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We propose

a modularity optimization algorithm which:
– gives excellent results for modularity;

– directly produces a hierarchy structure;

– is incredibly simple (local greedy approach);

– can work on external memory.

Can deal with millions nodes / billions links

e.g. 118M nodes/1B links in 152mn



Outline

• The algorithm

• Experimental results

• Case study:

– Belgian phone call network
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An example
Pass 1 – Iteration 1

Each node belongs to 

an atomic community
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An example
Pass 1 – Iteration 1

insert 0 in c[3]
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An example
Pass 1 – Iteration 1

insert 0 in c[3]

insert 1 in c[4]



An example
Pass 1 – Iteration 1

insert 0 in c[3]

insert 1 in c[4]

insert 2 in c[1,4]0
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An example
Pass 1 – Iteration 1

insert 0 in c[3]

insert 1 in c[4]

insert 2 in c[1,4]

insert 3 in c[0]
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An example
Pass 1 – Iteration 1

insert 0 in c[3]

insert 1 in c[4]

insert 2 in c[1,4]

insert 3 in c[0]
insert 4 in c[1]

insert 5 in c[7]

insert 6 in c[11]

insert 7 in c[5]

insert 8 in c[15]

insert 9 in c[12]
insert 10 in c[13]

insert 11 in c[10,13]

insert 12 in c[9]

insert 13 in c[10,11]

insert 14 in c[9,12]

insert 15 in c[8]
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An example
Pass 1 – Iteration 2
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An example
Pass 1 – Iteration 2

insert 0 in c[4]

…
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An example
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After 4 iterations



An example

• Gives a tree (not a binary one):
– each level is meaningful.
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The algorithm formally

Sequence of passes:

• each pass computes one hierarchy level;

• input: (weighted) network;

• output: weighted network where nodes are 
“communities” of the original network;

• passes are applied recursively;

• stop when modularity cannot be increased.



The algorithm formally

One pass:

• initially each node forms a community;

• repeat iteratively for all nodes i:
– remove i from its community;

– insert i in a neighboring community of i so as 
to maximize modularity (local greedy 
approach);

• stop when a local maximum is attained.



Outline

• The algorithm

• Experimental results

• Case study:

– Belgian phone call network



Experimental results

• High level networks are smaller:
– first passes are the only costly ones;

– in general 1st pass > 90% of computation time.

• There are few iterations for each pass:
– only iterations on the first passes are costly;

– <33 for all tested networks.

• Considering one node is simple.



Modularity

• A widely accepted measure:

• Contribution of an isolated node is:
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Moving a node

• An isolated node ‘i’ can be moved to C 
with a gain:

Only related to i and C

Complexity linear with ki
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One pass algorithm

Input: a (weighted) network

Variables: e, a, comm

for all nodes i do

insert i in an atomic community (comm[i]=i)

initialize e and a

while there is an increase of modularity do

for all nodes i do

remove(e,a) i from comm[i]

compute DeltaQ(C,i,e,a) for all C in neigh_comm(i)

insert(e,a) i in argmax(DeltaQ(C,i))

Output: weighted community graph



Experimental results (time)
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Experimental results (time)
Karate Arxiv Internet

Web

nd.edu

Belgian 

Phone Calls
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UK-2005

Web 

Webbase01
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(expected)
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Our approach
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Experimental results (Q)
Karate Arxiv Internet

Web

nd.edu

Belgian 

Phone Calls

Web

UK-2005

Web 

Webbase01
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Data structures

• Need to keep in memory:
– the adjacency lists (space complexity: 2m+n);
– vectors ‘e’, ‘a’, node2comm (n each);
– total = 2m+4n : 118M nodes, 1G links:

• 8.472 GB for the network;

• 1.416 GB for the vectors.

• The algorithm is iterative:
– adjacency lists can be read from disk iteratively;
– passes can be made one at a time;
– can deal with very large networks or to use laptops.



Heuristics

• Last iterations and passes offer a marginal gain:
– stop when the gain is lower than a given epsilon.

• Leaves can be removed before the computation:
– only useful if networks are very large (>M nodes).

• Only few nodes (<10%) are moved at a given iteration:
– a standing node is not considered at the following iteration.

Previous results have been obtained using the first one.



Outline

• The algorithm

• Experimental results

• Case study:

– Belgian phone call network



Case study

• Belgian phone call network :
– 6 months of communications;
– One Belgian major operator.

• Flat weighted network :
– 2.6 millions customers;
– language information (Dutch, English, French or 

German);

– 6.3 millions links:
• weight : number of calls + sms;

• only stable calls are kept.



Red = French
Green = Dutch



Language segregation

• All but two communities of size >10k are >93% segregated.

• One community contains more than 60% of all German 
speaking Belgians.



Largest bilingual community



Largest bilingual community



Second largest “bilingual”



Conclusion

can deal with millions/billions nodes/links

achieves very good modularity

• Moreover:
– directly produces a hierarchy structure;

– is strikingly simple;

– can work on external memory;

– can use other local quality functions.



Open issues

• Use more heuristics:
– Allow non increasing modularity choices?

– Simulated annealing like approaches?

• Understand the community structure:
– use more information (language) to understand/validate.

• Overlapping communities
– good quality “overlapping partition”?

• Evolving networks/communities?



Post-doc position for 1 year

• LIP6, NPA team, University Paris 6, France.
• Complex networks.

• Open to signal processing, data-mining, 
distributed computing, etc. in relation with 
complex networks.

Deadline March 30th

Simple application form

Remember https://www2.cnrs.fr/DRH/post-docs08/?pid=1&action=view&id=597 !!!

Or ask me



Questions?

Thanks


