
Fast, wait-free (2k - l)-Renaming
(Extended abstract)

Abstract

Yehuda Afek*

,We describe a fast, wait-free (2k - 1)-renaming algo-
rithm which takes O(k2) time. (Where k is the con-
tention, the number of processes actually taking steps in
a given run.) The algorithm makes extensive use of tools
and techniques developed by Attiya and Fouren [AF98].
Other extensions, including a fast (long-lived) atomic
snapshot algorithm, are briefly discussed.

1 Introduction

Since early work in mutual exclusion [Lam87], re-
searchers have asked whether distributed algorithms can
be made fast; that is, can their worst-case time complex-
ity be bounded by a function of the number of actually
active or contending processes, rather than the total
number of processes that might take steps [ADT95]‘?
If a fast solution can be found for a given problem, is
there-a trade-off in other measures?

Attiya and Fouren examined several problems
and provide several fast constructions for wait-
free lattice agreement2 and the wait-free renaming
problem3 [AF98]. Among their fast solutions to the
renaming problem, the one with the smallest output

‘Tel Aviv University, Tel-Aviv, Israel. afek&nath.tau.ac.il.
Part of this work was performed while visiting at AT&T Labs.

TAT&T Labs, 180 Park Av., Florham Park, NJ 07932-0971.
mischuOresearch.att.com.

‘Others describe algorithms satisfying this property adaptive,
e.g. [AF98].

‘Lattice agreement is a linearizable decision-problem in which
each process writes its name, and then performs a snapshot oper-
ation, which returns the subset of processes which have previously
written.

31n the f-renaming problem, as many as n processes execute
rename operations. They begin with unique names taken from
a set of size N, and exit with unique names from a set of size
f < N. For wait-free algorithms utilyzing read-write registers, f
must be at least 2n - 1 [HS93]. Algorithms which are not fast
meet this bound [ABND+SO].

Percnission to make digital or hard copies of all or part of this work for
per~na~ or C~;~SS~OOI~~ LIX is granted without fee prwidcd that copies
art: not matic or distributed ibr prolit or commercial adbatltdgc 2nd that
cq)ics bear this notice and the full citation on the first page. TO COPY
otherwise, to republish. to post on servers or to redistribute to lists.
require5 prior specific permission and:or a fee.

PODS: ‘99 Atlanta GA USA

Michael Merritt+

name space reduces the name space to 6k - 1 names,
where k is the number of active processes. This leaves
open the question whether a sub-optimal name space is
an inevitable price of utliyzing a fast algorithm. Our
work closes the remaining gap, demonstrating that an
optimal name space of 2k - 1 can be achieved with a
fast algorithm.

Specifically, we describe an algorithm for reducing
names from a space of size f(k) to 2k - 1, in time
O(f(k12), where f(k) is a bound on the largest input
name among any k active processes. If we use this al-
gorithm after running the fast Attiya-Fouren algorithm
for 6k - l-renaming in time O(k log k) [AF98], so that
f(k) = 6k - 1, the result is a fast (2k - I)-renaming
algorithm which takes O(k2) time.

Our algorithm is a modification of another algorithm
by Attiya and Fouren, which solves (2k - 1)-renaming
but has O(N) worst case time complexity [AF98], where
N is a bound on the original name space. This worst-
case complexity arises even in runs in which the largest
input name of an active process is very small relative to
N.

Our modification of Algorithm 2 in [AF98] remains
optimal in the size of the output name space, and re-
duces the time complexity to a function of the largest
input name of an active process. Yet, the original input
name space is not necessarily sensitive to the number
of active processes-the input name of the only active
process might be N. To this end, a fast renaming al-
gorithm can be run first, which reduces the input name
space to some function of the number of active pro-
cesses, f(k), so that the largest output name of this al-
gorithm, bounded by f(k), is sensitive to the number of
active processes. (Candidate algorithms include Attiya
and Fouren’s adaptation [AF98] of Moir and Anderson’s
k2-renaming algorithm [MA95], or Attiya and Fouren’s
6k - l-renaming algorithm which have worst-case time
complexity of k and k log k, respectively.) Hence, if our
algorithm is run subsequently, with these names as in-
puts, the result is a fast 2k - l-renaming algorithm.
(The resulting composite algorithms have worst-case
time complexities of O(k4) and 0(k”), respectively.)

Copyright ACM 1999 I-581 13-099-6/99105...$5.00
105

2 Algorithm and analysis

Although the algorithm below and the correctness
proofs in the next section are self-contained, the discus-
sion below assumes familiarity with the work of Attiya
and Fouren [AF98].

2.1 Algorithm overview

The task is to reduce a namespace from f(k) names
to 2k - 1. To do this, we modify the Attiya-Fouren
(21c - 1)-renaming algorithm [AF98], which has O(N)
worst case time complexity, and show how to make it
fast. As described in Figure 1, their algorithm depends
on a two-dimensional array of reflectors, each consist-
ing of two binary registers. Each process enters the ar-
ray in the column whose index corresponds to its input
name, moves down through the column until it enters
a reflector that has been set by another process moving
horizontally to the right, and then turns to the right

2N-I

2N-2

2N-3

I 2 3 N-l N

Figure 1: Reflector array for 2k - l-renaming in O(N)
time [AF98].

and moves horizontally through the remaining columns.
(If no reflector has been set by other processes, it turns
and starts moving horizontally to the right at the bot-
tom reflector in the next column.) The row at which it
exits is its output name. This array is of width N and
height at most 2N - 1.

We size this array by setting N = f(n), where n 5 N
is an a priori upper bound on k, the number of active
processes in a given run. Our first observation is that
with the array sized to f(n), by labeling the columns
of this array from right to left, so that low-numbered
processes enter columns near the right edge of the array,
the array is only accessed in the rightmost f(k) columns.

In the Attiya-Fouren algorithm, processes move ver-
tically through their input column until colliding with
a horizontally-moving process or hitting the bottom of
the array, and then turn and move horizontally to the
right. A property of this algorithm is that no pro-
cess moves horizontally in any row above the 2k - 1
bottom-most rows. (No process turns from vertical to
horizontal unless it hits the bottom of the array or an-
other horizontally-moving process.) Hence, any reflec-
tor above the bottom 2n - 1 rows is only traversed verti-
cally and is superfluous. Hence, our second observation

f(n) f(n)-1 f(n)-2 2 1

Figure 2: Modified reflector array for 2k - l-renaming
in O(n + f(k)) time.

106

is that we can remove all but the bottom 2n - 1 rows (of
the 2N - 1 original rows) of the array without changing
the correctness of the algorithm. (See Figure 2.) These
observations together change the time complexity from
O(N) to O(n + f(k)).

The remaining problem is to change this time com-
plexity from O(n + f(k)) to O(f(lc)2). As explained
in the next section, this is achieved by restricting the
processes to be active in the bottom 2f(k) rows of the
array, at the cost of up to 2f(,4) steps in each column
by each process. Hence, instead of accessing n reflec-
tors in its entering column and one in each of as many
as f(k) other columns, each process may access as many
as 2f(k) reflectors in each of f(k) columns.

As in the Attiya-Fouren algorithm, processes move
through the array from left to right, starting from their
input column (indexed by their input name) down to the
first column. But in each column to the right of their
input column, instead of accessing the single reflector at
their current index, they either pass through the reflec-
tors from the bottom row up to their current index, or
from an estimate of the top row down toward the bot-
tom. They run the fast snapshot (lattice-agreement)
algorithm of Attiya and Fouren [AF98] to determine an
adequate estimate of the top row that is no bigger than
Zf(lc). Race conditions introduce some ambiguity, but
in any run, all processes moving vertically in a column
(in either direction) will stop and turn right at one of
two neighboring reflectors.

2.2 Code and explanation

As outlined in the previous section, the algorithm in Fig-
ure 3 can be understood as an adaptation of the Attiya-
Fouren algorithm [AF98] for 2k - l-renaming in O(N)
time. We described two simple modifications of that al-
gorithm that reduce the time complexity to O(n+f(lc)).
In this bound, the O(n) term arises because process p
enters the array at column p, row 2n - 1, and passes
down through the column, possibly as far as row 1. But
since the other active processes are restricted to the bot-
tom 2lc - 1 rows, if p had an estimate for Ic, it could use
that estimate to enter the array above them, but well
below the 2n - 1 bound.

Here another building block from Attiya and Fouren’s
work is useful: using the fast lattice-agreement algo-
rithm of Attiya and Fouren [AF98], process p performs
a write and then a one-shot snapshot operation, return-
ing a set snapp = {smr si} of active processes, where
s, > .., > sr. In this way p learns about other active
processes, and is assured that any active processes not
in snap,,, will return p in their own snapshots. (Again,
every active process is either in p’s snapshot, or sees p
in its own snapshot. Of course, a process may be in p’s
snapshot and also see p in its own snapshot.) We show
(Lemma 3) that p can use the largest input name in

reflector:struct of bits up and down, initially false
column[l : 2n]: array of reflectors

shared variables:
networlc[l : f(n)]: array of columns

/* (Reflectors above network[i][2f(n) - 2i + l]
are unnecessary.) */

local variables:
snap: set of input names
c: column
s, col, maximum, index, j, last : integers

procedure rename(p)
/* Returns new name for process with input name p. */

write(p)
/* Record p in snapshot object, */

snap := snapshot
/* using Attiya-Fouren O(k log k) lattice agreement. */

s := 7nax,EJnap e
for col = p down to 1 do

/* For each column from network[pl to networlc[l]. */
if col E snap then top(col)
else bottom(col)
if col = p then

/* First column for this processor. */
index := 1 + max{{O} U {jlj 6 2s - 2p - 1

and networkfp] b] .down}}
else if network[coZ][index].up

then index := index + 2
od
return(index)

procedure top(c)
/* Set the up bits in column c from the 2s - 2c - 1st

down to 1, */
for j = max(l,2s - 2c - 1) down to 1 do

/* as long as the corresponding down bit is not set. */
if network[c]Ij].down then return
network[c][j].up := true
if network[c][j].down then return

od

procedure bottom(c)
/* Set the down bits in column c from 1st to index */

for j = 1 to index do
/* as long as the corresponding up bit is not set. */

if network[c][j].up then return
network[c][j].down := true
if network[c][j].up then return

od

Figure 3: Code for process with input name p.

107

its snapshot, s, , enter column p at row 2s, - 2p - 1,
and be assured this reflector is at least as high as that
accessed by any process in snapp.

But what about the active processes that are not in
snapp? There may be many of them and they may ac-
cess reflectors well above 2s, - 2p - 1. But they will in
turn see p in their own snapshot. Knowing that p is ac-
tive, they take p’s role and also enter the algorithm from
above, moving down vertically through the column.

Multiple processes moving vertically through a col-
umn requires other adjustments to the Attiya and
Fouren algorithm: an initial read is necessary in each
reflector access, to assure later processes actions are con-
sistent with earlier. In addition, a process not observing
p in its snapshot and moving horizontally to the reflec-
tor at row i in column p, will first access the reflectors
below row i, starting at row 1 and moving up as far as
row i or until meeting a process moving down through
the column.

2.2.1 Estimating an entry point in a column

The processes moving from a high point down in a col-
umn need to know a place to start that is as high as
the top-most reflector reached by any process moving
from the bottom in that column, but the index of this
position must be a function of k, not e.g. 2n, as in
the Attiya-Fouren algorithm. Let c be a column, let
snapma, be the largest snapshot returned that does not
include c, and let smnr be the largest input name in
svhat. We claim that only processes in snap,,, (and
among them, those which have input name greater than
c) enter column c from the bottom, and the highest in-
dex they might reach in c (setting the down bit to true)
is 2(smaz - c) + 1. (Lemma 5.) Although smaZ is not
known to the processes, if a process observes c in its
own snapshot, snap, (and hence enters column c from
the top), then snap,,Z c snap, and so the maximum
name in snap, s, is at least as big as s,,$. Hence, enter-
ing column c at reflector 2s - 2c + 1 is guaranteed to be
high enough to be above any reflector reached by any of
the processes (members of snap,,,) moving from the
bottom in column c. (Lemma 4.) Since 2s 5 2f(lc),
2s - 2c + 1 provides the required “safe” entry point to
the column.

2.2.2 Summing up

Another key argument is a case analysis that shows that
no two process enter a column with the same index.
(Lemmas 7 and 8.)

To see the time bound of O(f(K)‘), consider that each
process enters the array at column c 5 f(k), at height
s < 2f(k), then passes through each lower-numbered
column, either from a height at most 2f(Ic) down, or
from the bottom to a height at most 2f(k) - 1, taking

a constant number of steps at each reflector, for a to-
tal of O(f(lc)‘) steps in the reflector array. The write
and snapshot operations can be carried out in O(k log k)
time using the Attiya-Fouren Lattice Agreement algo-
rithm. Since f(k) 2 k, the result follows.

Theorem 1 The aZgorithm in Figure 3 is a (2k - l)-
renaming algorithm with O(f (k)2) step complexity.

Proof Lemma 2 implies the biggest name assigned
is 2k - 1, and Lemma 9 implies all names assigned are
unique. Each process performs an order k log k snapshot
algorithm, and then enters at most f(lc) columns, either
visiting at most 2k - 1 reflectors, from the bottom up
(by Lemma 2), or 2f(k) reflectors from the top down,
taking at most a constant number of steps in each. n

Corollary 1 There is a (2k - 1)-renaming algorithm
with O(k2) step complexity.

Proof: Processes first execute the (6k - 1)-renaming
algorithm of Attiya and Fouren [AF98], then execute
the algorithm above with f(k) = 6k - 1. n

3 Fast atomic snapshots and
other fast building blocks

In another interesting extension of previous work in
fast algorithms, one can apply ideas from Afek, et
al. [AADGMS] t o extend the fast collect algorithm of
Attiya and Fouren [AF98] to produce the stronger se-
mantics of a (long-lived), fast atomic snapshot primitive.
This primitive provides an abstraction of a single-writer,
multi-reader shared memory in which each address may
be (repeatedly) written by a single process, and read
by all others. In addition, it supports a scan operation,
which returns in an atomic operation the values of all
memory location which were written. The complexity
of all operations in the fast algorithm are O(k2), where
as usual k is the number of processes taking steps (de-
tails in the full paper). This fast snapshot primitive
can in turn be used modularly in other constructions-
for example, we are actively investigating the implica-
tions for constructing fast concurrent timestamp sys-
tems [GLS95] or fast randomized consensus [AH901

The work of Moir and Anderson [MA951 and of At-
tiya and Fouren [AF98] provide an interesting and pow-
erful set of fast algorithms and techniques which can
be used modularly to construct fast solutions to other
fault-tolerant distributed computing problems in the
read-write register model. For example, the O(n2),
(2k - I)-renaming algorithm in this paper uses Attiya
and Fouren’s lattice-agreement and 6k - 1 algorithm as
components. Other modular constructions and exten-
sions of their work are also possible, and suggest that

108

many other problems have fast solutions with low worst-
case step complexity.

For example, subsequent to the work on fast re-
naming described here, Gafni observed that the fast,
O(k)-step complexity collect procedure of Attiya and
Fouren can be used modularly with previously known
algorithms for (2k - l)- renaming to create fast so-
lutions [G98]. Examples of such algorithms include
Gafni’s O(n3) algorithm [G92], Bar-Noy and Dolev’s
O(n4”) solution[BD89], and the algorithm of Burns and
Peterson [BP89], which is cited as having O(n3) step
complexity by Moir [Ml. Use of the fast collect primitive
with these algorithms results in fast, wait-free (21- l)-
renaming algorithms with worst-case step complexity of
O(k3), 0(7~4~), and O(k3), respectively.

Other extensions lead to still more useful, fast build-
ing blocks. For example, the (Sk - 1)-renaming algo-
rithm of Attiya and Fouren can be easily modified to
use fewer names, to a limit of 4k - 1, without affecting
the asymptotic worst-case step complexity. (The origi-
nal algorithm is built modularly from components sized
as increasing powers of 2. The number of names is re-
duced if instead the components are sized as powers of
4, and still farther if powers of 8 are used, with 4k - 1
names used in the limit as the base increases.)

4 Detailed proofs

We focus on complete executions of the algorithm: finite
runs in which every process that carries out a rename
operation completes it. Since the algorithm has no un-
bounded loops and makes calls to registers or to wait-
free procedures (to write(p) and snapshot), each call
will return if the calling process takes steps: the algo-
rithm is wait-free. For the safety properties we consider
below, we need consider only finite executions, each of
which is a prefix of some finite complete execution.

For notational convenience, we identify processes with
their unique input name between f(k) and 1.

Lemma 1 In any complete execution a,

l if process p has index j exiting column c + 1, then
it has index at most j + 2 exiting column c.

l If process p’s index j is the maximum index com-
puted by any process exiting column c+ 1, then the
process with input name c has index at most j + 1
exiting column c.

Proof: The first claim is a simple observation on the
code for updating an index (which either leaves the in-
dex unchanged or increases it by two in each column).
The second claim is a consequence of the code for set-
ting indices for the process with name c, which is one
more than the maximum i such that network[c][i].down
= true, which is at most j. n

Following Attiya and Fouren [AF98], the next lemma
shows that the output name space is at most 2k - 1,
where k is the number of processes which execute re-
naming operations.

Lemma 2 (AF98) L t e (Y be a complete execution in
which only the processes with input names Sk, s1 per-
form renaming operations, where sk > . . . > ~1. Then
for all j, k 2 j 2 1, processes sk through sj exit column
sj and any columns between sj and sj-1 with indices no
greater than 2k - 2j + 1.

Proof The claim is proven by induction on j, from k
down to 1. Note first process sk was the only process
which accessed column Sk, and thus Sk’s index exiting
column Sk was 1. Since no process with an input name
corresponding to any columns between sk and Sk-1 was
active, process sk entered each of these columns from
the bottom and exited with index 1.

Given the claim for sk through sj , we must prove the
claim for the column with index sj-1. By induction, the
indices of sk through sj exiting columns preceding sj-i
are at most 2k - 2j + 1. By part 1 of Lemma 1, their
indices exiting column sj-1 are at most 2k - 2j + 1 + 2
= 2k - 2(j - 1) + 1. Also by part 1 of Lemma 1, process
sj-1 computes index at most 2k-2j+2 = 2k-2(j-1)
in column sj-1. Since no process with an input name
corresponding to any columns between sj-1 and sj-2
was active, each of the k-j+1 processes sk through sj-i
entered these columns from the bottom, and retained
the same index. The lemma follows. n

Lemma 3 Let (Y be a complete execution, and let snap
= {sm, “‘, SI} be a snapshot returned in CY, where s, >
. . . > ~1. Then for all j, m >_ j 2 1, the indices com-
puted by processes sm through sj in column sj are each
at most 2S, - 2Sj + 1.

Proof: The claim is proven by induction on j, from
m down to 1. Note first that if an active process p is
not in snap, then the snapshot taken by p in (Y is a
superset of snap. It follows that every active process
either has input name smaller than s,, or observed sm
in its snapshot. Hence, every process entering column
s, , including s, , will enter column sm from above, and
s,‘s index exiting column s, was 1.

Given the claim for s, through sj, we must prove
the claim for the column with index sj-1. By induction
the indices exiting column aj of processes S, through sj
are at most 2s, - 2sj + 1. By part 1 of Lemma 1, their
indices exiting column sj-1 = 2~,-2sj+1+2(sj-sj-r)
= 2S, - 2Sj-1 + 1.

It remains to argue that process sj-1 has index at
most 2s, - 2sj-i + 1 exiting column sj-1. AS we noted
above, any process p with index not in snap returned a
snapshot with snap as a subset, and hence p observed

109

sj- 1, and so entered column sj- 1 from the top (if in-
deed p entered this column at all). So only s, through
sj could have entered column sj-1 from the bottom,
setting down bits possibly as high as their index upon
exiting the previous column, column sj-1 + 1. As in the
argument above, the index of these processes exiting
column sj-1 + 1 ww at most 2~,,, -2sj-r - 1. By part 1
of Lemma 1, process sj-1 has index at most 2.9, -2sj-1
exiting column sj-1. The lemma follows. w

Lemma 4 Let cr be a complete execution, let c, p, and
q be processes such that p entered column c from the top
and q entered column c at the bottom. Then p entered c
at the reflector network[c][2s-2c- 11, where 2s-2c- 1
is greater than or equal to q’s index exiting column c+ 1.

Proof: Process p computed a snapshot, snapr =

{%I, ***, sl} (where s, > . . . > si), which contains c.
Process q computed a snapshot snap, = {rml, rl}
(where r,! > . . . > rl), which does not contain c. Then
snap, C snapr, and in particular, r,r 5 s,. Since
q entered column c, q 2 c, and q E snap,. It fol-
lows that s, > c, and process p entered c at reflector
network[c][2s, - 2c - 11. Let rz be the smallest ele-
ment of snap. which is larger than c. Note that q > r,.
Then by Lemma 3, q’s index exiting T, was at most
2r,r - 2r, + 1. By part 1 of Lemma 1, q’s index ex-
iting column c + 1 was at most 2r,r - 2r, + 1 + 2(fz-
(c+1))=2r,, -2c-1 5 2&-2c-1. The lemmafollows.
n

Lemma 5 Let cr be a complete execution, let c be a
column index, and let snap = {s,,, , . . . , SI} (where sm >
. . . > ~1) be the largest snapshot returned in CY that does
not include c. If network[c][i].down, then i 5 2s, -
2c- 1

Proof: Suppose network[c][i].down for some i. Let sj
be the least element of snap such that sj 2 c, if such
an element exists. Any process other than s,,, through
sj either has input name less than c, or observed c in
its snapshot, and entered column c from the top. Only
s, through sj could have entered c from the bottom,
setting down bits as high as their index exiting column
c + 1. (Since network[c][i].down, this means sj exists,
i.e. sm > c.) By Lemma 3, their index exiting column
Sj W3.9 at most 2.9, - 2s.j + 1, and by Lemma 1, their
index exiting column c + 1 was at most 2s, - 2sj + 1 +
2(Sj - (C + 1)) = 2Sm - 2C - 1. a

Lemma 6 Let a be an execution, and let c be a column
index. Zf network[c][i].up and network[c][j].down then
i > j.

Proof: Suppose network[c][i].up, network[c][j].down
and i < j. Since the down bits in a column are set
by each processor from the bottom up, it follows that

the down bits below j are also set at this point, partic-
ularly network[c][i].down and network[c][i + l].down.
By Lemma 4, any process entering column c from the
top started above entry i, setting the up bits from
the top down. Hence, networl[c][i].up also implies
network[c][i + 11.21~. M oreover, there exists a process
p, such that p wrote network[c][i].down := true and
network[c][i + l].d own := true, and there exists a pro-
cess q, such that q wrote networlc[c][i+l].up := true and
network[c][i].up := true. Now, p set network[c][i].down
and then read network[c][i + l].up = false, so this
write by p preceded q’s setting of network[c][i + 11.~~.
But similarly, q set network[c][i + l].up before reading
network[c][i].down = false, so q’s write to networiE[c][i+
l].up preceded p’s write to network[c][i].down, a contra-
diction. The lemma follows. n

Lemma 7 Let a be a complete execution, and let c be a
column index. If two processes compute different indices
in column c + 1 then they exit column c with distinct
indices.

Proof: If c is not the input name of any process that
took steps in CY, then no up bit is set in column c, every
process retained its index from column c + 1, and the
result follows by induction. So assume that process c
performed a rename operation in cr.

Suppose that two processes pj and pj-2 entered col-
umn c from column c + 1 with indices j and j - 2,
and that both exited with index j from column c. (Be-
cause each process entering from an earlier column ei-
ther kept its index or adds two to it, this is the only
possible conflict between two such processes.) Then
process pj read network[c][j].up = false, and pj-2 read
networlc[c]b - 21.21~ = true when computing their in-
dices in column c.

There are two cases, depending on whether pj saw c
in its snapshot operation. If so, then pj entered column
c from the top. Since pj appeared in its own snap-
shot, pj entered column c at or above network[c][j],
and since pj later read network[c]b].up = false, pj read
network[c]b’].down = true for some j’ 2 j. But this
and networlc[c]lj - 21.21~ = true contradict Lemma 6.

So assume that pj did not see c in its snapshot opera-
tion. Then pj entered column c from the bottom, mov-
ing from network[c][l] to network[c][j], finding each up
bit false (since it later reads network[c]b].up = false),
and setting every down bit to true in each reflector
through at least network[c][j - 11. But again this and
network[c]b - Z].np = true contradict Lemma 6.

It follows that processes entering column c from col-
umn c + 1 with distinct indices exit column c with dis-
tinct indices. n

Lemma 8 Let o be a complete execution, and let c be a
column index. If the process with input name c executed

110

a renaming operation, it exited column c with an index
that is distinct from that of any other process exiting
column c.

Proof: There are several cases to consider. First, c
may have found all down bits it examined to be false
and computes the index 1. For this case, we consider
possible conflicts with processes exiting column c + 1
with index 1. Second, c may have found network[c][i -
l].down = true for some i and exited with index i. We
consider possible conflicts with processes entering from
column c + 1 with index i - 2 and i.

0 Process c computed index 1 after setting
network[c][l].up := true and finding
networK[c][l].down = false. Suppose another
process p entered c with index 1. If p read
networlc[c][l].up = t rue then it computed in-
dex 3, so suppose it read networlc[c][l].up =
false. If p entered column c from the bot-
tom, it set network[c][l].down := true and
read networlc[c][l].up = false. We have c’s
setting network[c][l].up := true before reading
network[c][l].down = false, which in turn pre-
cedes p’s network[c][l].down := true which pre-
cedes reading network[c][l].up = false. But
this last read by p in turn precedes c’s assign-
ment network[c][l].up := true, a contradiction.
If p entered column c from the top, it must
not have set network[c][l].up := true, but read
network[c][j].d own = true for some j 1 1. By
Lemma 6, j = 1, and we have the same contra-
diction.

l Suppose then that c computes index i > 1, by ob-
serving network[c][i - l].down = true. If i > 2, by
Lemma 6 network[c][i - 2].up = false after (Y, so a
process entering with index i - 2 will not compute
index i.

The only other possible conflict, for i > 1, is with
a process p entering from column c + 1 with index
i, and finding networlc[c][i].up = false when com-
puting its index. Let snap, = {sm, sl} be the
snapshot taken by process p, where sm > . . . > si .

If p did not observe c in snapp, it entered column c
from the bottom, setting down bits until it reached
reflector i or observed an up bit set to true. By
Lemma 4, every process (including c) that entered
column c from the top entered at or above reflec-
tor i. So if p observed network[c][j].up = true
for j < i, then at that point network[c][i].up =
true. But p later read this as false when comput-
ing its index, a contradiction. Hence, p read every
up bit false up through reflector i, and in partic-
ular set network[c][i].d own to true before reading
network[c][i].up = false. But c set network[c][i].up

= true before reading network[c][i].down = false,
leading to the usual precedence cycle.

It follows that p did observe c in snapr. Since c
observed network[c][i - l].down = true, some pro-
cess q such that q > c left column c + 1 with in-
dex at least i - 1 and entered column c from the
bottom, setting the down bits as high as reflector
i - 1. Let snapa = {T,),ri} be the snapshot
taken by process q, where r,) > . . . > ri. Since
c is in snapr and not snapq, q E snapP c snapp.
Let sj be the smallest element of snapr, that is big-
ger than c. By Lemma 3, p’s index leaving col-
umn sj is at most 2s, - 2sj + 1, and by part 1 of
Lemma 1, p’s index, i, leaving column c + 1 is at
most 2s,-2sj+l+2(sj-(c+l)) = 2~,-2~-1. But
this is exactly the reflector at which p entered col-
umn c. Since p later read network[c][i].up = false,
it must not have set network[c][i].up to true. Hence
it read networlc[c][j].down = true for some j 2 i,
and at the time of that read, network[c][i].down
= true. In turn, this means some process with in-
coming index i or higher entered column c from
the bottom, and again by Lemma 3, c entered col-
umn c at or above reflector i. Since it later read
network[c][i].down = false, c must have found all
down bits down to i set to false, and in particular
set network[c][i].up = true.

We have again that c set network[c][i].up =
true and later read network[c][i].down = false,
and network[c][i].down was true before p read
network[c][i].up = false. But the later read by
p preceded the assignment by c, and the read by
c preceded the assignment to network[c][i].down,
a contradiction. It follows that p must observe
network[c][i].up = true, and compute i + 2 as its
index leaving column c. The lemma follows.

Lemma 9 Let Q be a complete execution, and let c be a
column index. Then all processes with input names c or
greater which invoke renaming operations exit column c
with distinct indices.

Proof: The proof is by induction on columns, from col-
umn f(k) down to 1. Since input names are unique, at
most one process (the one with input name f(k)) exited
column f(k). So assume that all processes with input
names c+ 1 or greater exited column c+ 1 with distinct
indices. We must show this property holds also for col-
umn c. By Lemma 7, all the processes with input names
greater than c exited column c with distinct indices. By
Lemma 8, if the process with input name c invoked a
renaming operation, it exited column c with an index
that is distinct from that of any other process exiting
column c. The lemma follows. n

111

References

[AADGMS] Y. Afek, H. Attiya, D. Dolev, E. Gafni,
M. Merritt, and N. Shavit, Atomic snap-
shots of shared memory, Journal of the ACM,
40(4):873-890, 1993.

[ADT95] Afek, Y., Dauber, D. and Touitou, D. Wait-
free made fast, Proceedings of the 23rd An-
nual ACM Symposium on the Theory of Com-
puting, 538-547, May 1995.

[AH901 J. A p s nes and M. Herlihy, Fast randomized
consensus using shared memory, Journal of
algorithms, 441-461, September 1990.

[ABND+SO] H. Attiya, A. Bar-Noy, D. Dolev,
D. Koller, D. Peleg, and R. Reischuk. Renam-
ing in an asynchronous environment, Journal
of the ACM 37(3)524-548, July 1990.

[AF98]

[BD89]

[BP891

KW

W21

Attiya, H. and Fouren, A. Adaptive wait-free
algorithms for lattice agreement and renam-
ing, In Proc. 17th Annual ACM Symp. on
Principles of Distributed Computing, 277-286,
1998. (Extended version available as Technion
Computer Science Department Technical Re-
port #0931, April 1998.)

A. Bar-Noy and D. Dolev, Shared memory
versus message-passing in an asynchronous
distributed environment, In Proc. 8th An-
nual ACM Symp. on Principles of Distributed
Computing, 307-318, 1989.

J. Burns and L. Peterson, The ambiguity of
choosing, In Proc. 8th Annual ACM Symp. on
Principles of Distributed Computing, 41-51,
1989.

E. Gafni, Public communication, 17th An-
nual ACM Symp. on Principles of Distributed
Computing, July 1998, Puerto Vallarto, Mex-
ico, July 1998.

E. Gafni, More about renaming: Fast algo-
rithm and reduction to the k-set Test-and-Set
problem. Unpublished manuscript, 1992.

[GLS95] R. Gawlick, N. Lynch, and N. Shavit, Concur-
rent timestamping made simple, In Proc. of
the 1st Israel Symp. on the Theory of Com-
puting and Systems, Springer-Verlag, 171-185,
May 1992.

[HS93] M. Herlihy and N. Shavit. The asynchronous
computability theorem for t-resilient tasks. In
Proc. 25th ACM Symp. on Theory of Com-
puting, 111-120, May 1993.

112

[Lam871 L. Lamport. A fast mutual exclusion algo-
rithms. ACM Trans. on Computer Systems,
5(1):1-11, February 1987.

[MA951 M. M oir and J. Anderson, Wait-free algo-
rithms for fast, long-lived renaming, Science
of Computer Programming 25(1):1-39, Octo-
ber 1995.

[Ml M. Moir, Fast, long-lived renaming improved
and simplified, Science of Computer Program-
ming, 30(3):287-308, March 1998.

