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Abstract

E
dge detection has been a fundamen-

tal and important task in computer 

vision for many years, but it is still a 

challenging problem in real-time applica-

tions, especially for unsupervised edge 

detection, where ground truth is not avail-

able. Typical fast edge detection approach-

es, such as the single threshold method, are 

expensive to achieve in unsupervised edge 

detection. This study proposes a Genetic 

Programming (GP) based algorithm to 

quickly and automatically extract binary 

edges in an unsupervised manner. We 

investigate how GP can effectively evolve 

an edge detector from a single image 

without ground truth, and whether the 

evolved edge detector can be directly 

applied to other unseen/test images. The 

proposed method is examined and com-

pared with a recent GP method and the 

Canny method on the Berkeley segmen-

tation dataset. The results show that the 

proposed GP method has the ability to 

effectively evolve edge detectors by using 

only a single image as the whole training 

set, and significantly outperforms the two 

methods it is compared to. Furthermore, 

the binary edges detected by the evolved 

edge detectors have a good balance 

between recall and precision.

I. Introduction

Edge detection has been an active area of 

research over many years, and it is impor-

tant for processing and understanding 

images [1]. Edges are the boundaries 

between different areas, such as back-

ground and objects, in digital images. Pix-

els on these boundaries are edge points. A 

binary edge point indicates its corre-

sponding pixel in the image is an edge 

point or not. A binary edge map consists 

of a set of binary edge points. To find edge 

points, different approaches have been 

proposed [1–3]. These approaches can be 

categorized into supervised edge detec-

tion (with ground truth provided) or 

unsupervised edge detection (without 

ground truth). This work focuses mainly 

on unsupervised edge detection.

In unsupervised edge detection, search -

ing for binary edge maps is difficult and 

computationally expensive [1]. Most exist-

ing methods have high recall (i.e. the num-

ber of true edge points being detected over 

the total number of true edge points), but 
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low precision (i.e. the number of detected 

true edge points over the total number of 

detected points), being easily affected by 

noise [4, 5]. The zero threshold technique 

proposed in [6] normally obtains binary 

edge maps with high precision but low 

recall. When both the recall and precision 

measures are considered, we need a further 

investigation on how to balance them. 

Generally, an optimization method is used 

to determine a threshold for each image. 

However, a threshold found for an image 

might not be good for other images. 

Instead of directly searching for a threshold 

for each image, it is desirable to investigate 

whether a detector trained from an image 

can be directly used for other unseen 

images. In one-shot learning [7], prior 

knowledge from existing datasets are uti-

lized to quickly obtain classifiers for recog-

nizing objects. A very small set of training 

images is used in one-shot learning algo-

rithms. In our previous work [8], a single 

training image can be effectively used to 

evolve edge detectors by Genetic Pro-

gramming (GP) [9]. GP is a population 

based evolutionary computation method, 

where each individual is a candidate solu-

tion of the target problem and is often rep-

resented as a tree or computer program [9]. 

GP has been employed to automatically 

evolve edge detectors since 1996 [10, 11]. 

However, there have been only very few 

works using GP in unsupervised edge detec-

tion to date [12]. Therefore, it is desirable to 

investigate how to employ GP to evolve 

edge detectors from a single image in an 

unsupervised manner and how the evolved 

edge detectors can be used to detect binary 

edge maps on unseen images.

The overall goal of this paper is to 

investigate unsupervised edge detection 

using GP to improve detection precision 

without adversely affecting recall while 

keeping a low computational cost. A GP 

system is proposed to evolve edge detec-

tors, represented as GP programs or 

trees, for marking edge points in an 

image. Instead of using a simple human-

designed rule for marking edge points 

(e.g. if results are larger than a threshold, 

the pixels will be marked as edge 

points), such rules will be automatically 

evolved by the proposed GP system. To 

improve the efficiency, only a single 

image without ground truth is used as 

the whole training data for evolving 

edge detectors, and the evolved edge 

detectors are directly applied to extract 

binary edge maps for unseen images. 

Specifically, the following research objec-

tives will be investigated:

 ❏ Whether a single training image with-

out ground truth can be used to evolve 

good edge detectors by GP for directly 

detecting edges in unseen images,

 ❏ Whether the automatically generated 

rules by the proposed method are 

better than the GP system using fixed 

rules with a single threshold in [12],

 ❏ Whether the evolved edge detectors 

can obtain better detection perfor-

mance than the commonly used Canny 

edge detector [13], and

 ❏ Whether the evolved rules for mark-

ing pixels are flexible and adaptable 

to different images.

In the remainder of this paper, Sec-

tion II gives background on edge detec-

tion and GP. Section III describes the 

proposed GP system. After giving the 

settings of the experiments in Section IV, 

Section V provides the results with dis-

cussions. Section VI draws conclusions 

and suggests future research directions.

II. Background

This section briefly describes the back-

ground on edge detection, mainly unsu-

pervised edge detection, thresholding 

techniques, and existing work using GP 

for edge detection.

A. Edge Detection

Edge detection often includes three stages: 

pre-processing, feature extraction, and 

post-processing [1, 2]. In unsupervised 

edge detection, there is no ground truth 

to train edge detectors. Noises are expect-

ed to be filtered in the pre-processing 

stage, and then edge features are extracted. 

For example, differentiation exists among 

different boundaries, and differentiation-

based edge detection is used to obtain 

edge responses (edge features) on these 

boundaries [1–3, 14, 15]. After edge fea-

tures are extracted, thresholding techniques 

are usually employed in the post-processing 

stage [1, 13, 16, 17].

1) Supervised Edge Detection

In supervised edge detection, a trained 

edge detector normally has a fast detec-

tion speed on unseen images [18]. A sin-

gle fixed threshold is often used for the 

unseen images to determine pixels as 

edge points or non-edge points [6]. The 

computational cost of obtaining binary 

edge maps needs to be minimized for 

real-time applications. However, it is 

often hard for most existing methods to 

obtain a full binary edge map from an 

image (normally larger than 256 256#  

pixels) within a short time. In video pro-

cessing, the time of processing each frame 

is often required to be shorter than 

0.1 second [19]. Otherwise, it can easily 

cause the flicker problem. To quickly 

obtain binary edge maps, the computa-

tional cost needs to be low on both edge 

feature extraction and final binary edge 

points determination. In our previous 

work [20], training images and their 

ground truth were used to automatically 

evolve good low-level edge detectors 

with a low computational cost. When 

there is no ground truth, an unsupervised 

edge detector generally extracts a binary 

edge map based on a set of thresholds, 

instead of a single fixed threshold, but it is 

difficult to determine values of these 

thresholds, since the evaluation function 

for balancing edge points and non-edge 

points is difficult to design [5, 6, 17].

2) Unsupervised Edge Detection

There are generally three approaches to 

unsupervised edge detection: searching 

for thresholds [6, 17], finding connected 

Unsupervised edge detection is challenging and 

computationally expensive. Instead of searching for edge 

points in each image, it is desirable to quickly learn an 

edge detector that can be used for many images.
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curves [15, 21, 22], and obtaining bound-

aries based on segmentation results [23]. 

Thresholding techniques normally obtain 

edge points pixel by pixel. Hence, they 

are generally fast and suitable for real-

time applications. However, such techniques 

consider very little global information and 

usually do not balance between the edge 

points and non-edge points. For example, 

an iterative method and an entropy based 

thresholding technique were employed 

to obtain binary edge maps in [17], and 

the Otsu method [24] was utilized to 

search for good thresholds to obtain 

edge maps [17]. However, the detected 

results from these three methods could 

be easily affected by noise. In addition, 

the binary edge maps from the thresh-

olding techniques in [4] and [5] typically 

have low precision. The zero threshold 

technique proposed in [6] normally 

obtains binary edge maps with low 

recall. However, both recall and preci-

sion are important, since recall cannot 

be the proportion of non-edge points 

that are incorrectly detected as edge 

points, but precision cannot indicate the 

proportion of true edge points being 

missed. When both recall and precision 

are considered, how to balance between 

them needs further investigation. 

Approaches based on finding connected 

curves or obtaining boundaries from seg-

mentation results usually consider con-

text [1] in a detected image. The active 

contour approach [21, 25] utilizes an 

energy function to find good closed 

edges. However, these methods [1, 21, 

25] suffer from high computational cost. 

Generally, only parts of the edges in an 

image can be found by this approach. 

Also, binary edges are usually dependent 

on initial candidate curves [1, 26]. Since 

an energy function considers edge curves, 

instead of independent individual edge 

points, it is worth investigating how to 

integrate an energy function with a 

thresholding technique to take the 

advantages of both approaches.

Image gradients are popularly used to 

extract edge features in unsupervised 

edge detection, such as the Sobel edge 

detector [27] and the Canny edge detec-

tor [13]. A common computational 

framework is suggested in [27] to calcu-

late gradients on untextured and textured 

images. In general, a horizontal derivative 

and a vertical derivative are combined as 

the image gradient, which are also used 

to obtain edge orientation information. 

To filter noise, Gaussian filters have been 

applied to edge detection [2, 13]. Consid-

ering the effect of white noise, the Canny 

detector employed a Gaussian filter to 

approximate a given function (considered 

as an optimal edge detector) [13]. In a 

two-dimensional Gaussian filter ( , )g x yv  

(see Eq. (1)), the image horizontal deriva-

tive ( , )g x y x2 2  and the image vertical 

derivative ( , )g x y y2 2  are defined in 

Eqs. (2) and (3), respectively. Here, v is a 

scale parameter. Gaussian image gradient 

( , )g x yd  is defined in Eq. (4), and the 

edge direction i  is defined in Eq. (5).
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There are many other methods for 

edge feature extraction [1], such as the 

image histogram gradient [28], the 

image texture gradient [28], techniques 

using the co-occurrence matrix [29], 

and automatic construction of edge fea-

tures [30, 31]. Gaussian image gradient is 

popularly used for edge detection, and 

has stable performance on edge detec-

tion [1, 2]. It is also computational less 

expensive than other techniques, such as 

the image histogram gradient. Therefore, 

this paper utilizes only Gaussian image 

gradient to extract edge features.

3) Performance Evaluation

Since edge detection is subjective, i.e., 

different people may mark/label differ-

ent observations of edges in the same 

natural images, it is not straightforward 

to evaluate binary edge maps, where 

natural images mean images coming 

from different natural scenes, such as a 

picture of a tree, an animal or a person 

on the grass. It is expensive to manually 

check the detected results. The ground 

truth of a set of images is often utilized 

to automatically evaluate the detected 

results [28, 32]. F-measure, which com-

bines recall r  and precision p  with a 

parameter ,a  has been popularly used to 

measure the detection performance [28, 

33]. F-measure is defined in Eqs. (6)-(8), 

where T  is the number of true edge 

points, TP  is the number of true edge 

points being correctly detected, P  is the 

total number of predicted edge points, 

and parameter a  is from 0 to 1. When a  

is large, F  is mainly affected by .r  For a 

soft edge map, a low threshold is usually 

used to obtain high ,r  but low ;p  and a 

high threshold is usually used to obtain 

low ,r  but high .p  a  is set to 0.5 to bal-

ance recall r  and precision p  [28, 33]:

 r
T

TP
=  (6)

 p
P
TP

=  (7)

 
( )

.F
r p

rp

1a a

=
+ -

 (8)

B. Thresholding Techniques

Thresholding techniques in image pro-

cessing generally include histogram-

based methods [16, 34] and spatial 

methods [17]. Histogram-based methods 

employ the histogram of edge responses, 

such as the image gradient, to search for 

a threshold value to divide the edge 

responses into different parts. In [16], an 

optimal threshold was selected from a set 

of pre-defined thresholds based on the 

Otsu method or the maximum entropy. 

Spatial methods directly apply a given 

threshold to edge responses for marking 

pixels as edge or normal points [18].

1) Thresholding in Supervised  

Edge Detection

When the training images and their 

ground truth are provided, a fixed thresh-

old can be directly used. In our previous 

work, a fixed threshold of 0 was used in 

the edge detectors evolved by GP [18]. 
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Different from using a given threshold, 

the probabilities of a pixel being an edge 

point or a non-edge point have been 

used to obtain binary edge maps [20, 35].

2) Thresholding in Unsupervised 

Edge Detection

When there is no ground truth provided, 

results from different edge detectors can 

be combined to form ground truth [36], 

but it is computationally expensive. How-

ever, the detection time for a single image 

is required to be shorter than 0.1 second 

for many real-world problems. Therefore, 

thresholding techniques focus mainly on 

searching threshold values after obtaining 

a histogram on the edge responses, which 

are aggregated in a histogram with bins 

, , ..., ,k L0 1 1= -  where k  is a thresh-

old level and L  is the number of thresh-

old levels. The Otsu method [24] has been 

widely applied to histogram-based thresh-

olding techniques [16, 34]. The Otsu 

method aims to separate pixels into edge 

points and non-edge points according to 

the minimum intra-class variance or 

(equivalently) the maximum between-

class variance. An entropy-based thresh-

olding technique [17] was used to find 

thresholds with the maximum entropy, 

where it is found that the Otsu method 

and the entropy-based thresholding tech-

nique discriminate pixels with high recall, 

but they are easily affected by noise.

Generally, the number of edge points 

and the number of non-edge points are 

unbalanced, and the number of true 

edge points is much smaller than that of 

non-edge points. Edge detection is often 

treated as a binary classification problem, 

and the edge point is the more impor-

tant class. In [6], there was an assumption 

that the number of edge points is not less 

than 1% of the total pixels in an image 

based on their experimental experience. 

Since the numbers of true edge points in 

different images are very different, this 

method may lead to the further loss of 

some true edge points for images that 

contain very few true edge points.

3) Thresholding in Canny

In the Canny edge detector, a threshold-

ing technique has been used [13] to 

eliminate breaking edge contours. A 

user-defined high threshold is used to 

mark pixels as strong edge points. After 

getting strong edge points, a user-

defined relatively low threshold is used 

to mark a pixel as a weak edge point, 

which is considered as an edge point if 

it is connected to a strong edge point. 

However, it is expensive to manually 

tune the low and high thresholds in the 

Canny edge detector. In [34], a high 

threshold was determined based on the 

histogram on edge responses, and a low 

threshold was determined based on the 

distributions of edge points and non-

edge points. In [4] and [5], a unimodal 

thresholding technique on the edge 

response histogram was proposed to find 

a low threshold. In the unimodal thresh-

olding technique, the information (dis-

tribution of edge response magnitudes) 

from each threshold level is calculated. 

Therefore, the computational cost is 

high. The results in [5] show that these 

threshold techniques have high recall, 

but are affected by noise.

Overall, existing thresholding tech-

niques focus mainly on recall (generally 

using low thresholds) or precision (gen-

erally using high thresholds) only. When 

both recall and precision are considered, 

thresholding techniques need to be fur-

ther investigated to obtain binary edge 

maps in unsupervised edge detection.

C. Related Work on GP  

for Edge Detection

GP has been applied to supervised edge 

detection when the training data with 

desired outputs are provided. In low-lev-

el supervised edge detection, GP has 

been used to automatically design edge 

detectors based on pixel intensities. 

There are three ways to provide training 

data for evolving edge detectors. Firstly, 

the ground truth of training images is 

given by humans. The ground truth used 

in [37] is hand-labelled, and the ground 

truth used in [28] is labelled based on 

the segmentation results. Note that the 

segmentation results are determined by 

humans. Via selecting pixels from a 

13 13#  moving window to construct 

GP programs/trees, a multi-objective GP 

system is used to extract edge features 

[37]. GP has also been used to evolve 

edge detectors where pixels in a moving 

window were considered as terminals, 

i.e. the leaf nodes of GP trees/programs 

[38, 39]. To avoid setting a window size, 

search operators, such as a shifting opera-

tor, have been used as functions, i.e. the 

internal nodes of GP programs, to evolve 

edge detectors based on full images [11, 

20]. Secondly, the “ground truth” of 

training images comes from existing 

edge detectors, such as the approxima-

tion of the Sobel detector [40] and the 

Canny detector [41]. Thirdly, when edges 

are considered as signals, GP is used to 

evolve formulae to approximate the 

designed “signal” responses on edges and 

non-edges points. One-dimensional step 

edge responses are designed for evolving 

formulae, which are used as edge detec-

tors [10].

The GP evolved low-level edge de -

tectors can compete well with the re -

sults from the existing edge detectors, 

such as the Sobel edge detector [18] and 

the Canny edge detector [37] according 

to F-measure. Also, specific domain 

knowledge for edge detection was used 

to evolve edge detectors by GP. For 

example, morphological erosion and 

dilation were used as terminals of GP 

trees to evolve edge detectors in binary 

images [42, 43]. Gaussian filters were 

used to evolve Gaussian-based edge 

detectors by GP [44, 45]. Statistical 

knowledge has been used to construct 

composite features in our previous work 

[35]. After utilizing specific domain 

knowledge in GP, the detection perfor-

mance of the evolved edge detectors has 

been improved.

In summary, most of the existing 

works using GP for edge detection are 

based on ground truth. Our previous 

Existing unsupervised edge detection methods often  

have high recall, but low precision and are easily  

affected by noise.
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work conducted an initial investigation 

on unsupervised edge detection [12]. The 

results show that GP has the potential to 

evolve edge detectors from a single image. 

In this work we will further investigate 

the capability of GP for evolving edge 

detectors without ground truth.

III. The New Method:  

Modified GP (MGP)

This section introduces the proposed 

unsupervised edge detection method, a 

modified GP system (MGP), which is 

extended from our preliminary investi-

gation on GP for unsupervised edge 

detection in [12]. This section firstly 

briefly describes the baseline algorithm 

in [12] which is called a GP artificial ant 

system (GPA), then introduces the new 

MGP method.

A. The Baseline Algorithm: GPA

GP [12, 39] has been used to design arti-

ficial ant sittings in an image to search 

for edge points without using ground 

truth. Edge points are considered as ant 

food sources. An action “eat” is used to 

mark a pixel as an edge point or not. 

GPA was proposed to evolve ants to 

search for edge points.

The terminal set in GPA includes 

four different types of markers: marking 

a pixel as an edge point, marking a set of 

pixels as edge points, marking a pixel as 

a non-edge point, and marking a set of 

pixels as non-edge points. The function 

set in GPA includes { , , , ,IFC NIF + -  

, /, ( , )prog P P2 1 2#  and ( , ,prog P P3 1 2

)} .P3  In ( , , , )IFC f t P P1 2 , f is a specific 

feature, t  is a constant threshold, and P1 

and P2 are sub-programs. P1 is execut-

ed if ;f t1  otherwise, P2 is executed. 

Considering the global information 

from the whole image and the local 

curves in a small moving window, a fit-

ness function FitGPA  shown in Eq. (9) was 

proposed for GPA, which relaxed the 

edge continuity constraint in an ener-

gy function:

 Fit EE
N
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where N  is the number of pixels marked 

as edge points, g i  is the image gradient 

for pixel ,i  w1  and w2  are weight fac-

tors, and pw i  is a penalty weight for 

thickness. A thick edge point for pixel i  

used ,pw 1i =  which is only considered 

when the corresponding pixel is 

marked as an edge point and the num-

ber of its neighbors being marked as 

edge points is not smaller than five. For 

all other cases, pw i  is equal to 0. Func-

tion EE (Eq. (10)) includes the average 

of the image gradients N g1 i
N

i1R =^ h 

and the sum of the image gradients 

.gi
N

i1R =^ h

FitGPA  could utilize energies to effec-

tively evaluate programs on a single 

image, but it has three parameters ,w1 ,w2  

and pw i  to adjust. Further analysis shows 

that most of the evolved programs have 

similar structures and include mainly 

.IFC  The terminal for marking a set of 

pixels as edge points has a very low usage 

over all the evolved programs. To effec-

tively evolve edge detectors and reduce 

the number of the parameters in ,FitGPA  

MGP is proposed in this paper.

B. Terminal Set

Table 1 lists the terminal set used in MGP 

and GPA, where the terminal set of 

MGP consists of { , , , ,a rm nE nE nd , } .sd g  

Each GP program scans pixels from left 

to right and from top to bottom in an 

image. To mark a pixel, we designed ter-

minals called markers in GPA, as shown 

in Table 1. Two basic markers m  and nE  

are utilized to mark pixels as edge points 

or non-edge points, respectively. Marker 

anE  marks a set of pixels as non-edge 

points, i.e. the pixels within a small area.

Since the image gradient g  was used 

in GPA without post-processing, there 

were thick responses on detected edges. 

When the moving window size is in -

creasing, GPA might not handle thick 

responses well, and a large moving win-

dow size does not suit GPA. To thin edge 

responses, non-maximum suppression [13] is 

integrated into MGP. The terminal set of 

MGP includes the following two parts.

First, MGP keeps all the terminals 

from GPA except for the markers mH 

and ,mV  which were used to mark a set 

of pixels either horizontally or vertically. 

From the initial investigation, it was 

found that markers mH  and mV  were 

seldom selected in the evolved edge 

detectors. For a horizontal edge line, 

the width of a detected line might be 

two pixels if the non-maximum sup-

pression is not used. If the non-maxi-

mum suppression is used, the width 

would be only one pixel. Therefore, 

using mH  and mV  may increase the 

false alarms.

TABLE 1 Terminals in MGP and GPA [12].

TERMINAL MGP GPA [12] NOTE 

m YES YES MARK A PIXEL AS AN EDGE POINT 

nE YES YES MARK A PIXEL AS A NON-EDGE POINT 

anE YES YES MARK A SET OF PIXELS AS NON-EDGE POINTS

mH NO YES HORIZONTALLY MARK PIXELS AS EDGE POINTS

mV NO YES VERTICALLY MARK PIXELS AS EDGE POINTS 

rnd YES NO RANDOM CONSTANT 

sd YES NO STANDARD DEVIATION 

g YES NO GRADIENT 

With the flexible tree based representation, Genetic 

Programming is able to use different functions and 

terminals to evolve rules as edge detectors.



 NOVEMBER 2018 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    51

Second, random constants ,rnd  the 

image gradient ,g  and the standard devi-

ation sd are used as terminals to construct 

conditions. { , , }rnd sd g  in GPA were 

used as arguments of function ,IFC  not 

individual terminals. IFC  is still used 

in MGP. Fig. 1 provides a simple GP 

tree using function IFC. The tree is 

. , , ,IFC g m nE0 2^ h, where g  is the value 

generated by the non-maximum suppres-

sion operation on the image gradient 

from the current moving window and 

the condition is . .g0 2 1  These terminals 

, andrnd g sd^ h  return real numbers. 

They are used to combine sub-programs 

as conditions for calling different markers. 

Note that there are two different types of 

terminals, where each marker conducts 

an action, but the others , andrnd g sd^ h 

return real numbers.

C. Function Set

The conditions (rules) used in the func-

tions IFC^ h in GPA were based on a 

single fixed threshold. IFC  was inspired 

by the experiential design of humans 

developing edge detectors to find edge 

curves, where the rules used are very 

limited. It is possible to evolve rules to 

improve detection performance. There-

fore, MGP is designed to automatically 

generate sub-programs as conditions 

(rules). Since the directional markers 

mH  and mV  are not used in MGP, 

programs evolved by MGP search 

mainly for single edge points. Without 

directionally marking pixels, functions 

( , )prog P P2 1 2  a nd  ( , , )prog P P P3 1 2 3  

used in GPA are not included in MGP. 

Different from GPA using the given 

conditions, MGP automatically evolves 

conditions and edge detectors at the 

same time. Therefore, the conditions 

used in IFC  are relaxed, and f  and t  

are replaced by sub-programs NP1 and 

NP2  with the numerical return type. 

Here, NP1 and NP2 are constructed by 

the numerical terminals and arithmetic 

functions { , , , /}#+ -  used in MGP. 

Note that / is the protected division, 

returning 1 when being divided by 0.

In order to use the logical operator 

IFC in numerical return sub-programs 

(for automatically constructing condi-

tions), a new numerical return function 

( , , , )NIF NP NP NP NP1 2 3 4  is intro-

duced in MGP, where NP3 and NP4  

are sub-programs whose return types are 

numerical. When ,NP NP1 21  IFN  

returns a numerical result from ;NP3  

otherwise, a numerical result is obtained 

from .NP4

In summary, the function set in MGP 

consists of { , , , ,IFC NIF + -  , /} .#  

Given the different return types of the 

terminals and functions, strongly typed 

GP [9] is used to develop the proposed 

MGP system.

D. Fitness Function

Since the non-maximum suppression is 

used, the thickness will not be consid-

ered. Fitness function FitMGP  in Eq. (11) 

is actually the energy function EE 

shown by Eq. (10):
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(11)

There is a trade-off between the 

ave r age  of the i m a g e  g r a d i e n t s  

N g1 i
N

i1R =^ h and the sum of the image 

gradients .gi
N

i1R =^ h  The average is high 

(low) when pixels with high (low) 

image gradients are selected. The sum is 

high (low) when a large number (or 

only a few) pixels are selected. In gener-

al, if the average is high, precision will 

be high because pixels with high gradi-

ents usually are true edge points. If the 

sum is high, recall is usually high 

because most pixels are marked as 

edge points. MGP removes the penal-

ty item N pw wi
N

i2 1R =  in FitGPA  in 

Eq. (9). There is only one parameter 

w1 in fitness function FitMGP  in Eq. 

(11). w1 is used to balance recall and 

precision of the detected results, which 

has a similar function to a  in F-mea-

sure in Eq. (8).

E. Unsupervised GP vs Thresholding 

Techniques

MGP is expected to evolve programs 

from a single image without ground 

truth, and the evolved program, i.e. edge 

detector, can be directly applied to 

extract edges from unseen images, i.e. 

images in the test set. Once the edge 

detector is evolved from the single 

image, the GP system does not need to 

restart to evolve a new edge detector 

again for unseen images. In contrast, a 

thresholding technique, such as the his-

togram-based method [16, 34], searches 

for an optimal threshold for each image 

and needs to restart the search for a 

threshold when the detected image is 

changed. If there are N  images, there 

will be N  optimization tasks of search-

ing for optimal thresholds. Therefore, the 

proposed MGP system has low compu-

tational cost to detect edges on unseen 

images. The cost of the edge detectors 

evolved by MGP is mainly from the 

image gradient calculation.

IFC

g m nE0.2

Image

Edge Point

Gradient

GP Program

Moving Window

FIGURE 1 An example GP program for detecting edge points using a moving window.
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IV. Experiment Design

A. Image Dataset

The Berkeley Segmentation Dataset 

(BSD) [28] is used in the experiments. 

There are 200 training images and 100 

test images in BSD, and each image has 

481 321#  pixels or 321 481#  pixels. 

The BSD dataset provides ground truth, 

but it is not used by MGP during the 

evolutionary learning process.

Six images shown in Fig. 2 are 

selected as training images, where five 

images are from the BSD training set 

and the other one (image 101085) is 

from the BSD test set (the ground truth 

of image 101085 is not used, i.e. unseen, 

during the training process). These 

images are chosen because they have 

rich edge information (such as intensity 

differences between objects and back-

ground) and relatively large numbers of 

true edge points.

We have conducted six sets of experi-

ments, each using a different single image 

from Fig. 2 to evolve an edge detector. 

Each of the evolved edge de  tectors is 

evaluated on the 100 test images from the 

BSD dataset.

B. Experiment Settings

Table 2 lists the settings of MGP and 

GPA. MGP automatically evolves con-

ditions to search over edge pixels, and 

the depth of an evolved sub-program as 

a condition could be larger than 1. 

Therefore, the maximum depth of a 

program in MGP should be larger than 

in GPA. However, since only rnd, sd, and 

g, and a small set of functions are used 

for generating rules (conditions), it is 

expected that sub-programs (used for 

these rules) are not too much larger. 

Therefore, the maximum depth is set to 

five in MGP. Based on initial experi-

ments, a population size of 50 and the 

maximum number of generations is set 

to 30. Probabilities used for mutation 

(0.35), crossover (0.60) and reproduction 

(0.05) are taken from [46]. The initial 

population is created by the ramp-half-

and-half method. 30 independent runs 

are conducted for each experiment.

For the n n#  moving window, the 

parameter n  is set to 11 in the experi-

ments, since the best test F-measure per-

formance of the Canny edge detector, 

i.e . ,F 0 56=  is achieved when .n 11=  

The best test F-measure of .F 0 56=  is 

the same as reported in [28]. Since GPA 

has a problem with thick/many respons-

es and a large window size might not be 

suitable in GPA, we still keep n = 9 for 

GPA. Generally, at least one percent of 

the pixels in an image would be suggest-

ed as edge points [6]. Therefore, to 

approximately balance the two terms in 

,FitMGP  we use .w 1 0 01 1001 = =  in 

this paper.

V. Results and Discussion

The F-measure [28] is employed to 

evaluate the performance of MGP on 

the 100 test images in the BSD dataset.

A. Test Performance in terms of 

F-measure, Recall and Precision

Table 3 presents the means and standard 

deviations of the performance F  values 

over the 100 test images for the edge 

detectors evolved by MGP and GPA 

over the 30 runs. The thick binary edges 

obtained from GPA were thinned by a 

binary thinning operator [47], then the 

thinned edges were used to obtain recall 

and precision. Two sample t-tests and 

Mann-Whitney-Wilcoxon (MWW, 

non-parametric) tests [48] with a signifi-

cance level of 0.05 are used to compare 

the performance of MGP and GPA, 

where the p-values are presented in the 

third and fourth columns of Table 3, 

respectively. “ -” indicates that MGP is 

significantly better than GPA.

Table 3 shows that the test perfor-

mance F  of the edge detectors evolved 

by MGP is significantly better than that 

of GPA in all cases, i.e. using each of the 

six images as the training set. The overall 

test performance of MGP is, of course, a 

significant improvement over GPA, i.e. 

TABLE 2 Experiment Settings of MGP and GPA [12].

MGP GPA [12]

TERMINALS { , , , , , }m nE anE rnd sd g  { , , , , }m mH mV nE anE  

FUNCTIONS { , , , , ,/}IFC NIF #+ -  { , , }IFC prog prog2 3  

FITNESS FUNCTION FitMGP FitGPA

POPULATION 50 100 

GENERATION 30 30 

MUTATION 0.35 0.35 

CROSSOVER 0.60 0.60 

DEPTH 5 3 

n (WINDOW SIZE) 11 9 

(a) (b) (c)

(d) (e) (f)

FIGURE 2 Five BSD training images (a)–(e) and one BSD test image (f). (a) 23025, (b) 23080, 
(c) 33066, (d) 370036, (e) 385028, and (f) 101085.
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from the average of 0.5267 to 0.5673. 

This suggests that by employing the 

new terminal set, function set and fitness 

function, MGP can further improve the 

performance of GPA in terms of the 

F-measure. We further investigate their 

performance in terms of the recall and 

precision in Table 4.

Table 4 gives the averages of recall 

and precision of the 30 edge detectors 

evolved by MGP or GPA (from the 

30  runs) on the test set, when each of 

the six single images is used as the train-

ing data for evolving GP detectors. The 

MWW tests with a significance level of 

0.05 are used to compare their perfor-

mance. As can be seen from Table 4, the 

precision of the evolved edge detectors 

is significantly improved when MGP is 

used in all the six cases, from (a) to (f  ). 

Their improvement is over 0.58 or 13%, 

except for the 9.6% improvement when 

image (f  ) is used. The overall average is 

increased from 0.4607 to 0.5267 by 

around 0.066 or 14.33%. The results 

of recall in MGP are generally similar 

to GPA, with two significant smaller 

cases and four similar or better cases. 

The overall average recall is slightly 

decreased by MGP compared with 

GPA, from 0.6199 to 0.6180, by a very 

small value. Additionally, on training 

image (a), there is no significant differ-

ences between MGP and GPA in terms 

of recall.

According to Table 3 and Table 4, 

MGP mainly improves the precision of 

the detected results. There are two 

potential reasons: First, by using non-

maximum suppression in MGP, the fit-

ness function FitMGP  does not need to 

evaluate the thickness of binary edges, 

and only addresses recall and precision 

using a weight .w1  However, fitness 

function FitGPA  needs to address recall, 

precision, and the thickness of edges 

using three parameters ,w1  ,w2  and pw i  

(see Eq. 9). It is more complicated to 

use FitGPA  than FitMGP  for evaluating 

edge detectors. Second, MGP automati-

cally evolves conditions while evolving 

edge detectors, whereas in GPA, a limit-

ed set of conditions are pre-defined. 

The number of potential conditions 

evolved by MGP is larger than by GPA, 

and the evolved conditions are poten-

tially better than the limited set of pre-

defined conditions.

B. GP vs Canny

From [28], the best F  performance of 

the Canny edge detector on the BSD 

test set is 0.56. The results of MGP from 

Table 3 are significantly larger than 0.56, 

according to the t-tests with the signifi-

cance level of 0.05 and MWW tests. 

Note that the standard deviations of F  

values from MGP in Table 3 are very 

small. Most of the MGP edge detectors 

have detection performance F  higher 

than 0.56. The image gradient used by 

the Canny edge detector is normalized 

(from 0 to 1). As discussed in Section II, 

since it is not easy to search for two opti-

mal thresholds in the Canny edge detec-

tor, a high threshold is used to find 

strong edge points (with high magni-

tudes of the image gradient) and a low 

threshold is used to find weak edge 

points which are connected to strong 

edge points. If the high threshold is too 

large, some important edge points will 

be removed and the connected weak 

edge points will not be found. If the 

TABLE 3 Mean ! standard deviation of the 30 F values on the test set by MGP and GPA. Note that p-values  
are from t-tests and Mann-Whitney-Wilcoxon (MWW) tests.

TRAINING IMAGE MGP GPA p-VALUE (t-TEST) p-VALUE (MWW) 

(a) 0.5671 ! 0.0018 . .0 5265 0 0097! .0 0000 -  .0 0000 -  

(b) 0.5669 ! 0.0036 . .0 5288 0 0010!  .0 0000 -  .0 0000 -  

(c) 0.5697 ! 0.0022 . .0 5278 0 0015! .0 0000 -  .0 0000 -  

(d) 0.5706 ! 0.0013 . .0 5273 0 0018! .0 0000 -  .0 0000 -  

(e) 0.5647 ! 0.0032 . .0 5278 0 0047! .0 0000 -  .0 0000 -  

(f) 0.5648 ! 0.0054 . .0 5218 0 0113! .0 0000 -  .0 0000 -  

average 0.5673 0.5267 — —

TABLE 4 Recall and precision for the GP edge detectors evolved by MGP and GPA.

TRAINING 

IMAGE

MGP GPA p-VALUE (MWW)

RECALL PRECISION RECALL PRECISION RECALL PRECISION

(a) 0.6005 ! 0.0110 0.5375 ! 0.0057 0.5996 ! 0.0362 0.4709 ! 0.0150 0.4325 .0 0000 -  

(b) 0.6089 ! 0.0318 0.5322 ! 0.0194 . .0 6269 0 0219!  0.4579 ! 0.0118 .0 0003 - .0 0000 -  

(c) 0.6471 ! 0.0171 0.5093 ! 0.0097 0.6544 ! 0.0218 0.4428 ! 0.0114 .0 0318 . .0 0000 -  

(d) 0.6708 ! 0.0179 0.4970 ! 0.0102 0.6619 ! 0.0203 0.4387 ! 0.0112 .0 0182 - .0 0000 -  

(e) 0.5887 ! 0.0189 0.5434 ! 0.0106 0.6198 ! 0.0271 0.4605 ! 0.0132 .0 0000 . .0 0000 -  

(f) 0.591 ! 0.0218 0.5410 ! 0.0104 0.5570 ! 0.0393 0.4935 ! 0.0177 .0 0000 - .0 0000 -  

average 0.6180 0.5267 0.6199 0.4607 — —
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high threshold is too low, some noisy 

pixels might be considered as edge 

points, and when finding weak edge 

points, more noisy pixels may be marked 

as edge points. Without ground truth, it 

is still an open issue to investigate how 

to effectively search for the best two 

thresholds [17, 49]. In this paper, we only 

use a single threshold in the Canny edge 

detector to quickly search for “good” 

binary edge maps. A fixed set of 

 thresholds , , , ,i i52 1 2 51f=^ h  are 

given to obtain F  values based on the 

ground truth of the 100 test BSD images. 

.F 0 56=  is obtained as the maximum F  

from the 51 thresholds for the Canny 

edge detector, and it is the same as 

reported in [28].

Note that the Canny edge detector 

uses a set of thresholds and obtains dif-

ferent results. The test performance is 

the best test performance (maximum F ) 

from all these results. The GP evolved 

edge detectors directly generate the final 

binary edge maps, and do not involve 

multiple thresholds to choose. The com-

parisons show that MGP has the abili-

ty to effectively evolve edge detectors 

when only a single image without 

ground truth is employed as the whole 

training set.

C. Computational Cost

As discussed in [12], GPA has a low com-

putational cost. Table 5 provides the test 

times (in seconds) of the GP edge detec-

tors evolved by MGP and GPA. All the 

experiments are based on a system with 

CPU 2.1 GHz and RAM 2GB. T-tests a 

significance level of 0.05 are used to com-

pare their computational cost. “-” means 

that GPA is significantly faster than MGP. 

It can be seen that the programs evolved 

by MGP have significantly longer test 

times than that of GPA, but the average 

test times in MGP are still much shorter 

than 0.1 second per image. Therefore, the 

MGP edge detectors’ computational costs 

are still well within the 0.1 second 

requirement in real-time applications. Of 

course, a more powerful CPU can be 

used to further reduce the computational 

time on the test images.

D. Example GP Edge Detectors

Fig. 3 shows an edge detector gpold  

(with a commonly found structure) 

evolved by GPA, while Fig. 4 gives an 

example of the edge detector gpnew  

evolved by MGP.

GPA focused mainly on the combi-

nations of conditions in function .IFC  If 

the condition in IFC  is true, IFC  calls 

the left sub-program; otherwise, it calls 

the right sub-program. From the struc-

ture of GP edge detector ,gpold  the stan-

dard deviation sd in the root is helpful to 

choose a threshold on image gradient .g  

When sd  is high, a threshold on g for 

images with noise needs to be larger 

than that of without noise.

For MGP, the image intensity in 

MGP is from 0 to 1. As can be seen 

from Fig. 4, the edge detector gpnew  

includes mainly two sub-parts sub1 and 

sub2. sub1 works mainly on marking 

edge points and sub2 works on how to 

mark pixels as non-edge points. There 

are three interesting observations.

IFC

IFC

/

/

sub1
sub2

NIF g m

sd sd

sd

0.2 * g

g

g

anE nE

sd

0.9

FIGURE 4 Example GP edge detector gpnew (with F = 0.5723) evolved by MGP.

IFC

IFC IFCsd44.79

17.95 g gm mnE nE15.94

FIGURE 3 Example GP edge detector gpold (with .F 0 5304= ) evolved by GPA [12].

TABLE 5 Test times (mean ± standard deviation) of the GP edge detectors  
(in seconds).

TRAINING IMAGE MGP GPA 

(a) . .0 0569 0 0327!  . .0 0335 0 0088 -!

(b) . .0 0632 0 0343!  . .0 0163 0 0155 -!

(c) 0.0713 ! 0.0323 . .0 0334 0 0123 -!

(d) 0.0697 ! 0.0373 . .0 0312 0 0074 -!

(e) 0.0655 ! 0.0353 . .0 0331 0 0080 -!

(f) 0.0585 ! 0.0334 . .0 0315 0 0097 -!
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Firstly, sub-part sub1 is constructed 

as a condition to discriminate pixels as 

edge points or non-edge points. Rather 

than using a fixed threshold on the 

image gradient ,g  the automatically 

constructed sub1 includes a condition 

using sd  in addition to a fixed thresh-

old. As a result, for an edge pixel from a 

noisy area, its sd  and g  are not low, so 

a fixed single threshold is chosen by 

sub1, and this threshold is expected to 

identify this pixel as an edge point. If 

the fixed threshold with a high value is 

used to consider the pixel as a non-

edge point, some pixels (true edge 

points) in non-noisy areas are consid-

ered as non-edge points because their 

gradients are not large. Sub-part sub1 

adaptively employs a fixed threshold, sd  

and g  to mark pixels as edge points or 

non-edge points for noisy areas and 

non-noisy areas.

Secondly, sub-part sub2 is utilized as 

a condition to mark a single pixel as a 

non-edge point or a set of pixels as non-

edge points. When a pixel has a very low 

g  and a low ,sd  its neighbors are usually 

located in a non-edge area. sub2 can 

quickly mark its neighbors as non-edge 

points. However, when its g  and sd  are 

not low, it is hard to determine whether 

its neighbors are located in a non-edge 

area. From the evolved condition in 

sub2, the relationship between g  and sd  

influences the ability of identifying a set 

of pixels being located in an edge area 

or a non-edge area.

Thirdly, similar to the detector ,gpold

the detector gpnew  utilizes the combina-

tion of sd  and g  to mark pixels as edge 

points or non-edge points. Although we 

do not pre-define condition functions in 

MGP, the detector gpnew  has evolved 

adaptive conditions to mark pixels.

From the example detector ,gpnew  

we can easily see that MGP can effec-

tively evolve adaptive conditions for 

extracting edges, not directly using a 

single fixed threshold.

E. Visual Results

Fig. 5 shows examples of the detected 

results from the edge detectors evolved 

by GPA using each of the six training 

images (a)–(f ) as the training set. It is 

Image

GT

(a)

(b)

(c)

(d)

(e)

(f)

1018085 106024 296007

FIGURE 5 Examples of the detected results on three example BSD images from GPA [12] (“GT” 
is ground truth). The grayscale for GT and the detected results are inverted.
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found that the detected results from the 

six training images are quite similar. 

Without providing ground truth, GPA 

can effectively evolve edge detectors 

based on the image gradient.

Fig. 6 shows examples of the detect-

ed results from the Canny edge detector 

and the edge detectors evolved by MGP. 

Comparing with the Canny edge detec-

tor (i.e. the results with best F based on 

the ground truth), the GP edge detec-

tors evolved by MGP achieve higher 

precision. For instance, for image 

101085, the Canny edge detector has 

more false alarms than the edge detec-

tors evolved by MGP. The MGP evolved 

edge detectors is significantly better than 

the Canny edge detector, more than 1% 

increase in terms of the F-measure. This 

is probably because the Canny edge 

detector uses only a fixed threshold for 

all the test images, but MGP has the 

ability to automatically construct condi-

tions adaptively using the image gradi-

ent, the local standard deviation, and a 

fixed threshold.

Comparing the detected results in 

Figs. 5 and 6, MGP evolves edge detec-

tors with single edge responses. A reason 

for this is that the energy (the image 

gradient) used in MGP is further pro-

cessed by non-maximum suppression. 

These results suggest that MGP also has 

the ability to evolve edge detectors with 

similar detection performance when 

using (different) single training images 

without ground truth.

F. Single Training Image

This subsection discusses why a single 

image can be used by MGP and GPA as 

the whole training set to evolve edge 

detectors with good detection perfor-

mance. This is also to continue the inves-

tigation on how to effectively evolve 

edge detectors using a single image, done 

initially in our previous work in the 

supervised learning scenario in [8].

For both supervised learning (with 

ground truth) and unsupervised learn-

ing (without ground truth), pre-defined 

specific knowledge, considered as prior 

domain knowledge, is helpful to find 

edge detectors when only a single image 

is used as the training data. In GPA, the 

Image

GT

Canny

(a)

(b)

(c)

(d)

(e)

(f)

1018085 106024 296007

FIGURE 6 Examples of the detected results on three example BSD images from the GP edge 
detectors evolved by MGP (“GT” is ground truth). The grayscale for GT and the detected results 
are inverted.
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image gradient and the standard de -

viation are considered as the pr ior 

knowledge. However, unlike existing 

thresholding techniques [16, 17], GP 

automatically evolves programs for mark-

ing edge points, rather than directly using 

one or two thresholds. These evolved 

programs can be considered as adaptive 

methods, which can effectively employ 

the image gradient and the standard 

deviation on different areas of the image, 

such as the examples shown in Figs. 3 

and 4. To find such adaptive rules, the 

single training image should include 

various edge and non-edge informa-

tion, such as texture, noise, and differen-

tiation between two objects. This is 

probably why MGP can effectively 

evolve edge detectors when only a sin-

gle image is used.

One-shot learning has been applied 

to object recognition, using a small set 

of training images [7, 50]. One-shot 

learning employs a very small set of 

training examples to train new classifiers, 

but needs prior knowledge extracted 

from existing datasets, such as learnt 

classifiers or pre-defined feature distri-

butions, and such information is often 

obtained from a large dataset. Different 

from one-shot learning, MGP in this 

paper only relies on the pre-defined fea-

tures (the image gradient and the stan-

dard deviation) and the given single 

image without any prior knowledge. 

Thus, MGP can be easier and faster to 

apply to train edge detectors than one-

shot learning.

Note that in this work an image is 

used as the training data only if it has 

rich edge information. If an image has 

little edge information, such as cases 

with no or minor changes in a single 

color object, the edge detector evolved 

by MGP might not work well on other 

images. We will investigate how to 

determine whether the edge informa-

tion of a single image is rich enough in 

the future.

VI. Conclusions

The goal of this paper was to develop an 

unsupervised learning GP system to 

improve the edge detection precision 

without adversely affecting the recall 

while keeping the low computational 

cost. The goal has been achieved by 

designing a terminal set, a function set, 

and a fitness function to propose a new 

algorithm named MGP. MGP uses only 

a single image as the whole training set 

to automatically evolve/generate effec-

tive edge detectors. Six images without 

ground truth were individually used by 

MGP for evolving effective edge detec-

tors in the experiments. The results 

show that MGP can evolve edge detec-

tors to obtain significantly better detec-

tion performance than the baseline 

algorithm GPA and the best perfor-

mance of the Canny edge detector. 

The superior performance of MGP over 

GPA is probably due to the automatic 

condition rule construction and inte-

grating non-maximum suppression, 

which also addresses the edge thickness 

problem. Further analysis on the evolved 

edge detectors reveals that MGP auto-

matically combined the image gradient 

and the standard deviation with a 

threshold to evolve adaptive edge detec-

tors, rather than using a single threshold 

only, to mark pixels as edge points or 

non-edge points.

This paper focuses mainly on the 

automatic construction of edge detec-

tors using a single image, which is not 

specific to any particular domains, such 

as medical images. In the future, we will 

investigate edge detection and image 

analysis for medical images. Further-

more, we also aims to reduce the com-

putational cost of MGP, and design a 

new marker as a terminal in GP to 

mark all points in certain local areas that 

include non-edge points only.
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caused, whether it is congenital, or 

acquired in childhood or adulthood, is 

likely to play important roles and influ-

ence the performance of the system. 

Note that a BCI game is more impor-

tant for a person with missing upper 

limbs. The situation becomes more chal-

lenging if we consider the fact that a 

particular area of the brain is no more in 

charge of a body part but in charge of 

activities that are done by that body part. 

Thus if we want to design a BCI based 

system, as an example, for people with 

missing upper limbs, it appears that we 

should use data from subjects with miss-

ing limbs. But this certainly poses a 

challenge to generate adequate data for 

designing such a system. This raises 

other important questions: To design a 

machine learning system for motor 

imagery, can we use imagination of lip 

movement or movement of the feet to 

do the same task? Using a BCI system 

how can we analyze what a person is 

actually doing (not functionally, but 

physically)? I have no answer to all these 

questions but they all appear to be chal-

lenging and are likely to impact design-

ing of AI systems based on BCI.
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