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A controlled evolution generated by nonlinear
interactions is required to perform full manip-
ulation of a quantum system, and such control
is only coherent when the rate of nonlinearity is
large compared to the rate of decoherence [1]. As
a result, engineered quantum systems typically
rely on a bare nonlinearity much stronger than
all decoherence rates, and this hierarchy is usu-
ally assumed to be necessary. In this work, we
challenge this assumption by demonstrating the
universal control of a quantum system where the
relevant rate of bare nonlinear interaction is com-
parable to the fastest rate of decoherence. We do
this by introducing a novel noise-resilient proto-
col for the universal quantum control of a nearly-
harmonic oscillator that takes advantage of an
in-situ enhanced nonlinearity instead of harness-
ing a bare nonlinearity. Our experiment consists
of a high quality-factor microwave cavity with
weak-dispersive coupling to a much lower qual-
ity superconducting qubit [2]. By using strong
drives to temporarily excite the oscillator, we re-
alize an amplified three-wave-mixing interaction,
achieving typical operation speeds over an order
of magnitude faster than expected from the bare
dispersive coupling [3]. Our demonstrations in-
clude preparation of a single-photon state with
98 ± 1(%) fidelity and preparation of squeezed
vacuum with a squeezing level of 11.1 dB, the
largest intracavity squeezing reported in the mi-
crowave regime. Finally, we also demonstrate fast
measurement-free preparation of logical states for
the binomial [4] and Gottesman-Kitaev-Preskill
(GKP) [5] quantum error-correcting codes.

Many quantum physics experiments strive to operate
in a regime where the relevant rate of undriven nonlin-
ear interaction is orders of magnitude larger than the
fastest rate of decoherence. Such a hierarchy is at the
heart of many different types of engineered quantum sys-
tems, including prototypical realizations of cavity quan-
tum electrodynamics with Rydberg atoms [6], nonlinear
quantum electromechanics [7], hybrid superconductor-
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semiconductor systems [8], and circuit quantum electro-
dynamics [2]. With the prevalence of such a hierarchy,
it is natural to question if a large native nonlinear in-
teraction strength relative to decoherence is required for
high-fidelity operations. This question is especially rele-
vant in cases where engineering a large nonlinearity can
be difficult or induce detrimental effects such as enhanced
loss mechanisms.

Here, we show the counterintuitive result that a large
bare nonlinear interaction strength is not required for co-
herent control, and we demonstrate this idea for the uni-
versal control of a nearly-harmonic oscillator. Such quan-
tum oscillators can be realized as electromagnetic [9, 10]
or mechanical [7, 11, 12] bosonic modes, and these are
promising platforms for several emerging quantum infor-
mation applications. High-fidelity control of an oscillator
is typically achieved by coupling it to an ancillary qubit
in the dispersive regime described by the Hamiltonian
H/~ = χa†aσz/2 where a is the annihilation operator
of oscillator, σz is the Pauli-Z operator of the ancillary
qubit, and [a, a†] = 1. In our proof-of-principle demon-
stration, the oscillator is realized as the lowest-energy
mode of a superconducting microwave cavity, and the
ancillary qubit is realized by the lowest two energy levels
of a transmon.

State-of-the-art methods for universal control in the
dispersive regime include the qubit cavity mapping pro-
tocol (qcMAP) [13], the Selective Number-dependent Ar-
bitrary Phase (SNAP) and displacement gate set [14–17],
measurement-based methods for oscillator state prepara-
tion [18], or model-based pulse shaping such as GRadient
Ascent Pulse Engineering (GRAPE) [19–21]. All such
methods can perform relevant operations in time compa-
rable to 2π/χ, so the bare dispersive shift is usually engi-
neered to be orders of magnitude larger than the fastest
decoherence rate in the system, χ/2π � max(Γ2,Γ1, κ),
where Γ2 = 1/T2, Γ1 = 1/T1 are the qubit decoherence
and relaxation rates and κ is the oscillator relaxation rate
[2, 3].

As seen by the 2π/χ speed limit, all previous methods
of universal oscillator control in the dispersive regime
rely on harnessing evolution limited by the bare rate
of nonlinear interaction χ. However, such approaches
are insufficient in the weak-dispersive regime, χ/2π .
max(Γ2,Γ1, κ), since decoherence would lead to low con-
trol fidelity. To overcome this challenge and realize coher-
ent control in the weak-dispersive regime, we use resonant
microwave drives to induce phase-space displacements of
the oscillator far from the origin relative to zero-point
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fluctuations. With this, the weak four-wave-mixing inter-
action is transformed into an effective three-wave-mixing
interaction between the oscillator relative to its displaced
center-of-mass and the qubit. A similar scheme is used
for enhancing mixing processes in quantum parametric
amplification [22] and optomechanical coupling [23], how-
ever in these applications the resulting lower-order inter-
actions around the center-of-mass are linear and thus not
universal. In addition, some circuit-QED experiments
have harnessed driven four-wave-mixing to generate en-
hanced three-wave-mixing interactions between an oscil-
lator and qubit at rates faster than the native dispersive
shift [21, 24–32], however high-fidelity universal control
faster than 2π/χ has not previously been demonstrated.

The enhancement relies on a phase-space displacement
acting as a lever arm under the dynamics of the dispersive
interaction as shown in Fig. 1(a). To analyze this effect,
the dispersive Hamiltonian H can be transformed into a
displaced frame, giving

H̃/~ = χa†a
σz
2

+χ(α(t)a†+α∗(t)a)
σz
2

+χ|α(t)|2σz
2
, (1)

where ∂tα(t) = −iε(t) − (κ/2)α(t) is the classical re-
sponse to a resonant drive, Hd/~ = ε∗(t)a+ε(t)a†. With
a large displacement α0 = max|α(t)|, the second term

in H̃ dominates, and the effective interaction between
the oscillator and qubit becomes a qubit-state-dependent
force with maximum effective interaction strength geff =
χα0 [24, 26, 30]. The other terms in H̃ also contribute
to the dynamics, and their effect must be accounted for
or canceled with a suitable qubit echo sequence such as
the gate construction introduced below.

For a transmon with anharmonicity K, the critical os-
cillator photon number limits the enhanced interaction to
gmax

eff ≈
√
χK/6, setting a maximum speed limit of uni-

versal control using this approach (see Methods). In ad-
dition, it should be noted that large displacements pop-
ulate highly excited states of the oscillator which can
enhance decoherence mechanisms. For superconducting
cavities, photon loss is the dominant error channel [9],
and under a coherent displacement there is no enhanced
decoherence due to relaxation provided the deterministic
re-centering force at a rate κ/2 is included when calcu-
lating the drive ε(t) needed for a desired oscillator tra-
jectory α(t). However, oscillator dephasing at a rate
κφ does cause enhanced decoherence under a displace-
ment, resulting in diffusion-like terms at an effective rate
2|α(t)|2κφ (see Methods). Oscillators such as supercon-
ducting cavities can have dephasing rates much weaker
than their relaxation rates limiting this effect [9, 28, 30],
however it reveals a trade-off between faster control with
large displacements and enhanced loss from oscillator de-
phasing.

With this in mind, the enhanced three-wave-mixing in-
teraction and a qubit π pulse can be used to engineer an
entangling gate dubbed the echoed conditional displace-
ment (ECD) gate, defined as ECD(β) = D(β/2) |e〉 〈g|+

oscillator

qubit

c

a b

oscillator

qubit

OFF ON

d

(x2)

FIG. 1. Echoed Conditional Displacement Control.
(a) Under a conditional rotation, phase-space displacements
act as lever arms, generating a large separation conditioned on
qubit states |g〉 and |e〉. Here, three displacements are shown
acting on vacuum, and with a larger α0 there is a larger state
separation after a time t. (b) The ECD gate phase-space tra-
jectory in the limit of instantaneous displacements acting on
a squeezed state for illustration. (c) Oscillator drive (ε(t))
and qubit drive (Ω(t)) for the ideal ECD gate of duration
T resulting in a final state separation of β = 2iα sin(χT/2)
where |α| = α0. (d) Any unitary can be approximated by
a sequence of N single qubit rotations and ECD gates with
built-in dynamical decoupling generated through the symmet-
ric construction of the full sequence.

D(−β/2) |g〉 〈e|, where D(α) = eαa
†−α∗a is the displace-

ment operator. A version of the gate was first imple-
mented as a tool to realize error correction of GKP states
[30], and with an intermediate oscillator displacement
of length α0, the ECD(β) gate occurs in a time ap-
proximately |β|/ (χα0) through the trajectory shown in
Fig. 1(b) and ideal drive sequence in Fig. 1(c). The ECD
gate cancels the dynamics from the dispersive and Stark
shift terms in H̃ up to a qubit phase because of its sym-
metric construction and qubit echo (see Supplementary
Information section 4).

To build a full gate set, we combine the ECD(β)
gate with unselective qubit rotations, Rϕ(θ) =
exp [−i(θ/2) (σx cosϕ+ σy sinϕ)]. The rotation pulse
bandwidth must be sufficiently large compared to 〈a†a〉χ
so the oscillator state does not entangle with the qubit
during the rotations, additionally requiring K � χ to
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FIG. 2. Fock state preparation. (a) Best state transfer infidelity found when optimizing ECD circuit parameters to
prepare oscillator Fock state |n〉 from vacuum as a function of circuit depth N . Here, F = |〈g| 〈n|UECD |0〉 |g〉|2. (b) Total
pulse sequence duration using the protocols from (a) with minimum N such that F ≥ 0.99 (solid lines). Color code is same

as in part (a). Colored long-dashed lines are the instantaneous displacement scaling Ttotal = (χα0)−1∑N
i=1 |βi|. Colored

dotted lines are the drive constraint limits Ttotal = 2Ntq + 4NtD. We use α0 = 30 in our experiment as indicated by the
stars. Also included are durations for independently optimized GRAPE (triangles) and SNAP (crosses) protocols using our
system parameters where the x-coordinate indicates the simulated largest displacement used (max | 〈a〉 |). (c) Cavity drive ε(t)
(upper panel) and transmon drive Ω(t) (middle panel) for preparation of Fock state |1〉 (real and imaginary parts shown in
red and blue) and simulated average photon number during the sequence (lower panel). (d) Simulated drop in fidelity of Fock
preparation sequences with a qubit detuning H/~ = δσz/2. Dashed line indicates a drop of 1%. (e) Measured real part of the
characteristic functions for the first five excited Fock states in the cavity. Preparation fidelities are given in Table I.

avoid populating higher excited states of the transmon.
Together the set {ECD(β), Rϕ(θ)} is universal for con-
trol of the oscillator and qubit (see Methods). Any de-
sired unitary on the joint oscillator and qubit Hilbert
space can be approximated by the decomposition shown
in Fig. 1(d), with 4 real-valued parameters per step, and
a fidelity that depends on the circuit depth N . The full

sequence has total duration Ttotal = (χα0)
−1∑N

i=1 |βi|
in the instantaneous displacement and qubit pulse limit,
hence a large α0 � 1 can enhance the overall speed of a
target unitary. Every ECD control sequence has intrinsic
dynamical decoupling of low-frequency noise coupled to
σz because of its designed symmetric structure, motivat-
ing the choice of this gate set.

To realize a desired unitary or state-transfer with the
ECD gate-set, we use a two-step optimization approach.

In the first step, we find the circuit parameters {~β, ~ϕ, ~θ}
that maximize the fidelity and minimize the circuit depth
N . Here, we use an efficient gradient-based parame-
ter optimization using automatic differentiation imple-
mented on a graphics processing unit (see Supplementary
Information section 7). We note that the circuit param-
eters could also be applied to realize universal control of
the motional state of a trapped ion, where a conditional
displacement gate can also be realized [33].

As an example of this first step of optimization, we

focus on the preparation of Fock states in the oscillator,
|0〉 |g〉 → |n〉 |g〉. These are not simple superpositions of
displaced coherent states, so it is not obvious that they
can be easily prepared using conditional displacements
starting from vacuum. Optimization results for prepara-
tion of Fock states |1〉 through |9〉 are shown in Fig. 2(a).
The circuit depth required increases with photon num-
ber, with 10 or fewer ECD gates needed to reach a state
transfer fidelity F > 0.99 for the first seven Fock states.
This example shows that ECD control can be an efficient
circuit parameterization, with only 4N total parameters
per sequence, a circuit depth comparable to the SNAP
protocol [14, 16, 17], and over an order of magnitude
fewer parameters than time-domain GRAPE as used in
state-of-the-art bosonic experiments [3].

In the second optimization step, the cavity drive ε(t)
and qubit drive Hq/~ = Ω∗(t)σ− + Ω(t)σ+ are com-
piled from a set of ECD circuit parameters found in
the first step. This optimization is done with realistic
constraints to realize the ECD sequence in the shortest
time given bandwidth and amplitude limits (see Supple-
mentary Information section 3 and 4). In our exper-
iment, we use a 3D aluminum superconducting cavity
(frequency 5.26 GHz, relaxation time T1,c = 436 us) cou-
pled to a transmon qubit (frequency 6.65 GHz, relaxation
time T1,q ≈ 50 us) with a dispersive shift χ/2π = 33 kHz.
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Given this bare nonlinearity, the resulting sequence du-
ration for preparation of Fock states |1〉 through |5〉 as
a function of the displacement used during the ECD
gates α0 is shown in Fig. 2(b). At intermediate values
of α0 the sequence duration follows the instantaneous-
displacement limit Ttotal ∝ (χα0)

−1
. As α0 increases,

the amplitude and bandwidth constraints result in se-
quences limited by the total duration of the constituent
pulses, Ttotal = 2Ntq+4NtD, where the duration of qubit
rotation pulse and oscillator displacement pulses used in
our experiment are tq = 24 ns and tD = 44 ns (see Sup-
plementary Information section 4). From our transmon
anharmonicity of K/2π = 181 MHz, the maximum con-
ditional displacement rate is gmax

eff /2π ≈ 1 MHz. In our
experimental demonstrations, we use α0 = 30 (as shown
by the stars in Fig. 2(b)) and operate close to this bound.
Finally, the shortest lifetime in our experiment is the
transmon Ramsey coherence time T2 ≈ 30 us realizing
χ/2π . Γ2 � geff/2π and allowing high-fidelity control
in a regime where the bare nonlinearity is comparable to
the fastest decoherence rate.

In Fig. 2(b), the duration of ECD pulse sequences
are also compared to independently optimized GRAPE
and SNAP sequences for Fock state preparation with our
system parameters (see Supplementary Information sec-
tion 9). Here, ECD sequences have over an order-of-
magnitude enhancement in gate speed. For example,
single-photon state preparation in the oscillator is re-
alized about 30 times faster than 2π/χ, with compiled
drives and simulated intracavity average photon num-
ber shown in Fig. 2(c), demonstrating the ability to uti-
lize the oscillator’s vast Hilbert space to enhance gate
speed with a displaced-field of max|α|2 = 900 photons
during the gates. Finally, as a simple analysis to in-
dicate the insensitivity to low-frequency noise coupled
to σz, Fig. 2(d) shows the result of simulating the ECD
Fock state preparation pulse sequences with an additional
qubit detuning H/~ = δσz/2, showing resilience at the
level of 1 − F ∼ 0.01 to static detuning on the order of
δ/~ ∼ 1 MHz.

To characterize the performance of these protocols
applied in experiment, we measure the complex-valued
characteristic function C(β) = Tr (D(β)ρ) by using an
ECD gate to perform phase estimation of the displace-
ment operator D(β) conditioned on a disentangling mea-
surement (see Supplementary Information section 5)
[30, 34, 35]. Importantly, tomography can also be per-
formed in a time much faster than 2π/χ using large
displacements (we note that direct Wigner tomography
using typical circuit-QED parity measurements would
be impractical, taking a time π/χ ≈ 15 us.) The real
parts of the measured characteristic functions for Fock
states |1〉 through |5〉 are shown in Fig. 2(e). From the
real and imaginary parts (not shown) of the character-
istic functions we reconstruct the density matrices us-
ing maximum likelihood estimation leading to the results
summarized in Table I and reaching a best fidelity of
Fexp = 0.98± 0.01 for Fock state |1〉.

State Fexp (%) Fsim (%) Fκφsim (%)
|1〉 98 99 98
|2〉 92 97 94
|3〉 88 97 93
|4〉 87 97 92
|5〉 82 94 83

|+Z〉bin 92 98 95
|+X〉bin 89 97 94
|+Y 〉bin 91 97 93
|+Z〉GKP 85 93 85
|+Y 〉GKP 83 92 87
|−Z〉GKP 80 93 85

TABLE I. Measured and simulated state preparation
fidelities. Fexp is the measured fidelity found from density
matrix reconstruction, Fsim is the simulated fidelity including
all independently measured decoherence rates, and Fκφsim is the
simulated fidelity including additional cavity dephasing at a
rate κφ = (150 ms)−1. Fidelity is defined as F = 〈ψt| ρg |ψt〉
where ρg is the oscillator state after projecting the qubit in |g〉
and |ψt〉 is the oscillator target state. We estimate the quoted
fidelities are accurate within 1% using bootstrapping. The av-
erage probability of measuring |g〉 after the state preparation
sequences are {0.96, 0.93, 0.96, 0.92} for the Fock, squeezed,
binomial, and GKP states respectively.

In Table I the fidelity of ECD sequences measured
in experiment are compared to master equation simu-
lations Fsim including all independently measured de-
coherence mechanisms (see Supplementary Information
section 6). Out of the measured decoherence sources,
qubit relaxation during the ECD gates is the largest con-
tribution to the simulated infidelity, as this error chan-
nel can lead to unknown displacements of the oscillator
during the sequence. However, for most demonstrations,
Fsim overestimates the measured fidelity. To investigate
a likely additional decoherence mechanism, we also sim-
ulate the protocols including oscillator dephasing at a
rate κφ = (150 ms)−1, resulting in fidelity of sequences
given by Fκφsim in Table I, included here to demonstrate
the sensitivity to a small oscillator dephasing rate that
is enhanced with the large displacements. Finally, ad-
ditional infidelity in the experiment can arise from un-
known microwave transfer functions and other forms of
model bias. However, the use of a few-parameter gate-
set allows for the implementation of model-free closed-
loop optimization strategies such as reinforcement learn-
ing [36, 37] which could be used in future investigations
to combat these effects.

As a second demonstration, we prepare squeezed vac-
uum states |ζ〉 = exp

(
1
2 (ζ∗a2 − ζa†2)

)
|0〉 with a squeez-

ing level in dB defined as 20 log10

(
e|ζ|
)
. Highly squeezed

states of an oscillator can allow sensing beyond the stan-
dard quantum limit, as was recently used to enhance the
search for dark matter axions [38]. However, the pres-
ence of a large oscillator self-Kerr degrades the quality
by distorting the squeezed state and increasing the vari-
ance of the squeezed quadrature [39]. In our experiment,
the small inherited oscillator self-Kerr of ≈ 1 Hz, over
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FIG. 3. Preparation of squeezed states and bosonic code words. (a) Numerically optimized minimum circuit depth
to reach state transfer fidelity F ≥ 0.99 for preparation of squeezed states (left panel) and F ≥ 0.98 for preparation of logical
GKP states (right panel) (b) Real part of measured characteristic functions for vacuum and squeezed states, with achieved
squeezing indicated. (c) and (d) Measured characteristic functions for logical state preparation of binomial (c) and GKP (d)
code words. For the binomial code, |−ZL〉 = |2〉 is included in Fig. 2(e). For both codes, all other cardinal points on the Bloch
sphere can be obtained by phase space rotations. Fidelities for the binomial and GKP code are given in Table I with additional
analysis in Supplementary Information section 5.

three orders of magnitude smaller than is typically used
[20], minimizes the state distortion during preparation
and idling periods.

In the left panel of Fig. 3(a) we show ECD opti-
mization results for squeezed state preparation starting
from vacuum. Plotted is the the minimum circuit depth
needed to reach a fidelity F ≥ 99%. A related method
for squeezed state creation was introduced in [40], and
the protocols here have fewer conditional displacements,
demonstrating the ability of our optimization method to
find novel control circuits. In our experiment, we ap-
ply the optimized squeezed state preparation ECD se-
quences for target squeezing levels of {6, 8, 10, 12, 14} dB
using α0 = 30. The measured characteristic functions
are shown in Fig. 3(b), with achieved squeezing levels of
{4.8, 6.7, 8.2, 9.8, 11.1} dB calculated from a fit to the re-
constructed probability distribution along the squeezed
quadrature (see Supplementary Information section 5).
The reconstructed states show some non-Gaussian fea-
tures as decoherence during the pulse causes distortion,
similar to the Fock preparation case, leading to a lower
effective squeezing. To the best of our knowledge, the
measured squeezing of 11.1 dB demonstrated here is
larger than any intraresonator squeezing demonstration
in the microwave regime to date, with other demonstra-
tions achieving steady-state intracavity squeezing at the
level of 8.2 dB [39] and a postselected state-preparation
method demonstrating 5.7 dB [18]. The echoed condi-

tional displacements realized here could also be used to
sense small displacements of a squeezed state using phase
estimation [41].

Finally, to apply the protocol to generate more com-
plex non-Gaussian states, we implement logical state
preparation for two different quantum error correcting
bosonic codes, the binomial code [4] and the square GKP
code [5], as the fast initialization of logical code states is
an important resource. For the binomial code, we focus
on the smallest code for which the loss of a single photon
is correctable, with code words |+Z〉bin = (|0〉+ |4〉) /

√
2

and |−Z〉bin = |2〉. The GKP code, on the other hand, is
defined as the mutual +1 eigenspace of the displacement
stabilizers Sp = D(

√
2π) and Sq = D(i

√
2π) with logical

operators given by X = D(
√
π/2) and Z = D(i

√
π/2).

The ideal GKP code has infinite energy, and a finite
energy code can be defined by modifying the stabiliz-
ers and logical operators using the envelope operator
E∆ = exp

{
−∆2a†a

}
under the transformation O∆ =

E∆OE
−1
∆ , leading to code states that are superpositions

of squeezed states with squeezing parameter ζ = ln ∆
[42, 43].

For the binomial code, previous experiments have
demonstrated logical state preparation using GRAPE,
relying on a large bare nonlinearity χ/2π compared to
decoherence rates [20, 44–47]. With ECD control, op-
timization results in protocols that prepare all cardinal
points of the Bloch sphere to a fidelity F = 99% with a
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circuit depth at most N = 5, and the approach is com-
patible with the low-χ regime. Applying these circuits in
experiment using α0 = 30 results in the measured charac-
teristic functions shown in Fig. 3(c) with fidelity given in
Table I. The average pulse time for binomial state prepa-
ration is 3.27 us - about 9 times faster than 2π/χ. In
principle, fast logical operations, measurement, and sta-
bilization of the binomial code could also be performed
using ECD control.

To prepare GKP states, the number of conditional
displacements required increases with the code squeez-
ing. In the right panel of Fig. 3(a) we plot the circuit
depth required for ECD protocols to prepare |+Z〉GKP,
|+Y 〉GKP, and |−Z〉GKP optimized to a state transfer
fidelity of F = 98% at different squeezing levels. The
protocols found here represent a unitary protocol for
GKP state creation, as opposed to the non-unitary pro-
tocols recently demonstrated in both trapped ions [35]
and superconducting circuits [30] that require multiple
measurements with feedback or many rounds of dissipa-
tive pumping. A related measurement-free GKP state
preparation protocol has been proposed [48] and imple-
mented in trapped-ions [49], however it requires an initial
squeezed state.

In Fig. 3(d), we plot the measured characteristic func-
tions found using these circuits with α0 = 30 achieving fi-
delities given in Table I. For the GKP states, we use a tar-
get squeezing level of 10.3 dB and experimentally achieve
a squeezing level of 9.1 dB (see Supplementary Informa-
tion section 5). Our pulse sequences are about 15 times
faster than the state preparation method using measure-
ments and feedback demonstrated in [30] with similar
experimental parameters. This order-of-magnitude re-
duction in initialization time can reduce the hardware
overhead of error correction protocols requiring GKP re-
source states, such as teleported error correction [50] or
the GKP surface code [51, 52].

The experimental demonstrations in this work have fo-
cused on oscillator state preparation, however the ECD
protocol is universal and can also be extended to per-
forming fast unitary gates. As a demonstration of this,
in Supplementary Information section 8 we show numer-
ical optimization of the logical S = diag

(
1, eiπ/2

)
and

T =
√
S = diag

(
1, eiπ/4

)
gates for a finite-energy GKP

code at different squeezings ∆. Remarkably, a circuit
depth of only N = 3 is required to reach a gate fidelity
of F ≈ 0.99 for the T gate and N = 4 for the S gate at
∆ = 0.25, revealing that the ECD gate set is well suited
for control over the finite-energy GKP code.

With these proof-of-principle results, we demonstrate
the counterintuitive result that high-fidelity universal
control can be carried out in a regime where the rele-
vant rate of bare nonlinear evolution is comparable to
the fastest decoherence rate. In particular, a large on-off
ratio between the rate of control and the bare oscillator-
qubit hybridization can be achieved without the need for
additional hardware such as a tunable coupler. Impor-
tantly, the approach still requires a large ancilla qubit

nonlinearity K, reflected by the enhanced interaction
speed limit ∝

√
χK.

Although our examples are specific to the oscilla-
tor and qubit system, similar displaced-field type con-
trol schemes could be designed and performed in other
bosonic systems with bare nonlinearity of fourth order or
greater, such as the recently proposed scheme to enhance
the rate of Fock state preparation in a Kerr oscillator [53].
Additionally, using a weak bare nonlinearity has many
benefits in the context of quantum information process-
ing - for example, by sufficiently reducing the dispersive
coupling χ, oscillator nonlinearity and loss inherited from
the qubit can be minimized while retaining controllabil-
ity, realizing a modular architecture where the qubit and
oscillator can be more independently optimized. This is
important in applications where these spurious couplings
can cause decoherence and distortion of encoded states,
especially during idling periods [54]. Also, the approach
could allow for control of oscillators with measured relax-
ation times on the order of seconds [10] without reducing
their lifetimes from the coupling to a lossy qubit through
the Purcell effect [2]. Other applications include control
in architectures where a large dispersive coupling can be
difficult to realize, such as semiconducting qubits coupled
to microwave resonators [8] and superconducting qubits
coupled to acoustic resonators [7, 11, 12], or as a means
to selectively control single bosonic modes when multiple
modes are coupled to the same ancillary controller [55].

METHODS

Oscillator relaxation and dephasing in the displaced
frame

With photon loss at a rate κ, the oscillator’s density
matrix evolves according to the quantum master equation
in Lindblad form

∂tρ = −i [H, ρ] + κD [a] ρ, (2)

H = H0 + εa† + h.c., (3)

were D[L] = LρL†−(1/2)
{
L†L, ρ

}
, H0 is the oscillator’s

Hamiltonian, and we have included a time-dependent os-
cillator drive ε(t). Here, we take ~ = 1. Evolution of
the density matrix in a time-dependent displaced frame
ρ̃ = D† (α) ρD (α) is given by the equivalent master equa-
tion

∂tρ̃ = −i
[
H̃, ρ̃

]
+ κD [a+ α] ρ̃ (4)

H̃ = D† (α)H0D (α) + (−i∂tα+ ε) a† + h.c. (5)

In particular, the displaced frame Lindbladian can be
recast as

κD [a+ α] ρ̃ = κD [a] ρ̃− i
[
i
κ

2

(
α∗a− αa†

)
, ρ̃
]
, (6)

corresponding to photon loss at a rate κ, and a Hermi-
tian re-centering force at a rate κ

2 |α|. This deterministic
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force can be lumped into the effective displaced-frame
Hamiltonian, giving

∂tρ̃ = −i
[

˜̃H, ρ̃
]

+ κD [a] ρ̃ (7)

˜̃H = D† (α)H0D (α) +
(
−i∂tα− i

κ

2
α+ ε

)
a† + h.c.

(8)

Given a desired α(t), ε(t) can be chosen such that
the term in parentheses is zero, satisfying the classical
Langevin equation for α(t) given in the main text and
counteracting the re-centering force. With this choice of
drive, the deterministic evolution is accounted for, and
relaxation in the displaced frame is not enhanced com-
pared to relaxation at the origin of phase space. The clas-
sical drive equation can also be modified to account for
all linear terms in H̃, including those caused by nonlinear
terms in H0 (see Supplementary Information section 4).

White-noise oscillator dephasing is given by the master
equation ∂tρ = 2κφD

[
a†a
]
ρ. Defining the superoperator

S [X,Y ] ρ = XρY † −
{
Y †X, ρ

}
, oscillator dephasing is

transformed in the displaced frame to

∂tρ̃ = 2κφD[(a† + α∗)(a+ α)]ρ̃

= 2κφ
{
D[a†a]ρ̃+ |α|2

(
D[a]ρ̃+D[a†]ρ̃

)
+ α2S

[
a†, a

]
ρ̃+ α∗2S

[
a, a†

]
ρ̃

+ α
(
S
[
a†a, a

]
ρ̃+ S

[
a†, a†a

]
ρ̃
)

+α∗
(
S
[
a†a, a†

]
ρ̃+ S

[
a, a†a

]
ρ̃
)}
.

(9)

In the displaced frame, the noise is dominated by
diffusion-like terms at rate 2κφ|α|2, and unlike the re-
laxation case, there is no deterministic part that can be
counteracted with a simple displacement. However, this
master equation is only valid in the Markovian regime,
and typically the spectral density of oscillator frequency
fluctuations non-white due to effects such as two-level-
system defects [56]. In the colored noise case, it is pos-
sible that part of the enhanced dephasing noise could be
echoed away using symmetric pulse constructions [57].

Universality of ECD Control

Universal control of the oscillator is the ability to per-
form arbitrary unitary transformations which are gener-
ated by Hamiltonians polynomial in q = (1/

√
2)(a† + a)

and p = (i/
√

2)(a† − a) [58, 59]. Here, we extend this
definition to universal control of the oscillator and qubit,
which is the ability to perform arbitrary unitary trans-
formations which are generated by linear combinations
of Hamiltonians of the form qjpkσi where j, k are non-
negative integers and σi ∈ {I, σx, σy, σz}.

Given a set of generating Hamiltonians {A,B}, the two
identities

e−iAδte−iBδteiAδteiBδt = e[A,B]δt2 +O(δt3), (10)

eiAδt/2eiBδt/2eiBδt/2eiAδt = ei(A+B)δt +O(δt3), (11)

can be used to generate the action of the Hamiltonian
−i [A,B] and the Hamiltonian A + B in the limit δt →
0 [59]. By repeated application of the identities above,
we can generate evolution which is any superposition of
nested commutators of the original set of generators [60].

Starting with the set of generators for ECD(β)
and Rϕ(θ), {qσz, pσz, σx, σy}, commutators such as
[qσz, σx] ∝ qσy and [σx, σy] ∝ σz can be used to ex-
pand the set to {σi, qσi, pσi} where i ∈ {x, y, z}. This
shows that effectively, by rotating the qubit between con-
ditional displacements, the ECD gate set can create more
general Rabi type interactions between the oscillator and
qubit, where qubit-mediated nonlinear gates have been
proposed [61, 62].

By using commutators similar to [qσx, qσy] ∝ q2σz, our
set can further be expanded to all quadratic polynomials
of qσi and pσi. This process can be iterated in order to
generate any qjpkσi product, where i ∈ {x, y, z}. Terms
which do not contain a Pauli operator such as qjpk can be
generated from commutators such as

[
qj+1pkσz, pσz

]
∝

qjpk. With this, the full Lie algebra for polynomial op-
erators on the qubit and oscillator Hilbert space is gen-
erated.

Speed limit of control

The maximum interaction rate between the oscillator
and qubit will be limited by the maximum displacement
in the oscillator before higher-order nonlinear effects be-
gin to invalidate the dispersive approximation. From [2]
the critical oscillator photon number for the jth transmon
state is

njcrit =
1

2j + 1

(
|∆− jEC |2

4g2
− j
)

(12)

where ∆ is the transmon-oscillator detuning, g is the
linear transmon-oscillator coupling rate, and EC is the
charging energy of the transmon. For our experimental
parameters, ngcrit ≈ 2740 and necrit ≈ 910. These bounds
are not strict, however they provide a guiding principle
for the maximum photon number before higher order ef-
fects become important (see Supplementary Information
Section 3.)

With this, the maximum conditional displacement rate
is gmax

eff = αmax
0 χ ≈

√
necritχ using the critical pho-

ton number for the first excited state of the transmon.
From perturbation theory, the transmon-oscillator dis-
persive coupling is χ ≈

(
2g2EC

)
/ (∆(∆− EC)) and the

transmon anharmonicity is K ≈ EC [2]. In the regime
∆� EC we can approximate ∆−EC ≈ ∆ and combine
the above expressions to find

gmax
eff ≈

√
χK

6
(13)

We note other experiments using sideband three-wave-
mixing interactions are similarly limited by a bound
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∝
√
χK [25, 27, 29]. This suggests that at a fixed dis-

persive shift, increasing transmon anharmonicity could
lead to faster interaction rates, giving a path forward for
engineering higher-fidelity gates with enhanced effective
three-wave interactions.
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S1. EXPERIMENTAL DESIGN

The sample consists of two coaxial microwave cavities machined out of aluminum 6061 alloy anchored at the base
stage of a dilution refrigerator operating at 20 mK. The lower-frequency cavity is used as a high-Q storage oscillator,
while the other is overcoupled to a transmission line and used for readout of a fixed-frequency transmon qubit bridging
the two cavities. The transmon includes a double-angle-evaporated Al/AlOx/Al Josephson-junction fabricated on a
sapphire substrate. An FPGA system is used to control the transmon and cavity with a DAC sampling rate of
1 GS/s. The package and transmon used here is the same as was used in [1], with device parameters that have aged
since that publication. We refer the reader to [1] and associated supplementary material for more details, as well as
the wiring diagram, for which the only major difference here is the lowering of amplification power and addition of
room-temperature microwave switches on the storage and readout line for better noise properties.

Single-shot readout is performed using a SNAIL parametric amplifier operating with 20 dB of gain in phase-
preserving mode [2]. We use a square readout pulse of length 100 ns and acquire signal for 824 ns. With additional
FPGA delays, the total readout time is 1.176 us, leading to a readout fidelity greater than 98% as inferred by the
measured average contrast of thresholded Rabi fringes. A measurement based feedback routine is used to prepare the
transmon in |g〉 before each experimental iteration.

In equilibrium, the transmon’s excited state population is nth,q ∼ 0.0092, corresponding to a temperature of
∼ 68 mK. We rely on a wait time longer than 5T1,c between each experiment for the cavity to relax to near-
equilibrium. As a conservative estimate, we assume the cavity mode is at the same temperature as the transmon
when estimating error sources in section S6, corresponding to a cavity excited state population of nth,c ∼ 0.025 before
the start of each experiment.

S2. SYSTEM HAMILTONIAN AND PARAMETERS

Given the range of displacements used in this work, our system is well described by the effective Hamiltonian [3–5]

H

~
= ∆a†a− χa†aq†q − χ′a†2a2q†q −Kca

†2a2 −Kqq
†2q2 + ε∗(t)a+ Ω∗(t)q + h.c. (S1)

where a (q) are bosonic annihilation operators for the hybridized oscillator-like (transmon-like) modes. Ω(t) and
ε(t) are complex-valued drives generated by IQ modulation, and we have ignored terms rotating at twice the drive
frequencies. H is written in the co-rotating frame of the qubit and cavity drives, and in this work we use ∆ = χ/2 when
performing ECD gates, representing a cavity drive at frequency (ωg+ωe)/2, where ωg (ωe) is the cavity frequency with
the transmon in the ground (excited) state. Under this choice, the Hamiltonian given in the main text corresponds
to projecting eq. (S1) onto the ground and excited state transmon manifold using the mapping σz = 1 − 2q†q and
only keeping the dispersive interaction term. Hamiltonian parameters, as well as measured decoherence rates and
mode frequencies, are given in Table S1, and measurement techniques for these some of these values are described in
section S3.

S3. SYSTEM CHARACTERIZATION AND CALIBRATION

In this section, we outline techniques to characterize an oscillator and qubit coupled with χ/2π on the order
of or smaller than qubit decoherence rates. In this regime, methods for calibration of control and Hamiltonian
parameters which rely on large number-splitting are inefficient. For these calibrations, we rely on semiclassical phase-
space trajectories as derived in section S3 A. In section S3 B, we describe the out-and-back method, which uses large
displacements of the oscillator mode to realize a measurement of Hamiltonian parameters. Finally in section S3 C we
describe a simple geometric phase measurement which is used to calibrate the oscillator drive strength |ε|.

A. Semiclassical phase space trajectories

Starting from H in eq. (S1), we perform a time-dependent displaced frame transformation using the unitary
U = D†(α(t)) = exp

{
α∗(t)a− α(t)a†

}
. This modifies the state according to ρ̃(t) = D†(α(t))ρ(t)D(α(t)), and

the Hamiltonian according to H → H̃ = UHU† + (i~) (∂tU)U† = D† (α(t))HD (α(t)) + (i~)
(
a∂tα

∗(t)− a†∂tα(t)
)
,
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parameter value
transmon g-e transition frequency ωge = 2π × 6.65 GHz
transmon anharmonicity K = 2Kq = 2π × 193 MHz
transmon Ramsey coherence T2R,q = 30 us
transmon echo coherence T2E,q = 65 us
bare transmon relaxation T1,q = 50 us

transmon relaxation with n̄cav = 900 T̃1,q = 30 us
transmon equilibrium population nth = 0.0092
readout frequency ωr = 2π × 8.22 GHz
readout dispersive shift χqr = 2π × 0.96 MHz
readout relaxation rate κr = 1.7 MHz
storage cavity frequency ωc = 2π × 5.26 GHz
storage dispersive shift χ = 2π × 32.8 kHz
storage second-order dispersive shift χ′ = 2π × 1.5 Hz
storage cavity Kerr 2Kc = 2π × 1 Hz
storage cavity relaxation T1,c = 436 us
storage cavity Ramsey coherence T2R,c < 2T1,c = 872 us

TABLE S1. Measured system parameters and loss rates. Measurement of the dispersive shift, the second order
dispersive shift, and Kerr is described in section S3 B. The Cavity relaxation time T1,c is measured by preparing a coherent
state α0 = 3.6 and measuring 〈â†â〉 (t) using time-dependent transmon spectroscopy. The limit on the cavity Ramsey coherence
time T2,c is inferred from the cavity relaxation time.

giving

H̃

~
= ∆a†a− (χ+ 4χ′|α|2)a†aq†q − χ′a†2a2q†q −Kca

†2a2 −Kqq
†2q2 − (χ+ 2|α|2χ′)(α∗a+ αa†)q†q

− (χ|α|2 + χ′|α|4)q†q − 4Kc|α|2a†a+
(

∆α∗ − 2Kc|α|2α∗ + i(∂tα
∗) + i

κ

2
α∗ + ε∗

)
a+ h.c.

−Kc

(
2αa†2a+ α2a†2 + h.c.

)
− χ′

(
2αa†2a+ α2a†2 + h.c.

)
q†q + Ω∗(t)q + h.c.

(S2)

We have also included the deterministic part of oscillator relaxation at a rate κ/2 as described in the methods section
of the main text.

1. Simulating in the displaced frame

Given an oscillator drive ε(t), it is numerically advantageous to cancel the classical part of the oscillator’s phase-

space trajectory by picking a time-dependent frame α(t) which cancels the displacement term in H̃. This is done by
solving

∂tα(t) = −i∆α(t) + 2iKc|α(t)|2α(t)− κ

2
α(t)− iε(t)

α(0) = 0
(S3)

for α(t). Once α(t) is known, H̃ without the linear terms in a and a† is used to efficiently simulate a cavity and
transmon evolution in the displaced frame using a truncated Hilbert space. This displaced frame Hamiltonian is used
for master equation simulations in section S6.

2. Semiclassical trajectories

During a period where the qubit populations stay constant (Ω(t) = 0), we can instead determine the oscillator’s
phase-space trajectories conditioned on the qubit’s ground or excited state. This semiclassical approximation is done
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by replacing q†q in H̃ with {0, 1} for transmon states {|g〉 , |e〉}. This replacement gives the two Hamiltonian sectors

H̃g

~
= (∆− 4Kc|α|2)a†a−Kca

†2a2 +
(

∆α∗ − 2Kc|α|2α∗ + i(∂tα
∗) + i

κ

2
α∗ + ε∗

)
a+ h.c.

−Kc

(
2αa†2a+ α2a†2 + h.c.

)
,

H̃e

~
= (∆− χ− 4χ′|α|2 − 4Kc|α|2)a†a− (χ′ +Kc)a

†2a2

+
(

∆α∗ − 2Kc|α|2α∗ + i(∂tα
∗) + i

κ

2
α∗ + ε∗ − (χ+ 2|α|2χ′)α∗

)
a+ h.c.

− (Kc + χ′)
(
2αa†2a+ α2a†2 + h.c.

)
(S4)

describing the dynamics of the driven oscillator when the transmon is in the ground or excited state. Similar to the
displaced-frame simulation, the linear part of these Hamiltonians can be individually cancelled, resulting in the two
equations

∂tαg(t) = −i∆αg(t) + 2iKc|αg(t)|2αg(t)−
κ

2
αg(t)− iε(t)

∂tαe(t) = −i∆αe(t) + 2iKc|αe(t)|2αe(t)−
κ

2
αe(t)− iε(t) + i(χ+ 2χ′|αe(t)|2)αe(t)

(S5)

which can be used to calculate the semiclassical trajectories for the ground or excited states during periods when
Ω(t) = 0. In the case of a conditional displacement, after each π pulse, the Hamiltonians are swapped, and the
result from the previous part of the trajectory is used to seed the next initial value problem. In our simulations, we
solve these nonlinear initial value problems using a central-difference method with trajectories sampled at 1 ns. These
trajectories are used in section S3 B for Hamiltonian parameter calibration and in section S4 B for optimization of the
cavity and qubit drives to produce ECD gates.

B. Measurement of Hamiltonian parameters using out-and-back

Although many of the Hamiltonian terms are small relative to the rate of transmon decoherence, they can be
estimated in experiment using large displacements to enhance their effective strength. Here, we make use of this
enhancement through the measurement sequence shown in Fig. S1(a). We first prepare the qubit in the ground or
excited state then displace the oscillator out by α0. After a time t, the oscillator is displaced back by −eiφα0, where φ
is swept. The second displacement serves as an attempt to displace the oscillator’s state back to the origin of phase-
space. If the attempt is successful, φ encodes the oscillator’s coherent-state phase accumulation at a displacement α0

after a time t. A narrow-bandwidth π pulse (σ = 200 ns) is then used as a probe, only flipping the transmon’s state
measured by m2 if the oscillator’s state is close to the origin of phase space. Finally, we postselect the results of m2

on the condition m1 = |ψi〉, where |ψi〉 is the initial transmon state, in order to remove the influence of transmon
relaxation or heating.

In Fig. S1(c), we show the results of this experiment with t = 1 us and N = 5 repetitions of out and back, used to
enhance the sensitivity. In initial state |e〉, the signal is lost above 〈n〉 & 2500 photons, and in initial state |g〉, the
signal is lost above 〈n〉 & 7500 photons. These values represent the oscillator photon numbers at which the qubit is
excited outside of the |g〉 , |e〉 manifold due to higher-order nonlinear transitions, a process sometimes referred to as
bright-stating that has been observed in previous experiments using readout resonators [6–8]. Such an effect could be
suppressed by using an inductive shunt, proving a path forward to engineering faster gates [9]. Fig. S1 also indicates
the critical photon number at which the dispersive approximation begins to fail calculated using the expressions in
the methods section of the main text, ngcrit ≈ 2740 and necrit ≈ 910. This serves as a guiding principle for the speed
limit of control.

At each 〈n〉 below the bright-stating point, the relative oscillator frequency when the transmon is in the ground
or excited state is obtained by fitting 〈σz〉 to a Gaussian function and dividing its mean phase accumulation by the
wait time t. The resulting relative frequency dispersion as a function of average cavity photon number 〈n〉 = α2

0 for
transmon states |g〉 and |e〉 is shown in Fig. S1(c) by the open circles. Note that the finite duration of the displacement
pulses will also influence the result, and as a secondary check, the experiment can be repeated at different wait times
t. Clearly the dispersion is not constant, representing the need to include higher-order nonlinear terms beyond the
dispersive coupling in our effective Hamiltonian, as is done in eq. (S1).

To extract the effective Hamiltonian parameters, we fit the measured dispersion (open circles in Fig. S1) to that
expected from H in eq. (S1). In particular, the semiclassical trajectories in eq. (S5) which govern the evolution of
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FIG. S1. Out-and-back measurement a. Experimental sequence to measure the phase accumulation of a coherent state
with radius α0 after a time t when the transmon is in the ground or excited state. b. Measurement result with initial
transmon state |g〉 (top panel) and |e〉 (bottom panel) with a fixed wait time of t = 1 us and N = 5 repetitions post-selected on
measurement m1 matching the prepared state. c. Measured cavity frequency dispersion (open circles) compared to numerical
diagonalization of eq. (S8) (solid lines). The open circles is a fit of different experimental data than shown in panel (b), with
higher resolution out to α2

0 = 3000. d Measured transmon relaxation as a function of 〈n〉 found by analyzing m1 measurement
results with initial transmon state |e〉 and sweeping t. φ is chosen close to values which successfully displace the cavity state
back to the origin of phase space. Measurement results shown for three consecutive days with each experiment averaging for
around 1 hour.

coherent states predict the effective cavity rotation frequencies to be

∆g = ∆− 2Kcα
2
0 (S6)

∆e = ∆− χ− (2Kc + 2χ′)α2
0 (S7)

as a function of the average number of photons in the cavity α2
0 when the transmon is in the ground and excited

states respectively. By fitting the sum and difference of two dispersion curves to the sum and difference of these
linear functions, we can extract the four unknown Hamiltonian parameters χ, χ′, K, and ∆. The dispersion fits well
to a linear function in the range of interest for control, for photon numbers up to α2

0 < 2000, with results given in
Table S1. For experiments using echoed conditional displacements, we use this experiment to calibrate the cavity
drive frequency such that ∆ = χ/2.

To further confirm our model, we compare the measured dispersion to a numerical diagonalization of the coupled
transmon-oscillator Hamiltonian

H

~
= 4Ec(N̂ −Ng)2 − EJ cos (ϕ̂) + ωbare

c a†a+ g(N̂ −Ng)
(
a+ a†

)
(S8)

where N̂ is the Cooper-pair number operator, ϕ̂ is the conjugate Josephson phase, Ng is the offset charge in units of 2e,
and â is the bare cavity mode annihilation operator [10]. For photon numbers up to 〈n〉 ≈ 1000, we have confirmed
that the oscillator’s dispersion for qubit states |g〉 and |e〉 does not depend on offset charge, so we set Ng = 0.
With this choice, we use second-order perturbation theory to find the bare Hamiltonian parameters which fit the
measured hybridized mode frequencies, transmon anharmonicity, and dispersion at low 〈n〉 ≈ 0, resulting in the bare
parameters g/2π = 9.12 MHz, Ej/2π = 32.33 GHz, Ec/2π = 181 MHz and ωbare

c = 5.26 GHz. Using these parameters,
we numerically diagonalize eq. (S8) in the basis of transmon eigenstates with a Hilbert space of 2800 oscillator states
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and 12 transmon states. The resulting dispersion is shown by the solid lines in Fig. S1(c), which have excellent
agreement with the measured dispersion. Also, the diagonalization predicts a breakdown of our quantum number
assignment algorithm for transmon state |e〉 at 2500 photons in the oscillator, matching the measured breakdown in
experiment. Finally, we note that higher-order perturbation theory can also be used to predict an analytic effective
Hamiltonian at large photon numbers in the cavity, as shown in [11].

We use a similar out-and-back measurement to probe the transmon relaxation and heating rate while the cavity is
displaced to a large coherent state, since a reduction in transmon lifetime has been observed when displacing readout
resonators [12]. For this, we use the out-and-back sequence in Fig. S1(a), except we sweep t, and fix φ(t) close to
phases that displace the oscillator’s state back to the origin of phase-space at each 〈n〉 given the measured dispersion.
In this case, we focus on the result of m1. We find that, up to 2000 oscillator photons, there is no appreciable heating
out of |g〉 when displacing the cavity state, indicating that the dressed dephasing rate is small [13]. However, when
preparing the transmon in |e〉, we measure that the transmon’s relaxation rate shows a dependence on cavity photon
number. In Fig. S1(d), we plot the measured probability of the transmon remaining in |e〉 after a wait time t up
to 4 us when displacing the cavity to 〈n〉 = α2

0, with experiments run on three consecutive days. We suspect this

time-dependent T̃1,q vs n̄cav effect is caused by fluctuating two-level-systems (TLS) which come into resonance with
the transmon as it is stark-shifted by cavity photons [14–16]. Although the T1 vs n̄ changes with time, we find an

average value of T̃1,q ≈ 30 us for n̄ = 900 over the data plotted in Fig. S1(d), and we use this value when performing
master equation simulations in section S6.

C. Oscillator drive strength calibration using geometric phase

In this section, we discuss a simple experiment which can be used to calibrate a linear oscillator drive amplitude in
the weak-χ regime. Starting with the qubit prepared in |ψi〉 = 1√

2
(|g〉+ |e〉), we construct an oscillator drive sequence

which encloses an area in phase space for both |g〉 and |e〉 trajectories. By disentangling the qubit and oscillator at
the end of the sequence, the qubit will be left in the state |ψf 〉 = 1√

2

(
|g〉+ eiφ |e〉

)
where φ encodes the enclosed area

[17–20]. Given an arbitrary displacement pulse shape g(t) with a length tp, a simple pulse sequence that accomplishes
this is

ε(t) = ε0 [g(t)− rg(t− (tp + tw))− rg(t− (2tp + tw)) + g(t− (2tp + 2tw))] (S9)

as shown in Fig. S2(a) with a phase-space trajectory shown in Fig. S2(b). This drive is similar to a conditional
displacement without a qubit π pulse, and the goal here is to calibrate the pulse scale ε0.

To analyze this sequence, we note that for low photon numbers, the Hamiltonian is well described by only the
dispersive term. With this approximation, the semiclassical trajectories in eq. (S5) can be solved with initial value
αg
e
(0) = 0 giving

αg
e
(t) = e−

1
2 (±iχ+κ)t

(
e

1
2 (±iχ+κ)t0αg

e
(t0)− i

∫ t

t0

e
1
2 (±iχ+κ)τε(τ)dτ

)
. (S10)

Subsituting ε(t) into eq. (S10), we solve for the ratio of the middle-two pulses, r, such that the condition αg
e

= 0
is satisfied at the end of the entire sequence, and the qubit and oscillator are disentangled. Remarkably, this ratio is
independent of the shape of the displacement pulse g(t), and is found to be

r =
1 + e

1
2 (±iχ+κ)(3tp+2tw)

e
1
2 (±iχ+κ)(tp+tw) + e

1
2 (±iχ+κ)(2tp+tw)

(S11)

where tp is the length of the displacement pulses g(t) and tw is the wait time. By Taylor expanding this ratio in
orders of κ, we find in the limit (tp + tw) << 1/κ,

r = cos
(χ

4
(3tp + 2tw)

)
sec
(χ

4
tp

)
(S12)

independent of the qubit state. In the high-Q oscillator limit, this sequence disentangles the oscillator and qubit and
can be used to measure the geometric area enclosed by the trajectory.

Using eq. (S10), we numerically integrate the sequence with displacement pulses g(t) chosen as truncated Gaussians
with σ = 11 ns and tp = 44 ns to find the phase-space trajectories for αg

e
, including the maximum phase-space radius

α0, and the associated geometric phase difference. By measuring 〈σx〉 and 〈σy〉 while sweeping the drive scale, this
phase difference is fit to the experiment, allowing a calibration of ε0 in terms of DAC amplitude. In Fig. S2(c) we show
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an example of the measured phase accumulation as ε0 is linearly scaled (tw = 200 ns), along with the phase predicted
using the integrated geometric area. If desired, nonlinear effects can be included by using eq. (S5) when calculating
the trajectories, however in this case it is no longer guaranteed that r given by eq. (S11) will exactly disentangle the
oscillator and qubit. Using this, we find a maximum drive amplitude of |ε|max/2π ≈ 400 MHz before saturating our
room-temperature amplification chain.
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FIG. S2. Geometric phase measurement a. Geometric phase measurement drive sequence and drive parameterization.
b. Phase space trajectories for αg and αe. c Measured 〈σx〉 and 〈σy〉 compared to expected phase found by solving the
semiclassical trajectories in eq. (S5) (solid lines) as a function of phase space radius α0.

S4. THE ECHOED CONDITIONAL DISPLACEMENT GATE

In section S4 A we derive the echoed conditional displacement unitary assuming an ideal dispersive Hamiltonian.
Next, in section S4 B, we optimize the ECD gate considering drive constraints and higher-order nonlinearities.

A. Derivation of the ECD gate

Here, ε(t) is a complex-valued function representing the envelope of an I-Q modulated drive with a carrier frequency
(ωg + ωe)/2, where ωg (ωe) is the oscillator’s frequency when the qubit is in the ground (excited) state. In the co-
rotating frame at the drive frequency and qubit frequency, the ideal Hamiltonian is

H

~
= χa†a

σz
2

+ ε∗(t)a+ ε(t)a† (S13)

where we have neglected terms rotating at twice the drive frequency.
The echoed conditional displacement gate consists of two driving steps with a qubit π pulse between, here assumed

instantaneous. In this case, the general solution to the time-dependent Schrödinger equation i~∂tU = HU is

U = T e−
i
~
∫ T
t1
H(τ)dτ

σxT e−
i
~
∫ t1
0 H(τ)dτ (S14)

where t1 is the time of the π pulse, T is the total time of the gate, and T is the time-ordering operator.
To represent the action of the π pulse flipping the sign of σz between the two trajectories, we instead modify the

dispersive Hamiltonian to include a function z(t) = ±1 which represents the sign of σz, giving

H

~
= χa†a

σzz(t)

2
+ ε∗(t)a+ ε(t)a†. (S15)

Using this modified Hamiltonian, we take as an ansatz for the solution of the Schrödinger equation

U = eiθ
σz
2 ea

†(γ+δσz)−a(γ∗+δ∗σz)eiφa
†aσz (S16)

where θ represents an ancilla qubit phase, γ and δ represent a displacement and conditional displacement, φ represents
a qubit state-dependent rotation of the oscillator, and these variables are time-dependent.
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Ignoring a global phase, the Schrödinger equation gives

∂tθ = −2Re [δε∗] (S17)

∂tγ = −iχ
2
z(t)δ − iε (S18)

∂tδ = −iχ
2
z(t)γ (S19)

∂tφ = −χ
2
z(t). (S20)

These equations can be solved, giving

θ(t) = −2

∫ t

0

dτRe [ε∗(τ)δ(τ)] (S21)

γ(t) = −i
∫ t

0

dτ cos [φ(τ)− φ(t)] ε(τ) (S22)

δ(t) = −
∫ t

0

dτ sin [φ(τ)− φ(t)] ε(τ) (S23)

φ(t) = −χ
2

∫ t

0

dτz(τ). (S24)

The state-dependent rotation of the oscillator can be canceled by setting φ(T ) = 0. For the echoed conditional
displacements in this work, this is done by applying a single qubit π pulse at time T/2. If desired, more qubit echos

can be included, subject to the condition
∫ T

0
dτz(τ) = 0.

Using the Baker-Campbell-Hausdorff formula, the conditional displacement and displacement can be separated,
giving the overall unitary

U = σxe
iθ′ σz2 D(λ)CD(β) (S25)

corresponding to a conditional displacement CD(β) = D(β/2) |g〉 〈g|+D(−β/2) |e〉 〈e|, a displacement, and an addi-
tional qubit phase with the parameters β = 2δ(T ), λ = γ(T ), and θ′ = θ(T ) + 2Im [γ(T )δ(T )]. We have also explicitly
included a σx operator to represent the action of the single π pulse (here ECD (β) = σxCD(β)).

To realize an ECD gate, we aim to null the qubit phase and oscillator displacement. In the limit of instantaneous
displacements and motivated by the geometry of rotating phase-space, this can be perfectly achieved by choosing the
drive

ε(t) = α [δ(t)− 2δ(t− T/2) cos (χT/4) + δ(t− T ) cos (χT/2)] (S26)

where δ(t) is the Dirac delta function. This drive corresponds to the displacement sequence described in Fig. 1b of
the main text with β = 2iαeiφ sin (χT/2) and |α| = α0.

The drive in eq. (S26) cannot be realized in experiment due to bandwidth and amplitude limits of a realistic
microwave drive. Also, effects such as photon loss, higher-order nonlinearities, and the finite duration of the qubit π
pulse are not taken into account in Equations (S21) to (S24). To realize a high-fidelity ECD gate in the presence of
these effects, we optimize ε(t) using semiclassical trajectories as described in the next section S4 B.

B. Optimization of the ECD gate

In our experiment, the dynamics can slightly differ from those described by Equations (S21) to (S24) due to the
second-order dispersive shift χ′ and the oscillator Kerr Kc which become relevant at large phase-space displacements.
These effects can be studied by examining the displaced-frame Hamiltonian in eq. (S2). In H̃, nonlinear terms
proportional to χ′ or Kc can generally cause distortions to the state. However, simulations indicate that these terms
do not significantly decrease the fidelity of ECD control protocols given our system parameters in Table S1. This is
partially because the deleterious effect of terms which are proportional to sign(α) or sign(σz) are significantly reduced
due to the phase-space echo α → −α and qubit echo |g〉 ↔ |e〉 at time T/2 during the ECD gate, which cancels
part of their on-average effect to the state distortion in the same way the qubit-state dependent oscillator rotation is
canceled during the ideal ECD gate.

With this in mind, we optimize ECD gates using semiclassical trajectories (section S3 A) which account for the
linear displaced-frame terms (proportional to a), including those caused by the second-order disperse shift, Kerr, and
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photon loss. We assume a form of the unitary still given by eq. (S25), with the values of β, λ and θ′ calculated using
the trajectories αg

e
(t) for the ground and excited qubit states. We note that ECD(β) can be generated with any α0

or χ as long as χT < 2π and the qubit rotation pulse bandwidth is sufficiently large compared to χ. In particular, a
large α0 is not required.

To construct each ECD gate, we start by imposing the drive to be of the form shown in Fig. S3(a), which replaces
the Dirac δ-functions in eq. (S26) with fixed-length Gaussian waveforms, chosen in our experiment with a standard
deviation of σ = 11 ns and a total length of 4σ = 44 ns. This simplification is chosen so that the drive strength
required to realize the large displacements used in this work remain in the linear regime of our room temperature
amplification chain, and so the displacements take the exact same form as those used to calibrate the drive amplitude
using the geometric phase measurement shown in section S3 C. The amplitude ratio of the second, third, and fourth
Gaussian to the first are given by r2, r3, and r4, and the wait time between the displacements is given by tw.

Using a simple optimization strategy, we find the values of {ε0, r2, r3, r4} which realize a target conditional dis-
placement β with intermediate phase-space radius α0 in the shortest time tw. Starting with a large guess time tw,
the parameters are optimized with a Nelder-Mead method using the cost function

C = |αg(T/2) + αe(T/2)|2 + |αg(T ) + αe(T )|2 +

(
|αg(T/4) + αe(T/4)|

2
− α0

)2

+

(
|αg(3T/4) + αe(3T/4)|

2
− α0

)2

(S27)

where αg
e
(t) is calculated using eq. (S5) including the second-order dispersive shift, Kerr, and photon loss. This cost

function minimizes the final and midpoint net displacement, and ensures an intermediate phase space radius of α0 for
the first and third displacements. Once {ε0, r2, r3, r4} have converged at a given tw, β is calculated as αe(T )−αg(T ),
and tw is stepped down until the target β is realized. If tw reaches 0, and the target β has not been reached, then
α0 is reduced until the target β is realized. We note that shorter pulses could instead be used in this small-β case,
however in our proof of principle example, we keep the displacement duration fixed such that the pulses do not occupy
a larger bandwidth than those used in the calibration.

The form of the resulting conditional displacement strongly depends on β and the choice of α0. In Fig. S3(b) and
Fig. S3(c) we illustrate the result of this optimization using our system parameters for β = 1 in two different regimes,
α0 = 10 and α0 = 50. In the first case, a majority of the conditional displacement is accumulated during the wait
times tw. In the second case, tw is reduced to 0, resulting in α0 being further lowered to ≈ 45 to realize the gate.
In this regime, the conditional displacement is accumulated during the driving periods, and increasing the target α0

does not result in a faster gate after optimization. This is the reason for the drive-constraint limit shown in Fig. 2c
of the main text.
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FIG. S3. Echoed conditional displacement a. Parameterization of the drive ε(t) for the echoed conditional displacement.
b. and c. Echoeded conditional displacement gate for β = 1 optimized with target α0 = 10 (b) and α0 = 50 (c). Top panels
show the resulting drives, and bottom panels show the semi-classical phase space trajectories at a large aspect ratio.

A full ECD sequence specified by the parameters
{
~β, ~φ, ~θ

}
is compiled into drives ε(t) and Ω(t) by first optimizing

the drives for each ECD gate given a target α0. These are interleaved with qubit rotations, which are performed
by modifying the phase and amplitude of fixed-length Gaussian pulses with σ = 6 ns and total length 4σ = 24 ns
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independently calibrated in experiment. We note that pulse shaping techniques such as derivative reduction by
adiabatic gate (DRAG) could also be incorporated to realize shorter transmon pulses [21, 22]. Finally, the phase of
each qubit pulse is updated to account for the additional phases associated with each ECD gate (θ′) calculated by
eq. (S21). This correction is done by keeping track of the qubit frame given all preceding ECD gates and updating
the phase ϕ of each qubit rotation gate accordingly. As an example, in Fig. S4 we show the compiled ECD pulse
sequence used to prepare |+Z〉GKP in the cavity. Here, we use α0 = 30, however some ECD gates are performed at a
smaller α′0 < α0 resulting from the finite displacement pulse duration and the ECD optimization procedure described
above.
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FIG. S4. GKP state preparation ECD pulse sequence used to prepare |+Z〉GKP in the cavity starting from vacuum

using a circuit depth N = 9 (here, ∆target = 0.306 as described in section S5 E and the ECD control parameters
{
~β, ~φ, ~θ

}
are

found using the procedure described in section S4 B). ε(t) is the cavity drive and Ω(t) is the transmon drive. Red and blue
colors denote the real and imaginary parts of these drives, respectively.

Finally, we note that the ECD gate set is designed to be well suited in the weak-χ regime since it requires fast
unselective qubit rotations, an important operation that can become challenging at large dispersive shifts. With
independent experiments on a different sample not presented in this work, we have confirmed the validity of the ECD
approach for χ/2π ∼ 200 kHz. To realize faster gates using a larger dispersive shift on the order of χ/2π & 1 MHz, the
gate set could be modified to take the partially selective nature of the finite-bandwidth qubit rotations into account,
or GRAPE based techniques could be incorporated.

S5. CHARACTERISTIC FUNCTION TOMOGRAPHY

A. Measurement and Post-Processing

The tomographic sequence used to measure the characteristic function after each ECD sequence is shown in
Fig. S5(a). As shown in previous works ([1, 23, 24]), the oscillator’s characteristic function defined as C(β) =
Tr (D(β)ρ) can be measured using a conditional displacement embedded within a qubit ramsey sequence resulting in
〈σx − iσy〉 = 〈D(β)〉 before the second π/2 pulse. By varying the phase of the second π/2 pulse, we can measure either
the real or imaginary part of C(β) by measuring either 〈σx〉 or 〈σy〉 respectively. We also include a first measurement
m1 to disentangle the qubit and oscillator before the tomography, and postselect the results of the characteristic
function (m2) on m1 = |g〉. We note that the pulses in this work are designed to realize state preparation sequences
of the form |0〉 |g〉 → |ψ〉 |g〉 which disentangle the oscillator and qubit after the pulse. However, due to decoherence
during the pulse, there is small residual entanglement between the oscillator and qubit, hence the need for m1, with
probabilities of m1 = |g〉 given in the main text.
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FIG. S5. Tomography a. Characteristic function measurement sequence b. Measured qubit phase accumulation (open circles)
after the cat-and-back sequence (depicted in the inset). Data matches the phase predicted by eq. (S24) (solid line). c. Example
of characteristic function post-processing using the measured GKP |+Z〉 state.

To simplify tomography, the ECD gate used to measure the characteristic function is realized using the optimization
method in section S4 B for β = 1.0 using α0 = 2.0. The amplitude and phase of this ECD gate is swept in experiment
to sample the characteristic function. This low α0 is chosen so the second-order dispersive shift and Kerr have a
negligible effect on the tomography, and the applied gate is well described by eq. (S25). From this, the additional
qubit phase θ′ can be easily predicted and corrected in post-processing.

To verify the validity of eq. (S21) in predicting this phase, we measure the phase θ′ by using a cat-and-back
ECD sequence depicted in the inset of Fig. S5(b): We prepare the qubit in |+x〉 = 1√

2
(|g〉+ |e〉), then apply two

conditional displacements: ECD(β),ECD(−β), with a qubit π pulse between, after which the qubit phase is measured
(by measuring 〈σx〉 and 〈σy〉). Here, the ECD gates are the same as those used for characteristic function tomography
(α0 = 2 at β = 1, and amplitude is swept). The resulting phase θ′ in Fig. S5(b) shows excellent agreement with the
prediction from eq. (S21).

With this, the post-processing of the tomographic 〈σx〉 and 〈σy〉 is depicted in Fig. S5(c), using the measured
data for the |+Z〉GKP state as an example. In experiment, we alternate between ±π/2 for the first π/2 pulse to
symmetrize the transmon’s T1 error channel during readout. Since the characteristic function obeys the property
C(−β) = C∗(β), we only measure half of the real and imaginary parts, then mirror about the Re(β) = 0 axis. The

characteristic function is found by applying a phase correction C(β) → ei|β|
2θ′0C(β) where θ′0 is the phase predicted

by eq. (S21) for β = 1 using the ECD pulse optimized for tomography (α0 = 2). We note that this phase is slightly
different than the phase found using the cat-and-back experiment described above, which is only verifying the validity
of eq. (S21). Finally, the data is scaled such that C(0) = 1, effectively accounting for qubit decoherence (T2E) during
the tomography.

B. Density matrix reconstruction

To estimate the fidelity and purity of the oscillator state in experiment, we employ density matrix reconstruction
using maximum likelihood estimation. For this, we use the measured real and imaginary parts of the characteristic
functions, taken with 1,280 averages per point and use a numerical, iterative, convex optimization algorithm. For
all demonstrations, the measured imaginary parts are close to zero, as is expected for states with symmetric Wigner
functions. Any small deviations away from zero in the imaginary part are captured by the reconstruction.

For the Fock states, binomial states, and GKP states, the reconstruction is done in the Fock basis. For the squeezed
states, reconstruction is performed in the squeezed-Fock basis with a basis squeezing equal to the target squeezing.
The reconstruction Hilbert space size is swept, and a Hilbert space trunction is chosen such that increasing or
decreasing the truncation does not change the fidelity or purity within the quoted error bars. For the binomial,GKP,



22

and squeezed states, some states display a small phase-space rotation in the tomography. For these, a small inverse
rotation is applied to the reconstructed density matrix. The maximum change in fidelity from this rotation is 1(%)
for the |−Z〉GKP state.

C. Effective squeezing measurement

To find the effective squeezing of prepared states, the reconstructed density matrices are used to calculate the
position quadrature probability distributions, P (x) = Tr (ρ |x〉 〈x|), with results shown in Fig. S6(a), including the
measured cavity equilibrium thermal state for comparison. Here, a small rotation is applied to the reconstructed
density matrices before calculating the probability distributions to align the squeezed quadrature. Also shown is
the purity (p = Tr

(
ρ2
)
) of each reconstructed density matrix. These distributions are fit to Gaussian functions to

extract the squeezing in each state quoted in the main text. We compare these results to a calculation of the Fisher
information using the full reconstructed probability distributions,

Ic = 2

∫
dx (∂x logP (x))

2
P (x). (S28)

The Fisher information is a measure of the ability to sense small displacements along the position quadrature using
the state with respect to homodyne detection [25, 26]. For ideal squeezed states, Ic = 2/ 〈∆x2〉. Although the
calculated purity of the squeezed states decreases with larger target squeezing, the states can still be used to sense
small displacements, since only the probability distribution P (x) = Tr (ρ |x〉 〈x|) enters into the Fisher information.
In Fig. S6(b), we compare the calculated IC for each state to the target value. Finally, we also compare to Ic =
2/σ2

x, where σ2
x is the variance of the Gaussian fit, indicating that the squeezed quadrature distributions are well

approximated by a Gaussian, even though the full tomographies show some non-Gaussian features.
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FIG. S6. Squeezed state distributions a. Reconstructed position quadrature probability distributions and squeezing
values found by a fit to Gaussian functions. Also shown are purities calculated as p = Tr(ρ2). b. Calculated Fisher information
from the probability distributions (orange), compared to that expected from a Gaussian fit (blue).

D. Binomial code analysis

The binomial kitten code is the smallest binomial code for which the loss of a single photon is correctable [27–31], with

logical states given by |+Z〉 = (|0〉+ |4〉) /
√

2 and |−Z〉 = |2〉. In Table S2 we give the estimated expectation values
of the logical Pauli operators of the prepared states found numerically using the reconstructed density matrices. We
also quantify how errors in the prepared states could be corrected by ideal error correction, as some errors during the
state preparation are in principle correctable. In particular, the correctable code space includes the normalized error
states |+Z〉e = a |+Z〉 /| 〈+Z|a†a|+ Z〉 |2 = |3〉 and |−Z〉e = a |−Z〉 /| 〈−Z|a†a| − Z〉 |2 = |1〉. From these, we can
define the logical operators corresponding to applying ideal error correction then performing a logical measurement,
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given by

Xc = |+Z〉 〈−Z|+ |+Z〉e 〈−Z|e + |−Z〉 〈+Z|+ |−Z〉e 〈+Z|e
Yc = i |−Z〉 〈+Z|+ i |−Z〉e 〈+Z|e − i |+Z〉 〈−Z| − i |+Z〉e 〈−Z|e
Zc = |+Z〉 〈+Z|+ |+Z〉e 〈+Z|e − |−Z〉 〈−Z| − |−Z〉e 〈−Z|e
Ic = |+Z〉 〈+Z|+ |+Z〉e 〈+Z|e + |−Z〉 〈−Z|+ |−Z〉e 〈−Z|e .

(S29)

The expectation values of these operators quantify the logical information encoded in the prepared states after ideal
error correction assuming a photon loss error channel. We calculate these expectation values using the reconstructed
density matrices with results shown in Table S2. If these prepared states were to be used in an error correction setting,
the error decoding model should instead be adapted to fit the actual errors encountered during state preparation.

State 〈I〉 〈X〉 〈Y 〉 〈Z〉 〈Ic〉 〈Xc〉 〈Yc〉 〈Zc〉
|+X〉bin 0.90 0.98 0.08 -0.05 0.95 0.92 0.09 -0.08
|+Y 〉bin 0.92 -0.06 0.90 -0.10 0.98 -0.06 0.96 -0.13
|+Z〉bin 0.92 0.03 -0.05 0.92 0.97 0.04 -0.04 0.96
|−Z〉bin 0.93 -0.01 -0.10 -0.93 0.99 -0.02 -0.10 -0.98

TABLE S2. Binomial code Pauli expectation values found numerically using the reconstructed density matrices.

E. GKP code analysis

The finite energy square GKP code stabilizers and logical Pauli operators are defined as [32–37]

Sq,∆ = e−∆2a†aD
(
i
√

2π
)
e∆2a†a Sp,∆ = e−∆2a†aD

(√
2π
)
e∆2a†a (S30)

X∆ = e−∆2a†aD
(√

π/2
)
e∆2a†a Z∆ = e−∆2a†aD

(
i
√
π/2

)
e∆2a†a (S31)

with Y∆ = iX∆Z∆. The target GKP states are found numerically by letting |+Z∆〉 be the groundstate of a
fictitious Hamiltonian H = −Sq,∆ − Sp,∆ − Z∆, then by applying the appropriate finite energy logical operators and
normalizing. Here, we use a target state squeezing of ∆target = 0.306 (10.3 dB). To estimate the effective squeezing of
the prepared GKP states in experiment, we find the value of ∆ that maximizes the expectation value of the projector
onto the finite-energy code space P∆ = |+Z∆〉 〈+Z∆| + |−Z∆〉 〈−Z∆| using the reconstructed density matrices. We
find a squeezing of ∆exp = 0.35 (9.1 dB) for all prepared states within the precision of the reconstruction. In addition
to the fidelities given in the main text, we quantify the quality of the prepared states here by numerically estimating
the expectation values of the finite-energy Pauli operators and stabilizers with results given in Table S3.

In addition, we quantify the prepared GKP states by the logical expectation values that would result from an ideal
homodyne detection. In Fig. S7, we plot the reconstructed marginal probability distributions for the prepared GKP
states along the generalized quadrature coordinate xθ =

(
eiθa† + e−iθa

)
/
√

2 with θ = {0, π/2, π/4} (x0 = x and
xπ

2
= p). From these, we can define the corresponding homodyne expectation values (XH , YH , and ZH) resulting

from integrating the probability distributions and assigning a logical value. These are given by the total probability of
finding a homodyne measurement result in sectors closest to x0 mod 2

√
π = 0 or x0 mod 2

√
π =
√
π for ZH = ±1,

with analogous definitions for XH and YH [32]. The results are given in Table S3.

State Re (〈Sq,∆〉) Re (〈Sp,∆〉) Re (〈X∆〉) Re (〈Y∆〉) Re (〈Z∆〉) 〈XH〉 〈YH〉 〈ZH〉
|+Z〉GKP 0.75 0.88 0.01 -0.02 0.94 0.00 -0.01 0.94
|+Y 〉GKP 0.78 0.78 0.02 0.87 0.05 0.01 0.87 0.06
|−Z〉GKP 0.81 0.71 0.02 0.03 -0.85 0.02 0.02 -0.91

TABLE S3. GKP code stabilizer and Pauli expectation values. For the finite energy stabilizers and Pauli operators,
we use ∆ = ∆exp = 0.35.

S6. SOURCES OF INFIDELITY

In this section, we use simulations to estimate the sources of infidelity for the Fock state, binomial state, and GKP
state preparation examples shown in the main text.
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FIG. S7. Reconstructed GKP state marginal probability distributions. Blue and white bins represent the integration
zones corresponding to assigning the associated logical Pauli operator ±1 respectively.

A. Decoherence-Free Error Budget

First, we estimate how accurately our pulse compilation procedure, described in section S4 B, can realize ideal ECD
control unitaries, UECD in eq. (S33), especially in the presence of Kerr and the second-order dispersive shift. In the
open red circles of Fig. S8, we show simulated oscillator state preparation fidelities of the ideal ECD unitaries, defined
as Fg = | 〈ψtarget|ψg〉 |2 where |ψg〉 is the oscillator’s state after postselecting the qubit in |g〉.

Next, we use the pulse compilation procedure described in section S4 B with our system parameters, except we set
Ks = 0 and χ′ = 0 to construct oscillator and qubit pulses which realize the ECD sequences without these higher
order nonlinearities. These pulses are simulated with Ks = 0 and χ′ = 0, and the resulting fidelities are shown by
the blue triangles in Fig. S8. These fidelites are close to the ideal unitary fidelities, demonstrating our ability to
realize ECD sequences with the ideal dispersive Hamiltonian. These pulses are then simulated using eq. (S2) with all
nonlinear terms included using the measured system parameters, and the results are shown by the green crosses in
Fig. S8. These infidelities are significantly higher, demonstrating the need to account for higher order nonlinaerities
in the pulse construction.

Finally, we include the measured values of Kc and χ′ in the pulse construction, following the procedure outlined in
section S4 B which corrects for the linear contributions of Kerr and the second-order dispersive shift in the displaced
frame. The resulting pulses are simulated with the full Hamiltonian, resulting in the infidelities given by purple
diamonds in Fig. S8. These infidelities are close to the pulses optimized and simulated with K = 0 and χ′ = 0,
indicating that correcting for the linear contributions of these terms is enough to significantly reduce their deleterious
impact on the overall gate fidelity.

B. Impact of decoherence

Next, we study the impact of transmon and cavity decoherence on the state preparation fidelity. In particular, we
perform master equation simulations in the time-dependent displaced frame. Under a unitary frame transformation

ρ → ρ̃ = UρU†, the master equation ∂tρ = −(i/~) [H, ρ] +
∑
iD[Li]ρ becomes ∂tρ̃ = −(i/~)

[
H̃, ρ

]
+
∑
iD[ULiU

†]ρ̃

with H̃ = UHU†+ i~ (∂tU). Using the time-dependent displaced frame in section S3 A, we evolve the joint transmon-
cavity density matrix according to

∂tρ̃ = − i
~

[
H̃(t), ρ̃

]
+ γ↓D[q]ρ̃+ γ↑D[q†]ρ̃+ 2γφD[q†q]ρ̃

+ κ↓D[a]ρ̃+ κ↑D[a† + α∗(t)]ρ̃+ 2κφD[(a† + α∗(t))(a+ α(t))]ρ̃
(S32)
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FIG. S8. Decoherence free error budget Simulated fidelity of constructed ECD sequences under different conditions. Red
circles: result from unitary ECD parameter optimization. Blue triangles: pulses constructed and simulated with K = χ′ = 0.
Green crosses: pulses optimized with K = χ′ = 0 and simulated with measured K and χ′ (nonzero). Purple diamonds: pulses
optimized and simulated with measured K and χ′ (nonzero)f.

where H̃(t) is the displaced frame Hamiltonian in eq. (S2) and α(t) is the nonlinear response to the drive given by
solving eq. (S3). By simulating in the displaced frame which tracks the classical trajectory of the state’s center-of-
probability in phase space, we reduce the Hilbert space truncation required to accurately capture the dynamics. This
is especially important considering our pulses drive the oscillator to photon numbers of ∼ 103.
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FIG. S9. Measured fidelities, purities, and simulated error budget For each state preparation example, black
dots indicate infidelities found from maximum likelihood reconstruction using the measured characteristic functions after
postselecting the transmon in |g〉. Also shown is the purity of the reconstructed states p = Tr

(
ρ2
)
. For each state, we include

the baseline infidelity (labeled decoherence-free) which is equivalent to the purple diamonds in Fig. S8. On top of this baseline,
contributions to the total simulated infidelity using the measured decoherence rates are shown by the colored bars. Here, other
(bars not visible) includes contributions from transmon dephasing, transmon heating, and cavity heating at the quoted rates.
Also included is simulated contribution due to intrinsic cavity dephasing at a rate κφ/2π = (150 ms)−1 ≈ 1 Hz.

We first simulate the impact of transmon relaxation, heating, and dephasing, as well as cavity relaxation and
heating, given the measured rates in Table S1. When simulating transmon relaxation, we use the averaged measured
relaxation rate with 〈n〉cav = 900 photons in the cavity T̃1,q ≈ 30 us, however we note this changes with time as shown

in Fig. S1, and the contribution from this error channel is also expected to change depending on the particular T̃1,q at
the time of averaging. In addition, we approximate the qubit dephasing rate to be γφ = γ2E − γ1/2, which assumes
the echoing of low-frequency noise during the ECD gates results in an effective white noise dephasing.

The results are summarized by the colored bars in Fig. S9, where each contribution to the error budget is simulated
by only including a single decoherence mechanism. Also included is infidelity associated to an initial cavity thermal
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state (nth = 0.025) since we do not employ active cavity cooling before each experiment. Independent simulations have
verified that adding the infidelities of individual error channels is a good predictor of the total infidelity when simulating
with all error channels combined. Out of these error channels, transmon relaxation has the biggest overall impact on
the infidelity as ancilla relaxation during the conditional displacements can result in large oscillator displacements [1].

C. Discussion

As shown in Fig. S9, these decoherence mechanisms alone under-predict the infidelity found in experiment. Possible
additional sources of infidelity include unknown transfer functions [38–40], drifts in parameters, additional cavity
heating due to the strong drives, and cavity dephasing. Out of these mechanisms, we simulate the effect of cavity
dephasing using the displaced-frame dephasing term in eq. (S32).

In this experiment, we do not have a direct measurement of the small intrinsic cavity dephasing rate, and such a
measurement is an ongoing topic of investigation. We instead use master equation simulations to study the impact
of cavity dephasing. A previous work on the same physical sample has also used simulations to bound the dephasing
rate to κφ . 1 Hz [1] and here we find a similar result. In Fig. S9 we include a contribution to the infidelity by

simulating the pulses with a cavity dephasing rate of κφ/2π = (150 ms)
−1 ≈ 1 Hz, shown by the light grey bars.

For some state preparation experiments, such as Fock |5〉 and GKP |+Z〉, this rate roughly matches the measured
infidelity. This is evidence that the dephasing rate is likely smaller than 1 Hz, matching the result from [1]. However,
for other experiments, the error bars still under predict the fidelity, indicating other unknown mechanisms.

S7. OPTIMIZATION OF ECD CIRCUIT PARAMETERS

For state preparation using ECD control, the quantum control problem we aim to solve is

UECD = D(βN+1/2)RϕN+1
(θN+1) ECD(βN )RϕN (θN ) ...ECD(β2)Rϕ2 (θ2) ECD(β1)Rϕ1 (θ1) (S33)

F = | 〈ψt|UECD|ψi〉 |2 (S34){
~β, ~ϕ, ~θ

}
= argmax
{~β,~ϕ,~θ}

(F) (S35)

with initial state |ψi〉 and target state |ψt〉. The circuit depth N should be chosen such that F at its maximum is
above an acceptable value with experimental considerations in mind. Although we focus on state preparation in this
work, the optimization method described can also be used to realize a general unitary Utarget by replacing the Fidelity

function with F =
∣∣∣ 1

Tr(P )Tr
(
PU†targetUECD

)∣∣∣2, where P is a projector onto a possible subspace of interest [41]. In all

protocols presented in this work we include a final qubit rotation RϕN+1
(θN+1) and displacement D(βN+1/2) after

the last ECD gate in the optimizer. Often, the optimizer converges to protocols with βN+1 = 0. These gates are
implemented quickly with respect to typical ECD gates and are not included in the quoted circuit depths N which
only counts the total number of ECD gates.

Here, we realize a multi-start method to solve this non-convex problem by optimizing B independent variations
of UECD in a parallel manner. Denoting the jth variation of the ECD unitary as UECD,j with circuit parameters{
~βj , ~ϕj , ~θj

}
and fidelity Fj = | 〈ψt|UECD,j |ψi〉 |2, we perform gradient descent on all 4BN real parameters using the

total cost function C =
∑B
j=1 log(1 − Fj). Since the cost function is a simple sum of independent logarithmic cost

functions, gradient descent of C realizes independent gradient descent of each circuit realization in parallel. The
optimization is stopped when any Fj reaches the target fidelity, and the parameters from the jth circuit are selected.

We realize gradient descent of the cost function using Adam [42] implemented in TensorFlow. To construct this
cost function and its gradient, we represent the batch of circuit parameters by the tensors β, ϕ and θ of dimensions
B ×N such that βji is the ith parameter appearing in circuit j. Given a tensor-product structure of H = C2 ⊗ CNo
where No is the truncation of the oscillator’s Hilbert space, the ECD unitaries and cost function are represented in
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the block-matrix form

UECD,j = bjN ...bj2bj1 (S36)

bji = ECD(βji)Rϕji(θji) =

(
D†(Bji)e

iΦji sin Θji D†(Bji) cos Θji

D(Bji) cos Θji −D(Bji)e
−iΦji sin Θji

)
(S37)

C =

N∑
j=1

log
(
1− | 〈ψt| bjN ...bj2bj1 |ψi〉 |2

)
(S38)

with reduced parameters B = β
2 , Θ = θ

2 and Φ = ϕ − π
2 , and D is the displacement operator defined on the

oscillator’s Hilbert space truncated to No. To construct each block operator bji, we first compute the displacement
operators. For this, we use the batched displacement operator implementation in [43], which uses pre-diagonalization
of the truncated position and momentum operators to efficiently construct the displacement matrices. With this, we
compute all B × N displacement opertors D(B) in parallel, then build the block matrices bji block-by-block while
reusing computed functions to minimize the total number of computations. Once these blocks are computed, the
cost function is implemented by contracting along the i index, taking the logarithm, then contracting along the j
index. To compute the gradient of the cost function with respect to β, ϕ, and θ, we use TensorFlow to realize
reverse-accumulation automatic differentiation.
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FIG. S10. ECD circuit optimization Examples of optimization curves for Fock 5 state preparation. Each line represents a
circuit fidelity Fj , and 500 randomly initialized circuits are optimized in parallel. In the case of small circuit depth N = 3 (left
panel), the best infidelity reached is ∼ 0.3. With a larger circuit depth N = 9 (right panel), one circuit out of the 500 reaches
an infidelity of ∼ 0.003, demonstrating the need for multi-start optimization.

In Fig. S10 we show an example by plotting the infidelities of each circuit in the batch as a function of optimization
epoch for Fock |5〉 state preparation (|0〉 |g〉 → |5〉 |g〉) using two different circuit depths, N = 3 and N = 9. For these
examples, we use a batch size of B = 500 circuits, with each epoch representing 100 steps of gradient descent using
Adam with a learning rate of 0.001 carried out using an Nvidia Tesla v100 GPU.

In Fig. S4, we show an example of the pulse parameters found using this procedure for state preparation of the
GKP |+Z〉 logical state. The magnitude of the echoed conditional displacements found in this example is typical of
most demonstrations in this work - the largest |β| found is |β| ≈ 2.75. We note the optimization procedure does not
include a constraint on |β|, but generally the scale of |β|s found is set by the phase-space extent of the target state.
As shown in this example, the optimizer often converges to pulses with interpretable values of qubit rotation angles
and phases: values in that pulse are close to π/4, π/2, etc, and this is a common feature for the demonstrations in
this work.

S8. OPTIMIZATION OF LOGICAL GATES ON A FINITE ENERGY GKP CODE

In this section, we focus on the implementation of logical gates using ECD control. In particular, we demonstrate
numerical optimization of the phase and T gates for a finite-energy square GKP encoding. For these gates, the target
state maps {|ψi〉} → {|ψt〉} acting on the finite energy logical subspace are given by
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S : {|+Z〉∆ |g〉 , |−Z〉∆ |g〉} → {|+Z〉∆ |g〉 , e
iπ/2 |−Z〉∆ |g〉}

T : {|+Z〉∆ |g〉 , |−Z〉∆ |g〉} → {|+Z〉∆ |g〉 , e
iπ/4 |−Z〉∆ |g〉}

(S39)

where we have also included the condition that the ancilla qubit starts and ends in |g〉. To optimize these logical
gates, we modify the cost function in section S4 B to be

C = −
∑
j

Re (〈ψt,j |UECD |ψi,j〉) (S40)

where the sum is carried out over a logical state map, such as the state map for the S and T gates given in eq. (S39).
Here, we only optimize the gate over the logical subspace, and in future work, the optimization could be modified to
focus on error transparent gates [44].

To quantify the quality of the optimized logical gates, we numerically calculate their average fidelity [45], defined
as

F =
1

6
Tr
(
RT [Utarget]R[E ]

)
+

1

3
(S41)

where Rij [E ] = 1
2Tr (σiE [σj ]) is the Pauli transfer matrix (PTM) associated to a quantum channel E . Here, we define

the finite energy logical Pauli operators using the numerically computed logical states as described in section S5 E to
be X∆ = (|+Z〉∆ 〈−Z|∆ + |−Z〉∆ 〈+Z|∆) |g〉 〈g| and analogous definitions for I∆, Y∆, and Z∆. For these operations,

the target unitary channel is defined as Utarget [ρ] = UtargetρU
†
target and the applied channel is E [ρ] = UECDρU

†
ECD,

where UECD is the result of the optimization.
The optimization results for the finite energy S and T gates are shown in Fig. S11 at three different squeezing

values ∆ = {0.25, 0.31, 0.35}. Remarkably, these gates can be performed with a low circuit depth, only requiring
N = 3 ECD gates to reach a channel fidelity F ≈ 0.99 for the T gate and N = 4 for the S gate. These results
indicate that the ECD gate set is especially well-suited for control over the GKP code, however we note that these
gate implementations are not fault tolerant with respect to ancilla qubit errors.
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FIG. S11. Optimized finite energy S and T average fidelity. Plotted is the average fidelity for optimized ECD circuits at
different values of ∆ and circuit depth N . S gate results are shown with circles, T gate results are indicated with triangles, and
the color indicates the squeezing. Also shown (insets) are the Pauli transfer matrices for the ECD S and T gates optimized at
N = 3,∆ = 0.25. Differences in Fidelity at different values of ∆ are likely caused by the small finite overlap of the finite-energy
logical states.

S9. OPTIMIZATION OF GRAPE AND SNAP PULSES

In this section, we outline numerical methods used to generate the GRAPE and SNAP points in Fig. 2b. For these
pulses, we optimize the fidelity of the quantum control problem |0〉 |g〉 → |n〉 |g〉 for the Fock states n = 1...5.
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A. Optimization of GRAPE

We use the methods described in [46] to optimize GRAPE pulses for the cavity and qubit using our measured
χ. The driven dispersive Hamiltonian is used with piecewise-constant pulses sampled every 33 ns and an oscillator
Hilbert space truncation of N = 50. To find the numerical quantum speed limit (QSL) associated with each Fock
state preparation, we sweep the length of the pulse and pick the shortest pulse with an optimized Fidelity F > 0.99.
We also employ typical bandwidth and amplitude constraints when optimizing these pulses. We note that the cavity
drive amplitudes used in our ECD gates are over an order-of-magnitude larger than typical cavity drive amplitudes
used in optimized GRAPE pulses [46]. Our results confirm that GRAPE pulses optimized in the usual way take a
time greater than 2π/χ as also observed in many state-of-the art bosonic control experiments [28, 30, 31, 46–51].

B. Optimization of SNAP

The SNAP-displacement control sequence is parameterized as D†(α)SNAP(ϕ)D(α) as in [52]. For each target
Fock state |n〉 with n = 1...5 and circuit depth T = 1...5, we optimize the parameters of this control sequence with
reinforcement learning [43]. For each configuration (n, T ), we repeat the training 10 times with different random
initial seeds. The results show that to achieve fidelity > 99%, the circuit depth has to be T ≥ 2 for Fock states
n = 1...3, and T ≥ 3 for n = 4...5. The best performing protocols are compared against ECD control in the main
text. For SNAP times in the main text, we assume a gate time of 2π/χ, however SNAP is typically implemented with
longer gate times [53].

S10. CODE AVAILABILITY

Code for the two-step optimization procedure - ECD parameter optimization (section S4 B) and ECD pulse con-
struction (section S7) - is available at https://github.com/alec-eickbusch/ECD_control.
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