
Fast Vocabulary-Independent Audio Search U

Olivier Siohan Michiel

IBM T.J. Watson Resear
1101 Kitchawan Rd., Rte 134

Yorktown Heights, NY 1
{siohan,bacchian}@us.

Abstract
Classical audio retrieval techniques consist in transcribing audio doc-
uments using a large vocabulary speech recognition system and in-
dexing the resulting transcripts. However, queries that are not part of
the recognizer’s vocabulary or have a large probability of getting mis-
recognized can significantly impair the performance of the retrieval
system. Instead, we propose a fast vocabulary independent audio
search approach that operates on phonetic lattices and is suitable for
any query. However, indexing phonetic lattices so that any arbitrary
phone sequence query can be processed efficiently is a challenge, as
the choice of the indexing unit is unclear. We propose an inverted
index structure on lattices that uses paths as indexing features. The
approach is inspired by a general graph indexing method that defines
an automatic procedure to select a small number of paths as indexing
features, keeping the index size small while allowing fast retrieval of
the lattices matching a given query. The effectiveness of the proposed
approach is illustrated on broadcast news and Switchboard databases.

1. Introduction
The rapidly increasing amount of spoken documents calls for solu-
tions to archive, index and search these documents based on their
content. The classical audio search paradigm consists in transcrib-
ing audio using a large vocabulary automatic speech recognition sys-
tem (ASR) and applying standard indexing and information retrieval
(IR) techniques on the transcripts. Indeed, such an approach has been
shown to be very effective on broadcast news (BN) documents, as
illustrated by the TREC (Text Retrieval Conference) Spoken Docu-
ment Retrieval evaluations [1]. Key contributors to that success were
the low words error rates (WER) on BN transcripts, the redundant
nature of broadcast news documents, and the use of long queries.

However, a significant drawback of such an approach is that out-
of-vocabulary (OOV) queries will not return any document. It has
been experimentally observed that over 10% of user queries can be
out-of-vocabulary[2], as queries often relate to named entities that
typically have a poor coverage in the ASR vocabulary. Moreover, in
many applications (e.g. BN) the OOV rate may get worse over time
unless the recognizer’s vocabulary is periodically updated. Hence,
special attention should be paid to searching OOV queries. In ad-
dition, in applications dealing with conversational telephony quality
audio, the high word error rates can significantly impair the retrieval
performance, especially on short, single-word queries. This is com-
pounded by the need to transcribe the audio very quickly (faster than
real-time), which further degrades word error rates. Under these con-
ditions, relying only on a single (1-best) transcript can significantly
limit the overall performance of the retrieval system.

Popular approaches to deal with OOV queries are based on sub-
word transcripts, where the sub-words are typically phones, syllables,
or word-fragments (sequences of phones)[3, 4, 5]. The word queries
are converted accordingly into sub-word sequences and searched for
in the sub-word transcripts. To account for the high recognition
error rates, lattices are often used to represent alternative recogni-
tion hypotheses. Phone lattices are attractive as they accommodate
high error rate conditions as well as allow for OOV queries to be
used [6, 7, 8, 4, 5, 9, 10]. Indeed, the use of phonetic lattices signifi-
cantly improves recall and does provide the vocabulary independence
required to handle arbitrary queries.

Wh
involve
netic la
can be
lattice c
sons, in
some f
Efficien
the cho
arcs ar
tices.
matchi
Howev
ing for
labels a
ation o
cies (E
a query
trieved
not sca
constru
shortco
languag
compu

In
indexin
time, fo
query a
didate l
approa
query i
bution
uses an
lattices
posed t
the mo
proced
sequen
frequen
providi
per is o
graph i
both B
cludes

In our
into sh
recogn
ument.
phone
ing the
a path

1The
scope of
sing Path-Based Graph Indexing

Bacchiani

ch Center
/PO BOX 218

0598, USA
ibm.com

en using a phonetic lattice based approach, the audio search
s locating a given phone query string in a collection of pho-
ttices. While searching for a phone string in a phonetic lattice
implemented efficiently [5, 10], linearly scanning the entire
ollection does not scale to large databases. For efficiency rea-
verted indices are commonly used in IR system, and indeed

orm of inverted index is required to speed-up the audio search.
t indexing of a collection of lattices is however non-trivial, as
ice of the indexing unit is unclear. In [4], individual lattice

e used as indexing units to invert an entire collection of lat-
Single-label queries can be very efficiently processed, as the
ng lattices are immediately retrieved from the inverted index.
er, some form of linear search is still required when search-
multi-label queries (such as phonetic strings), as sequences of
re not directly available in the index. In [8], a general index-
f lattices is proposed, which indexes expected term frequen-
FT) of fixed-length sub-strings but approximates the EFT of

by the minimum EFT of its sub-strings. Documents are re-
and ranked based on the EFT of the query. The approach does
le to large audio collections due to the complexity of the index
ction, and cannot directly index long sub-strings. Some of the
mings of [8] are addressed in [9], where a N-gram phone-level
e model is associated to each lattice and used to efficiently

te the EFT of any query.
contrast to other approaches, this paper focuses on an efficient
g of phonetic lattices both in terms of index size and retrieval
r arbitrary phone sequence queries. Given a phone sequence
nd a database of phonetic lattices, we first retrieve a list of can-
attices that may contain the query, using a fast but approximate
ch. This is followed by a verification step to ensure that the
s effectively present in the candidate lattices. The main contri-
of this paper is on the first step of the search procedure, which

inverted index structure so that a list of candidate matching
can be retrieved very efficiently using look-up tables. As op-
o [9] which uses a complete set of short index keys and only
st probable long keys, our approach involves a key selection
ure that only selects a small subset of variable-length phone
ces as keys. The index construction procedure is based on a
t structure-based approach for graph indexing [11], known for
ng efficient query processing in large graph databases. The pa-
rganized as follows. In Section 2, we introduce the proposed
ndexing approach. Section 3 reports experimental results on
roadcast News and Switchboard databases, and Section 4 con-
the paper.

2. Principle
application of interest, the audio recordings are first chopped
ort segments (up to 30 sec long), called “documents”. Speech
ition is then used to generate a phonetic lattice for each doc-

The search operates on single word queries represented as
sequences1 and involves retrieving the list of lattices match-
query. A phone sequence query is said to match a lattice if

containing the same phone sequence can be found in the lat-

generation of phone-level queries from word queries is beyond the
this paper.

tice (after skipping non-speech symbols such as silence and noise, if
any). The performance of the retrieval is measured in terms of preci-
sion/recall and the operating point is adjusted by pruning the lattices:
large lattices can improve recall, but at the expense of getting a poor
precision. We detail the procedure used to generate phonetic lattices
in Section 2.1.

Though the search for a given phone string in a given lattice can
be implemented efficiently, for example using one of the approaches
presented in [5, 10], it is very inefficient to sequentially scan all the
lattices to verify whether they contain the query, as the collection of
lattices can be very large. Indeed, in order to scale up to process-
ing hundreds or thousands of hours of audio, it is necessary to use
an inverted index structure to quickly locate a small set of candidate
lattices, using table look-up operations. The time-consuming detailed
search for the phone sequence is then only carried out on the candidate
lattices. The lattice indexing procedure in described in Section 2.2.

2.1. Phonetic lattice generation

As direct phonetic decoding may not have a very high accuracy, we
adopted a two-step procedure to generate phonetic lattices. First, we
generated word-fragment lattices where word-fragment are defined as
variable-length sequences of phones. Then, we converted the word-
fragment lattices into phonetic lattices. A similar 2-step approaches
was also adopted in [5], though a different procedure was used to
generate the word-fragment dictionary.

Our word-fragment dictionary is created by building a phone-
based language model and pruning it to keep non-redundant higher
order N-grams [12]. The list of the resulting phone N-grams is then
used as word-fragments. For example, assuming that a 5-gram phone
LM is built, the entire list of phone 1-gram, 2-gram,...5-gram is used
as word-fragment dictionary. The LM pruning threshold is used to
control the total number of phone N-grams, hence the size of the
word-fragment lexicon.

Given a word-fragment lexicon, it is then possible to train a word-
fragment language model and use it for recognition. As our decoding
strategy is based on finite state machine, a word-fragment static de-
coding graph is eventually generated and used to decode and generate
word-fragment lattices. The final conversion of the word-fragment
lattices to phonetic lattices is then straightforward.

2.2. Path-based phonetic lattice indexing

Once the audio documents have been converted to phonetic lattices,
our objective is to index these lattices so that all documents contain-
ing a given phonetic query can be efficiently retrieved. To solve that
problem, we adopt a graph indexing approach originally developed to
process XML queries [11]. Indeed, our lattice indexing problem is a
simplified case of the classical graph query problem, which, given a
graph database D = {g1, ...gn} and a graph query q, consists in find-
ing all graphs in which q is a subgraph. In our specific application, the
graph gi are the phonetic lattices, and the query q is simply a phone
sequence.

The basic indexing unit selected to index the graph database2 is
a path, defined as a vertex sequence. The general idea of the graph
indexing approach of [11] is to enumerate all paths in the database,
up to a given length maxL, and index them. For a given path, the
index then contains all graphs that include that path.

Given the size of the graphs (in terms of edges) and the large num-
ber of graphs in the database, it is difficult to index all paths. [11] sug-
gests to use frequent subgraph structures as indexing units, generated
using a graph mining algorithm. Since in our application, queries are
sequences (as opposed to graphs), we will still adopt frequent paths
(up to a maximum length maxL) as indexing features. To avoid the
combinatorial growth of the number of frequent paths, only a small
subset of frequent paths will be kept as indexing features. In addition,
a discriminative ratio concept is introduced [11] that attempts to re-
duce the redundancy among frequent paths selected as features. The
concepts of frequent paths and discriminative ratio are described in

2We will refer to the collection of phonetic lattice as the graph database
henceforth.

Section
Le

In our
of a gra
q is a s
along q
describ
Index

Query

Th
the que
time sp
to retri
the ver
quired
therefo
cannot
increas
didate
attemp
dex sm
|Cq|. In
ratio co

2.2.1.

Let |Dq
path qu
called f
suppor
as inde

If q
from th
not freq
we sho
feature
set Cq
is likel
graphs

Th
ing onl
obtaine
to a co
the num
the min
comple
low mi
should

Th
A fragm
if and o
non-de
ment g

2.2.2.

While t
size of
s 2.2.1 and 2.2.2, respectively.
t V (g) be the vertex set of a graph g, and E(g) be the edge set.
application, a phone label is assigned to each edge. The size
ph is defined as the number of edges, denoted |E(g)|. A path
ub-path of a graph g, denoted by q ⊆ g, if the label sequence
also exists in g. The graph query processing is a 2 step process
ed as follows [11].
construction The feature set F is selected by enumerating all
paths up to maximum length maxL satisfying both the fre-
quency and discriminative ratio criteria. For any feature f ∈ F ,
the set of graphs containing f is denoted D f = {gi| f ⊆ gi,gi ∈
D} where D is the entire graph database.
processing Since the index only contains a subset of all paths,
the query is processed in 2 steps:

Search Given a query q, enumerate all features f of the query.
The candidate set is defined as the intersection of all
sets of graphs containing the query features, Cq =

T

f D f
(f ⊆ q and f ∈ F)

Verification For each graph g in Cq, an exact search is carried
out to verify whether g contains the query q. That step
is required since Cq is only guaranteed to contain all the
features in q, but not necessarily the sequence q.

e index construction is an offline procedure that does not affect
ry response time. The query response time is defined as the
ent in the search step, which involves table look-up operations
eve each D f in addition to computing the set intersection, and
ification time, that is equal to |Cq| times the average time re-
for a graph verification operation. Most of the processing is
re spent in the graph verification operation (unless the index
fit in memory in which case the search time may significantly
e), so reducing the response time involves reducing the can-
set |Cq| as much as possible. A good index should therefore
t to use a small number of indexing features to keep the in-
all and manageable, but still large enough so that it minimizes
dices constructed under the frequent path and discriminative
nstraints will have that property.

Frequent paths

| be the number of graphs in the graph database D containing a
ery q. |Dq| is called the support of q. By definition, a path (also
ragment) is frequent if its support is greater than a minimum

t, minSup. Recall that a path has to be frequent to be selected
xing feature.

is frequent, the graphs containing q can directly be retrieved
e index, since by definition frequent paths are indexed. If q is
uent, according to the search procedure outlined in Section 2.2

uld first enumerate all the features fi of q. Let fi be the frequent
of q with the smallest support, support(fi). As the candidate
is defined as

T

D fi , its size is bounded by support(fi), that
y to be close to minSup. As a result, the cost of verifying all
in Cq can be kept small by using a low minimum support.
is illustrates that is is possible to build high quality indices us-
y frequent paths [11]. However, while a small |Cq| can be
d using a small minimum support minSup, it will also lead
mbinatorial explosion of the number of frequent paths. As
ber of distinct paths is directly related to the path length l,
imum support should be a function of l, denoted φ(l). For
teness of the index, short fragment should therefore have a
nimum support, while for compactness reasons, long fragment
have a high support.
e frequency constraint will therefore be expressed as follows:

ent g is frequent under the size increasing support constraint
nly if support(g) ≥ φ(len(g)), where φ(l) is a monotonically

creasing function, and len(g) refers to the length of the frag-
.

Discriminative ratio

he size-increasing support constraint can significantly limit the
the index, large graphs may still contain a large number of

frequent fragments. The discriminative ratio constraint will further
reduce the size of the feature set by retaining only the most “useful”
fragments as indexing features.

Suppose that two similar frequent fragments f1 and f2 are con-
tained in the same set of graphs, D f1 = D f2 , and let’s assume that f2 is
a subsequence of f1. The longest fragment, f1, should not be placed in
the index, since the more general query f2 will return the same set of
graph. f1 is said to be a redundant fragment. By definition, fragment
x is redundant with respect to feature set F if Dx ≈

T

f∈F∧ f⊆x D f . The
condition Dx ≈

T

f∈F∧ f⊆x D f simply indicates that the set of graphs
containing x can be well predicted from the set of graphs containing
all sub-fragments of x. In that regard, there is no point using x as
indexing feature since its sub-fragments provide the required infor-
mation to retrieve Dx.

On the opposite, if the set Dx cannot be predicted from the sub-
fragments of x, x is said to be a discriminative fragment. Formally, x
is discriminative with respect to feature set F if Dx �

T

f∈F∧ f⊆x D f .
A discriminative fragment should be included in the indexing feature
set since not having it would imply retrieving a large candidate set Cx
that will then have to be verified to reject false positive hits.

The discriminative property of a fragment x can be measured by
the discriminative ratio γ, defined as [11]:

γ(x) =
|
T

f∈F∧ f⊆x D f |

|Dx|
. (1)

The discriminative ratio constraint will therefore be expressed as
follows: A fragment g is discriminant under the discriminative ratio
constraint if and only if γ(g) ≥ γmin, where γmin is a minimum dis-
criminative ratio threshold.

2.2.3. Index construction

Given a graph database D, a size-increasing support function φ(l), a
minimum discriminative ratio γmin and a maximum fragment length
maxL, the feature set (index keys) is constructed according to Algo-
rithm 1. As the computation of the discriminative ratio involves com-

Algorithm 1 Feature selection (after [11])

1: F ←{ f /0},D f /0 ← D, l ← 1
2: while l ≤ maxL do
3: for all fragment x, whose size is l do
4: if support(x) ≥ φ(len(x) and γ(x) ≥ γmin then
5: F ← F ∪{x}
6: end if
7: end for
8: l ← l +1
9: end while

10: return F

puting D fi for all features fi, a side product of the feature selection al-
gorithm is the creation of the index. It is worth noting that the feature
set can be extracted on a subset of the graph database, and can then
be used to construct the inverted index. It is then possible to incre-
mentally update the index as more and more documents are available,
without having to regenerate the feature set.

2.2.4. Search

The search procedure used to retrieve the candidate set Cq for a given
query q is described in Algorithm 2. The main idea is to enumerate
all sub-fragments of the query q that are available in the index, and
intersect the corresponding sets of graphs.

The retrieval of the candidate set Cq can be implemented very
efficiently as it only involves table look-up operations and the inter-
section of the sets of graphs retrieved from the index. A verification
step should follow to identify the true matching graphs available in
the candidate set, and reject false positive hits. In our experiments,
the verification step was implemented as a full search through each
lattice, though better implementations are possible [5, 10].

Algori
1: Cq
2: for
3:
4:
5:
6: en
7: ret

Table 1
feature

3.1. B

In a fir
news E
dio. Th
docum
the refe
of 6116
given q
each qu
vocabu
to 5 ph
to cons
dent tri
Gaussi
ated an
were th
the latt
i.e. pat

Fo
perime
(1), an
pruned
extract
is cond
lattice
do not
of the s

Tab
entire l
were ex
tion wa
set to i
both th
seen in
ments
fragme

In
beam m
verifica
candida
thm 2 Search (after [11])
← D
all fragment x ⊆ q and len(x) ≤ maxL do

if x ∈ F then
Cq ←Cq ∩Dx

end if
d for
urn Cq

Frag. Length # Fragments # Features
1 44 3
2 1553 1458
3 27820 25523
4 187348 28568
5 616190 13101
6 1389502 3108
7 2615542 550
8 4426629 70
9 7026082 17
10 10747449 4

Total 27038159 72402

: Total number of distinct fragments and number of indexing
s as a function of the fragment length.

3. Experiments and Results
roadcast News

st series of experiments, we used the English Hub-4 broadcast
val97 and Eval98 data sets, representing about 6 hours of au-
e recordings were segmented into a total of 1484 short audio

ents. The list of queries was defined as all words available in
rence transcript after removing stop words, leading to a total
single word queries. A document is said to be relevant to a

uery if that query is contained in the document. On average,
ery is associated to about 4 relevant documents. The fragment
lary consisted of about 25K word fragments, ranging from 1
one long. A 3-gram fragment-based LM was trained and used
truct a static decoding network. Cross-word, speaker indepen-
phone models were used, for a total of 8k tied-states and 128K
ans. For each audio file, a word-fragment lattice was gener-
d then converted to a phonetic lattice. The phonetic lattices
en pruned using various beam pruning threshold to generate
ices to index. The pruning strategy was based on likelihood,
hs with low likelihood were pruned away.
r each lattice beam pruning, we carried out the following ex-
nts: (1) Index construction, (2) Search, (3) Verification. In step
index is constructed using Algorithm 1, given the database of
lattices. In step (2), for each query a set of lattice candidates is

ed from the index using Algorithm 2. In step (3), a full search
ucted on each lattice in the candidate set to verify whether the
contains the phone sequence query. Note that in this work, we
associate any score to the retrieved documents, and the result
earch is an unordered list of documents.
le 1 represents the total number of distinct fragments in the

attice database, and the final number of indexing features that
tracted from the database. The size increasing support func-
s set to 1 for all fragments up to 3-phone long, and then was
ncrease exponentially with the fragment length. The effect of
e minimum support and the discriminative ratio constraints are

that Table. For example, only 25523 of the 3-phone frag-
were selected as indexing feature (out of the 27820 available
nts), due to the discriminative ratio constraints.
Table 2, we present for each beam pruning threshold (large
eans large lattice) the average precision and recall after the

tion step, the average number of documents per query in the
te set, and the final number of retrieved documents per query

Beam Prec. Rec. |Cq| # Doc
0 53.2 60.3 9 7

0.4 51.5 65.4 10 8
0.6 50.2 68.2 11 9
0.8 48.0 70.7 13 11
1.2 42.8 74.8 15 12
1.5 38.5 77.5 19 16

Table 2: BN - Pruning Beam (0 means 1-best decoding), Average
Precision per query (Prec.), Average Recall per query (Rec.), Average
of documents in the candidate set per query (|Cq|), Average number
of retrieved documents per query (# Doc)

Beam Prec. Rec. |Cq| # Doc
0.4 40.7 53.2 9 8
0.6 39.0 56.0 11 9
0.8 36.9 58.7 13 11
1.2 33.1 63.8 19 16
1.5 29.6 67.9 26 22

Table 3: RT’02 - Pruning Beam, Average Precision per query (Prec.),
Average Recall per query (Rec.), Average # of documents in the can-
didate set per query (|Cq|), Average number of retrieved documents
per query (# Doc)

after verification. The beam value 0 represents the baseline perfor-
mance that corresponds to using a 1-best decoded string to generate
the index. As the lattice beam gets larger, the recall increase as ex-
pected, for a moderate degradation of the precision (up to beam=0.6).
As we do not rank the documents after verification (though it could
easily done by deriving the expected count of the query during the ver-
ification step), the lattice beam allows to control the precision/recall
trade-off. It is interesting to note that the size of the candidate set,
|Cq|, that is the set of candidates lattices extracted from the index us-
ing Algorithm 2 is very small. Therefore, the expensive full search
on each candidate lattice should only be carried out on a few lattices,
and each query can be processed in a fraction of seconds on average
(on 6 hours of audio). In contrast, the phonetic-lattice search of [10]
is reported to take several seconds to search through 1 hour worth of
audio.

3.2. Switchboard

Similar experiments have been carried out on the Switchboard RT’02
evaluation set [13]. The test set was segmented into 6080 short au-
dio documents. The list of queries was made of all non-stop words
in the reference transcripts, leading to a total of 3080 single word
queries. On average, each query is associated to about 4 relevant
documents. The acoustic models were built on about 400 hours of
Switchboard data. Word-fragment lattices were generated using a
25K word-fragment lexicon, and were converted to phonetic lattices.
As for the BN experiments, the lattices were pruned using different
beam pruning thresholds, before indexing. For each beam pruning
threshold, we present in Table 3 the average precision and recall af-
ter the verification step, the average number of documents per query
in the candidate set, and the final number of retrieved documents per
query after verification. As in the BN experiments, the index is able to
retrieve a very small number of candidate documents, by using only
table look-up operations, even on the largest lattices. As a result, on
average, each query is process in a fraction of seconds. To improve the
precision, we combined our vocabulary independent indexing with
a standard word-based index, generated by 1-best decoding using a
35K-word lexicon. The word error rate is 36.5%. The combination is
done using the cascaded approach presented in [4]. The word index
is first used to retrieve a list of documents. If that list is empty, the
vocabulary-independent index is then used. After the combination,
the precision jumps to about 63% for all lattice beam-pruning thresh-

olds, w
vocabu
using i
phonet

We pre
dio sea
for effi
operati
an inve
dexing
“useful
port an
egy can
some o
our app
tract a
search
tion of
each do
the use
pruning

[1] J.
T
st
h
0

[2] B
ex
in

[3] K
tr

[4] M
te
co
p

[5] F
se

[6] D
v
1

[7] D
d
U

[8] C
w
in
ic
B

[9] P.
se

[10] K
la
la

[11] X
st
2
o

[12] K
el

[13] N
h

hile the recall varies from 61.8% to 66.2%. This illustrates that
lary-independent audio search can be efficiently implemented
nverted index structures on both 1-best word transcripts and
ic lattices.

4. Conclusion
sented in this paper a vocabulary independent method for au-
rch. The main contribution of the paper is a scalable algorithm
cient audio retrieval based on arbitrary phone sequence queries
ng on phonetic lattices. The proposed approach is based on
rted index structure for phonetic lattices that uses paths as in-
features. By design, the features are selected based on their
ness” for retrieval purposes using the notion of minimum sup-
d discriminative ratio. We believe that such an indexing strat-

efficiently scale to much larger audio databases. In addition,
f the related work on phonetic search [9, 10] could benefit from
roach which provides a computationally efficient way to ex-
small number of candidate lattices, on which more advanced
strategies could be carried out (for example to locate the posi-
the query within the audio document, or to associate a score to
cument for ranking purposes). In future work, we will study
of alternative lattice pruning strategies (e.g. posterior-based
) and extend our experiments to larger audio databases.

5. References
Garofolo, G. Auzanne, and E. Voorhees, “The

REC spoken document retrieval task: A success
ory,” in Proceedings of TREC-9 conference, 2000,
ttp://www.nist.gov/speech/tests/sdr/sdr2000/papers/-
1plenary1.pdf.

. Logan, P. Moreno, J. M. Van Thong, and E. Whittaker, “An
perimental study of an audio indexing system for the Web,”
Proc. ICSLP, Beijing, China, 2000.

. Ng, Subword-based Approaches for Spoken Document Re-
ieval, Ph.D. thesis, MIT, Feb. 2000.

. Saraclar and R. Sproat, “Lattice-based search for spoken ut-
rance retrieval,” in Proc. of the annual meeting of the HLT
nf. and North American Chapter of the Association for Com-

utational Linguistics, Boston, USA, May 2004.

. Seide, P. Yu, C. Ma, and E. Chang, “Vocabulary-independent
arch in spontaneous speech,” in Proc. IEEE ICASSP, 2004.

. A. James and S. J. Young, “A fast lattice-based approach to
ocbulary independent wordspotting,” in Proc. IEEE ICASSP,
994, vol. 1, pp. 377–380.

. A. James, “A system for unrestricted topic retrieval from ra-
io news broadcasts,” in Proc. IEEE ICASSP, Atlanta, Georgia,
SA, 1996, vol. 1, pp. 279–282.

. Allauzen, M. Mohri, and M. Saraclar, “General indexation of
eighted automata – application to spoken utterance retrieval,”
Proc. of the annual meeting of the HLT conf. and North Amer-

an Chapter of the Association for Computational Linguistics,
oston, USA, May 2004, pp. 33–40.

Yu and F. Seide, “Fast two-stage vocabulary-independent
arch in spontaneous speech,” in Proc. IEEE ICASSP, 2005.

. Thambiratnam and S. Sridharan, “Dynamic match phone-
ttice searches for very fast and accurate unrestricted vocabu-
ry keyword spotting,” in Proc. IEEE ICASSP, 2005.

. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent
ructure-based approach,” in SIGMOD ’04: Proceedings of the
004 ACM SIGMOD international conference on Management
f data, New York, NY, USA, 2004, pp. 335–346, ACM Press.

. Seymore and R. Rosenfeld, “Scalable backoff language mod-
s,” in Proc. ICSLP, vol. 1, pp. 232–235.

IST, “Rich transcription 2002 evaluation,”
ttp://www.nist.gov/speech/tests/rt/rt2002/.

