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ABSTRACT 
 
Content-based video retrieval technology holds the key to 
the efficient management and sharing of video content from 
different sources, across different platforms and over 
different communication channels. In this work we present 
a fast retrieval algorithm based on matched filtering of the 
video sequence trace characteristics in the principal 
component space. Techniques to combat scale variance, 
noises and distortions are also investigated, resulted into a 
robust and fast content -based video shot retrieval solution. 

 

1. INTRODUCTION 
 

With the proliferation of digital video capturing, storage 
and communication devices, the amount of information in 
video form is growing rapidly in personal entertainment, 
security and military applications. To effectively share and 
manage these video content presents a technical challenge 
to the existing information management system. Semantic 
features based management system requires substantial 
amount of human work in the labeling of content and is 
generally not practical.  

For example, if a mobile phone user watched a low visual 
quality, 5-sec segment of soccer game in QCIF size and 10 
fps from some unknown source, and he wants to find out 
the full game in SDTV format from his personal soccer 
game video collections, or some content provider’s 
collections, the system will need to search based on this 5-
sec segment and return the full size program location if it 
exists. The semantic information is not present in the 
querying segment. The matching has to be “content -based”, 
and the variance in temporal and spatial scale, as well as 
noise and distortion incurred during the communication 
must also be addressed.  

The content-based approaches [1]-[4][7][9]-[12] have 
been investigated extensively by many researchers. These 
approaches are typically video frames based, and the 
retrieval is done via a metric function based on the visual 
features of the frames. Visual features used are color, 
shape, texture and motion. However a drawback is that the 
visual features extraction and matching are expensive in 
computation, and the visual feature based approach treat the 

video sequence as a collection of images and the temporal 
behavior of the sequence is not well addressed. The 
retrieval performance can also be negatively affected by the 
scale variance, noise and distortion in the video content. 

In our approach, video sequences are viewed as temporal 
traces in some high dimensional space generated by some 
stochastic process.  The video frames are reduced to points 
in its Principal Component (PC) [5][8] space, and the 
observed trace of a video sequence in the should give us 
sufficient information to differentiate it from other 
sequences. In the PC space, the matching of the sequences 
becomes the problem of matching the geometry of the 
traces, and when the dimension of PC space is small, this 
can be done efficiently. Under this framework, the problem 
of spatial scale variance and noise can be addressed by the 
filtering and transform processes. The temporal variance 
and distortion can be addressed by interpolating.  

The paper is organized into the following sections. In 
section 2 we present the method for computing the trace of 
a video sequence in its principal component space and the 
matching method, in section 3 we discuss the method to 
address the issues of scale variance and noise/distortion. In 
section 4 we present the simulation results. In section 5 we 
draw conclusions and outline our future work.  
 

2. PRINCIPAL COMPONENT SPACE TRACE AND 
MATCHING METRICS 

 
The spatial dimension of the video frames is large. For 

QCIF sized intensity image sequences, the dimension is 
Rn=176x144 . In reality the space populated by the video 
sequences is much smaller in dimension, due to the image 
formation constraints. The Principal Component Analysis 
(PCA) [5] finds an nxd transform Qd, with d orthogonal unit 
nx1 vectors, that maps the frames of the video sequence fj 
to a low d-dimensional Principal Component space Points 
(PCP) representation, 
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∑
=

−−−=
N

j
j

T
jQ

ffQQffQ
1

2
00

* ||)()(||min   (2) 



WIAMIS’04 Draft v.0.5 - 2 - Z. Li, revised on 11/21/2003 

in which f0 is the average of the frames observed. QQT 
transform the rank d reconstructions back into the original 
n-dimensional space. Notice that Q is sample dependent 
and the accurate computation of Q requires large number of 
samples.  
For d=2, the mapping of the video sequence frames into 2-
dimensional plane points can be visualized. Examples of 
mapping for the “foreman” sequence and the mixed 
sequences are illustrated in Fig. 1. 
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(a). “foreman” sequence  
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(b). mixed sequences 

Figure 1. Sequence traces in the 1st-2nd principal component space 
The trace of the sequence is obtained by connecting frames 
in time sequence. Notice that the traces of different clips 
occupy different areas in the 2D space, and have different 
trace geometry.  

It is difficult to visualize higher dimensional traces, but 
there is a scalar feature of traces in the form of frame-by-
frame step length vector that can be useful. Let the trace 
step length at frame time j in d-dimensional space be,  
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The trace step length for the “foreman” sequence is 
illustrated in Fig.2, for 2 and 4 dimension cases. Notice 
that the step length vector is relatively invariant with 
respect to the dimension of the space, and 2 dimensional 

PC space is adequate in retrieval performance for most 
cases. 
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Figure 2. “foreman” seq trace step length plots 

The distance between two video clips step vectors La and 
Lb of length n is computed as,  
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Notice that in addition to L2 norm used in (4), other norms 
can also be employed. 

Therefore instead of direct trace geometry matching, we 
find out a faster alternative is by matching the trace’s 
frame-by-frame step vector L as in (4). For an m-frame 
querying example video clip, with step vector Lq, its best 
match in the n-frame database clip with step length vector 
Lb is found by,  
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offset found in the database clip. The operation of (5) can 
be implemented efficiently with a matched filter like 
structure, with Lq convolves with Lb and detect the spike in 
the output.  

Notice that this is a very fast algorithm. Each frame 
comparison is reduced to a scalar operation, while other 
solutions require a visual feature (extraction) matching 
operation.  

Video database can contain many video clips. Assuming 
the video shot segmentation [6] is performed and each 
video shot is represented by the trace, then instead of 
matching every clip in the database with (5), we can further 
reduce the candidate clips by looking at the distances of the 
querying clip PCPs to the database clip PCPs. Let the PCP 
range spanned by the querying clip q be represented by 
Sq=[xmin

q, xmax
q], where the components of xmin

q and  xmax
q 

define the lower and upper boundaries in each dimension.  
Similarly the PCP range spanned by the database video clip 
b be represented by Sb=[xmin

b, xmax
b], The database clip is 

rejected if, 

NULLSS bq =∩     (6) 

This means that if two video clips does not have overlaps 
in the PC space, then reject it. It can be explained by Fig 1.b 
as well. If the querying clip is some segment of the “coast 
guard” sequence as shown, then the candidate sequences 
“calendar” and “fish” will be rejected without operations in 
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(5). A tighter restriction than (6) is also feasible. For 
example, place a constraint on the volume ratio of,  

  θ≤
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The combination of (5), (6) and (7) gives us a very fast 
video shot retrieval solution. Experimental results showed 
that it is very robust in performance. However, when the 
querying clip has different frame rate, and contains frame 
distortion and frame drops due to the communication and 
storage constraints, additional processing is needed to 
maintain the performance.  

 
3. TEMPORAL-SPATIAL SCALE INVARIANCE AND 

DISTORTION REDUCTION 
 

As mentioned in the section 1, the querying video clip 
could be produced in different frame size and frame rate, 
QCIF and 10 fps for example, with lower visual SNR quality 
and dropped frames due to the communication process, 
while the database clips are stored in SDTV size and 30 fps 
with high visual qualities. A direct PCA mapping of the 
same querying clip and database clip to the principal 
component space will result in different traces which 
degrades the retrieval performance. To address this 
problem, we have a two -step solution.  

To combat the spatial scale variance and 
noise/distortion, we apply low-pass filtering and down 
averaging operations on the frames to a lower common 
wxw resolution before applying PCA, 

))((' jwxwj fLPDf =     (8) 

These processes mitigate the problem of spatial distortion 
and scale variance. The size of common resolutions can be 
8x8, 12x12 or 16x16. This process can also reduce the 
dimension of the original frame space and can improve the 
accuracy of PCA  process (2) with limited samples. 

The problem of different frame rate can be solved by 
pre-computing multiple step length vectors L for the 
database clips at different frame rates like 10fps, 15fps, 
20fps, 25fps and 30fps. This is reasonable because that 
covers most typical frame rates, and when the querying 
frame rate is low, matching at lower rates reduces the 
computational cost. The other solution is to compute the 
database clips’ L on the fly before feeding into the matched 
filter for match detection.  

When the random frame drops occur due to the 
communication loss, the missing frames need to be 
interpolated and the step length adjusted.  If frame k is 
missing from the clip, its PCP vector x’k is interpolated as,  
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More complex interpolation methods can also be 
employed, but we found (9) to be adequate for retrieval 

purpose.  An interpolation example for the first 20 frames 
of the “foreman” sequence with missing frames 3, 6, 11, 16 
are shown in Fig.3.  

64 66 68 70 72 74 76 78 80 82
30

40

50

60

70

80

90

100
 missing frames interpolation

 1

 3

 6

 8

 11
 13

 16

 18

 1
st

 c
om

po
ne

nt

 2nd component

original
interpolated

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

 frame time k

 L
k

original
interpolated

 
Figure 3. missing frames interpolation 

 
The upper plot of Fig.3 is the trace interpolation results in 
2D space, the lower plot is the interpolated step length 
function Lk.  

 
4. SIMULATION RESULTS 

 
In our simulation, we low-pass filter and average down 

(8) the frames to an 8x8 icon images before the PCA 
process (2). The eigen values and the 1st and 2nd component 
basis vectors are plotted in Fig. 4. Notice that most 
energies are captured by the 4 largest eigen vectors.  
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Figure 4. Principal component basis vector 

To demonstrate our retrieval solution we set up a small 
video database of 1600 frames by manually mixing together 
different sequences. We set up 4 queries from the QCIF 
sized clips of the “container”, “tennis”, “carphone” and 
“football” sequences, with 20 frames in length. Their 
correct matching locations in the database are 160, 380, 
1030, and 1330.  

The retrieval results are illustrated in Fig.5. The 
noiseless case is plotted in Fig.4a, the lower plot is the 
distance (4) at database frame time, the upper plot is the 
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retrieval relevance values normalized from the distance 
metric (4) into [0,1]. Notice that in noiseless case, correct 
matching with 1.0 relevance are found for all 4 query cases. 
In Fig.4b, the query clips are corrupted by the noises, even 
though they all find the correct matching locations in the 
database, the retrieval relevance values are not 1.0. The 
noise performance is summarized below in Table 1. 
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(a) noise free case 
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(b) Spatial-temporal noise case 

Figure 5. retrieval results 
  
Query 
Sequence 

Spatial 
SNR (dB) 

FrameDrop 
Rate (%) 

Max Retrieval 
Relevance 

“Container” 13.13 0 0.99 
“Tennis” 0 25 0.88 
“Carphone” 16.98 10 0.81 
“Football” 13.13 25 0.11 

Table 1. noisy retrieval results  
Notice that the SNR in Tab. 1 is the noise level in the 

PCP representation, not the original noise level in the 
frames. The retrieval performance is more sensitive to the 
frame drop distortion than the spatial noise. 
 

5. CONCLUSION AND FUTURE WORKS 
 

In this paper we presented a new content -based video 
clip retrieval solution. The video frames are reduced to 
points in low (2~4) dimensional space and the retrieval is 
based on matching the sequence trace geometry. Our 
solution is fast in performance, and robust to noise and 
distortions, as well as scales variance in both temporal and 
spatial domain. This solution can be useful in a wide range 
of practical applications that requires real time response to 
video queries.  

Work is underway to investigate efficient indexing 
method that is made possible by the trace geometric 
representation of video clips in a very low dimensional 
space.  
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