
Fast unfolding of community

hierarchies in large networks

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre

Based on E. Lefebvre master’s thesis

Paper available at: arXiv:0803.0476v1

Email: jean-loup.guillaume@lip6.fr

We propose

a modularity optimization algorithm which:
– gives excellent results for modularity;

– directly produces a hierarchy structure;

– is incredibly simple (local greedy approach);

– can work on external memory.

Can deal with millions nodes / billions links

e.g. 118M nodes/1B links in 152mn

Outline

• The algorithm

• Experimental results

• Case study:

– Belgian phone call network

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1

Each node belongs to

an atomic community

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1

insert 0 in c[3]

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1

insert 0 in c[3]

insert 1 in c[4]

An example
Pass 1 – Iteration 1

insert 0 in c[3]

insert 1 in c[4]

insert 2 in c[1,4]0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1

insert 0 in c[3]

insert 1 in c[4]

insert 2 in c[1,4]

insert 3 in c[0]

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1

insert 0 in c[3]

insert 1 in c[4]

insert 2 in c[1,4]

insert 3 in c[0]
insert 4 in c[1]

insert 5 in c[7]

insert 6 in c[11]

insert 7 in c[5]

insert 8 in c[15]

insert 9 in c[12]
insert 10 in c[13]

insert 11 in c[10,13]

insert 12 in c[9]

insert 13 in c[10,11]

insert 14 in c[9,12]

insert 15 in c[8]

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 2

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 2

insert 0 in c[4]

…

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example

26 24
3

14 4

1

4

1

216

1

3

end of

pass 1

end of

pass 2

end of

pass 3

After 4 iterations

An example

• Gives a tree (not a binary one):
– each level is meaningful.

0

5
4

2

1 3

6

7

11

8

1310

15

9

12

14

The algorithm formally

Sequence of passes:

• each pass computes one hierarchy level;

• input: (weighted) network;

• output: weighted network where nodes are
“communities” of the original network;

• passes are applied recursively;

• stop when modularity cannot be increased.

The algorithm formally

One pass:

• initially each node forms a community;

• repeat iteratively for all nodes i:
– remove i from its community;

– insert i in a neighboring community of i so as
to maximize modularity (local greedy
approach);

• stop when a local maximum is attained.

Outline

• The algorithm

• Experimental results

• Case study:

– Belgian phone call network

Experimental results

• High level networks are smaller:
– first passes are the only costly ones;

– in general 1st pass > 90% of computation time.

• There are few iterations for each pass:
– only iterations on the first passes are costly;

– <33 for all tested networks.

• Considering one node is simple.

Modularity

• A widely accepted measure:

• Contribution of an isolated node is:

∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

C

C

C
m

a
e

m
Q

22

1 2

Links inside C

Links with an extremity in C

2

2
)(⎟

⎠
⎞

⎜
⎝
⎛−=

m

k
iQ i

Degree of i

Moving a node

• An isolated node ‘i’ can be moved to C
with a gain:

Only related to i and C

Complexity linear with ki

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−
+

=Δ
222

,

22222
),(

m

k

m

a

m

e

m

ka

m

ke
iCQ iCCiCCiC

Links from i to C

One pass algorithm

Input: a (weighted) network

Variables: e, a, comm

for all nodes i do

insert i in an atomic community (comm[i]=i)

initialize e and a

while there is an increase of modularity do

for all nodes i do

remove(e,a) i from comm[i]

compute DeltaQ(C,i,e,a) for all C in neigh_comm(i)

insert(e,a) i in argmax(DeltaQ(C,i))

Output: weighted community graph

Experimental results (time)
Karate Arxiv Internet

Web

nd.edu

Belgian

Phone Calls

n=34/m=77 9k/24k 70k/351k 325k/1M 2.5M/6.3M

Newman

Girvan

Clauset Moore

0s 3.6s 799s 5034s

Pons

Latapy

0s 3.3s 575s 6666s

Wakita

Tsurumi

(expected)

0s 0s 8s 52s 1279s

Experimental results (time)
Karate Arxiv Internet

Web

nd.edu

Belgian

Phone Calls

Web

UK-2005

Web

Webbase01

n=34/m=77 9k/24k 70k/351k 325k/1M 2.5M/6.3M 39M / 783M 118M/1B

Newman

Girvan

Clauset Moore

0s 3.6s 799s 5034s

Pons

Latapy

0s 3.3s 575s 6666s

Wakita

Tsurumi

(expected)

0s 0s 8s 52s 1279s (3days)

Our approach

0s 0s 1s 3s 134s 738s 152mn

3 passes 5 passes 5 passes 5 passes 5 passes 4 passes 5 passes

Experimental results (Q)
Karate Arxiv Internet

Web

nd.edu

Belgian

Phone Calls

Web

UK-2005

Web

Webbase01

34/77 9k/24k 70k/351k 325k/1M 2.5M/6.3M 39M / 783M 118M/1B

Newman

Girvan

Clauset Moore

0s

0.38

3.6s

0.772

799s

0.692

5034s

0.927

Pons

Latapy

0s

0.42

3.3s

0.757

575s

0.729

6666s

0.895

Wakita

Tsurumi

(expected)

0s 0s 8s 52s 1279s (3days)

Our approach

0s

0.42

0s

0.813

1s

0.781

3s

0.935

134s

0.769

738s

0.979

152mn

0.984

3 passes 5 passes 5 passes 5 passes 5 passes 4 passes 5 passes

Data structures

• Need to keep in memory:
– the adjacency lists (space complexity: 2m+n);
– vectors ‘e’, ‘a’, node2comm (n each);
– total = 2m+4n : 118M nodes, 1G links:

• 8.472 GB for the network;

• 1.416 GB for the vectors.

• The algorithm is iterative:
– adjacency lists can be read from disk iteratively;
– passes can be made one at a time;
– can deal with very large networks or to use laptops.

Heuristics

• Last iterations and passes offer a marginal gain:
– stop when the gain is lower than a given epsilon.

• Leaves can be removed before the computation:
– only useful if networks are very large (>M nodes).

• Only few nodes (<10%) are moved at a given iteration:
– a standing node is not considered at the following iteration.

Previous results have been obtained using the first one.

Outline

• The algorithm

• Experimental results

• Case study:

– Belgian phone call network

Case study

• Belgian phone call network :
– 6 months of communications;
– One Belgian major operator.

• Flat weighted network :
– 2.6 millions customers;
– language information (Dutch, English, French or

German);

– 6.3 millions links:
• weight : number of calls + sms;

• only stable calls are kept.

Red = French
Green = Dutch

Language segregation

• All but two communities of size >10k are >93% segregated.

• One community contains more than 60% of all German
speaking Belgians.

Largest bilingual community

Largest bilingual community

Second largest “bilingual”

Conclusion

can deal with millions/billions nodes/links

achieves very good modularity

• Moreover:
– directly produces a hierarchy structure;

– is strikingly simple;

– can work on external memory;

– can use other local quality functions.

Open issues

• Use more heuristics:
– Allow non increasing modularity choices?

– Simulated annealing like approaches?

• Understand the community structure:
– use more information (language) to understand/validate.

• Overlapping communities
– good quality “overlapping partition”?

• Evolving networks/communities?

Post-doc position for 1 year

• LIP6, NPA team, University Paris 6, France.
• Complex networks.

• Open to signal processing, data-mining,
distributed computing, etc. in relation with
complex networks.

Deadline March 30th

Simple application form

Remember https://www2.cnrs.fr/DRH/post-docs08/?pid=1&action=view&id=597 !!!

Or ask me

Questions?

Thanks

