω̂q̂∗(l+1)(l) (17)

4. State Backtracking: forL− 1, L− 2, . . . , 1:

ε̂L = ε[T, q̂∗(L)]
ε̂l = ε[q̂∗(l + 1)− 1, q̂∗(l)] (18)

At the initialization step,ω̂t(l) records the framet in
which the preceding character ended. To recover the char-
acter boundaries, we need to rely on the character output
backpointer,̂q∗(l) that records the timet at which the pre-
vious character ended and it is determined recursively at the
Step 3. Recall that the whole MAP state sequence for each
single character was stored in an arrayε(b, e). So, to re-
cover the MAP state sequence we need the additional Step
4.



Table 1 shows the approximate computational complex-
ity and storage requirements for the FTLDA and a conven-
tional Viterbi algorithm. The main difference is that the
first level of the FTLDA is independent of the lexicon, but
it is repeated for each possible beginning and end frame
and character models. A rough comparison of the compu-
tational complexities shows that the FTLDA performs bet-
ter than a conventional Viterbi algorithm whenT < N2.
However, at the second stage,T 2LV can be reduced to
T (T − D)LV , whereD is an estimation of the duration
of the character models, without loss of accuracy.

4 Experiments and Results

A database of 20,172 unconstrained handwritten words
extracted from postal envelopes was used to evaluate the
performance of the proposed decoding algorithm. A dataset
of 12,023 unconstrained handwritten words was used to
train seventy–two HMMs corresponding to 26 uppercase
letters (A–Z), 26 lowercase letters (a–z), 10 digits (0–9)
and 8 special symbols. A validation set of 3,475 uncon-
strained handwritten words was also used during the train-
ing procedure. A test set with 4,674 unconstrained hand-
written words was used for evaluation and comparison of
proposed decoding algorithm with a conventional Viterbi
algorithm. A vocabulary with 85,092 city names was used
in all recognition experiments and dynamic lexicons with
different sizes (10, 1,000, 10,000, 40,000, 80,000) were ran-
domly generated from this vocabulary.

The criteria to evaluate the recognition accuracy is the
recognition rate while the recognition time, defined as the
time in seconds required to recognize one word and mea-
sured in CPU–seconds was used as criteria to evaluate the
recognition speed. The experiments were carried out on a
PC AMD Athlon 1.1GHz, 512MB of RAM memory and all
results are averaged over the test set of4, 674 words and ten
runs for ten different lexicons which were generated ran-
domly. It is important to notice that the recognition time
also depends on the software implementation. To ensure
a fair comparison, the implementations of all search algo-
rithms were kept as similar as possible, so they share many
parts of code, including disk operations.

Table 2 summarizes the word recognition rates obtained
by using the two versions of the FTLDA, one with a flat lex-
icon (FlatLex) and other with a lexical tree (LexTree). This
table also presents the results for the conventional Viterbi
algorithm with a flat lexicon. The bottom line is that there
is no difference in accuracy between the FTLDA and the
Viterbi implementation. However, these results were al-
ready expected because the FTLDA maintains the optimal-
ity in terms of maximum likelihood of the conventional
Viterbi algorithm. Table 2 also shows the recognition times
for the 5 dynamically generated lexicons. The performance

of the Viterbi algorithm is completely flawed on very–large
vocabulary tasks (80,000 words) since it needs more than 3
minutes to recognize a single word.

There is a significant improvement in recognition time
relative to the Viterbi implementation and speedup factors
between 6.3 and 20.6 were achieved for the FTLDA with a
lexicon tree and between 7.0 and 15.9 for the FTLDA with
a flat lexicon. It is worth to notice that the FTLDA some-
what overlaps the advantages of using a lexical tree instead
of a flat lexicon. Moreover, even for small and medium–
size lexicons, the fast search strategy is advantageous. In
summary, there is a significant improvement in recognition
time relative to the Viterbi implementation while preserving
exactly the same word recognition rates.

5 Conclusion

This paper has focused on the problems relating to the
computational efficiency of large vocabulary handwriting
recognition. The main concern is that with a novel fast two–
level decoding algorithm it is possible to speedup signifi-
cantly the recognition process while maintaining the recog-
nition accuracy. As a result, it is now possible to recog-
nize writer–independent, unconstrained handwritten words
in reasonable time, using a very–large vocabulary with rel-
ative accuracy.

Improvements in recognition speed were achieved by us-
ing the FTLDA which breaks up the computation of word
likelihoods into two levels: state level and character level.
This enables the reuse of the character likelihoods to de-
code all words in the lexicon, avoiding repeated computa-
tion of state sequences. The main results achieved by us-
ing the FTLDA is a 15 speedup factor relatively to a con-
ventional Viterbi algorithm for an 80,000–word vocabulary
task. Good results were also achieved for lexicons with
a smaller number of words. Nevertheless in our experi-
ments the high speedup achieved was due the segmenta-
tion algorithm and high–level features which have produced
short observation sequences (30 observations in average)
and HMMs with 10 states.

Although, the recognition times presented in this paper
for the FTLDA might not meet the throughput requirements
of many practical applications since it still needs approxi-
mately 15 seconds to recognize a single word in an 80,000–
word lexicon. However, the results are very encouraging
and hopefully, this work will stimulate other researchers to
pursue interesting research into this subject since many ap-
plications require large vocabularies. In practice, the recog-
nition times could be further reduced by using some code
optimization and programming techniques.



Table 1. Computational complexity and storage requirements for the FTLDA and Viterbi algorithm
Computational Storage

Algorithm Complexity Requirements

FTLDA T 2N2M + T 2LV 2T 2N + 2MT 2

Viterbi TN2LV 2TN2LV

Table 2. Word recognition rates and recognition times for the system based on the FTLDA and based
on a conventional Viterbi algorithm.

Recognition Time

Lexicon Recognition (sec/word)

Size (#) Rate (%) FTLDA LexTree FTLDA FlatLex Viterbi FlatLex

10 98.84 0.010 0.009 0.063

1,000 91.01 0.273 0.321 4.685

10,000 81.06 1.992 2.576 41.06

40,000 73.23 7.516 9.741 139.6

80,000 68.65 14.46 19.52 216.4
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