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Fast Unsupervised Bayesian Image Segmentation

With Adaptive Spatial Regularisation
Marcelo Pereyra and Steve McLaughlin, Fellow, IEEE

Abstract— This paper presents a new Bayesian estimation
technique for hidden Potts–Markov random fields with unknown
regularisation parameters, with application to fast unsuper-
vised K -class image segmentation. The technique is derived
by first removing the regularisation parameter from the
Bayesian model by marginalisation, followed by a small-variance-
asymptotic (SVA) analysis in which the spatial regularisation and
the integer-constrained terms of the Potts model are decoupled.
The evaluation of this SVA Bayesian estimator is then relaxed into
a problem that can be computed efficiently by iteratively solving
a convex total-variation denoising problem and a least-squares
clustering (K -means) problem, both of which can be solved
straightforwardly, even in high-dimensions, and with parallel
computing techniques. This leads to a fast fully unsupervised
Bayesian image segmentation methodology in which the strength
of the spatial regularisation is adapted automatically to the
observed image during the inference procedure, and that can
be easily applied in large 2D and 3D scenarios or in applications
requiring low computing times. Experimental results on synthetic
and real images, as well as extensive comparisons with state-of-
the-art algorithms, confirm that the proposed methodology offer
extremely fast convergence and produces accurate segmentation
results, with the important additional advantage of self-adjusting
regularisation parameters.

Index Terms— Image segmentation, Bayesian methods, spatial
mixture models, Potts Markov random field, convex optimisation.

I. INTRODUCTION

I
MAGE segmentation is a canonical inverse problem which

involves classifying image pixels into clusters that are

spatially coherent and have well defined boundaries. It is

widely accepted that this task can be formulated as a statistical

inference problem and most state-of-the-art image segmen-

tation methods compute solutions by performing statistical

inference (e.g., computing penalized maximum likelihood or
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maximum-a-posteriori estimates). In this paper we focus on

new Bayesian computation methodology for hidden Potts-

Markov random fields (MRFs) [1], a powerful class of statisti-

cal models that is widely used in Bayesian image segmentation

methods (see [2]–[5] for recent examples in hyperspectral, non

destructive testing, ultrasound, and fMRI imaging).

Despite the wide range of applications, performing inference

on hidden Potts MRFs remains a computationally challenging

problem. In particular, computing the maximum-a-

posteriori (MAP) estimator for these models is generally

NP-hard, and thus most image processing methods compute

approximate estimators. This has driven the development of

efficient approximate inference algorithms, particularly over

the last decade. The current predominant approaches for

approximate inference on MRFs are based on convex models

and convex approximations that can be solved efficiently by

convex optimisation [6]–[8], and on approximate estimators

computed with graph-cut [9], [10] and message passing

algorithms [11]–[13]. In a similar fashion, modern algorithms

to solve active contour models, the other main class of

models for image segmentation, are also principally based on

convex relaxations and convex optimisation [14], [15] and on

Riemannian steepest descent optimisation schemes [16]–[19].

An important limitation of these computationally efficient

approaches is that they are supervised, in the sense that they

require practitioners to specify the value of the regularisation

parameter of the Potts MRF. However, it is well known that

appropriate values for regularisation parameters can be highly

image dependent and sometimes difficult to select a priori, thus

requiring practitioners to set parameter values heuristically

or by visual cross-validation. The Bayesian framework offers

a range of strategies to circumvent this problem and to

design unsupervised image segmentation inference procedures

that self-adjust their regularisation parameters. Unfortunately,

the computations involved in these inferences are beyond

the scope of existing fast approximate inference algorithms.

As a consequence, unsupervised image segmentation methods

have to use more computationally intensive strategies such

as Monte Carlo approximations [20], [21], variational Bayes

approximations [22], and EM algorithms based on mean-field

like approximations [23], [24].

In this paper we propose a highly efficient Bayesian

computation approach specifically designed for performing

approximate inference on hidden Potts-Markov random fields

with unknown regularisation parameters, with application

to fast unsupervised K -class image segmentation. A main

original contribution of our development reported here is to

use a small-variance-asymptotic (SVA) analysis to design an

1057-7149 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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approximate MAP estimator in which the spatial regularisation

and the integer-constrained terms of the Potts model are

decoupled. The evaluation of this SVA Bayesian estimator

can then be relaxed into a problem that can be computed effi-

ciently by iteratively solving a convex total-variation denoising

problem and a least-squares clustering (K-means) problem,

both of which can be solved straightforwardly, even in high-

dimensions, and with parallel computing techniques.

Small-variance asymptotics estimators were introduced

in [25] as a computationally efficient framework for perform-

ing inference in Dirichlet process mixture models and have

been recently applied to other important machine learning

classification models such as the Beta process and sequential

hidden Markov models [26], as well as to the problem of

configuration alignment and matching [27]. Here we exploit

these same techniques for the hidden Potts MRF to develop

an accurate and computationally efficient image segmentation

methodology for the fully unsupervised case of unknown class

statistical parameters (e.g., class means) and unknown Potts

regularisation parameter.

The paper is organised as follows: in Section II we present

a brief background to Bayesian image segmentation using the

Potts MRF. This then followed by a detailed development

of our proposed methodology. In Sections IV and V the

methodology is applied to some synthetic and real test images

and compared to other image segmentation approaches from

the state of the art. Finally some brief conclusions are drawn

in Section VI.

II. BACKGROUND

We begin by recalling the standard Bayesian model used

in image segmentation problems, which is based on a finite

mixture model and a hidden Potts-Markov random field with

known regularisation parameter β. For simplicity we focus on

univariate Gaussian mixture models. However, the results pre-

sented hereafter can be generalised to all exponential-family

mixture models (e.g., mixtures of multivariate Gaussian,

Rayleigh, Poisson, Gamma, Binomial, etc.) by following the

approach described in [28].

Let yn ∈ R denote the nth observation (i.e. pixel or voxel) in

a lexicographical vectorized image y = (y1, . . . , yN )T ∈ R
N .

We assume that y is made up by K regions {C1, . . . , CK } such

that the observations in the kth class are distributed according

to the following conditional marginal observation model

yn|n ∈ Ck ∼ N (µk, σ
2), (1)

where µk ∈ R represents the mean intensity of class Ck . For

identifiability we assume that µk �= µ j for all k �= j .

To perform segmentation, a label vector z = (z1, . . . , zN )T

is introduced to map or classify observations y to classes

C1, . . . , CK (i.e., zn = k if and only if n ∈ Ck). Assuming

that observations are conditionally independent given z and

given the parameter vector µ = (µ1, . . . , µK ), the likelihood

of y can be expressed as follows

f (y|z,µ) =
K

∏

k=1

∏

n∈Sk

pN (yn|µk, σ
2), (2)

Fig. 1. [Left:] Directed acyclic graph of the standard Bayesian model for
image segmentation (parameters with fixed values are represented using black
boxes). [Right] Local hierarchical representation of the hidden Potts MRF and
the observed image for 4 neighbouring pixels.

with Sk = {n : zn = k} (to simplify notation the dependence

of distributions on σ 2 is omitted). A Bayesian model for

image segmentation is then defined by specifying the prior

distribution of the unknown parameter vector (z,µ). The prior

for z is the homogenous K -state Potts MRF [29]

f (z|β) = 1

C(β)
exp [β H (z)], (3)

with regularisation hyper-parameter β ∈ R
+, Hamiltonian

H (z) =
N

∑

n=1

∑

n′∈V(n)

δ(zn == zn′), (4)

where δ(·) is the Kronecker function and V(n) is the index

set of the neighbors of the nth voxel (most methods use the

1st order neighbourhoods depicted in Fig. 2), and normalising

constant (or partition function)

C(β) =
∑

z

exp [β H (z)]. (5)

Notice that the Potts prior (3) is defined conditionally to a

given value of β. Most image segmentation methods based on

this prior are supervised; i.e., assume that the value of β is

known and specified a priori by the practitioner. Alternatively,

unsupervised methods consider that β is unknown and seek to

adjust its value automatically during the image segmentation

procedure (this point is explained in detail in Section III).

In a similar fashion, the class means are considered prior

independent and assigned Gaussian priors µk ∼ N (0, ρ2) with

fixed variance ρ2,

f (µ) =
K

∏

k=1

pN (µk |0, ρ2). (6)

(to simplify notation the dependence of distributions on the

fixed quantity ρ2 is omitted).

Then, using Bayes theorem and taking into account the

conditional independence structure of the model (see Fig. 1),

the joint posterior distribution of (z, µ) given y and β can be

expressed as follows

f (z,µ| y, β) ∝ f (y|z,µ) f (z|β) f (µ), (7)
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Fig. 2. 4-pixel (left) and 6-voxel (right) neighborhood structures. The
pixel/voxels considered appears as a void red circle whereas its neighbors
are depicted in full black and blue.

where ∝ denotes proportionality up to a normalising constant

that can be retrieved by setting
∫

f (z,µ| y, β) dzdµ = 1.

The graphical structure of this Bayesian model is summarised

in Fig. 1 below. Notice the Markovian structure of z and that

observations yn are conditionally independent given the model

parameters z, µ and σ 2.

Finally, given the Bayesian model (7), a segmentation of

y is typically obtained by computing the MAP estimator

ẑ1, µ̂1 = argmax
z,µ

f (z,µ| y, β), (8)

which can also be obtained by solving the equivalent

optimisation problem

ẑ1, µ̂1 = argmin
z,µ

− log f (z,µ| y, β). (9)

Unfortunately these optimisation problems are known to

be NP-hard due to the combinatorial nature of the Potts

Hamiltonian H (z) defined in (4). As mentioned previously,

modern image segmentation methods based on (7) typically

address this issue by using approximate (local) integer optimi-

sation algorithms (e.g., graph-cut, message passing) [10]–[12],

and more recently with convex relaxations of the Potts model

(see for instance [6], [7]).

III. PROPOSED METHOD

This section presents a highly computationally efficient

approach for performing approximate inference on z when

the value of the regularisation parameter β is unknown. The

approach is based on a small-variance asymptotics (SVA)

analysis combined with a convex relaxation and a pseudo-

likelihood approximation of the Potts MRF. Our development

has three main steps. In the first step we adopt a hierarchical

Bayesian approach to remove β from the model by marginal-

isation; because marginalising w.r.t. β requires knowledge of

the intractable Potts partition function (5) we use a pseudo-

likelihood approximation. However, performing inference with

the resulting marginalised model is still NP-hard. In the second

part of our development we address this difficulty by using

auxiliary variables and an SVA analysis to decouple the spatial

regularisation and the integer-constrained terms of the Potts

model. The evaluation of the resulting SVA Bayesian estimator

is then relaxed into a problem that can be computed effi-

ciently by iteratively solving a convex total-variation denoising

problem and a least-squares clustering problem, both of which

can be solved straightforwardly, even in high-dimensions,

with parallel implementations of Chambolle’s optimisation

algorithm [30] and of K-means [31].

A. Marginalisation of the Regularisation Parameter β

Following a hierarchical Bayesian approach, we address

the fact that the value of β is unknown by modelling it

as an additional random variable of the Bayesian model.

Precisely, we assign β a prior distribution f (β) and define

an augmented model that includes β within its unknown

parameter vector. By using Bayes’ theorem we obtain the joint

posterior distribution

f (z,µ, β| y) ∝ f (y|z,µ) f (µ) f (z|β) f (β) (10)

which includes β as an unknown variable. The rationale for

replacing the fixed regularisation parameter β of (7) by a

random variable with prior f (β) is that it is often possible

to specify this prior distribution such that the amount of

regularisation enforced by the Potts MRF is driven by data

and the impact of f (β) on the inferences is minimal. At the

same time, experienced practitioners with knowledge of good

values of β can specify f (β) to exploit their prior beliefs.

In this paper we use a gamma (hyper-)prior distribution

f (β) = γ αβα−1 exp (−γβ)1R+(β)/Ŵ(α)

because it has favourable analytical tractability properties that

will be useful for our development (appropriate values for the

fixed parameters α and γ will be derived later through a small-

variance asymptotics analysis).

Moreover, in order to marginalise β from the model we

notice that β is conditionally independent of y given z; to be

precise, that f (z,µ, β| y) = f (β|z) f (z,µ| y). Therefore,

integrating f (z,µ, β| y) with respect to β is equivalent to

redefining the posterior distribution (12) with the marginal

prior f (z) =
∫

R+ f (z, β)dβ. Evaluating this marginal prior

exactly is not possible because it requires computing the

normalising constant of the Potts model C(β) defined in (5),

which is a reputedly intractable problem [20]. To obtain an

analytically tractable approximation for this marginal prior

we adopt a pseudo-likelihood approach [32] and use the

approximation C(β) ∝ β−N , leading to

f (z) =
∫

R+
f (z, β)dβ

∝
∫

R+
βN exp (β H (z))βα−1 exp (−γβ)dβ

∝ [γ − H (z)]−(α+N), (11)

and to the following (marginal) posterior distribution

f (z,µ| y) ∝

⎡

⎣

K
∏

k=1

∏

n∈Sk

pN

(

yn|µk, σ
2
)

⎤

⎦

× f (µ) (γ − H (z))−(α+N) , (12)

that does not depend on the regularisation parameter β.

B. Small-Variance Approximation

The next step of our development is to conduct a small-

variance asymptotics analysis on (12) and derive the asymp-

totic MAP estimator of z,µ. We begin by introducing a

carefully selected auxiliary vector x such that y and (z,µ)
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are conditionally independent given x, and that the posterior

f (x, z,µ| y) has the same maximisers as (7) (after projection

on the space of (z,µ)). More precisely, we define a random

vector x ∈ R
N with degenerate prior

f (x|z,µ) =
K

∏

k=1

∏

n∈Sk

δ(xn − µk), (13)

and express the likelihood of y given x, z and µ as

f (y|x, z,µ) = f (y|x) =
N

∏

n=1

pN (yn|xn, σ
2).

The prior distributions for z and µ remain as defined above.

The joint posterior distribution of x, z,µ is given by

f (x, z,µ, β| y) ∝ f (y|x) f (x|z,µ) f (z|β) f (µ)

∝

⎡

⎣

K
∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)δ(xn − µk)

⎤

⎦

× f (µ)
[

γ − H (z)
]−(α+N)

. (14)

Notice that from an inference perspective (14) is equivalent

to (12), in the sense that marginalising x in (14) results in (12).

Moreover, we define H ∗(z) as the “complement” of the

Hamiltonian H (z) in the sense that for any z ∈ [1, . . . , K ]N

H (z) + H ∗(z) =
∑N

n=1
|V(n)|,

where |V(n)| denotes the cardinality of the neighbourhood

structure of the nth pixel. For the Potts MRF this comple-

ment is given by

H ∗(z) �

N
∑

n=1

∑

n′∈V(n)

δ(zn �= zn′). (15)

Replacing H (z) =
∑N

n=1 |V(n)| − H ∗(z) in (14) we obtain

f (x, z,µ, β| y)

∝

⎛

⎝

K
∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)δ(xn − µk)

⎞

⎠

× f (µ)
[

H ∗(z) + (γ −
∑N

n=1 |V(n)|)
]−(α+N)

. (16)

Furthermore, noting that H ∗(z) only measures if neighbour

labels are identical or not, regardless of their values, it is

easy to check that the posterior (14) remains unchanged if

we substitute H ∗(z) with H ∗(x)

f (x, z,µ, β| y)

∝

⎡

⎣

K
∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)δ(xn − µk)

⎤

⎦

× f (µ)
[

H ∗(x) + (γ −
∑N

n=1 |V(n)|)
]−(α+N)

. (17)

Finally, we make the observation that for 1st order neigh-

bourhoods (see Fig. 2) we have H ∗(x) = 2||∇x||0, where

||∇x||0 = ||∇h x||0 + ||∇v x||0 denotes the ℓ0 norm of the

Fig. 3. [Left:] Directed acyclic graph of the proposed Bayesian model,
augmented by the auxiliary variable x decoupling µ and z from y, and
with marginalisation of the regularisation parameter β (parameters with fixed
values are represented using solid black boxes, marginalised variables appear
in dashed boxes). [Right] Local representation of three layers of the model
for 4 neighbouring pixels.

horizontal and vertical components of the 1st order discrete

gradient of x, and therefore

f (x, z,µ, β| y)

∝

⎡

⎣

K
∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)δ(xn − µk)

⎤

⎦

× f (µ)
[

||∇x||0 + (γ −
∑N

n=1 |V(n)|)/2
]−(α+N)

. (18)

The graphical structure of this equivalent hierarchical

Bayesian model is summarised in Fig. 3 below. Notice that

in this model x separates y and σ 2 from the other model

parameters, that the regularisation parameter β has been

marginalised, that the MRF is now enforcing spatial smooth-

ness on x not z, and that the elements of z are prior

independent.

We are now ready to conduct a small-variance asymptotics

analysis on (18) and derive the asymptotic MAP estimator

of x, z, µ, which is defined for our model as [25]

argmin
x,z,µ

lim
σ 2→0

−σ 2 log f (x, z,µ| y) .

First, we use the fact that δ(s) = limτ 2→0 pN (s|0, τ 2) to

express (18) as follows

f (x, z,µ| y, β)

∝ lim
τ 2→0

⎛

⎝

K
∏

k=1

∏

n∈Sk

pN (yn|xn, σ
2)pN (xn|µk, τ

2)

⎞

⎠

× f (µ)
[

||∇x||0 + (γ −
∑N

n=1 |V(n)|)/2
]−(α+N)

,

∝ lim
τ 2→0

⎛

⎝

K
∏

k=1

∏

n∈Sk

exp

(

− (xn − yn)
2

2σ 2
− (xn − µk)

2

2τ 2

)

⎞

⎠

× f (µ)
[

||∇x||0 + (γ −
∑N

n=1 |V(n)|)/2
]−(α+N)

. (19)
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Then, in a manner akin to Broderick et al. [25], we allow

the model’s hyper parameters to scale with σ 2 in order to

preserve the balance between the prior and the likelihood and

avoid a trivial limit. More precisely, we set α = N/σ 2 and

assume that σ 2 vanishes at the same speed as τ 2. Then, the

limit of −σ 2 log f (x, z,µ| y) as σ 2 → 0 is given by

lim
σ 2→0

−σ 2 log f (x, z,µ| y)

=
K

∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − µk)

2

+ N log(||∇x||0 + (γ −
∑N

n=1
|V(n)|)/2), (20)

and the MAP asymptotic estimators of x, z, µ by

argmin
x,z,µ

K
∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − µk)

2

+ N log(||∇x||0 + 1), (21)

where we have set γ = 2+
∑N

n=1 |V(n)| such that the penalty

log
[

||∇x||0 + (γ −
∑N

n=1 |V(n)|)/2
]

≥ 0.

C. Convex Relaxation and Optimisation

Computing the estimator (21) is still NP-hard due to

log(||∇x||0 + 1). To address this difficulty we use a convex

relaxation of ||∇x||0 and exploit the concavity of the

logarithmic function. Precisely, we replace ||∇x||0 by the

convex approximation TV(x) = ||∇x||1−2, (i.e., the isotropic

total-variation pseudo-norm of x [33]), and obtain the follow-

ing optimisation problem

argmin
x,z,µ

K
∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − µk)

2

+ N log(T V (x) + 1), (22)

which can be very efficiently computed by iterative minimi-

sation w.r.t. x, z and µ. The minimisation of (22) w.r.t. z

(with x and µ fixed) is a trivial separable integer problem

that can be formulated as N independent (pixel-wise) minimi-

sation problems over 1, . . . , K (these unidimensional integer

problems can be solved by simply checking the value zn =
1, . . . , K that minimises (22) for each pixel n = 1, . . . , N).

Similarly, the minimisation with respect to µ is a trivial

quadratic least squares fitting problem with analytic solution

(i.e., by setting µk = 1
|Sk |

∑

n∈Sk
xn for each k = 1, . . . , K ,

where |Sk | denotes the cardinality of Sk). Also note that

iteratively minimising (22) with respect to z and µ, with

fixed x, is equivalent to solving a least squares clustering

problem with the popular K-means algorithm [31]. Moreover,

the minimisation of (22) w.r.t. x (with z and µ fixed) is

achieved by solving the non-convex optimisation problem

argmin
x

K
∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − µk)

2

+ N log [T V (x) + 1] , (23)

Algorithm 1 Unsupervised Bayesian Segmentation Algorithm

which was studied in detail in [34]. Essentially, given some

initial condition v
(0) ∈ R

N , (23) can be efficiently minimised

by majorisation-minimisation (MM) by iteratively solving the

following sequence of trivial convex problems,

v
(ℓ+1) = argmin

x

K
∑

k=1

∑

n∈Sk

1

2
(xn − yn)

2 + 1

2
(xn − µk)

2

+ λℓT V (x) with λℓ = N

T V [v(ℓ)]+1
, (24)

in which λℓ plays the role of a regularisation parameter, and

where we have used the majorant [34]

q(x|v(ℓ)) =
(

T V (x) − T V (v(ℓ))
)

(T V (v(ℓ)) + 1)
+ log (T V (x) + 1)

≥ log
(

T V (v(ℓ)) + 1
)

. (25)

Notice that each step of (24) is equivalent to a trivial convex

total-variation denoising problem that can be very efficiently

solved, even in high-dimensional scenarios, by using modern

convex optimisation techniques (in this paper we used a

parallel implementation of Chambolle’s algorithm [30]).

The proposed unsupervised segmentation algorithm based

on (22) is summarised in Algo. 1 below. We note at this point

that because the overall minimisation problem is not convex

the solution obtained by iterative minimisation of (22) might

depend on the initial values of x, z,µ. In all our experiments

we have used the initialisation x(0) = 2 y, z = [1, . . . , 1]T ,

µ = [0, . . . , 0]T that produced good estimation results.
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Fig. 4. The four synthetic datasets used to benchmark the proposed
image segmentation methodology. Segmentation accuracy and computing
times reported in Tables I-II. (a) GMM4. (b) GMM8. (c) LMM2. (d) PMM3.

IV. VALIDATION WITH SYNTHETIC DATA

In this section we validate the proposed Bayesian image

segmentation methodology with a series of experiments on

synthetic data for which we have ground truth available.

To assess the accuracy of our method we compare the

results with the estimates produced by the Markov chain

Monte Carlo algorithm [20], which estimates the marginal

posterior of the segmentation labels f (z| y) with very high

accuracy. For completeness, we also report comparisons with

the Iterated Conditional Modes (ICM) method [32], which

is the predominant approach to perform approximate infer-

ences with the hidden Potts MRF model. We consider two

fully unsupervised instances of this method. The first is

a non-iterative algorithm in which µ, σ , z are initialised

by K-means clustering, followed by β estimated from z by

pseudo-likelihood estimation [35], and finally z estimated

by ICM conditionally on the values of µ, σ and β. The

second instance is an iterative algorithm in which we update

alternatively z by ICM, β by pseudo-likelihood estimation, and

µ and σ by maximum-likelihood estimation, until the estimate

of z stabilises (this algorithm is also initialised by K-means

clustering). The iterative instance is generally more accurate

than the non-iterative one because the estimates of µ, σ

and β are refined in each iteration, however it is also more

computationally expensive.

We tested the algorithms with the four synthetic datasets

displayed in Figure 4, which we have designed to represent a

range of challenging segmentation conditions related to high-

noise, large numbers of classes, and model misspecification

(i.e., deviations from the model such as heteroscedasticity and

non-gaussianity):

1) GMM4: Gaussian mixture model with K = 4 regions with

parameters µ = {0, 1, 2, 4}, σ = {1,
√

2,
√

3/2,
√

2},

TABLE I

SEGMENTATION ACCURACY (PIXELS CORRECTLY CLASSIFIED) FOR THE

FOUR DATA DISPLAYED IN FIG. 4

and spatial organisation according to a Potts MRF with

β = 1.2 and size 256 × 256 pixels, resulting in a

signal-to-noise ratio (SNR) of 7.7dB. This dataset is

challenging because there is strong overlap between the

distribution of the mixture components (i.e., low SNR)

as well as heteroscedasticity, which our method does not

take into account and hence represents a case of mild

likelihood misspecification.

2) GMM8: Gaussian mixture model with K = 8 regions

with parameters µ = {1, 2, . . . , 8}, σ = {0.3, . . . , 0.3},
and spatial organisation according to a Potts MRF with

β = 1.5 and size 256 × 256 pixels. The main challenge

here is the large number of mixture components, which

is further complicated by the fact that the distributions

overlap partially (the SNR for this dataset is 24.1dB).

3) LMM2: Laplace mixture model with K = 2 compo-

nents with parameters µ = {1, 2}, σ = {1, 1}, and

checkerboard spatial organisation (size 256×256 pixels),

resulting in a very low SNR value of 1.0dB. This

dataset is challenging because it strongly deviates from

the Bayesian model considered, which is misspecified

both at the level of the prior and the likelihood (note

that deviations from the model can degrade significantly

segmentation performance [36]). Also, both mixture

components overlap significantly, making the segmen-

tation even more difficult.

4) PMM3: Poisson mixture model with K = 3 components

with parameter µ = {1, 6, 11}, and spatial organi-

sation according to the three main structures of the

Shepp-Logan phantom. This dataset has a low SNR

value of 4.7dB. Again, the challenges here are the strong

misspecification in the likelihood and prior, and that the

mixture components overlap.

All experiments have been conducted using a MATLAB

implementation of Algo. 1 with parameters T = 50, L = 25,

ǫ = 10−3, and computed on an Intel i7 quad-core workstation

running MATLAB 2014a. For the ICM algorithms we have

used the MATLAB implementation of [36]. The implemen-

tation of the MCMC algorithm [20] is written in MATLAB

with specific functions in C, so it has an advantage in terms

of computational performance.

Table I reports the segmentation accuracy for the four

test data and each method (we measure accuracy as the

percentage of correctly classified pixels with respect to the

ground truth). We observe that the MCMC method produced

the most accurate segmentation results, with a remarkable

accuracy of the order of 95%−99%, followed by the proposed
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TABLE II

COMPUTING TIMES (SECONDS) FOR THE FOUR DATA DISPLAYED IN FIG. 4

method which achieved 90% − 96% of correctly classified

pixels. Moreover, we also observe that the ICM algorithms

were less accurate on average, and struggled particularly with

Data 2 because they were not able to estimate correctly

the mixture model parameters. More importantly, Table II

reports the computing times associated with these experiments.

Observe that the proposed method is very computationally

efficient and was one or two orders of magnitude faster than

the ICM and MCMC approaches in all experiments (notice

that these low computing times are in agreement with a large

body of literature reporting that convex relaxations, combined

with convex optimisation algorithms, lead to state-of-the-art

computational performance). In conclusion, these experiments

with synthetic data indicate that the proposed methodology

offer extremely fast and accurate segmentation results. Finally,

for completeness, we note that in all cases Algo. 1 converged

in t = 2 iterations, and determined the following values for

the regularisation parameter λℓ: GMM4, λℓ = 5.5603; GMM8,

λℓ = 5.6314; LMM2, λℓ = 6.5282; and PMM3, λℓ = 4.8355.

V. EXPERIMENTAL RESULTS AND OBSERVATIONS

In this section we demonstrate empirically the proposed

methodology with a series of experiments with real data

and comparisons with state-of-the-art algorithms. Similarly to

Section IV, to assess the accuracy of our method we compare

the results with the estimates produced by a Markov chain

Monte Carlo algorithm [20], which estimates the marginal

posterior of the segmentation labels f (z| y) with very high

accuracy. We also report comparisons with four supervised

fast image segmentation techniques that we haven chosen to

represent different efficient algorithmic approaches to image

segmentation (e.g. MRF energy minimisation solved by graph-

cut, active contour solved by Riemannian gradient descent,

and two convex models solved by convex optimisation). The

specific methods used in the comparison are as follows:

• The two-stage smoothing-followed-by-thresholding

algorithm (TSA) [15], which is closely related to a semi-

supervised instance of Algo. 1 with a single iteration

(TV-denoising followed by K-means), and with a fixed

regularisation parameter λ specified by the practitioner.

• Hidden Potts MRF segmentation (7) with fixed β, solved

by graph max-flow/min-cut approximation [37].

• Chan-Vese active contour by natural gradient descent [16]

(to our knowledge this method is currently the fastest

approach for solving active contour models).

• The fast global minimisation algorithm (FGMA) [14] for

active contour models. In a similar fashion to our method,

this algorithm also involves a model with a TV convex

relaxation that is solved by convex optimisation.

Fig. 5. The Lungs (336 × 336 pixels), Bacteria (380 × 380 pixels),
Brain (256 × 256 pixels), and SAR (256 × 256 pixels) images used in the
experiments. (a) Lung. (b) Bacteria. (c) Brain. (d) SAR.

We emphasise that, unlike the proposed method, all these

efficient approaches are supervised, i.e., they require the

specification of a regularisation parameters. In the experiments

reported hereafter we have tuned and adjusted the parameters

of each algorithm to each image by use of visual cross-

validation to ensure we produce the best results for each

method on each image.

To guarantee that the comparisons are fair we have applied

the six algorithms considered in this paper to four images

with very different characteristics: the Lungs and Bacteria

images from the supplementary material of [14]; one slice

of a 3D in-vivo MRI image of a human brain composed

of biological tissues (white matter and grey matter) with

complex shapes and textures, making the segmentation prob-

lem challenging; and a SAR image of an agricultural region

in Bourges, France, containing three types of crops (note

that SAR image segmentation is challenging because of the

presence of strong non-Gaussian noise). The four test images

are depicted in Figure 5. These images have been selected as

they are composed of different types and numbers of objects;

objects which have different shapes, (regular and irregular);

noise characteristics; and a range of potential segmentation

solutions. Again, all experiments have been conducted using a

MATLAB implementation of Algo. 1 with parameters T = 50,

L = 25, ǫ = 10−3, and computed on an Intel i7 quad-core

workstation running MATLAB 2014a. With regards to the

algorithms used for comparison, when possible we have used

MATLAB codes made available by the respective authors.

It should be noted that these are mainly MATLAB scripts,

however the graph-cut method is written in C++, (the [38]

implementation was used here), and the MCMC method is

partly written in C, so they have an advantage in terms of

computational performance.
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Fig. 6. Comparison with the state-of-the-art methods [14], [15], [16], and [38]
using the lung image (336 × 336 pixels) from the supplementary material
of [14]. (a) Proposed. (b) MCMC [20]. (c) TSA [15]. (d) Graph-Cut [38].
(e) Natural grad. [16]. (f) FGMA [14].

We emphasise at this point that we do not seek to explicitly

compare the accuracy of the methods because: 1) there is

no objective ground truth; 2) the “correct” segmentation is

often both subjective and application-specific; and 3) the

segmentations can often be marginally improved by fine tuning

the regularisation parameters. What our experiments seek to

demonstrate is that our method performs similarly to the most

efficient deterministic approaches of the state-of-the-art, both

in terms of segmentation results and computing speed, with the

fundamental advantage that it does not require specification

of the value of regularisation parameters (i.e., it is fully

unsupervised).

Figures 6, 7, 8 and 9 respectively show the segmentation

results obtained for the Lungs, Bacteria, Brain and

SARtest images with each method. The segmentations of the

Lungs and Bacteria images have been computed using

K = 2 classes to enable comparison with the natural gradient

method [16] and FGMA [14] (these methods are based on an

active contour model that only supports binary segmentations),

whereas the Brain image has been computed using K = 3

classes to produce a clear segmentation of the grey matter

Fig. 7. Comparison of the supervised and unsupervised methods with the
state of the algorithm [14], [15], [16], and [38] using the bacteria image
(380 × 380 pixels) from the supplementary material of [14]. (a) Proposed.
(b) MCMC [20]. (c) TSA [15]. (d) Graph-Cut [38]. (e) Natural gradient [16].
(f) FGMA [14].

TABLE III

COMPUTING TIMES (SECONDS) FOR THE Lungs, Bacteria AND Brain

IMAGES DISPLAYED IN FIGS. 6, FIGS. 7 AND FIGS. 8

and the white matter. Similarly, the SAR image has also been

computed using K = 3 to identify the three crops. The com-

puting times associated with these experiments are reported

in Table III. Observe that all six methods produced similar

segmentation results that are in good visual agreement with

each other. In particular, we observe that the proposed method

successfully determined the appropriate level of regularisation

for each image and produced segmentations that are very
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Fig. 8. Segmentation of a brain MRI image (256×256 pixels). (a) Proposed.
(b) MCMC [20]. (c) TSA [15]. (d) Graph-Cut [38].

Fig. 9. Segmentation of a SAR image of an agricultural region (256 ×
256 pixels). (a) Proposed. (b) MCMC [20]. (c) TSA [15]. (d) Graph-Cut [38].

similar to the results obtained with the supervised methods

graph-cut [37] and TSA [15], and with the unsupervised

MCMC algorithm [16] that in a sense represents a benchmark

for these approximate inference methods. Moreover, Table III

shows that the proposed method was only 2 or 3 times

slower than state-of-the-art supervised approaches, which is

an excellent performance for a fully unsupervised method.

This additional computing time is mainly due to the addi-

tional computations related to the non-convex program (23);

however, we emphasise that this algorithm has the property of

adapting automatically the level of regularisation to the image,

and that the computing times reported in Table III do not

take into account the time involved in running the supervised

algorithms repeatedly to adjust their regularisation parameters.

Finally, for completeness, we note that in all cases Algo. 1

converged in t = 2 iterations, and determined the following

values for the regularisation parameter λℓ: Lung, λℓ = 0.065;

Bacteria, λℓ = 0.110; Brain, λℓ = 0.095; and SAR,

λℓ = 6.6314. Observe the large range of values of λℓ,

which highlights the fact that different images do require

very different amounts of regularisation, and that the capacity

of the proposed methodology to self-adjust λℓ represents an

important advantage over supervised approaches.

VI. CONCLUSIONS

We have presented a new fully unsupervised approach for

computationally efficient image segmentation. The approach

is based on a new approximate Bayesian estimator for

hidden Potts-Markov random fields with unknown regularisa-

tion parameter β. The estimator is based on a small-variance-

asymptotic analysis of an augmented Bayesian model and a

convex relaxation combined with majorisation-minimisation

technique. This estimator can be very efficiently computed

by using an alternating direction scheme based on a convex

total-variation denoising step and a least-squares (K-means)

clustering step, both of which can be computed straightfor-

wardly, even in large 2D and 3D scenarios, and with parallel

computing techniques. Experimental results on synthetic

and real images, as well as extensive comparisons with

state-of-the-art algorithms showed that the resulting new image

segmentation methodology performs similarly in terms of

segmentation results and of computing times as the most

efficient supervised image segmentation methods, with the

important additional advantage of self-adjusting regularisation

parameters. A detailed analysis of the theoretical properties

of small-variance-asymptotic estimators in general, and in

particular of the methods described in this paper, is currently

under investigation. Potential future research topics include the

extension of these methods to non-Gaussian statistical models

from the exponential family, taking into consideration linear

degradation effects such as blurring and missing pixels [39],

model choice techniques to address segmentation problems

where the number of classes K is unknown, applications to

ultrasound and PET image segmentation, and comparisons

with other Bayesian segmentation methods based on alterna-

tive hidden MRF models that can also be solved by convex

optimisation, such as [8].
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