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Abstract

A number of vertical mining algorithms have been proposed recently for association mining, which
have shown to be very effective and usually outperform horizontal approaches. The main advantage of
the vertical format is support for fast frequency counting via intersection operations on transaction ids
(tids) and automatic pruning of irrelevant data. The main problem with these approaches is when inter-
mediate results of vertical tid lists become too large for memory, thus affecting the algorithm scalability.

In this paper we present a novel vertical data representation calledDiffset, that only keeps track of
differences in the tids of a candidate pattern from its generating frequent patterns. We show that diffsets
drastically cut down the size of memory required to store intermediate results. We show how diffsets,
when incorporated into previous vertical mining methods, increase the performance significantly. We
also present a new algorithm, using diffsets, for mining maximal patterns. Experimental comparisons,
on both dense and sparse databases, show that diffsets deliver order of magnitude performance improve-
ments over the best previous methods.

1 Introduction

Mining frequent patterns or itemsets is a fundamental and essential problem in many data mining applica-
tions. These applications include the discovery of association rules, strong rules, correlations, sequential
rules, episodes, multi-dimensional patterns, and many other important discovery tasks [7]. The problem
is formulated as follows: Given a large data base of item transactions, find all frequent itemsets, where a
frequent itemset is one that occurs in at least a user-specified percentage of the data base.

Most of the proposed pattern-mining algorithms are a variant of Apriori [1]. Apriori employs a bottom-
up, breadth-first search that enumerates every single frequent itemset. The process starts by scanning all
transactions in the data base and computing the frequent items at the bottom. Next, a set of potentially
frequent candidate 2-itemsets is formed from the frequent items. Another database scan is made to obtain
their supports. The frequent 2-itemsets are retained for the next pass, and the process is repeated until all
frequent itemsets have been enumerated. The Apriori heuristic achieves good performance gain by (possibly
significantly) reducing the size of candidate sets. Apriori uses thedownward closureproperty of itemset
support to prune the search space — the property that all subsets of a frequent itemset must themselves be
frequent. Thus only the frequentk-itemsets are used to construct candidate(k + 1)-itemsets. A pass over
the database is made at each level to find the frequent itemsets among the candidates.

Apriori-inspired algorithms [4, 10, 11, 15] show good performance with sparse datasets such as market-
basket data, where the frequent patterns are very short. However, with dense datasets such as telecommuni-
cations and census data, where there are many, long frequent patterns, the performance of these algorithms
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degrades incredibly. This degradation is due to the following reasons: these algorithms perform as many
passes over the database as the length of the longest frequent pattern. This incurs high I/O overhead for s-
canning large disk-resident databases many times. Secondly, it is computationally expensive to check a large
set of candidates by pattern matching, which is specially true for mining long patterns; a frequent pattern
of lengthm implies the presence of2m − 2 additional frequent patterns as well, each of which is explicitly
examined by such algorithms. Whenm is large, the frequent itemset mining methods become CPU bound
rather than I/O bound.

There has been recent interest in mining maximal frequent patterns in “hard” dense databases, where it is
simply not feasible to mine all possible frequent itemsets; in such datasets one typically finds an exponential
number of frequent itemsets. For example, finding long itemsets of length 30 or 40 is not uncommon [3].
Methods for finding the maximal elements includeAll-MFS [6], which is a randomized algorithm to discover
maximal frequent itemsets. ThePincer-Searchalgorithm [9] not only constructs the candidates in a bottom-
up manner likeApriori, but also starts a top-down search at the same time. This can help in reducing
the number of database scans.MaxMiner [3] is another algorithm for finding the maximal elements. It
uses efficient pruning techniques to quickly narrow the search. MaxMiner employs a breadth-first traversal
of the search space; it reduces database scanning by employing alookaheadpruning strategy based on
superset frequency in addition to subset infrequency used by Apriori. It employs a (re)ordering heuristic
to increase the effectiveness of superset-frequency pruning. In the worst case, MaxMiner does the same
number of passes over a database as Apriori does. DepthProject [2] finds long itemsets using a depth first
search of a lexicographic tree of itemsets, and uses a counting method based on transaction projections
along its branches. Finally, FPgrowth [8] uses the novel frequent pattern tree (FP-tree) structure, which is a
compressed representation of all the transactions in the database. It uses a recursive divide-and-conquer and
database projection approach to mine long patterns.

Another recent promising direction is to mine only closed sets. It was shown in [12, 19] that it is not
necessary to mine all frequent itemsets, rather frequentcloseditemsets can be used to uniquely determine
the set of all frequent itemsets and theirexactfrequency. Since the cardinality of closed sets is orders of
magnitude smaller than all frequent sets, even dense domains can be mined. The advantage of closed sets is
that they guarantee that the completeness property is preserved, i.e., all valid association rules can be found.
Note that maximal sets do not have this property, since subset counts are not available. Methods for mining
closed sets include the Apriori-based A-Close method [12], the Closet algorithm based on FP-trees [13] and
Charm [21].

Most of the previous work on association mining has utilized the traditional horizontal transactional
database format. However, a number of vertical mining algorithms have been proposed recently for associa-
tion mining [5, 17, 20, 21] (as well as other mining tasks like classification [16]). In a vertical database each
item is associated with its corresponding tidset, the set of all transactions (or tids) where it appears. Mining
algorithms using the vertical format have shown to be very effective and usually outperform horizontal ap-
proaches. This advantage stems from the fact that frequent patterns can be counted via tidset intersections,
instead of using complex internal data structures (candidate generation and counting happens in a single
step). The horizontal approach on the other hand requires complex hash/search trees. Tidsets offer natural
pruning of irrelevant transactions as a result of an intersection (tids not relevant drop out). Furthermore, for
databases with long transactions it has been shown using a simple cost model, that the the vertical approach
reduces the number of I/O operations [5]. In a recent study on the integration of database and mining, the
Vertical algorithm [14] was shown to be the best approach (better than horizontal) when tightly integrating
association mining with database systems. Also, VIPER [17], which uses compressed vertical bitmaps for
association mining, was shown to outperform (in some cases) even anoptimalhorizontal algorithm that had
completea priori knowledge of all frequent itemsets, and only needed to find their frequency.

Despite the many advantages of the vertical format, when the tidset cardinality gets very large (e.g., for
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very frequent items) the methods start to suffer, since the intersection time starts to become inordinately
large. Furthermore, the size of intermediate tidsets generated for frequent patterns can also become very
large, requiring data compression and writing of temporary results to disk. Thus (especially) in dense
datasets, which are characterized by high item frequency and many patterns, the vertical approaches may
quickly lose their advantages.

In this paper we present a novel vertical data representation calleddiffset, that only keeps track of
differences in the tids of a candidate pattern from its generating frequent patterns. We show that diffsets
drastically cut down (by orders of magnitude) the size of memory required to store intermediate results. The
initial database stored in diffset format, instead of tidsets can also reduce the total database size. Thus even
in dense domains the entire working set of patterns of several vertical mining algorithms can fit entirely
in main-memory. Since the diffsets are a small fraction of the size of tidsets, intersection operations are
performed blazingly fast! We show how diffsets improve by several orders of magnitude the running time
of vertical algorithms like Eclat [20] that mines all frequent itemsets, and Charm [21] that mines closed sets.
We also compare our diffset-based methods against Viper [17].

Not only do we improve existing vertical approaches, but we also introduce theGenMaxalgorithm, that
utilizes a novel backtracking search strategy for efficiently enumerating all maximal itemsets. The method
recursively navigates to find the maximal itemsets at high levels without computing the support value of
all their subsets as is usually done in most of the current approaches. The technique is very simple to
implement, there is no candidate generation procedure, and there are no complex data structures such as
hash trees. GenMax also uses a novelprogressive focusingtechnique to eliminate non-maximal itemsets. It
can be instantiated using either the traditional vertical tidsets or our new diffset structure. We experimentally
compare these methods against the state-of-the-art MaxMiner algorithm, on both dense and sparse databases,
to show that the new algorithms combined with diffsets can deliver over order of magnitude performance
improvements over MaxMiner.

2 Problem Setting and Preliminaries

Association mining works as follows. LetI be a set of items, andT a database of transactions, where each
transaction has a unique identifier (tid) and contains a set of items. A setX ⊆ I is also called anitemset,
and a setY ⊆ T is called atidset. An itemset withk items is called ak-itemset. For convenience we write
an itemset{A,C,W} asACW , and a tidset{2, 4, 5} as245. Thesupportof an itemsetX, denotedσ(X),
is the number of transactions in which it occurs as a subset. An itemset isfrequentif its support is more than
or equal to a user-specifiedminimum support(min sup) value, i.e., ifσ(X) ≥ min sup.

An association rule is an expressionX
s,c−→ Y , whereX andY are itemsets. The rule’s supports is the

joint probability of a transaction containing bothX andY , and is given ass = σ(XY ). The confidencec
of the rule is the conditional probability that a transaction containsY , given that it containsX, and is given
asc = σ(XY )/σ(Y ). A rule is frequent if its support is greater thanmin sup, and strong if its confidence
is more than a user-specified minimum confidence (min conf).

Association mining involves generating all rules in the database that have a support greater thanmin sup
(the rules are frequent) and that have a confidence greater thanmin conf(the rules are strong). The main step
in this process is to find all frequent itemsets having minimum support. The search space for enumeration
of all frequent itemsets is given by the powersetP(I) which is exponential (2m) in m = |I|, the number
of items. Since rule generation is relatively easy, and less I/O intensive than frequent itemset generation, we
will focus only on the first step in the rest of this paper.
Frequent, Closed and Maximal SetsAs a running example, consider the database shown in Figure 1.
There are five different items,I = {A,B,C,D,E} and six transactionsT = {1, 2, 3, 4, 5, 6}. The table
on the right shows all 19 frequent itemsets contained in at least three transactions, i.e.,min sup= 50%. A
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Figure 2: Frequent, Closed and Maximal Itemsets

frequent itemset is calledmaximalif it is not a subset of any other frequent itemset. A frequent itemsetX
is calledclosedif there exists no proper supersetY ⊃ X with σ(X) = σ(Y ). Consider Figure 2 which
shows the 19 frequent itemsets organized as a subset lattice. The itemsets have also been shown with their
corresponding tidsets (i.e., transactions where the set appears). The 7 closed sets are obtained by collapsing
all the itemsets that have the same tidset, shown in the figure by the circled regions. Looking at the closed
itemset lattice we find that there are 2 maximal frequent itemsets (marked with a circle),ACTW andCDW .
As the example shows, in general ifF denotes the set of frequent itemsets,C the set of closed ones, and
M the set of maximal itemsets, then we haveM ⊆ C ⊆ F . Generally, the closed setsC can be orders of
magnitude fewer thanF (esp. for dense datasets), while the set of maximal patternsM can itself be orders
of magnitude smaller thanC. However, the closed sets are lossless in the sense that the exact frequency of
all frequent sets can be determined fromC, whileM leads to a loss of information. To find if a setX is
frequent we find the smallest closed set that is a superset ofX. If no superset exists, thenX is not frequent.
For example,ATW is frequent and has the same frequency as the closed setACTW , while DT is not
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frequent since there is no closed set that contains it.
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Common Data FormatsFigure 3 also illustrates some of the common data formats used in association
mining. In the traditional horizontal approach, each transaction has a tid along with the itemset comprising
the transaction. In contrast, the vertical format maintains for each item its tidset, a set of all tids where it
occurs. Most of the past research has utilized the traditional horizontal database format for mining; some
of these methods include Apriori [1], that mines frequent itemsets, and MaxMiner [3] and DepthProject [2]
which mine maximal itemsets. Notable exception to this trend are the approaches that use a vertical database
format, which include Eclat [20], Charm [19], and Partition [15]. Viper [17] uses compressed vertical
bitvectors instead of tidsets. Our main focus is to improve upon methods that utilize the vertical format for
mining frequent, closed, and maximal patterns.

2.1 The Power of Equivalence Classes and Diffsets

Let I be the set of items. Define a functionp : P(I)×N 7→ P(I) wherep(X, k) = X[1 : k], thek length
prefix ofX. Define an equivalence relationθk on the subset tree as follows:∀X,Y ∈ P(I), X ≡θk Y ⇔
p(X, k) = p(Y, k). That is, two itemsets are in the same class if they share a commonk length prefix.θk is
called aprefix-basedequivalence relation [20].

The search for frequent patterns takes place over the subset (or itemset) search tree, as shown in Figure 4
(boxes indicate closed sets, circles the maximal sets and the infrequent sets have been crossed out). Each
node in the subset search tree represents a prefix-based class. As Figure 4 shows the root of the tree corre-
sponds to the class{A,C,D, T,W}, composed of the frequent items in the database (note: all these items
share the empty prefix in common). The leftmost child of the root consists of the class[A] of all subsets
containingA as the prefix, i.e. the set{AC,AD,AT,AW}, and so on. At each node, the class is also called
a combine-set. A class represents items that the prefix can be extended with to obtain a new frequent node.
Clearly, no subtree of an infrequent prefix has to be examined.

The power of the equivalence class approach is that it breaks the original search space intoindependent
sub-problems. For the subtree rooted atA, one can treat it as a completely new problem; one can enumerate
the patterns under it and simply prefix them with the itemA, and so on. The branches also need not be
explored in a lexicographic order; support-based ordering helps to narrow down the search space and prune
unnecessary branches.

In the vertical mining approaches there is usually no distinct candidate generation and support counting
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phase like in Apriori. Rather, counting is simultaneous with generation. For a given node or prefix class,
one performs intersections of the tidsets of all pairs of class elements, and checks ifmin sup is met. Each
resulting frequent itemset is a class unto itself with its own elements that will be expanded in the next
step. That is to say, for a given class of itemsets with prefixP , [P ] = {X1, X2, ..., Xn}, one performs the
intersection ofPXi with all PXj with j > i to obtain a new class[PXi] with elementsXj where the itemset
PXiXj is frequent. For example, from[A] = {C,D, T,W}, we obtain the classes[AC] = {D,T,W},
[AD] = {T,W}, and[AT ] = {W} (an empty class like[AW ] need not be explored further).

Vertical methods like Eclat [20] and Viper [17] utilize this independence of classes for frequent set
enumeration. Figure 5 shows how a typical vertical mining process would proceed from one class to the
next using intersections of tidsets of frequent items. For example, the tidsets ofA (t(A) = 1345) and of
D (t(D) = 2456) can be intersected to get the tidset forAD (t(AD) = 45) which is not frequent. As
one can see in dense domains the tidset size can become very large. Combined with the fact that there are
a huge number of patterns that exist in dense datasets, we find that the assumption that a sub-problem can
be solved entirely in main-memory can easily be violated in such dense domains (particularly at low values
of support). One way to solve this problem is the approach used by Viper, where they use compression of
vertical bit-vectors to selectively read/write tidsets from/to disk as the computation progresses. Here we
offer a fundamentally new way of processing tidsets using the concept of “differences”.

2.1.1 Introducing Diffsets

Since each class is totally independent, in the sense that it has a list of all possible itemsets, and their tidsets,
that can be combined with each other to produce all frequent patterns sharing a class prefix, our goal is to
leverage this property in an efficient manner.

Our novel and extremely powerful solution (as we shall show experimentally) is to avoid storing the
entire tidset of each member of a class. Instead we will keep track of only the differences in the tids
between each class member and the class prefix itemset. These differences in tids are stored in what we
call thediffset, which is a difference of two tidsets (namely, the prefix tidset and a class member’s tidset).
Furthermore, these differences are propagated all the way from a node to its children starting from the root.
The root node’s members can themselves use full tidsets or differences from the empty prefix (which by

6



definition appears in all tids).

d(PX)d(PY) d(PXY) PXY

t(P)

t(X)

t(Y)

Figure 7: Diffsets: PrefixP and class membersX andY
More formally, consider a given class with prefixP . Let t(X) denote the tidset of elementX, and let

d(X) the diffset ofX, with respect to a prefix tidset, which is the current universe of tids. In normal vertical
methods one has available for a given class the tidset for the prefixt(P ) as well as the tidsets of all class
memberst(PXi). Assume thatPX andPY are any two class members ofP . By the definition of support it
is true thatt(PX) ⊆ t(P ) andt(PY ) ⊆ t(P ). Furthermore, one obtains the support ofPXY by checking
the cardinality oft(PX) ∩ t(PY ) = t(PXY ).

Now suppose instead that we have available to us nott(PX) but ratherd(PX), which is given as
t(P ) − t(X), i.e., the differences in the tids ofX from P . Similarly, we have availabled(PY ). The first
thing to note is that the support of an itemset is no longer the cardinality of the diffset, but rather it must be
stored separately and is given as follows:σ(PX) = σ(P ) − |d(PX)|. So, givend(PX) andd(PY ) how
can we compute ifPXY is frequent?

We use the diffsets recursively as we mentioned above, i.e.,σ(PXY ) = σ(PX) − |d(PXY )|. So we
have to computed(PXY ). By our definitiond(PXY ) = t(PX) − t(PY ). But we only have diffsets,
and not tidsets as the expression requires. This is easy to fix, sinced(PXY ) = t(PX) − t(PY ) =
t(PX)− t(PY ) + t(P )− t(P ) = (t(P )− t(PY ))− (t(P )− t(PX)) = d(PY )−d(PX). In other words,
instead of computingd(XY ) as a difference of tidsetst(PX)− t(PY ), we compute it as the difference of
the diffsetsd(PY ) − d(PX). Figure 7 shows the different regions for the tidsets and diffsets of a given
prefix class and any two of its members. The tidset ofP , the triangle markedt(P ), is the universe of relevant
tids. The grey region denotesd(PX), while the region with the solid black line denotesd(PY ). Note also
that botht(PXY ) andd(PXY ) are subsets of the tidset of the new prefixPX.
Example Consider Figure 6 showing how diffsets can be used to enhance vertical mining methods. We
can choose to start with the original set of tidsets for the frequent items, or we could convert from the
tidset representation to a diffset representation at the very beginning. One can clearly observe that for dense
datasets like the one shown, a great reduction in the database size is achieved using this transformation
(which we confirm on real datasets in the experiments below).

If we start with tidsets, then to compute the support of a 2-itemset likeAD, we would findd(AD) =
t(A) − t(D) = 13 (we omit set notation where there is no confusion). To find out ifAD is frequent we
checkσ(A) − |d(AD)| = 4 − 2 = 2, thusAD is not frequent. If we had started with the diffsets, then we
would haved(AD) = d(D)− d(A) = 13− 26 = 13, the same result as before. Even this simple example
illustrates the power of diffsets. The tidset database has 23 entries in total, while the diffset database has
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only 7 (3 times better). If we look at the size of all results, we find that the tidset-based approach takes
up 76 tids in all, while the diffset approach (with initial diffset data) stores only 22 tids. If we compare by
length, we find the average tidset size for frequent 2-itemsets is 3.8, while the average diffset size is 1. For
3-itemsets the tidset size is 3.2, but the avg. diffset size is 0.6. Finally for 4-itemsets the tidset size is 3 and
the diffset size is 0! The fact that the database is smaller to start with and that the diffsets shrink as longer
itemsets are found, allows the diffset based methods to become extremely scalable, and deliver orders of
magnitude improvements over existing association mining approaches.
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Figure 8: Size of Vertical Database: Tidset and Diffset

2.1.2 Diffsets vs. Tidsets: Experimental Study

Our first experiment is to compare the benefits of diffsets versus tidsets in terms of the database sizes using
the two formats. We conduct experiment on several real (usually dense) and synthetic (sparse) datasets (see
Section 4 for the dataset descriptions). In Figure 8 we plot the size of the original vertical database, the size
of the database using tidsets of only the frequent items at a given level of support, and finally the database
size if items were stored as diffsets. We see, for example on the dense pumsb dataset, that the tidset database
at 60% support is104 times smaller than the full vertical database; the diffset database is106 times smaller!
It is 100 times smaller than the tidset database. For the other dense datasets, connect and chess, the diffset
format can be up to 100 times smaller depending on themin supvalue.

For the sparser pumsb* dataset we notice a more interesting trend. The diffset database starts out smaller
than the tidset database, but quickly grows more than even the full vertical database. For mushroom and
other other synthetic datasets (results shown only forT40I10D100K), we find that diffsets occupy (several
magnitudes) more space than tidsets. We conclude that keeping the original database in diffset format is
clearly superior if the database is dense, while the opposite is true for sparse datasets. In general we can use
as starting point the smaller of the two formats depending on the database characteristics.
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Figure 9: Average Size per Iteration: Tidset and Diffset
Database min sup Max Length Avg. Diffset Size Avg. Tidset Size Reduction Ratio
chess 0.5% 16 26 1820 70
connect 90% 12 143 62204 435
mushroom 5% 17 60 622 10
pumsb* 35% 15 301 18977 63
pumsb 90% 8 330 45036 136
T10I4D100K 0.025% 11 14 86 6
T20I16D100K 0.1% 14 31 230 11
T40I10D100K 0.5% 18 96 755 8

Figure 10: Average Tidset and Diffsets Cardinality

Due to the recursive dependence of a tidset or diffset on its parent equivalence class it is difficult to
obtain analytically an estimate of their relative sizes. For this reason we conduct an experiment comparing
the size of diffsets versus tidsets at various stages during mining. Figure 9 shows the average cardinality of
the tidsets and diffsets for frequent itemsets of various lengths on different datasets, for a given minimum
support. We denote bydb a run with tidset format and byDdb a run with the diffset format, for a given
datasetdb. We assume that the original dataset is stored in tidset format, thus the average tidset length is the
same for single items in both runs. However, we find that while the tidset size remains more or less constant
over the different lengths, the diffset size reduces drastically.

For example, the average diffset size falls below 1 for the last few lengths (over the length interval [11-
16] for chess, [9-12] for connect, [7-17] for mushroom, [8-15] for pumsb*, 8 for pumsb, [9-11] for T10,
[12-14] for T20). The only exception is T40 where the diffset length is 5 for the longest patterns. However,
over the same interval range the avg. tidset size is 1682 for chess, 61325 for connect, 495 for mushroom,
18200 for pumsb*, 44415 for pumsb, 64 for T10, 182 for T20, and 728 for T40. Thus for long patterns the
avg. diffset size is several orders of magnitude smaller than the corresponding avg. tidset size (4 to 5 orders
of magnitude smaller on dense sets, and 2 to 3 orders of magnitude smaller on sparse sets). We also show
in Table 10 the average diffset and tidset sizes across all lengths. We find that diffsets are smaller by one to
two orders of magnitude for both dense as well as sparse datasets.

There is usually a cross-over point when a switch from tidsets to diffsets will be of benefit. For dense
datasets it is better to start with the diffset format, while for sparse data it is better to start with tidset format
and switch to diffsets in later stages, since diffsets on average are orders of magnitude smaller than tidsets.
In general, we would like to know when it is beneficial to switch to the diffset format from the tidset format.
Since each class is independent the decision can be made adaptively at the class level.

Consider a given class with prefixP , and assume thatPX andPY are any two class members of
P , with their corresponding tidsetst(PX) and t(PY ). Consider the itemsetPXY in a new classPX,
which can either be stored as a tidsett(PXY ) or as a diffsetd(PXY ). We definereduction ratioas
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r = t(PXY )/d(PXY ). For diffsets to be beneficial the reduction ratio should be at least 1. That isr ≥ 1
or t(PXY )/d(PXY ) ≥ 1. Substituting ford(PXY ), we gett(PXY )/(t(PX) − t(PY )) ≥ 1. Since
t(PX)− t(PY ) = t(PX)− t(PXY ), we havet(PXY )/(t(PX)− t(PXY )) ≥ 1. Dividing by t(PXY )
we get,1/(t(PX)/t(PXY )− 1) ≥ 1. After simplification we gett(PX)/t(PXY ) ≤ 2. In other words it
is better to switch to the diffset format if the support ofPXY is at least half ofPX. If we start with a tidset
database, empirically we found that for all real datasets it was better to use diffsets from length 2 onwards.
On the other hand, for the synthetic datasets we found that the 2-itemsets have an average support value 10
times smaller than the support of single items. Since this results in a reduction ratio less than 1, we found it
better to switch to diffsets starting at 3-itemsets.
Comparison with Compressed BitvectorsViper [17] proposed using compressed vertical bitvectors in-
stead of tidsets. Here we compare the bitvectors against diffsets. The classical way of compressing bitvec-
tors is by using run-length encoding (RLE). It was noted in [17] that RLE is not appropriate for association
mining, since it is not realistic to assume many consecutive 1’s for a sparse dataset. If all 1’s occur in an
isolated manner, RLE outputs one word for the preceding 0 run and one word for the 1 itself. This results in
a database that is double the size of a tidset database.

Viper uses a novel encoding scheme calledSkinning. The idea is to divide runs of 1’s and 0’s in groups
of sizeW1 andW0. Each full group occupies one bit set to 1. The last partial group (R mod Wi, where
R is the run length) occupieslgWi bits storing the partial count of 1’s or 0’s. Finally, a field separator bit
(0) is placed between the full groups bits and the partial count field. Since the length of the count field is
fixed, we know that we have to switch to 1’s or 0’s after having seen the count field for a run of 0’s or 1’s,
respectively. If the minimum support is less than 50% the bitvectors for (longer) itemsets will have more 0’s
than 1’s, thus it makes sense to use a large value forW0 and a small value forW1. Viper usesW0 = 256
andW1 = 1.

LetN denote the number of transactions,n1 the number of 1’s andn0 the number of 0’s in an itemset’s
bitvector. Assuming word length of 32 bits, a tidset takes32n1 bits of storage. Assume (in the worst case)
that all 1’s are interspersed by exactly one 0, with a trailing run of 0’s. In the skinning process each 1 leads
to two bits of storage, one to indicate a full group and another for the separator. Forn1 1’s, we get2n1 bits
of storage. For a compressed bitvector the number of bits used for isolated 1’s is given as2n1. For then1
isolated 0’s we needn1(1 + lgW0) = 9n1 bits. For the remainingn0 − n1 = (N − n1)− n1 = N − 2n1
0’s we need(N − 2n1)(1/W0) = N/256 − n1/128 bits. Sincen1 ≥ N× min sup the total number of
bits for the compressed vector is given as the sum of the number of bits required for 1’s and 0’s, given as
2n1 + 9n1−n1/128 +N/256 = 1407n1/128 +N/256. The benefit of skinning compared to tidset storage
is then given asCw ≥ 32n1/(1407n1/128 +N/256), whereCw denotes worst case compression ratio, i.e.,
the ratio of the storage required for the tidset divided by the storage required for the compressed bitvector.
After substitutingn1 ≥ N×min supand simplifying, we getCw ≥ 1

0.34+ 1

8192×min sup
.

For support values less than 0.02%Cw is less than 1, which means that skinning causes expansion rather
than compression. The maximum value ofCw reaches 2.91 asymptotically. Formin sup=0.1%,Cw = 2.14
Thus for reasonable support values the compression ratio is expected to be between 2 and 3 compared to
tidsets. Supposing we assume a best case scenario for skinning, where all then1 1’s come before then0
0’s (this is highly unlikely to happen). We would then needn1 bits to represent the single run of 1’s, and
n0/W0 = n0/256 bits for the run of 0’s. The total space is thusn1 + n0/256 = n1 + (N − n1)/256 =
255n1/256 + N/256. The best case compression ration is given asCb ≥ 32n1/(255n1/256 + N/256).
After simplification this yieldsCb ≥ 1

0.03+ 1

8192×min sup
, which asymptotically reaches a value of 32. In

the best case, the compression ratio is 32, while in the worst case the compression ratio is only 2 to 3. The
skinning process can thus provide at most 1 order of magnitude compression ratio over tidsets. However,
as we have seen diffsets provide anywhere from 2 to 5 orders of magnitude compression over tidsets. The
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experimental and theoretical results shown above clearly substantiate the power of diffset based mining!

3 Algorithms for Mining Frequent, Closed and Maximal Patterns

To illustrate the power of diffset-based mining, we have integrated diffsets with two state-of-the-art vertical
mining algorithms. These include Eclat, which mines frequent sets, and Charm, which mines closed sets.
Our enhancements are calleddEclat anddCharm. In addition we develop a novel algorithmGenMaxfor
mining the maximal patterns. We discuss these algorithms below.

3.1 GenMax: Mining Maximal Frequent Itemsets

The main goal in mining maximal frequent itemsets is to avoid traversing all the branches in the search tree,
since for a maximal pattern of lengthl, one would have to examine all2l branches. Furthermore, knowledge
of previously found maximal patterns should be utilized to avoid checking branches that cannot possibly
lead to maximal patterns, i.e., these branches are entirely subsumed by one of the maximal patterns.

GenMax uses a novel backtracking search technique, combined with the ability to utilize previously
discovered patterns to compute the set of maximal patterns efficiently. Note that methods like MaxMiner [3]
do not use previous knowledge to prune branches. In fact its breadth-first search process generates many un-
necessary candidates, which are later eliminated. MaxMiner’s power stems from its use of lower-bounding
the support, whereby a class that can be guaranteed to be frequent need not be counted.

To see how backtracking search works in GenMax, let’s consider the example in Figure 4. GenMax
starts at a given node with its associated prefix class. It incrementally extends a partial solution to a maximal
itemset, backing up to a previous state whenever a dead end in the tree is encountered (i.e., when an extended
set is no longer frequent). For example, under the search tree forA we try to extend the partial solutionAC
by adding to it itemD from its class, trying another itemT after itemsetACD turns out to be infrequent, and
so on. The search comes back to the partial solutionA after all the items in the combine-set of classAC have
been fully explored. The combine-set of any partial solution is constructed by intersecting the combine-sets
of all its items. The partial solution with an empty combine-set is considered a potential maximal itemset.

Two general principles for efficient search using backtracking are that: 1) It is more efficient to make
the next choice of a branch to explore to be the one whose combine-set has the fewest items. This usually
results in good performance on the average. 2) If we are able to remove a node as early as possible from
the backtracking search tree we effectively prune many branches from consideration. To help achieve this
aim, GenMax initially sorts the items in increasing order of their combine-set size, and in increasing order
of support. Frequent items with small combine-sets usually result in very small backtracking search trees.
Another optimization is the use of maximal itemsets which are found earlier in the search to prune the
combine-sets of later branches. For example, in Figure 4, after finding the maximal setACTW , GenMax
will notprocess branchesACW,AT,AW,CT,CW,T , andW . Thus almost the entire search tree is pruned
from consideration. Note that, naive backtracking will consider all these branches for exploration regardless
of the information that the maximal itemsetACTW has already been discovered. Current methods for
mining maximal patterns do not do this kind of pruning.

The pseudo-code of GenMax appears in Figure 11. The main procedure implements the initial sorting
phase and controls the entire search.Extendimplements backtracking search tree for enumerating all maxi-
mal itemsets which start with a given prefix. Hereafter, the partial solutionI, with a nonempty combine-set
will be referred to as an extendable itemset and the set of items which can be added to it as its combine set
and denotedc(I). GenMax starts with a prefix set of single frequent item and adds to it another item from
its combine set whenever it seems that Extend will consider new candidate maximal itemsets to be explored.
Extend proceeds as follows: Let the current extendable itemset beI = {i1, i2, ..., il} and its combine set
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GenMax (DatasetT ):
1. CalculateF1, CalculateF2.
2. For each itemi ∈ F1 calculatec(i), its combine-set.
3. Sort items inF1 in INCREASING cardinality ofc(i)

and then INCREASINGσ(i).
4. Sort eachc(i) in order ofF1.
5. c(i) = c(i)− {j : j < i in sorted order ofF1}.
6.M = {}; // Maximal Frequent Itemsets.
7. for each i ∈ F1 do
8. Z = {x ∈M : i ∈ x}
9. for each j ∈ c(i) do
10. H = {x : x is j or x follows j in c(i)}
11. if H has a super set inZ then break
13. I = {i, j}
14. X = c(i) ∩ c(j); d(X) = t(i)− t(j)
15. Y = {x ∈ Z : j ∈ x}
16. Extend(I,X, Y )
17. Z = Z ∪ Y
18. M = M ∪ Z
19. Return M

ProcedureExtend(I,X, Y )
// I is the itemset to be extended,X is the set of items
// that can be added toI, i.e., the combine set, and
// Y is the set of relevant maximal itemsets found so far
// i.e., all maximal itemsets which containI.
1. extendflg = 0
2. for each j ∈ X do
3. if |Y | > 0 then
4. G = {x : x is j or x follows j in X}
5. if G has super set inY Then
6. extendflg = 1; break;
7. NewI = I ∪ {j}; d(NewI) = d(j)− d(I)
8. if (NewI is frequent)then
9. NewX = X ∩ c(j)
10. extendflg = 1
11. if (NewX == φ) then
12. Y = Y ∪ {NewI}
13. else
14. NewY = {x ∈ Y : j ∈ x}
15. Extend(NewI,NewX,NewY )
16. Y = Y ∪ {NewY }
17. if (extendflg == 0 and | Y |== 0) then
18. Y = Y ∪ {I}

Figure 11: Pseudo-code for GenMax

beX = {x1, ..., xm}. Extend adds items toI according to the order given by its combine setX. If adding
an itemxj to I result in a frequent itemset, the new itemsetNewI = I ∪ {xj} becomes the candidate
extendable itemset andc(xj) ∩ X becomes its combine set. ItemsetI will become the extendable itemset
again when all the items in the combine set ofNewI have been fully explored.

The main efficiency of GenMax stems from the fact that it eliminates branches that are subsumed by
an already mined maximal pattern. Were it not for this pruning, GenMax would essentially default to a
depth-first exploration of the search tree. Before extending the itemI with any of the items in the current
combine setG (line 4 in extend), we check ifG has a superset in the current set of maximal patternsY . If
yes then, this entire branch (the itemsetI ∪X) is subsumed by another maximal pattern and the branch can
be pruned. Note that this is similar to the case when MaxMiner performs a lower-bounding check, but while
lower-boundingusesapproximate information to make its decision, we use the exact information available
from the maximal sets.

The major challenge in the design of GenMax is how to perform this subset checking in the current
set of maximal candidatesM in an efficient manner. If we were to naively implement and perform this
search on an ever expanding set of maximal patternsM , and during each recursive call of Extend, we would
be spending a prohibitive amount of time just performing subset checks. Each search would takeO(|M |)
time in the worst case. Note that some of the best algorithms for dynamic subset testing run in amortized
timeO(

√
s log s) per operation in a sequence ofs operations [18]. In dense domains we have millions of

maximal frequent itemsets, and the number of subset checking operations performed would be at least that
much. Can we do better?

The answer is, yes! The time bounds reported in [18] do not assume anything about the sequence of
operations performed. In contrast, we have full knowledge about how GenMax generates maximal sets; we
use this observation to substantially speed up the subset checking process. The main idea is to progressively
narrow down the maximal itemsets of interest as recursive calls to Extend are made. In other words, in the
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main routine, we construct for each initial invocation of Extend (line 16 in GenMax), a listY of maximal
sets that can potentially be supersets of candidates that are to be generated from the itemset I (i.e., the 2-
itemsetij). The only such maximal sets are those that contain bothi and j. When Extend is called, a
linear search is performed to check ifG is contained inY , the current set of relevant maximal itemsets. As
each branch is recursively explored at line 15 in Extend, we progressively extract fromY the listNewY
of maximal itemsets that can potentially subsume the new branch;NewY contains those items inY that
also contain the current itemsj used for extendingI. The technique, that we callprogressive focusingis
extremely powerful in narrowing the search to only the most relevant maximal itemsets making this subset
checking practical on dense datasets.

There are a number of other optimizations that GenMax implements over the pseudo-code description
in Figure 11. We omit these from the code for readability. One optimization is that we do not perform
the superset checking at each invocation of Extend. There is no need to perform redundant checks in case
neitherY norG have changed since the last time we performed a superset check; a simple checkstatus
flag avoids such redundancy. Also we do not really keep only single items in the combine-sets. Just as in
prefix based classes, the combine set of an itemI consists of all the itemsets of length|I|+ 1 havingI has
their prefix. Each such member of the combine-set has its own tidset or diffset as the case may be. Finally,
as each new combine list is generated we sort the itemsets in increasing order of support so that possibly
infrequent branches are eliminated first.

We will show in the experimental section that both the tidset and diffsets based instantiations of GenMax
are extremely efficient in finding the maximal frequent patterns. Also note that GenMax is very efficient in
memory handling. It requires at mostk tidlists to be stored in memory during execution, wherek = m+ l,
m is the length of the longest combine set andl is the length of the longest maximal itemset. If we use
diffsets the memory consumption is even lower. The version of GenMax using diffsets is called dGenMax.

3.2 dEclat: Mining All Frequent Itemsets

Figure 12 shows the pseudo-code for dEclat, which performs a pure bottom-up search of the subset tree.
As such it is not suitable for very long pattern mining, but our experiments show that diffsets allow it to
mine on much lower supports than other bottom up methods like Apriori and the base Eclat method. The
input to the procedure is a set of class members for a subtree rooted atP . Frequent itemsets are generated
by computing diffsets for all distinct pairs of itemsets and checking the support of the resulting itemset. A
recursive procedure call is made with those itemsets found to be frequent at the current level. This process is
repeated until all frequent itemsets have been enumerated. In terms of memory management it is easy to see
that we need memory to store intermediate diffsets for at most two consecutive levels. Once all the frequent
itemsets for the next level have been generated, the itemsets at the current level can be deleted.

DiffEclat( [P ]):
for all Xi ∈ [P ] do

for all Xj ∈ [P ], with j > i do
R =Xi ∪Xj ;
d(R) = d(Xj)− d(Xi);
if σ(R) ≥min sup then
Ti = Ti ∪ {R}; //Ti initially empty

for all Ti 6= ∅ do DiffEclat(Ti);

Figure 12: Pseudo-code for dEclat
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3.3 dCharm: Mining Frequent Closed Itemsets

Figure 13 shows the pseudo-code for dCharm, which performs a novel search for closed sets using subset
properties of diffsets. The initial invocation is with a class at a give tree node. As in dEclat all differences for
pairs of elements are computed. However in addition to checking for frequency, dCharm eliminates branches
and grows itemsets using subset relationships among diffsets. There are four cases: ifd(Xi) ⊇ d(Xj) we
replace every occurrence ofXi with Xi ∪Xj , since wheneverXi occursXj also occurs. Ifd(Xi) ⊂ d(Xj)
then we replaceXj for the same reason. Finally,R is processed further ifd(Xi) 6= d(Xj). These four
properties allow dCharm to efficiently prune the search tree.

DiffCharm (P ):
for all Xi ∈ [P ]

X = Xi

for all Xj ∈ [P ] with j > i
R = X ∪Xj andd(R) = d(Xj)− d(Xi)
if d(Xi) = d(Xj) then RemoveXj from Nodes; Replace allXi with R
if d(Xi) ⊃ d(Xj) then Replace allXi with R
if d(Xi) ⊂ d(Xj) then RemoveXj from Nodes; AddR toNewN
if d(Xi) 6= d(Xj) then AddR toNewN

if NewN 6= ∅ then DiffCharm (NewN)

Figure 13: Pseudo-code for Dcharm

3.4 Optimized initialization

There is only one significant departure from the pseudo-code we have given for each of the algorithms
above. As was mentioned in [17, 20], to computeF2, in the worst case, one might performn(n − 1)/2
tidset intersections, wheren is the number of frequent items. Ifl is the average tidset size in bytes, the
amount of data read isl · n · (n− 1)/2 bytes. Contrast this with the horizontal approach that reads onlyl · n
bytes. It is well known that many itemsets of length 2 turn out to be infrequent, thus it is clearly wasteful to
performO(n2) intersection. To solve this performance problem we first compute the set of frequent itemsets
of length 2, and we combine two itemsIi andIj only if Ii ∪ Ij is known to be frequent. The number of
intersections performed after this check is equal to the number of frequent pairs, which in practice is closer
toO(n) rather thanO(n2). Further this check has to be done initially only for single items, and not in later
stages.

To compute the frequent itemsets of length 2 using the vertical format, we clearly cannot perform all
intersections between pairs of frequent items. The solution is to perform a vertical to horizontal transfor-
mation on-the-fly, as suggested in [17, 20]. For each itemI, we scan its tidset into memory. We insert
item I in an array indexed by tid for eachT ∈ t(I). For example, consider the tidset for itemA, given as
t(A) = 1345. We read the first tidT = 1, and then insertA in the array at index1. We also insertA at
indices3, 4 and5. We repeat this process for all other items and their tidsets, till the complete horizontal
database is recovered from the vertical tidsets for each item. Given the recovered horizontal database it is
straightforward to update the count of pairs of items using an upper triangular 2D array. Note that only the
vertical database is stored on disk; the horizontal chunks are temporarily materialized in memory and then
discarded after processing. Thus the entire database is never kept in memory, but only a chunk that can
reasonably fit in memory.
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4 Experimental Results

All experiments were performed on a 400MHz Pentium PC with 256MB of memory, running RedHat Linux
6.0. Algorithms were coded in C++. Furthermore, the times for all the vertical methods include all costs,
including the conversion of the original database from a horizontal to a vertical format required for the
vertical algorithms. We chose several real and synthetic datasets for testing the performance of algorithms.
The real datasets are the same as those used in MaxMiner [3]. All datasets except the PUMS (pumsb and
pumsb*) sets, are taken from the UC Irvine Machine Learning Database Repository. The PUMS datasets
contain census data. pumsb* is the same as pumsb without items with 80% or more support. The mushroom
database contains characteristics of various species of mushrooms. Finally the connect and chess datasets
are derived from their respective game steps. Typically, these real datasets are very dense, i.e., they produce
many long frequent itemsets even for very high values of support. These datasets are publicly available from
IBM Almaden (www.almaden.ibm.com/cs/quest/demos.html).

We also chose a few synthetic datasets (also available from IBM Almaden), which have been used as
benchmarks for testing previous association mining algorithms. These datasets mimic the transactions in a
retailing environment. Usually the synthetic datasets are sparser when compared to the real sets.

We used the original source or object code provided to us by the different authors for our comparison;
MaxMiner [3], Viper [17], and Closet [13] were all provided to us by their authors. DepthProject [2] was
not available from its authors for comparison. While we do not directly compare against the FPgrowth [8]
method we do compare dCharm with Closet, which uses FP-trees to mine closed sets.

Database # Items Avg. Length # Records
chess 76 37 3,196
connect 130 43 67,557
mushroom 120 23 8,124
pumsb* 7117 50 49,046
pumsb 7117 74 49,046
T10I4D100K 1000 10 100,000
T40I10D100K 1000 40 100,000

Figure 14: Database Characteristics
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Figure 14 shows the characteristics of the real and synthetic datasets used in our evaluation. It shows
the number of items, the average transaction length and the number of transactions in each database. As one
can see the average transaction size for these databases is much longer than conventionally used in previous
literature. We also include two sparse datasets (last two rows) to study its performance on both dense and
sparse data. Figure 15 shows the length of the longest pattern found in out experiments using various support
levels for the different databases (to make the results for the t10 and t40 dataset fit in the same plot, their
minsupport value was multiplied by an appropriate factor only for this figure). We see that pumsb* produces
a pattern of length 40 at 5% support. Even the synthetic dataset t40 has a pattern of length 25 at support
0.1%.
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Figure 16: Cardinality of Frequent, Closed and Maximal Itemsets

Figure 16 shows the total number of frequent, closed and maximal itemsets found for various support
values. The maximal frequent itemsets are a subset of the frequent closed itemsets (the maximal frequent
itemsets must be closed, since by definition they cannot be extended by another item to yield a frequent
itemset). The frequent closed itemsets are, of course, a subset of all frequent itemsets. Depending on the
support value used, for the real datasets, the set of maximal itemsets is about an order of magnitude smaller
than the set of closed itemsets, which in turn is an order of magnitude smaller than the set of all frequent
itemsets. Even for very low support values we find that the difference between maximal and closed remains
around a factor of 10. However the gap between closed and all frequent itemsets grows more rapidly.
Similar results were obtained for other real datasets as well. On the other hand in sparse datasets the number
of closed sets is only marginally smaller than the number of frequent sets; the number of maximal sets is
still smaller, though the differences can narrow down for low support values.
Diffsets vs. TidsetsFigure 17 proves the advantage of diffsets over the base methods that use only tidsets.
We give a thorough sets of experiments spanning all the real and synthetic datasets mentioned above, for
various values of minimum support, and compare the diffset-based algorithms against the base algorithms.
The base algorithms are Eclat, for mining all frequent sets, Charm for mining the closed sets, GenMax for
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Figure 17: Improvements using Diffsets
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mining the maximal itemsets. These are compared against the diffset based counterparts, denoted as dEclat,
dCharm, dGenMax. We denote bydb a run with tidset format and byDdb a run with the diffset format, for
a given datasetdb. We find that one the real datasets, the diffset algorithms outperform tidset based methods
by several orders of magnitude. The benefits on the synthetic datasets are only marginal, up to a factor of 2
improvement. This is because as one lowers the support value on the synthetic datasets the size of the set of
frequent, closed and maximal patterns starts to converge.
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Figure 18: Performance on All Frequent Itemsets
Mining Frequent Itemsets In Figure 18 we compare horizontal and vertical algorithms for mining the set
of all frequent patterns. We compare the new dEclat method against Eclat [20], the classic Apriori [1] and
the recently proposed Viper [17] algorithm. We see the dEclat outperforms by orders of magnitude the
other algorithms. One observation that can be made is that dEclat makes Eclat more scalable, allowing it to
enumerate frequent patterns even in dense datasets for relatively low values of support. On dense datasets
Viper is better than Apriori at lower support values, but Viper is uncompetitive with Eclat and dEclat.
Mining Frequent Closed ItemsetsIn Figure 19, we compare dCharm with Closet, a state-of-the-art closed
set miner, which was shown to outperform A-Close [12]. We note that the Closet experiments were done
on a Windows 98 platform (450MHz Pentium II processor, with 256MB RAM), since Closet was available
only on that platform. The figures show performance on both the dense as well as the sparse datasets. We
find that dCharm outperforms Closet by two orders of magnitude or more, especially as support is lowered.
Mining Maximal Itemsets In Figure 20 we compare horizontal and vertical algorithms for mining the set
of maximal itemsets. We compare the new (d)GenMax against MaxMiner [3]. We find once again that
GenMax clearly outperforms MaxMiner, by orders of magnitude improvement is some cases, on the dense
datasets. MaxMiner does better on sparse datasets, but even here for low support value (such as 0.1% on
t40) the new method outperforms MaxMiner. Since the authors of DepthProject could not provide us with
their algorithm, we were unable to compare GenMax against it. Comparing the graphs for DepthProject [2]
reported in their paper, we find that GenMax delivers around the same order of magnitude improvements
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Figure 19: Performance on Closed Itemsets
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Figure 20: Performance on Maximal Itemsets

over MaxMiner as DepthProject does. However, there are a number of key points that may affect the result.
First, we show the total time, while [2] reports only the CPU time. Second, our algorithms output all the
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patterns found to a file; it is not clear if the times reported in [2] include output time. When the patterns are
many, the output time can be relatively high. We are currently implementing our version of DepthProject
for an extensive evaluation.

Conclusions In this paper we presented a novel vertical data representation calledDiffset, that only keeps
track of differences in the tids of a candidate pattern from its generating frequent patterns. We show that
diffsets drastically cut down the size of memory required to store intermediate results. We show how diffsets,
when incorporated into previous vertical mining methods, increase the performance significantly. We also
present GenMax, a new algorithm for mining maximal patterns. Experimental comparisons, on both dense
and sparse databases, show that diffsets can deliver over order of magnitude performance improvements
over the best previous methods.
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