
Application
 Notes

46 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2018 1556-603X/18©2018IEEE

Abstract

E
dge detection has been a fundamen-

tal and important task in computer

vision for many years, but it is still a

challenging problem in real-time applica-

tions, especially for unsupervised edge

detection, where ground truth is not avail-

able. Typical fast edge detection approach-

es, such as the single threshold method, are

expensive to achieve in unsupervised edge

detection. This study proposes a Genetic

Programming (GP) based algorithm to

quickly and automatically extract binary

edges in an unsupervised manner. We

investigate how GP can effectively evolve

an edge detector from a single image

without ground truth, and whether the

evolved edge detector can be directly

applied to other unseen/test images. The

proposed method is examined and com-

pared with a recent GP method and the

Canny method on the Berkeley segmen-

tation dataset. The results show that the

proposed GP method has the ability to

effectively evolve edge detectors by using

only a single image as the whole training

set, and significantly outperforms the two

methods it is compared to. Furthermore,

the binary edges detected by the evolved

edge detectors have a good balance

between recall and precision.

I. Introduction

Edge detection has been an active area of

research over many years, and it is impor-

tant for processing and understanding

images [1]. Edges are the boundaries

between different areas, such as back-

ground and objects, in digital images. Pix-

els on these boundaries are edge points. A

binary edge point indicates its corre-

sponding pixel in the image is an edge

point or not. A binary edge map consists

of a set of binary edge points. To find edge

points, different approaches have been

proposed [1–3]. These approaches can be

categorized into supervised edge detec-

tion (with ground truth provided) or

unsupervised edge detection (without

ground truth). This work focuses mainly

on unsupervised edge detection.

In unsupervised edge detection, search -

ing for binary edge maps is difficult and

computationally expensive [1]. Most exist-

ing methods have high recall (i.e. the num-

ber of true edge points being detected over

the total number of true edge points), but
Digital Object Identifier 10.1109/MCI.2018.2866729

Date of publication: 15 October 2018

Fast Unsupervised Edge Detection Using Genetic Programming

Wenlong Fu
School of Engineering and Computer Science,
Victoria University of Wellington, NEW ZEALAND

Bing Xue
School of Engineering and Computer Science,
Victoria University of Wellington, NEW ZEALAND

Mengjie Zhang
School of Engineering and Computer Science,
Victoria University of Wellington, NEW ZEALAND

Mark Johnston
Department of Mathematics, Institute of Science and the
Environment, University of Worcester, UNITED KINGDOM

Corresponding Author: Wenlong Fu
(Email: wenlong.fu@gmail.com)

 NOVEMBER 2018 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 47

low precision (i.e. the number of detected

true edge points over the total number of

detected points), being easily affected by

noise [4, 5]. The zero threshold technique

proposed in [6] normally obtains binary

edge maps with high precision but low

recall. When both the recall and precision

measures are considered, we need a further

investigation on how to balance them.

Generally, an optimization method is used

to determine a threshold for each image.

However, a threshold found for an image

might not be good for other images.

Instead of directly searching for a threshold

for each image, it is desirable to investigate

whether a detector trained from an image

can be directly used for other unseen

images. In one-shot learning [7], prior

knowledge from existing datasets are uti-

lized to quickly obtain classifiers for recog-

nizing objects. A very small set of training

images is used in one-shot learning algo-

rithms. In our previous work [8], a single

training image can be effectively used to

evolve edge detectors by Genetic Pro-

gramming (GP) [9]. GP is a population

based evolutionary computation method,

where each individual is a candidate solu-

tion of the target problem and is often rep-

resented as a tree or computer program [9].

GP has been employed to automatically

evolve edge detectors since 1996 [10, 11].

However, there have been only very few

works using GP in unsupervised edge detec-

tion to date [12]. Therefore, it is desirable to

investigate how to employ GP to evolve

edge detectors from a single image in an

unsupervised manner and how the evolved

edge detectors can be used to detect binary

edge maps on unseen images.

The overall goal of this paper is to

investigate unsupervised edge detection

using GP to improve detection precision

without adversely affecting recall while

keeping a low computational cost. A GP

system is proposed to evolve edge detec-

tors, represented as GP programs or

trees, for marking edge points in an

image. Instead of using a simple human-

designed rule for marking edge points

(e.g. if results are larger than a threshold,

the pixels will be marked as edge

points), such rules will be automatically

evolved by the proposed GP system. To

improve the efficiency, only a single

image without ground truth is used as

the whole training data for evolving

edge detectors, and the evolved edge

detectors are directly applied to extract

binary edge maps for unseen images.

Specifically, the following research objec-

tives will be investigated:

 ❏ Whether a single training image with-

out ground truth can be used to evolve

good edge detectors by GP for directly

detecting edges in unseen images,

 ❏ Whether the automatically generated

rules by the proposed method are

better than the GP system using fixed

rules with a single threshold in [12],

 ❏ Whether the evolved edge detectors

can obtain better detection perfor-

mance than the commonly used Canny

edge detector [13], and

 ❏ Whether the evolved rules for mark-

ing pixels are flexible and adaptable

to different images.

In the remainder of this paper, Sec-

tion II gives background on edge detec-

tion and GP. Section III describes the

proposed GP system. After giving the

settings of the experiments in Section IV,

Section V provides the results with dis-

cussions. Section VI draws conclusions

and suggests future research directions.

II. Background

This section briefly describes the back-

ground on edge detection, mainly unsu-

pervised edge detection, thresholding

techniques, and existing work using GP

for edge detection.

A. Edge Detection

Edge detection often includes three stages:

pre-processing, feature extraction, and

post-processing [1, 2]. In unsupervised

edge detection, there is no ground truth

to train edge detectors. Noises are expect-

ed to be filtered in the pre-processing

stage, and then edge features are extracted.

For example, differentiation exists among

different boundaries, and differentiation-

based edge detection is used to obtain

edge responses (edge features) on these

boundaries [1–3, 14, 15]. After edge fea-

tures are extracted, thresholding techniques

are usually employed in the post-processing

stage [1, 13, 16, 17].

1) Supervised Edge Detection

In supervised edge detection, a trained

edge detector normally has a fast detec-

tion speed on unseen images [18]. A sin-

gle fixed threshold is often used for the

unseen images to determine pixels as

edge points or non-edge points [6]. The

computational cost of obtaining binary

edge maps needs to be minimized for

real-time applications. However, it is

often hard for most existing methods to

obtain a full binary edge map from an

image (normally larger than 256 256#

pixels) within a short time. In video pro-

cessing, the time of processing each frame

is often required to be shorter than

0.1 second [19]. Otherwise, it can easily

cause the flicker problem. To quickly

obtain binary edge maps, the computa-

tional cost needs to be low on both edge

feature extraction and final binary edge

points determination. In our previous

work [20], training images and their

ground truth were used to automatically

evolve good low-level edge detectors

with a low computational cost. When

there is no ground truth, an unsupervised

edge detector generally extracts a binary

edge map based on a set of thresholds,

instead of a single fixed threshold, but it is

difficult to determine values of these

thresholds, since the evaluation function

for balancing edge points and non-edge

points is difficult to design [5, 6, 17].

2) Unsupervised Edge Detection

There are generally three approaches to

unsupervised edge detection: searching

for thresholds [6, 17], finding connected

Unsupervised edge detection is challenging and

computationally expensive. Instead of searching for edge

points in each image, it is desirable to quickly learn an

edge detector that can be used for many images.

48 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2018

curves [15, 21, 22], and obtaining bound-

aries based on segmentation results [23].

Thresholding techniques normally obtain

edge points pixel by pixel. Hence, they

are generally fast and suitable for real-

time applications. However, such techniques

consider very little global information and

usually do not balance between the edge

points and non-edge points. For example,

an iterative method and an entropy based

thresholding technique were employed

to obtain binary edge maps in [17], and

the Otsu method [24] was utilized to

search for good thresholds to obtain

edge maps [17]. However, the detected

results from these three methods could

be easily affected by noise. In addition,

the binary edge maps from the thresh-

olding techniques in [4] and [5] typically

have low precision. The zero threshold

technique proposed in [6] normally

obtains binary edge maps with low

recall. However, both recall and preci-

sion are important, since recall cannot

be the proportion of non-edge points

that are incorrectly detected as edge

points, but precision cannot indicate the

proportion of true edge points being

missed. When both recall and precision

are considered, how to balance between

them needs further investigation.

Approaches based on finding connected

curves or obtaining boundaries from seg-

mentation results usually consider con-

text [1] in a detected image. The active

contour approach [21, 25] utilizes an

energy function to find good closed

edges. However, these methods [1, 21,

25] suffer from high computational cost.

Generally, only parts of the edges in an

image can be found by this approach.

Also, binary edges are usually dependent

on initial candidate curves [1, 26]. Since

an energy function considers edge curves,

instead of independent individual edge

points, it is worth investigating how to

integrate an energy function with a

thresholding technique to take the

advantages of both approaches.

Image gradients are popularly used to

extract edge features in unsupervised

edge detection, such as the Sobel edge

detector [27] and the Canny edge detec-

tor [13]. A common computational

framework is suggested in [27] to calcu-

late gradients on untextured and textured

images. In general, a horizontal derivative

and a vertical derivative are combined as

the image gradient, which are also used

to obtain edge orientation information.

To filter noise, Gaussian filters have been

applied to edge detection [2, 13]. Consid-

ering the effect of white noise, the Canny

detector employed a Gaussian filter to

approximate a given function (considered

as an optimal edge detector) [13]. In a

two-dimensional Gaussian filter (,)g x yv

(see Eq. (1)), the image horizontal deriva-

tive (,)g x y x2 2 and the image vertical

derivative (,)g x y y2 2 are defined in

Eqs. (2) and (3), respectively. Here, v is a

scale parameter. Gaussian image gradient

(,)g x yd is defined in Eq. (4), and the

edge direction i is defined in Eq. (5).

 (,) expg x y
x y

2

1

22 2

2 2

rv v

= -
+

v c m (1)

(,)
exp

x

g x y x x y

2 24 2

2 2

2

2

rv v

=- -
+c m (2)

(,)
exp

y

g x y y x y

2 24 2

2 2

2

2

rv v

=- -
+c m (3)

 (,)
(,) (,)

g x y
x

g x y

y

g x y2 2

d
2

2

2

2
= +c cm m

 (4)

(,)

(,)

.arctan

x

g x y

y

g x y

2

2

2

2

i =

J

L

K
K
K
K

N

P

O
O
O
O

 (5)

There are many other methods for

edge feature extraction [1], such as the

image histogram gradient [28], the

image texture gradient [28], techniques

using the co-occurrence matrix [29],

and automatic construction of edge fea-

tures [30, 31]. Gaussian image gradient is

popularly used for edge detection, and

has stable performance on edge detec-

tion [1, 2]. It is also computational less

expensive than other techniques, such as

the image histogram gradient. Therefore,

this paper utilizes only Gaussian image

gradient to extract edge features.

3) Performance Evaluation

Since edge detection is subjective, i.e.,

different people may mark/label differ-

ent observations of edges in the same

natural images, it is not straightforward

to evaluate binary edge maps, where

natural images mean images coming

from different natural scenes, such as a

picture of a tree, an animal or a person

on the grass. It is expensive to manually

check the detected results. The ground

truth of a set of images is often utilized

to automatically evaluate the detected

results [28, 32]. F-measure, which com-

bines recall r and precision p with a

parameter ,a has been popularly used to

measure the detection performance [28,

33]. F-measure is defined in Eqs. (6)-(8),

where T is the number of true edge

points, TP is the number of true edge

points being correctly detected, P is the

total number of predicted edge points,

and parameter a is from 0 to 1. When a

is large, F is mainly affected by .r For a

soft edge map, a low threshold is usually

used to obtain high ,r but low ;p and a

high threshold is usually used to obtain

low ,r but high .p a is set to 0.5 to bal-

ance recall r and precision p [28, 33]:

 r
T

TP
= (6)

 p
P
TP

= (7)

()

.F
r p

rp

1a a

=
+ -

 (8)

B. Thresholding Techniques

Thresholding techniques in image pro-

cessing generally include histogram-

based methods [16, 34] and spatial

methods [17]. Histogram-based methods

employ the histogram of edge responses,

such as the image gradient, to search for

a threshold value to divide the edge

responses into different parts. In [16], an

optimal threshold was selected from a set

of pre-defined thresholds based on the

Otsu method or the maximum entropy.

Spatial methods directly apply a given

threshold to edge responses for marking

pixels as edge or normal points [18].

1) Thresholding in Supervised

Edge Detection

When the training images and their

ground truth are provided, a fixed thresh-

old can be directly used. In our previous

work, a fixed threshold of 0 was used in

the edge detectors evolved by GP [18].

 NOVEMBER 2018 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 49

Different from using a given threshold,

the probabilities of a pixel being an edge

point or a non-edge point have been

used to obtain binary edge maps [20, 35].

2) Thresholding in Unsupervised

Edge Detection

When there is no ground truth provided,

results from different edge detectors can

be combined to form ground truth [36],

but it is computationally expensive. How-

ever, the detection time for a single image

is required to be shorter than 0.1 second

for many real-world problems. Therefore,

thresholding techniques focus mainly on

searching threshold values after obtaining

a histogram on the edge responses, which

are aggregated in a histogram with bins

, , ..., ,k L0 1 1= - where k is a thresh-

old level and L is the number of thresh-

old levels. The Otsu method [24] has been

widely applied to histogram-based thresh-

olding techniques [16, 34]. The Otsu

method aims to separate pixels into edge

points and non-edge points according to

the minimum intra-class variance or

(equivalently) the maximum between-

class variance. An entropy-based thresh-

olding technique [17] was used to find

thresholds with the maximum entropy,

where it is found that the Otsu method

and the entropy-based thresholding tech-

nique discriminate pixels with high recall,

but they are easily affected by noise.

Generally, the number of edge points

and the number of non-edge points are

unbalanced, and the number of true

edge points is much smaller than that of

non-edge points. Edge detection is often

treated as a binary classification problem,

and the edge point is the more impor-

tant class. In [6], there was an assumption

that the number of edge points is not less

than 1% of the total pixels in an image

based on their experimental experience.

Since the numbers of true edge points in

different images are very different, this

method may lead to the further loss of

some true edge points for images that

contain very few true edge points.

3) Thresholding in Canny

In the Canny edge detector, a threshold-

ing technique has been used [13] to

eliminate breaking edge contours. A

user-defined high threshold is used to

mark pixels as strong edge points. After

getting strong edge points, a user-

defined relatively low threshold is used

to mark a pixel as a weak edge point,

which is considered as an edge point if

it is connected to a strong edge point.

However, it is expensive to manually

tune the low and high thresholds in the

Canny edge detector. In [34], a high

threshold was determined based on the

histogram on edge responses, and a low

threshold was determined based on the

distributions of edge points and non-

edge points. In [4] and [5], a unimodal

thresholding technique on the edge

response histogram was proposed to find

a low threshold. In the unimodal thresh-

olding technique, the information (dis-

tribution of edge response magnitudes)

from each threshold level is calculated.

Therefore, the computational cost is

high. The results in [5] show that these

threshold techniques have high recall,

but are affected by noise.

Overall, existing thresholding tech-

niques focus mainly on recall (generally

using low thresholds) or precision (gen-

erally using high thresholds) only. When

both recall and precision are considered,

thresholding techniques need to be fur-

ther investigated to obtain binary edge

maps in unsupervised edge detection.

C. Related Work on GP

for Edge Detection

GP has been applied to supervised edge

detection when the training data with

desired outputs are provided. In low-lev-

el supervised edge detection, GP has

been used to automatically design edge

detectors based on pixel intensities.

There are three ways to provide training

data for evolving edge detectors. Firstly,

the ground truth of training images is

given by humans. The ground truth used

in [37] is hand-labelled, and the ground

truth used in [28] is labelled based on

the segmentation results. Note that the

segmentation results are determined by

humans. Via selecting pixels from a

13 13# moving window to construct

GP programs/trees, a multi-objective GP

system is used to extract edge features

[37]. GP has also been used to evolve

edge detectors where pixels in a moving

window were considered as terminals,

i.e. the leaf nodes of GP trees/programs

[38, 39]. To avoid setting a window size,

search operators, such as a shifting opera-

tor, have been used as functions, i.e. the

internal nodes of GP programs, to evolve

edge detectors based on full images [11,

20]. Secondly, the “ground truth” of

training images comes from existing

edge detectors, such as the approxima-

tion of the Sobel detector [40] and the

Canny detector [41]. Thirdly, when edges

are considered as signals, GP is used to

evolve formulae to approximate the

designed “signal” responses on edges and

non-edges points. One-dimensional step

edge responses are designed for evolving

formulae, which are used as edge detec-

tors [10].

The GP evolved low-level edge de -

tectors can compete well with the re -

sults from the existing edge detectors,

such as the Sobel edge detector [18] and

the Canny edge detector [37] according

to F-measure. Also, specific domain

knowledge for edge detection was used

to evolve edge detectors by GP. For

example, morphological erosion and

dilation were used as terminals of GP

trees to evolve edge detectors in binary

images [42, 43]. Gaussian filters were

used to evolve Gaussian-based edge

detectors by GP [44, 45]. Statistical

knowledge has been used to construct

composite features in our previous work

[35]. After utilizing specific domain

knowledge in GP, the detection perfor-

mance of the evolved edge detectors has

been improved.

In summary, most of the existing

works using GP for edge detection are

based on ground truth. Our previous

Existing unsupervised edge detection methods often

have high recall, but low precision and are easily

affected by noise.

50 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2018

work conducted an initial investigation

on unsupervised edge detection [12]. The

results show that GP has the potential to

evolve edge detectors from a single image.

In this work we will further investigate

the capability of GP for evolving edge

detectors without ground truth.

III. The New Method:

Modified GP (MGP)

This section introduces the proposed

unsupervised edge detection method, a

modified GP system (MGP), which is

extended from our preliminary investi-

gation on GP for unsupervised edge

detection in [12]. This section firstly

briefly describes the baseline algorithm

in [12] which is called a GP artificial ant

system (GPA), then introduces the new

MGP method.

A. The Baseline Algorithm: GPA

GP [12, 39] has been used to design arti-

ficial ant sittings in an image to search

for edge points without using ground

truth. Edge points are considered as ant

food sources. An action “eat” is used to

mark a pixel as an edge point or not.

GPA was proposed to evolve ants to

search for edge points.

The terminal set in GPA includes

four different types of markers: marking

a pixel as an edge point, marking a set of

pixels as edge points, marking a pixel as

a non-edge point, and marking a set of

pixels as non-edge points. The function

set in GPA includes { , , , ,IFC NIF + -

, /, (,)prog P P2 1 2# and (, ,prog P P3 1 2

)} .P3 In (, , ,)IFC f t P P1 2 , f is a specific

feature, t is a constant threshold, and P1

and P2 are sub-programs. P1 is execut-

ed if ;f t1 otherwise, P2 is executed.

Considering the global information

from the whole image and the local

curves in a small moving window, a fit-

ness function FitGPA shown in Eq. (9) was

proposed for GPA, which relaxed the

edge continuity constraint in an ener-

gy function:

 Fit EE
N
w

pwGPA
i

N
i

2

1
= +

=
/ (9)

where

log

log

EE

N
g

g

w

1
1 1

1

1

i

i

N

i

i

N

1

1

1

=

+ +

+

+

=

=

e

e o

o/

/

(10)

where N is the number of pixels marked

as edge points, g i is the image gradient

for pixel ,i w1 and w2 are weight fac-

tors, and pw i is a penalty weight for

thickness. A thick edge point for pixel i

used ,pw 1i = which is only considered

when the corresponding pixel is

marked as an edge point and the num-

ber of its neighbors being marked as

edge points is not smaller than five. For

all other cases, pw i is equal to 0. Func-

tion EE (Eq. (10)) includes the average

of the image gradients N g1 i
N

i1R =^ h

and the sum of the image gradients

.gi
N

i1R =^ h

FitGPA could utilize energies to effec-

tively evaluate programs on a single

image, but it has three parameters ,w1 ,w2

and pw i to adjust. Further analysis shows

that most of the evolved programs have

similar structures and include mainly

.IFC The terminal for marking a set of

pixels as edge points has a very low usage

over all the evolved programs. To effec-

tively evolve edge detectors and reduce

the number of the parameters in ,FitGPA

MGP is proposed in this paper.

B. Terminal Set

Table 1 lists the terminal set used in MGP

and GPA, where the terminal set of

MGP consists of { , , , ,a rm nE nE nd , } .sd g

Each GP program scans pixels from left

to right and from top to bottom in an

image. To mark a pixel, we designed ter-

minals called markers in GPA, as shown

in Table 1. Two basic markers m and nE

are utilized to mark pixels as edge points

or non-edge points, respectively. Marker

anE marks a set of pixels as non-edge

points, i.e. the pixels within a small area.

Since the image gradient g was used

in GPA without post-processing, there

were thick responses on detected edges.

When the moving window size is in -

creasing, GPA might not handle thick

responses well, and a large moving win-

dow size does not suit GPA. To thin edge

responses, non-maximum suppression [13] is

integrated into MGP. The terminal set of

MGP includes the following two parts.

First, MGP keeps all the terminals

from GPA except for the markers mH

and ,mV which were used to mark a set

of pixels either horizontally or vertically.

From the initial investigation, it was

found that markers mH and mV were

seldom selected in the evolved edge

detectors. For a horizontal edge line,

the width of a detected line might be

two pixels if the non-maximum sup-

pression is not used. If the non-maxi-

mum suppression is used, the width

would be only one pixel. Therefore,

using mH and mV may increase the

false alarms.

TABLE 1 Terminals in MGP and GPA [12].

TERMINAL MGP GPA [12] NOTE

m YES YES MARK A PIXEL AS AN EDGE POINT

nE YES YES MARK A PIXEL AS A NON-EDGE POINT

anE YES YES MARK A SET OF PIXELS AS NON-EDGE POINTS

mH NO YES HORIZONTALLY MARK PIXELS AS EDGE POINTS

mV NO YES VERTICALLY MARK PIXELS AS EDGE POINTS

rnd YES NO RANDOM CONSTANT

sd YES NO STANDARD DEVIATION

g YES NO GRADIENT

With the flexible tree based representation, Genetic

Programming is able to use different functions and

terminals to evolve rules as edge detectors.

 NOVEMBER 2018 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 51

Second, random constants ,rnd the

image gradient ,g and the standard devi-

ation sd are used as terminals to construct

conditions. { , , }rnd sd g in GPA were

used as arguments of function ,IFC not

individual terminals. IFC is still used

in MGP. Fig. 1 provides a simple GP

tree using function IFC. The tree is

. , , ,IFC g m nE0 2^ h, where g is the value

generated by the non-maximum suppres-

sion operation on the image gradient

from the current moving window and

the condition is . .g0 2 1 These terminals

, andrnd g sd^ h return real numbers.

They are used to combine sub-programs

as conditions for calling different markers.

Note that there are two different types of

terminals, where each marker conducts

an action, but the others , andrnd g sd^ h

return real numbers.

C. Function Set

The conditions (rules) used in the func-

tions IFC^ h in GPA were based on a

single fixed threshold. IFC was inspired

by the experiential design of humans

developing edge detectors to find edge

curves, where the rules used are very

limited. It is possible to evolve rules to

improve detection performance. There-

fore, MGP is designed to automatically

generate sub-programs as conditions

(rules). Since the directional markers

mH and mV are not used in MGP,

programs evolved by MGP search

mainly for single edge points. Without

directionally marking pixels, functions

(,)prog P P2 1 2 a nd (, ,)prog P P P3 1 2 3

used in GPA are not included in MGP.

Different from GPA using the given

conditions, MGP automatically evolves

conditions and edge detectors at the

same time. Therefore, the conditions

used in IFC are relaxed, and f and t

are replaced by sub-programs NP1 and

NP2 with the numerical return type.

Here, NP1 and NP2 are constructed by

the numerical terminals and arithmetic

functions { , , , /}#+ - used in MGP.

Note that / is the protected division,

returning 1 when being divided by 0.

In order to use the logical operator

IFC in numerical return sub-programs

(for automatically constructing condi-

tions), a new numerical return function

(, , ,)NIF NP NP NP NP1 2 3 4 is intro-

duced in MGP, where NP3 and NP4

are sub-programs whose return types are

numerical. When ,NP NP1 21 IFN

returns a numerical result from ;NP3

otherwise, a numerical result is obtained

from .NP4

In summary, the function set in MGP

consists of { , , , ,IFC NIF + - , /} .#

Given the different return types of the

terminals and functions, strongly typed

GP [9] is used to develop the proposed

MGP system.

D. Fitness Function

Since the non-maximum suppression is

used, the thickness will not be consid-

ered. Fitness function FitMGP in Eq. (11)

is actually the energy function EE

shown by Eq. (10):

.

log

log

Fit EE

N
g

g

w

1
1 1

1

1

MGP

i

i

N

i

i

N

1

1

1

=

=

+ +

+

+

=

=

e

e o

o/

/

(11)

There is a trade-off between the

ave r age of the i m a g e g r a d i e n t s

N g1 i
N

i1R =^ h and the sum of the image

gradients .gi
N

i1R =^ h The average is high

(low) when pixels with high (low)

image gradients are selected. The sum is

high (low) when a large number (or

only a few) pixels are selected. In gener-

al, if the average is high, precision will

be high because pixels with high gradi-

ents usually are true edge points. If the

sum is high, recall is usually high

because most pixels are marked as

edge points. MGP removes the penal-

ty item N pw wi
N

i2 1R = in FitGPA in

Eq. (9). There is only one parameter

w1 in fitness function FitMGP in Eq.

(11). w1 is used to balance recall and

precision of the detected results, which

has a similar function to a in F-mea-

sure in Eq. (8).

E. Unsupervised GP vs Thresholding

Techniques

MGP is expected to evolve programs

from a single image without ground

truth, and the evolved program, i.e. edge

detector, can be directly applied to

extract edges from unseen images, i.e.

images in the test set. Once the edge

detector is evolved from the single

image, the GP system does not need to

restart to evolve a new edge detector

again for unseen images. In contrast, a

thresholding technique, such as the his-

togram-based method [16, 34], searches

for an optimal threshold for each image

and needs to restart the search for a

threshold when the detected image is

changed. If there are N images, there

will be N optimization tasks of search-

ing for optimal thresholds. Therefore, the

proposed MGP system has low compu-

tational cost to detect edges on unseen

images. The cost of the edge detectors

evolved by MGP is mainly from the

image gradient calculation.

IFC

g m nE0.2

Image

Edge Point

Gradient

GP Program

Moving Window

FIGURE 1 An example GP program for detecting edge points using a moving window.

52 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2018

IV. Experiment Design

A. Image Dataset

The Berkeley Segmentation Dataset

(BSD) [28] is used in the experiments.

There are 200 training images and 100

test images in BSD, and each image has

481 321# pixels or 321 481# pixels.

The BSD dataset provides ground truth,

but it is not used by MGP during the

evolutionary learning process.

Six images shown in Fig. 2 are

selected as training images, where five

images are from the BSD training set

and the other one (image 101085) is

from the BSD test set (the ground truth

of image 101085 is not used, i.e. unseen,

during the training process). These

images are chosen because they have

rich edge information (such as intensity

differences between objects and back-

ground) and relatively large numbers of

true edge points.

We have conducted six sets of experi-

ments, each using a different single image

from Fig. 2 to evolve an edge detector.

Each of the evolved edge de tectors is

evaluated on the 100 test images from the

BSD dataset.

B. Experiment Settings

Table 2 lists the settings of MGP and

GPA. MGP automatically evolves con-

ditions to search over edge pixels, and

the depth of an evolved sub-program as

a condition could be larger than 1.

Therefore, the maximum depth of a

program in MGP should be larger than

in GPA. However, since only rnd, sd, and

g, and a small set of functions are used

for generating rules (conditions), it is

expected that sub-programs (used for

these rules) are not too much larger.

Therefore, the maximum depth is set to

five in MGP. Based on initial experi-

ments, a population size of 50 and the

maximum number of generations is set

to 30. Probabilities used for mutation

(0.35), crossover (0.60) and reproduction

(0.05) are taken from [46]. The initial

population is created by the ramp-half-

and-half method. 30 independent runs

are conducted for each experiment.

For the n n# moving window, the

parameter n is set to 11 in the experi-

ments, since the best test F-measure per-

formance of the Canny edge detector,

i.e . ,F 0 56= is achieved when .n 11=

The best test F-measure of .F 0 56= is

the same as reported in [28]. Since GPA

has a problem with thick/many respons-

es and a large window size might not be

suitable in GPA, we still keep n = 9 for

GPA. Generally, at least one percent of

the pixels in an image would be suggest-

ed as edge points [6]. Therefore, to

approximately balance the two terms in

,FitMGP we use .w 1 0 01 1001 = = in

this paper.

V. Results and Discussion

The F-measure [28] is employed to

evaluate the performance of MGP on

the 100 test images in the BSD dataset.

A. Test Performance in terms of

F-measure, Recall and Precision

Table 3 presents the means and standard

deviations of the performance F values

over the 100 test images for the edge

detectors evolved by MGP and GPA

over the 30 runs. The thick binary edges

obtained from GPA were thinned by a

binary thinning operator [47], then the

thinned edges were used to obtain recall

and precision. Two sample t-tests and

Mann-Whitney-Wilcoxon (MWW,

non-parametric) tests [48] with a signifi-

cance level of 0.05 are used to compare

the performance of MGP and GPA,

where the p-values are presented in the

third and fourth columns of Table 3,

respectively. “ -” indicates that MGP is

significantly better than GPA.

Table 3 shows that the test perfor-

mance F of the edge detectors evolved

by MGP is significantly better than that

of GPA in all cases, i.e. using each of the

six images as the training set. The overall

test performance of MGP is, of course, a

significant improvement over GPA, i.e.

TABLE 2 Experiment Settings of MGP and GPA [12].

MGP GPA [12]

TERMINALS { , , , , , }m nE anE rnd sd g { , , , , }m mH mV nE anE

FUNCTIONS { , , , , ,/}IFC NIF #+ - { , , }IFC prog prog2 3

FITNESS FUNCTION FitMGP FitGPA

POPULATION 50 100

GENERATION 30 30

MUTATION 0.35 0.35

CROSSOVER 0.60 0.60

DEPTH 5 3

n (WINDOW SIZE) 11 9

(a) (b) (c)

(d) (e) (f)

FIGURE 2 Five BSD training images (a)–(e) and one BSD test image (f). (a) 23025, (b) 23080,
(c) 33066, (d) 370036, (e) 385028, and (f) 101085.

 NOVEMBER 2018 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 53

from the average of 0.5267 to 0.5673.

This suggests that by employing the

new terminal set, function set and fitness

function, MGP can further improve the

performance of GPA in terms of the

F-measure. We further investigate their

performance in terms of the recall and

precision in Table 4.

Table 4 gives the averages of recall

and precision of the 30 edge detectors

evolved by MGP or GPA (from the

30 runs) on the test set, when each of

the six single images is used as the train-

ing data for evolving GP detectors. The

MWW tests with a significance level of

0.05 are used to compare their perfor-

mance. As can be seen from Table 4, the

precision of the evolved edge detectors

is significantly improved when MGP is

used in all the six cases, from (a) to (f).

Their improvement is over 0.58 or 13%,

except for the 9.6% improvement when

image (f) is used. The overall average is

increased from 0.4607 to 0.5267 by

around 0.066 or 14.33%. The results

of recall in MGP are generally similar

to GPA, with two significant smaller

cases and four similar or better cases.

The overall average recall is slightly

decreased by MGP compared with

GPA, from 0.6199 to 0.6180, by a very

small value. Additionally, on training

image (a), there is no significant differ-

ences between MGP and GPA in terms

of recall.

According to Table 3 and Table 4,

MGP mainly improves the precision of

the detected results. There are two

potential reasons: First, by using non-

maximum suppression in MGP, the fit-

ness function FitMGP does not need to

evaluate the thickness of binary edges,

and only addresses recall and precision

using a weight .w1 However, fitness

function FitGPA needs to address recall,

precision, and the thickness of edges

using three parameters ,w1 ,w2 and pw i

(see Eq. 9). It is more complicated to

use FitGPA than FitMGP for evaluating

edge detectors. Second, MGP automati-

cally evolves conditions while evolving

edge detectors, whereas in GPA, a limit-

ed set of conditions are pre-defined.

The number of potential conditions

evolved by MGP is larger than by GPA,

and the evolved conditions are poten-

tially better than the limited set of pre-

defined conditions.

B. GP vs Canny

From [28], the best F performance of

the Canny edge detector on the BSD

test set is 0.56. The results of MGP from

Table 3 are significantly larger than 0.56,

according to the t-tests with the signifi-

cance level of 0.05 and MWW tests.

Note that the standard deviations of F

values from MGP in Table 3 are very

small. Most of the MGP edge detectors

have detection performance F higher

than 0.56. The image gradient used by

the Canny edge detector is normalized

(from 0 to 1). As discussed in Section II,

since it is not easy to search for two opti-

mal thresholds in the Canny edge detec-

tor, a high threshold is used to find

strong edge points (with high magni-

tudes of the image gradient) and a low

threshold is used to find weak edge

points which are connected to strong

edge points. If the high threshold is too

large, some important edge points will

be removed and the connected weak

edge points will not be found. If the

TABLE 3 Mean ! standard deviation of the 30 F values on the test set by MGP and GPA. Note that p-values
are from t-tests and Mann-Whitney-Wilcoxon (MWW) tests.

TRAINING IMAGE MGP GPA p-VALUE (t-TEST) p-VALUE (MWW)

(a) 0.5671 ! 0.0018 . .0 5265 0 0097! .0 0000 - .0 0000 -

(b) 0.5669 ! 0.0036 . .0 5288 0 0010! .0 0000 - .0 0000 -

(c) 0.5697 ! 0.0022 . .0 5278 0 0015! .0 0000 - .0 0000 -

(d) 0.5706 ! 0.0013 . .0 5273 0 0018! .0 0000 - .0 0000 -

(e) 0.5647 ! 0.0032 . .0 5278 0 0047! .0 0000 - .0 0000 -

(f) 0.5648 ! 0.0054 . .0 5218 0 0113! .0 0000 - .0 0000 -

average 0.5673 0.5267 — —

TABLE 4 Recall and precision for the GP edge detectors evolved by MGP and GPA.

TRAINING

IMAGE

MGP GPA p-VALUE (MWW)

RECALL PRECISION RECALL PRECISION RECALL PRECISION

(a) 0.6005 ! 0.0110 0.5375 ! 0.0057 0.5996 ! 0.0362 0.4709 ! 0.0150 0.4325 .0 0000 -

(b) 0.6089 ! 0.0318 0.5322 ! 0.0194 . .0 6269 0 0219! 0.4579 ! 0.0118 .0 0003 - .0 0000 -

(c) 0.6471 ! 0.0171 0.5093 ! 0.0097 0.6544 ! 0.0218 0.4428 ! 0.0114 .0 0318 . .0 0000 -

(d) 0.6708 ! 0.0179 0.4970 ! 0.0102 0.6619 ! 0.0203 0.4387 ! 0.0112 .0 0182 - .0 0000 -

(e) 0.5887 ! 0.0189 0.5434 ! 0.0106 0.6198 ! 0.0271 0.4605 ! 0.0132 .0 0000 . .0 0000 -

(f) 0.591 ! 0.0218 0.5410 ! 0.0104 0.5570 ! 0.0393 0.4935 ! 0.0177 .0 0000 - .0 0000 -

average 0.6180 0.5267 0.6199 0.4607 — —

54 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2018

high threshold is too low, some noisy

pixels might be considered as edge

points, and when finding weak edge

points, more noisy pixels may be marked

as edge points. Without ground truth, it

is still an open issue to investigate how

to effectively search for the best two

thresholds [17, 49]. In this paper, we only

use a single threshold in the Canny edge

detector to quickly search for “good”

binary edge maps. A fixed set of

 thresholds , , , ,i i52 1 2 51f=^ h are

given to obtain F values based on the

ground truth of the 100 test BSD images.

.F 0 56= is obtained as the maximum F

from the 51 thresholds for the Canny

edge detector, and it is the same as

reported in [28].

Note that the Canny edge detector

uses a set of thresholds and obtains dif-

ferent results. The test performance is

the best test performance (maximum F)

from all these results. The GP evolved

edge detectors directly generate the final

binary edge maps, and do not involve

multiple thresholds to choose. The com-

parisons show that MGP has the abili-

ty to effectively evolve edge detectors

when only a single image without

ground truth is employed as the whole

training set.

C. Computational Cost

As discussed in [12], GPA has a low com-

putational cost. Table 5 provides the test

times (in seconds) of the GP edge detec-

tors evolved by MGP and GPA. All the

experiments are based on a system with

CPU 2.1 GHz and RAM 2GB. T-tests a

significance level of 0.05 are used to com-

pare their computational cost. “-” means

that GPA is significantly faster than MGP.

It can be seen that the programs evolved

by MGP have significantly longer test

times than that of GPA, but the average

test times in MGP are still much shorter

than 0.1 second per image. Therefore, the

MGP edge detectors’ computational costs

are still well within the 0.1 second

requirement in real-time applications. Of

course, a more powerful CPU can be

used to further reduce the computational

time on the test images.

D. Example GP Edge Detectors

Fig. 3 shows an edge detector gpold

(with a commonly found structure)

evolved by GPA, while Fig. 4 gives an

example of the edge detector gpnew

evolved by MGP.

GPA focused mainly on the combi-

nations of conditions in function .IFC If

the condition in IFC is true, IFC calls

the left sub-program; otherwise, it calls

the right sub-program. From the struc-

ture of GP edge detector ,gpold the stan-

dard deviation sd in the root is helpful to

choose a threshold on image gradient .g

When sd is high, a threshold on g for

images with noise needs to be larger

than that of without noise.

For MGP, the image intensity in

MGP is from 0 to 1. As can be seen

from Fig. 4, the edge detector gpnew

includes mainly two sub-parts sub1 and

sub2. sub1 works mainly on marking

edge points and sub2 works on how to

mark pixels as non-edge points. There

are three interesting observations.

IFC

IFC

/

/

sub1
sub2

NIF g m

sd sd

sd

0.2 * g

g

g

anE nE

sd

0.9

FIGURE 4 Example GP edge detector gpnew (with F = 0.5723) evolved by MGP.

IFC

IFC IFCsd44.79

17.95 g gm mnE nE15.94

FIGURE 3 Example GP edge detector gpold (with .F 0 5304=) evolved by GPA [12].

TABLE 5 Test times (mean ± standard deviation) of the GP edge detectors
(in seconds).

TRAINING IMAGE MGP GPA

(a) . .0 0569 0 0327! . .0 0335 0 0088 -!

(b) . .0 0632 0 0343! . .0 0163 0 0155 -!

(c) 0.0713 ! 0.0323 . .0 0334 0 0123 -!

(d) 0.0697 ! 0.0373 . .0 0312 0 0074 -!

(e) 0.0655 ! 0.0353 . .0 0331 0 0080 -!

(f) 0.0585 ! 0.0334 . .0 0315 0 0097 -!

 NOVEMBER 2018 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 55

Firstly, sub-part sub1 is constructed

as a condition to discriminate pixels as

edge points or non-edge points. Rather

than using a fixed threshold on the

image gradient ,g the automatically

constructed sub1 includes a condition

using sd in addition to a fixed thresh-

old. As a result, for an edge pixel from a

noisy area, its sd and g are not low, so

a fixed single threshold is chosen by

sub1, and this threshold is expected to

identify this pixel as an edge point. If

the fixed threshold with a high value is

used to consider the pixel as a non-

edge point, some pixels (true edge

points) in non-noisy areas are consid-

ered as non-edge points because their

gradients are not large. Sub-part sub1

adaptively employs a fixed threshold, sd

and g to mark pixels as edge points or

non-edge points for noisy areas and

non-noisy areas.

Secondly, sub-part sub2 is utilized as

a condition to mark a single pixel as a

non-edge point or a set of pixels as non-

edge points. When a pixel has a very low

g and a low ,sd its neighbors are usually

located in a non-edge area. sub2 can

quickly mark its neighbors as non-edge

points. However, when its g and sd are

not low, it is hard to determine whether

its neighbors are located in a non-edge

area. From the evolved condition in

sub2, the relationship between g and sd

influences the ability of identifying a set

of pixels being located in an edge area

or a non-edge area.

Thirdly, similar to the detector ,gpold

the detector gpnew utilizes the combina-

tion of sd and g to mark pixels as edge

points or non-edge points. Although we

do not pre-define condition functions in

MGP, the detector gpnew has evolved

adaptive conditions to mark pixels.

From the example detector ,gpnew

we can easily see that MGP can effec-

tively evolve adaptive conditions for

extracting edges, not directly using a

single fixed threshold.

E. Visual Results

Fig. 5 shows examples of the detected

results from the edge detectors evolved

by GPA using each of the six training

images (a)–(f) as the training set. It is

Image

GT

(a)

(b)

(c)

(d)

(e)

(f)

1018085 106024 296007

FIGURE 5 Examples of the detected results on three example BSD images from GPA [12] (“GT”
is ground truth). The grayscale for GT and the detected results are inverted.

56 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2018

found that the detected results from the

six training images are quite similar.

Without providing ground truth, GPA

can effectively evolve edge detectors

based on the image gradient.

Fig. 6 shows examples of the detect-

ed results from the Canny edge detector

and the edge detectors evolved by MGP.

Comparing with the Canny edge detec-

tor (i.e. the results with best F based on

the ground truth), the GP edge detec-

tors evolved by MGP achieve higher

precision. For instance, for image

101085, the Canny edge detector has

more false alarms than the edge detec-

tors evolved by MGP. The MGP evolved

edge detectors is significantly better than

the Canny edge detector, more than 1%

increase in terms of the F-measure. This

is probably because the Canny edge

detector uses only a fixed threshold for

all the test images, but MGP has the

ability to automatically construct condi-

tions adaptively using the image gradi-

ent, the local standard deviation, and a

fixed threshold.

Comparing the detected results in

Figs. 5 and 6, MGP evolves edge detec-

tors with single edge responses. A reason

for this is that the energy (the image

gradient) used in MGP is further pro-

cessed by non-maximum suppression.

These results suggest that MGP also has

the ability to evolve edge detectors with

similar detection performance when

using (different) single training images

without ground truth.

F. Single Training Image

This subsection discusses why a single

image can be used by MGP and GPA as

the whole training set to evolve edge

detectors with good detection perfor-

mance. This is also to continue the inves-

tigation on how to effectively evolve

edge detectors using a single image, done

initially in our previous work in the

supervised learning scenario in [8].

For both supervised learning (with

ground truth) and unsupervised learn-

ing (without ground truth), pre-defined

specific knowledge, considered as prior

domain knowledge, is helpful to find

edge detectors when only a single image

is used as the training data. In GPA, the

Image

GT

Canny

(a)

(b)

(c)

(d)

(e)

(f)

1018085 106024 296007

FIGURE 6 Examples of the detected results on three example BSD images from the GP edge
detectors evolved by MGP (“GT” is ground truth). The grayscale for GT and the detected results
are inverted.

 NOVEMBER 2018 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 57

image gradient and the standard de -

viation are considered as the pr ior

knowledge. However, unlike existing

thresholding techniques [16, 17], GP

automatically evolves programs for mark-

ing edge points, rather than directly using

one or two thresholds. These evolved

programs can be considered as adaptive

methods, which can effectively employ

the image gradient and the standard

deviation on different areas of the image,

such as the examples shown in Figs. 3

and 4. To find such adaptive rules, the

single training image should include

various edge and non-edge informa-

tion, such as texture, noise, and differen-

tiation between two objects. This is

probably why MGP can effectively

evolve edge detectors when only a sin-

gle image is used.

One-shot learning has been applied

to object recognition, using a small set

of training images [7, 50]. One-shot

learning employs a very small set of

training examples to train new classifiers,

but needs prior knowledge extracted

from existing datasets, such as learnt

classifiers or pre-defined feature distri-

butions, and such information is often

obtained from a large dataset. Different

from one-shot learning, MGP in this

paper only relies on the pre-defined fea-

tures (the image gradient and the stan-

dard deviation) and the given single

image without any prior knowledge.

Thus, MGP can be easier and faster to

apply to train edge detectors than one-

shot learning.

Note that in this work an image is

used as the training data only if it has

rich edge information. If an image has

little edge information, such as cases

with no or minor changes in a single

color object, the edge detector evolved

by MGP might not work well on other

images. We will investigate how to

determine whether the edge informa-

tion of a single image is rich enough in

the future.

VI. Conclusions

The goal of this paper was to develop an

unsupervised learning GP system to

improve the edge detection precision

without adversely affecting the recall

while keeping the low computational

cost. The goal has been achieved by

designing a terminal set, a function set,

and a fitness function to propose a new

algorithm named MGP. MGP uses only

a single image as the whole training set

to automatically evolve/generate effec-

tive edge detectors. Six images without

ground truth were individually used by

MGP for evolving effective edge detec-

tors in the experiments. The results

show that MGP can evolve edge detec-

tors to obtain significantly better detec-

tion performance than the baseline

algorithm GPA and the best perfor-

mance of the Canny edge detector.

The superior performance of MGP over

GPA is probably due to the automatic

condition rule construction and inte-

grating non-maximum suppression,

which also addresses the edge thickness

problem. Further analysis on the evolved

edge detectors reveals that MGP auto-

matically combined the image gradient

and the standard deviation with a

threshold to evolve adaptive edge detec-

tors, rather than using a single threshold

only, to mark pixels as edge points or

non-edge points.

This paper focuses mainly on the

automatic construction of edge detec-

tors using a single image, which is not

specific to any particular domains, such

as medical images. In the future, we will

investigate edge detection and image

analysis for medical images. Further-

more, we also aims to reduce the com-

putational cost of MGP, and design a

new marker as a terminal in GP to

mark all points in certain local areas that

include non-edge points only.

Acknowledgments

This work was supported in part by the

Marsden Fund of New Zealand Gov-

ernment under Contracts VUW1209,

VUW1509 and VUW1615, Huawei

Industry Fund E2880/3663, and the

University Research Fund at Victoria

University of Wellington 209862/3580,

and 213150/3662.

References
[1] G. Papari and N. Petkov, “Edge and line oriented con-
tour detection: State of the art,” Image Vis. Comput., vol.
29, pp. 79–103, Feb. 2011.

[2] M. Basu, “Gaussian-based edge-detection methods:
A survey,” IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev.(1995–2012), vol. 32, no. 3, pp. 252–260, Dec.
2002.
[3] C. I. Gonzalez, P. Melin, J. R. Castro, O. Castillo,
and O. Mendoza, “Optimization of interval type-2 fuzzy
systems for image edge detection,” Appl. Soft Comput.,
vol. 47, pp. 631–643, Oct. 2016.
[4] R. Medina-Carnicer and F. Madrid-Cuevas, “Uni-
modal thresholding for edge detection,” Pattern Recog.,
vol. 41, no. 7, pp. 2337–2346, July 2008.
[5] R. Medina-Carnicer, F. Madrid-Cuevas, A. Carmo-
na-Poyato, and R. Mun̋oz-Salinas, “On candidates selec-
tion for hysteresis thresholds in edge detection,” Pattern
Recog., vol. 42, no. 7, pp. 1284–1296, July 2009.
[6] K. Ray, “Unsupervised edge detection and noise de-
tection from a single image,” Pattern Recog., vol. 46, no. 8,
pp. 2067–2077, Aug. 2013.
[7] F.-F. Li, R. Fergus, and P. Perona, “One-shot learn-
ing of object categories,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 28, no. 4, pp. 594–611, Apr. 2006.
[8] W. Fu, M. Johnston, and M. Zhang, “Is a single image
suff icient for evolving edge features by genetic program-
ming?” in Proc. Int. Conf. Applications Evolutionary Compu-
tation: EvoApplications, 2014, pp. 451–463.
[9] J. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA,
USA: MIT Press, 1992.
[10] C. Harris and B. Buxton, “Evolving edge detectors
with genetic programming,” in Proc. 1st Annu. Conf. Ge-
netic Programming, 1996, pp. 309–314.
[11] R. Poli, “Genetic programming for image analysis,”
in Proc. 1st Annu. Conf. Genetic Programming, 1996, pp.
363–368.
[12] W. Fu, M. Johnston, and M. Zhang, “Unsupervised
learning for edge detection using genetic programming,”
in Proc. IEEE Congr. Evolutionary Computation, 2014, pp.
117–124.
[13] J. Canny, “A computational approach to edge detec-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 8, no. 6,
pp. 679–698, Nov. 1986.
[14] W. Fu, M. Johnston, and M. Zhang, “Genetic pro-
gramming for edge detection: A Gaussian-based ap-
proach,” Soft Comput., vol. 20, no. 3, pp. 1231–1248,
Mar. 2016.
[15] X. Lu, J. Yao, L. Li, Y. Liu, and W. Zhang, “Edge
chain detection by applying Helmholtz principle on gra-
dient magnitude map,” in Proc. 23rd Int. Conf. Pattern Rec-
ognition, 2016, pp. 1364–1369.
[16] M. Sezgin and B. Sankur, “Survey over image
thresholding techniques and quantitative performance
evaluation,” J. Electron. Imaging, vol. 13, no. 1, pp. 146–
168, Jan. 2004.
[17] P. Kaur and R. Maini, “Performance evaluation of
various thresholding methods using Canny edge detec-
tor,” Int. J. Comput. Appl., vol. 71, no. 9, pp. 26–32, Dec.
2013.
[18] W. Fu, M. Johnston, and M. Zhang, “Genetic pro-
gramming for edge detection: A global approach,” in
Proc. IEEE Congr. Evolutionary Computation, 2011, pp.
254–261.
[19] J. T. Fulton, Processes in biological vision online Co-
rona Del Mar CA. USA vision concepts, 2004. [Online].
Available: http://neuronresearch.net/vision/. Accessed
on: Aug. 27, 2018.
[20] W. Fu, M. Johnston, and M. Zhang, “Soft edge
maps from edge detectors evolved by genetic program-
ming,” in Proc. IEEE Congr. Evolutionary Computation,
2012, pp. 24–31.
[21] S. Wang, T. Kubota, J. M. Siskind, and J. Wang,
“Salient closed boundary extraction with ratio contour,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, pp. 546–
561, Apr. 2005.
[22] M. Setayesh, M. Zhang, and M. Johnston, “Detec-
tion of continuous smooth and thin edges in noisy im-
ages using constrained particle swarm optimisation,” in
Proc. Genetic and Evolutionary Computation Conf., 2011,
pp. 45–52.
[23] S. Raut, M. Raghuvanshi, R. Dharaskar, and A.
Raut, “Image segmentation: A state-of-art survey for
prediction,” in Proc. Int. Conf. Advanced Computer Control,
2009, pp. 420–424.

58 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2018

[24] N. Otsu, “A threshold selection method from gray-
level histogram,” IEEE Trans. Syst., Man, Cybern.* (1971–
1995), vol. 9, no. 1, pp. 62–66, Jan. 1979.
[25] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes:
Active contour models,” Int. J. Comput. Vis., vol. 1, pp.
321–331, Jan. 1988.
[26] T. Chan and L. Vese, “Active contours without
edges,” IEEE Trans. Image Process., vol. 10, no. 2, pp.
266–277, Feb. 2001.
[27] L. Ganesan and P. Bhattacharyya, “Edge detection
in untextured and textured images: A common computa-
tional framework,” IEEE Trans. Syst. Man, Cybern. B, Cy-
bern. (1995–2012), vol. 27, no. 5, pp. 823–834, Sept. 1997.
[28] D. Martin, C. Fowlkes, and J. Malik, “Learning to
detect natural image boundaries using local brightness,
color, and texture cues,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 5, pp. 530–549, May 2004.
[29] D. J. Park, K. M. Nam, and R.-H. Park, “Edge
detection in noisy images based on the co-occurrence
matrix,” Pattern Recog., vol. 27, no. 6, pp. 765–775, June
1994.
[30] W. Fu, M. Johnston, and M. Zhang, “Genetic pro-
gramming for automatic construction of variant features
in edge detection,” in Proc. Int. Conf. Applications of Evo-
lutionary Computation: EvoApplications, 2013, pp. 354–364.
[31] W. Fu, M. Johnston, and M. Zhang, “Low-level
feature extraction for edge detection using genetic pro-
gramming,” IEEE Trans. Cybern., vol. 44, no. 8, pp.
1459–1472, Aug. 2014.
[32] C. Lopez-Molina, B. De Baets, and H. Bustince,
“Quantitative error measures for edge detection,” Pattern
Recog., vol. 46, no. 4, pp. 1125–1139, Apr. 2013.
[33] M. Donoser, H. Riemenschneider, and H. Bischof,
“Linked edges as stable region boundaries,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2010, pp.
1665–1672.

[34] Y.-K. Huo, G. Wei, Y.-D. Zhang, and L.-N. Wu,
“An adaptive threshold for the Canny operator of edge
detection,” in Proc. Int. Conf. Image Analysis and Signal Pro-
cessing, 2010, pp. 371–374.
[35] W. Fu, M. Johnston, and M. Zhang, “Distribution-
based invariant feature construction using genetic pro-
gramming for edge detection,” Soft Comput., vol. 19, no.
8, pp. 2371–2389, Aug. 2015.
[36] N. Fernández-García, A. Carmona-Poyato, R. Me-
dina-Carnicer, and F. Madrid-Cuevas, “Automatic gen-
eration of consensus ground truth for the comparison of
edge detection techniques,” Image Vis. Comput., vol. 26,
no. 4, pp. 496–511, Apr. 2008.
[37] Y. Zhang and P. I. Rockett, “Evolving optimal fea-
ture extraction using multi-objective genetic program-
ming: A methodology and preliminary study on edge
detection,” in Proc. Genetic and Evolutionary Computation
Conf., 2005, pp. 795–802.
[38] T. Golonek, D. Grzechca, and J. Rutkowski, “Ap-
plication of genetic programming to edge detector de-
sign,” in Proc. Int. Symp. Circuits and Systems, 2006, pp.
4683–4686.
[39] E. Bolis, C. Zerbi, P. Collet, J. Louchet, and E. Lut-
ton, “A GP artif icial ant for image processing: Prelimi-
nary experiments with EASEA,” in Proc. 4th European
Conf. Genetic Programming, 2001, pp. 246–255.
[40] S. Harding and W. Banzhaf, “Genetic program-
ming on GPUs for image processing,” Int. J. High Per-
formance Syst. Architecture, vol. 1, no. 4, pp. 231–240,
Mar. 2008.
[41] M. Ebner, “On the edge detectors for robot vision
using genetic programming,” in Proc. Horst-Michael Grob,
Workshop SOAVE 97 – Selbstorganisation von Adaptivem
Verhalten, 1997, pp. 127–134.
[42] M. I. Quintana, R. Poli, and E. Claridge, “Morpho-
logical algorithm design for binary images using genetic

programming,” Genetic Program. Evolvable Mach., vol. 7,
pp. 81–102, Mar. 2006.
[43] J. Wang and Y. Tan, “A novel genetic programming
based morphological image analysis algorithm,” in Proc.
12th Annu. Conf. Genetic and Evolutionary Computation,
2010, pp. 979–980.
[44] I. Kadar, O. Ben-Shahar, and M. Sipper, “Evolu-
tion of a local boundary detector for natural images via
genetic programming and texture cues,” in Proc. 11th
Annu. Conf. Genetic and Evolutionary Computation, 2009,
pp. 1887–1888.
[45] W. Fu, M. Johnston, and M. Zhang, “Automatic
construction of Gaussian-based edge detectors using ge-
netic programming,” in Proc. 16th European Conf. Applica-
tions Evolutionary Computation, 2013, pp. 365–375.
[46] U. Bhowan, M. Johnston, and M. Zhang, “Devel-
oping new fitness functions in genetic programming for
classif ication with unbalanced data,” IEEE Trans. Syst.
Man, Cybern. B, Cybern. (1995–2012), vol. 42, no. 2, pp.
406–421, 2012.
[47] L. Lam, S.-W. Lee, and C. Suen, “Thinning meth-
odologies: A comprehensive survey,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 14, no. 9, pp. 869–885, Sept.
1992.
[48] W. H. Kruskal, “Historical notes on the Wilcoxon
unpaired two-sample test,” J. Amer. Stat. Assoc., vol. 52,
no. 279, pp. 356–360, Sept. 1957.
[49] Y. Li, M. Paluri, J. M. Rehg, and P. Dollár, “Unsu-
pervised learning of edges,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2016, pp. 1619–1627.
[50] H. Al-Sahaf, M. Zhang, and M. Johnston, “A one-
shot learning approach to image classif ication using ge-
netic programming,” in Proc. 26th Australasian Joint Conf.
Artificial Intelligence, 2013, vol. 8272, pp. 110–122.

caused, whether it is congenital, or

acquired in childhood or adulthood, is

likely to play important roles and influ-

ence the performance of the system.

Note that a BCI game is more impor-

tant for a person with missing upper

limbs. The situation becomes more chal-

lenging if we consider the fact that a

particular area of the brain is no more in

charge of a body part but in charge of

activities that are done by that body part.

Thus if we want to design a BCI based

system, as an example, for people with

missing upper limbs, it appears that we

should use data from subjects with miss-

ing limbs. But this certainly poses a

challenge to generate adequate data for

designing such a system. This raises

other important questions: To design a

machine learning system for motor

imagery, can we use imagination of lip

movement or movement of the feet to

do the same task? Using a BCI system

how can we analyze what a person is

actually doing (not functionally, but

physically)? I have no answer to all these

questions but they all appear to be chal-

lenging and are likely to impact design-

ing of AI systems based on BCI.

References
[1] D. C. Knill and A. Pouget, “The Bayesian brain: The
role of uncertainty in neural coding and computation,”
Trends Neurosci., vol. 27, no. 12, pp. 712–719, 2004.
[2] K. Friston, J. Kilner, and L. Harrison, “A free energy
principle for the brain,” J. Physiology-Paris, vol. 100, no.
1–3, pp. 70–87, 2006.
[3] K. Friston, “The free-energy principle: A unified
brain theory?” Nature Rev. Neurosci., vol. 11, no. 2, pp.
127–138, 2010.
[4] N. Birbaumer, W. Lutzenberger, P. Montoya, W.
Larbig, K. Unertl, S. Töpfner, W. Grodd, E. Taub, and
H. Flor, “Effects of regional anesthesia on phantom limb
pain are mirrored in changes in cortical reorganization,”
J. Neurosci., vol. 17, no. 14, pp. 5503–5508, 1997.

[5] R. Chen, B. Corwell, Z. Yaseen, M. Hallett, and L.
G. Cohen, “Mechanisms of cortical reorganization in
lower-limb amputees,” J. Neurosci., vol. 18, no. 9, pp.
3443–3450, 1998.
[6] P. Montoya, K. Ritter, E. Huse, W. Larbig, C. Braun,
S. Töpfner, W. Lutzenberger, W. Grodd, H. Flor, and N.
Birbaumer, “The cortical somatotopic map and phantom
phenomena in subjects with congenital limb atrophy and
traumatic amputees with phantom limb pain,” Eur. J.
Neurosci., vol. 10, no. 3, pp. 1095–1102, 1998.
[7] H. Flor, T. Elbert, W. Mühlnickel, C. Pantev, C.
Wienbruch, and E. Taub, “Cortical reorganization and
phantom phenomena in congenital and traumatic upper-
extremity amputees,” Exp. Brain Res., vol. 119, no. 2, pp.
205–212, 1998.
[8] W.-H. Qiu, H.-X. Wu, Q.-L. Yang, Z. Kang, Z.-
C. Chen, K. Li, G.-R. Qiu, C.-Q. Xie, G.-F. Wan, and
S.-Q. Chen, “Evidence of cortical reorganization of
language networks after stroke with subacute Broca’s
aphasia: A blood oxygenation level dependent-functional
magnetic resonance imaging study,” Neural Regener. Res.,
vol. 12, no. 1, pp. 109–117, 2017.
[9] A. Hahamy, S. N. Macdonald, F. van den Heiligen-
berg, P. Kieliba, U. Emir, R. Malach, H. Johansen-Berg,
P. Brugger, J. C. Culham, and T. R. Makin, “Represen-
tation of multiple body parts in the missing-hand terri-
tory of congenital one-handers,” Current Biol., vol. 27,
no. 9, pp. 1350–1355, 2017.

President’s Message (continued from page 4)

