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Abstract 

Yehuda Afek* 

,We describe a fast, wait-free (2k - 1)-renaming algo- 
rithm which takes O(k2) time. (Where k is the con- 
tention, the number of processes actually taking steps in 
a given run.) The algorithm makes extensive use of tools 
and techniques developed by Attiya and Fouren [AF98]. 
Other extensions, including a fast (long-lived) atomic 
snapshot algorithm, are briefly discussed. 

1 Introduction 

Since early work in mutual exclusion [Lam87], re- 
searchers have asked whether distributed algorithms can 
be made fast; that is, can their worst-case time complex- 
ity be bounded by a function of the number of actually 
active or contending processes, rather than the total 
number of processes that might take steps [ADT95]‘? 
If a fast solution can be found for a given problem, is 
there-a trade-off in other measures? 

Attiya and Fouren examined several problems 
and provide several fast constructions for wait- 
free lattice agreement2 and the wait-free renaming 
problem3 [AF98]. Among their fast solutions to the 
renaming problem, the one with the smallest output 
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‘Others describe algorithms satisfying this property adaptive, 
e.g. [AF98]. 

‘Lattice agreement is a linearizable decision-problem in which 
each process writes its name, and then performs a snapshot oper- 
ation, which returns the subset of processes which have previously 
written. 

31n the f-renaming problem, as many as n processes execute 
rename operations. They begin with unique names taken from 
a set of size N, and exit with unique names from a set of size 
f < N. For wait-free algorithms utilyzing read-write registers, f 
must be at least 2n - 1 [HS93]. Algorithms which are not fast 
meet this bound [ABND+SO]. 

Percnission to make digital or hard copies of all or part of this work for 
per~na~ or C~;~SS~OOI~~ LIX is granted without fee prwidcd that copies 
art: not matic or distributed ibr prolit or commercial adbatltdgc 2nd that 
cq)ics bear this notice and the full citation on the first page. TO COPY 
otherwise, to republish. to post on servers or to redistribute to lists. 
require5 prior specific permission and:or a fee. 

PODS: ‘99 Atlanta GA USA 

Michael Merritt+ 

name space reduces the name space to 6k - 1 names, 
where k is the number of active processes. This leaves 
open the question whether a sub-optimal name space is 
an inevitable price of utliyzing a fast algorithm. Our 
work closes the remaining gap, demonstrating that an 
optimal name space of 2k - 1 can be achieved with a 
fast algorithm. 

Specifically, we describe an algorithm for reducing 
names from a space of size f(k) to 2k - 1, in time 
O(f(k12), where f(k) is a bound on the largest input 
name among any k active processes. If we use this al- 
gorithm after running the fast Attiya-Fouren algorithm 
for 6k - l-renaming in time O(k log k) [AF98], so that 
f(k) = 6k - 1, the result is a fast (2k - I)-renaming 
algorithm which takes O(k2) time. 

Our algorithm is a modification of another algorithm 
by Attiya and Fouren, which solves (2k - 1)-renaming 
but has O(N) worst case time complexity [AF98], where 
N is a bound on the original name space. This worst- 
case complexity arises even in runs in which the largest 
input name of an active process is very small relative to 
N. 

Our modification of Algorithm 2 in [AF98] remains 
optimal in the size of the output name space, and re- 
duces the time complexity to a function of the largest 
input name of an active process. Yet, the original input 
name space is not necessarily sensitive to the number 
of active processes-the input name of the only active 
process might be N. To this end, a fast renaming al- 
gorithm can be run first, which reduces the input name 
space to some function of the number of active pro- 
cesses, f(k), so that the largest output name of this al- 
gorithm, bounded by f(k), is sensitive to the number of 
active processes. (Candidate algorithms include Attiya 
and Fouren’s adaptation [AF98] of Moir and Anderson’s 
k2-renaming algorithm [MA95], or Attiya and Fouren’s 
6k - l-renaming algorithm which have worst-case time 
complexity of k and k log k, respectively.) Hence, if our 
algorithm is run subsequently, with these names as in- 
puts, the result is a fast 2k - l-renaming algorithm. 
(The resulting composite algorithms have worst-case 
time complexities of O(k4) and 0( k”), respectively.) 
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2 Algorithm and analysis 

Although the algorithm below and the correctness 
proofs in the next section are self-contained, the discus- 
sion below assumes familiarity with the work of Attiya 
and Fouren [AF98]. 

2.1 Algorithm overview 

The task is to reduce a namespace from f(k) names 
to 2k - 1. To do this, we modify the Attiya-Fouren 
(21c - 1)-renaming algorithm [AF98], which has O(N) 
worst case time complexity, and show how to make it 
fast. As described in Figure 1, their algorithm depends 
on a two-dimensional array of reflectors, each consist- 
ing of two binary registers. Each process enters the ar- 
ray in the column whose index corresponds to its input 
name, moves down through the column until it enters 
a reflector that has been set by another process moving 
horizontally to the right, and then turns to the right 

2N-I 

2N-2 

2N-3 

I 2 3 N-l N 

Figure 1: Reflector array for 2k - l-renaming in O(N) 
time [AF98]. 

and moves horizontally through the remaining columns. 
(If no reflector has been set by other processes, it turns 
and starts moving horizontally to the right at the bot- 
tom reflector in the next column.) The row at which it 
exits is its output name. This array is of width N and 
height at most 2N - 1. 

We size this array by setting N = f(n), where n 5 N 
is an a priori upper bound on k, the number of active 
processes in a given run. Our first observation is that 
with the array sized to f(n), by labeling the columns 
of this array from right to left, so that low-numbered 
processes enter columns near the right edge of the array, 
the array is only accessed in the rightmost f(k) columns. 

In the Attiya-Fouren algorithm, processes move ver- 
tically through their input column until colliding with 
a horizontally-moving process or hitting the bottom of 
the array, and then turn and move horizontally to the 
right. A property of this algorithm is that no pro- 
cess moves horizontally in any row above the 2k - 1 
bottom-most rows. (No process turns from vertical to 
horizontal unless it hits the bottom of the array or an- 
other horizontally-moving process.) Hence, any reflec- 
tor above the bottom 2n - 1 rows is only traversed verti- 
cally and is superfluous. Hence, our second observation 

f(n) f(n)-1 f(n)-2 2 1 

Figure 2: Modified reflector array for 2k - l-renaming 
in O(n + f(k)) time. 
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is that we can remove all but the bottom 2n - 1 rows (of 
the 2N - 1 original rows) of the array without changing 
the correctness of the algorithm. (See Figure 2.) These 
observations together change the time complexity from 
O(N) to O(n + f(k)). 

The remaining problem is to change this time com- 
plexity from O(n + f(k)) to O(f(lc)2). As explained 
in the next section, this is achieved by restricting the 
processes to be active in the bottom 2f(k) rows of the 
array, at the cost of up to 2f(,4) steps in each column 
by each process. Hence, instead of accessing n reflec- 
tors in its entering column and one in each of as many 
as f(k) other columns, each process may access as many 
as 2f(k) reflectors in each of f(k) columns. 

As in the Attiya-Fouren algorithm, processes move 
through the array from left to right, starting from their 
input column (indexed by their input name) down to the 
first column. But in each column to the right of their 
input column, instead of accessing the single reflector at 
their current index, they either pass through the reflec- 
tors from the bottom row up to their current index, or 
from an estimate of the top row down toward the bot- 
tom. They run the fast snapshot (lattice-agreement) 
algorithm of Attiya and Fouren [AF98] to determine an 
adequate estimate of the top row that is no bigger than 
Zf(lc). Race conditions introduce some ambiguity, but 
in any run, all processes moving vertically in a column 
(in either direction) will stop and turn right at one of 
two neighboring reflectors. 

2.2 Code and explanation 

As outlined in the previous section, the algorithm in Fig- 
ure 3 can be understood as an adaptation of the Attiya- 
Fouren algorithm [AF98] for 2k - l-renaming in O(N) 
time. We described two simple modifications of that al- 
gorithm that reduce the time complexity to O(n+f(lc)). 
In this bound, the O(n) term arises because process p 
enters the array at column p, row 2n - 1, and passes 
down through the column, possibly as far as row 1. But 
since the other active processes are restricted to the bot- 
tom 2lc - 1 rows, if p had an estimate for Ic, it could use 
that estimate to enter the array above them, but well 
below the 2n - 1 bound. 

Here another building block from Attiya and Fouren’s 
work is useful: using the fast lattice-agreement algo- 
rithm of Attiya and Fouren [AF98], process p performs 
a write and then a one-shot snapshot operation, return- 
ing a set snapp = {smr . . . . si} of active processes, where 
s, > .., > sr. In this way p learns about other active 
processes, and is assured that any active processes not 
in snap,,, will return p in their own snapshots. (Again, 
every active process is either in p’s snapshot, or sees p 
in its own snapshot. Of course, a process may be in p’s 
snapshot and also see p in its own snapshot.) We show 
(Lemma 3) that p can use the largest input name in 

reflector:struct of bits up and down, initially false 
column[l : 2n]: array of reflectors 

shared variables: 
networlc[l : f(n)]: array of columns 

/* (Reflectors above network[i][2f(n) - 2i + l] 
are unnecessary.) */ 

local variables: 
snap: set of input names 
c: column 
s, col, maximum, index, j, last : integers 

procedure rename(p) 
/* Returns new name for process with input name p. */ 

write(p) 
/* Record p in snapshot object, */ 

snap := snapshot 
/* using Attiya-Fouren O(k log k) lattice agreement. */ 

s := 7nax,EJnap e 
for col = p down to 1 do 

/* For each column from network[pl to networlc[l]. */ 
if col E snap then top(col) 
else bottom(col) 
if col = p then 

/* First column for this processor. */ 
index := 1 + max{{O} U {jlj 6 2s - 2p - 1 

and networkfp] b] .down}} 
else if network[coZ][index].up 

then index := index + 2 
od 
return(index) 

procedure top(c) 
/* Set the up bits in column c from the 2s - 2c - 1st 

down to 1, */ 
for j = max(l,2s - 2c - 1) down to 1 do 

/* as long as the corresponding down bit is not set. */ 
if network[c]Ij].down then return 
network[c][j].up := true 
if network[c][j].down then return 

od 

procedure bottom(c) 
/* Set the down bits in column c from 1st to index */ 

for j = 1 to index do 
/* as long as the corresponding up bit is not set. */ 

if network[c][j].up then return 
network[c][j].down := true 
if network[c][j].up then return 

od 

Figure 3: Code for process with input name p. 
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its snapshot, s, , enter column p at row 2s, - 2p - 1, 
and be assured this reflector is at least as high as that 
accessed by any process in snapp. 

But what about the active processes that are not in 
snapp? There may be many of them and they may ac- 
cess reflectors well above 2s, - 2p - 1. But they will in 
turn see p in their own snapshot. Knowing that p is ac- 
tive, they take p’s role and also enter the algorithm from 
above, moving down vertically through the column. 

Multiple processes moving vertically through a col- 
umn requires other adjustments to the Attiya and 
Fouren algorithm: an initial read is necessary in each 
reflector access, to assure later processes actions are con- 
sistent with earlier. In addition, a process not observing 
p in its snapshot and moving horizontally to the reflec- 
tor at row i in column p, will first access the reflectors 
below row i, starting at row 1 and moving up as far as 
row i or until meeting a process moving down through 
the column. 

2.2.1 Estimating an entry point in a column 

The processes moving from a high point down in a col- 
umn need to know a place to start that is as high as 
the top-most reflector reached by any process moving 
from the bottom in that column, but the index of this 
position must be a function of k, not e.g. 2n, as in 
the Attiya-Fouren algorithm. Let c be a column, let 
snapma, be the largest snapshot returned that does not 
include c, and let smnr be the largest input name in 
svhat. We claim that only processes in snap,,, (and 
among them, those which have input name greater than 
c) enter column c from the bottom, and the highest in- 
dex they might reach in c (setting the down bit to true) 
is 2(smaz - c) + 1. (Lemma 5.) Although smaZ is not 
known to the processes, if a process observes c in its 
own snapshot, snap, (and hence enters column c from 
the top), then snap,,Z c snap, and so the maximum 
name in snap, s, is at least as big as s,,$. Hence, enter- 
ing column c at reflector 2s - 2c + 1 is guaranteed to be 
high enough to be above any reflector reached by any of 
the processes (members of snap,,,) moving from the 
bottom in column c. (Lemma 4.) Since 2s 5 2f(lc), 
2s - 2c + 1 provides the required “safe” entry point to 
the column. 

2.2.2 Summing up 

Another key argument is a case analysis that shows that 
no two process enter a column with the same index. 
(Lemmas 7 and 8.) 

To see the time bound of O(f(K)‘), consider that each 
process enters the array at column c 5 f(k), at height 
s < 2f(k), then passes through each lower-numbered 
column, either from a height at most 2f(Ic) down, or 
from the bottom to a height at most 2f(k) - 1, taking 

a constant number of steps at each reflector, for a to- 
tal of O(f(lc)‘) steps in the reflector array. The write 
and snapshot operations can be carried out in O(k log k) 
time using the Attiya-Fouren Lattice Agreement algo- 
rithm. Since f(k) 2 k, the result follows. 

Theorem 1 The aZgorithm in Figure 3 is a (2k - l)- 
renaming algorithm with O(f (k)2) step complexity. 

Proof Lemma 2 implies the biggest name assigned 
is 2k - 1, and Lemma 9 implies all names assigned are 
unique. Each process performs an order k log k snapshot 
algorithm, and then enters at most f(lc) columns, either 
visiting at most 2k - 1 reflectors, from the bottom up 
(by Lemma 2), or 2f(k) reflectors from the top down, 
taking at most a constant number of steps in each. n 

Corollary 1 There is a (2k - 1)-renaming algorithm 
with O(k2) step complexity. 

Proof: Processes first execute the (6k - 1)-renaming 
algorithm of Attiya and Fouren [AF98], then execute 
the algorithm above with f(k) = 6k - 1. n 

3 Fast atomic snapshots and 
other fast building blocks 

In another interesting extension of previous work in 
fast algorithms, one can apply ideas from Afek, et 
al. [AADGMS] t o extend the fast collect algorithm of 
Attiya and Fouren [AF98] to produce the stronger se- 
mantics of a (long-lived), fast atomic snapshot primitive. 
This primitive provides an abstraction of a single-writer, 
multi-reader shared memory in which each address may 
be (repeatedly) written by a single process, and read 
by all others. In addition, it supports a scan operation, 
which returns in an atomic operation the values of all 
memory location which were written. The complexity 
of all operations in the fast algorithm are O(k2), where 
as usual k is the number of processes taking steps (de- 
tails in the full paper). This fast snapshot primitive 
can in turn be used modularly in other constructions- 
for example, we are actively investigating the implica- 
tions for constructing fast concurrent timestamp sys- 
tems [GLS95] or fast randomized consensus [AH901 

The work of Moir and Anderson [MA951 and of At- 
tiya and Fouren [AF98] provide an interesting and pow- 
erful set of fast algorithms and techniques which can 
be used modularly to construct fast solutions to other 
fault-tolerant distributed computing problems in the 
read-write register model. For example, the O(n2), 
(2k - I)-renaming algorithm in this paper uses Attiya 
and Fouren’s lattice-agreement and 6k - 1 algorithm as 
components. Other modular constructions and exten- 
sions of their work are also possible, and suggest that 
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many other problems have fast solutions with low worst- 
case step complexity. 

For example, subsequent to the work on fast re- 
naming described here, Gafni observed that the fast, 
O(k)-step complexity collect procedure of Attiya and 
Fouren can be used modularly with previously known 
algorithms for (2k - l)- renaming to create fast so- 
lutions [G98]. Examples of such algorithms include 
Gafni’s O(n3) algorithm [G92], Bar-Noy and Dolev’s 
O(n4”) solution[BD89], and the algorithm of Burns and 
Peterson [BP89], which is cited as having O(n3) step 
complexity by Moir [Ml. Use of the fast collect primitive 
with these algorithms results in fast, wait-free (21- l)- 
renaming algorithms with worst-case step complexity of 
O(k3), 0(7~4~), and O(k3), respectively. 

Other extensions lead to still more useful, fast build- 
ing blocks. For example, the (Sk - 1)-renaming algo- 
rithm of Attiya and Fouren can be easily modified to 
use fewer names, to a limit of 4k - 1, without affecting 
the asymptotic worst-case step complexity. (The origi- 
nal algorithm is built modularly from components sized 
as increasing powers of 2. The number of names is re- 
duced if instead the components are sized as powers of 
4, and still farther if powers of 8 are used, with 4k - 1 
names used in the limit as the base increases.) 

4 Detailed proofs 

We focus on complete executions of the algorithm: finite 
runs in which every process that carries out a rename 
operation completes it. Since the algorithm has no un- 
bounded loops and makes calls to registers or to wait- 
free procedures (to write(p) and snapshot), each call 
will return if the calling process takes steps: the algo- 
rithm is wait-free. For the safety properties we consider 
below, we need consider only finite executions, each of 
which is a prefix of some finite complete execution. 

For notational convenience, we identify processes with 
their unique input name between f(k) and 1. 

Lemma 1 In any complete execution a, 

l if process p has index j exiting column c + 1, then 
it has index at most j + 2 exiting column c. 

l If process p’s index j is the maximum index com- 
puted by any process exiting column c+ 1, then the 
process with input name c has index at most j + 1 
exiting column c. 

Proof: The first claim is a simple observation on the 
code for updating an index (which either leaves the in- 
dex unchanged or increases it by two in each column). 
The second claim is a consequence of the code for set- 
ting indices for the process with name c, which is one 
more than the maximum i such that network[c][i].down 
= true, which is at most j. n 

Following Attiya and Fouren [AF98], the next lemma 
shows that the output name space is at most 2k - 1, 
where k is the number of processes which execute re- 
naming operations. 

Lemma 2 (AF98) L t e (Y be a complete execution in 
which only the processes with input names Sk, . . . . s1 per- 
form renaming operations, where sk > . . . > ~1. Then 
for all j, k 2 j 2 1, processes sk through sj exit column 
sj and any columns between sj and sj-1 with indices no 
greater than 2k - 2j + 1. 

Proof The claim is proven by induction on j, from k 
down to 1. Note first process sk was the only process 
which accessed column Sk, and thus Sk’s index exiting 
column Sk was 1. Since no process with an input name 
corresponding to any columns between sk and Sk-1 was 
active, process sk entered each of these columns from 
the bottom and exited with index 1. 

Given the claim for sk through sj , we must prove the 
claim for the column with index sj-1. By induction, the 
indices of sk through sj exiting columns preceding sj-i 
are at most 2k - 2j + 1. By part 1 of Lemma 1, their 
indices exiting column sj-1 are at most 2k - 2j + 1 + 2 
= 2k - 2( j - 1) + 1. Also by part 1 of Lemma 1, process 
sj-1 computes index at most 2k-2j+2 = 2k-2(j-1) 
in column sj-1. Since no process with an input name 
corresponding to any columns between sj-1 and sj-2 
was active, each of the k-j+1 processes sk through sj-i 
entered these columns from the bottom, and retained 
the same index. The lemma follows. n 

Lemma 3 Let (Y be a complete execution, and let snap 
= {sm, “‘, SI} be a snapshot returned in CY, where s, > 
. . . > ~1. Then for all j, m >_ j 2 1, the indices com- 
puted by processes sm through sj in column sj are each 
at most 2S, - 2Sj + 1. 

Proof: The claim is proven by induction on j, from 
m down to 1. Note first that if an active process p is 
not in snap, then the snapshot taken by p in (Y is a 
superset of snap. It follows that every active process 
either has input name smaller than s,, or observed sm 
in its snapshot. Hence, every process entering column 
s, , including s, , will enter column sm from above, and 
s,‘s index exiting column s, was 1. 

Given the claim for s, through sj, we must prove 
the claim for the column with index sj-1. By induction 
the indices exiting column aj of processes S, through sj 
are at most 2s, - 2sj + 1. By part 1 of Lemma 1, their 
indices exiting column sj-1 = 2~,-2sj+1+2(sj-sj-r) 
= 2S, - 2Sj-1 + 1. 

It remains to argue that process sj-1 has index at 
most 2s, - 2sj-i + 1 exiting column sj-1. AS we noted 
above, any process p with index not in snap returned a 
snapshot with snap as a subset, and hence p observed 
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sj- 1, and so entered column sj- 1 from the top (if in- 
deed p entered this column at all). So only s, through 
sj could have entered column sj-1 from the bottom, 
setting down bits possibly as high as their index upon 
exiting the previous column, column sj-1 + 1. As in the 
argument above, the index of these processes exiting 
column sj-1 + 1 ww at most 2~,,, -2sj-r - 1. By part 1 
of Lemma 1, process sj-1 has index at most 2.9, -2sj-1 
exiting column sj-1. The lemma follows. w 

Lemma 4 Let cr be a complete execution, let c, p, and 
q be processes such that p entered column c from the top 
and q entered column c at the bottom. Then p entered c 
at the reflector network[c][2s-2c- 11, where 2s-2c- 1 
is greater than or equal to q’s index exiting column c+ 1. 

Proof: Process p computed a snapshot, snapr = 

{%I, ***, sl} (where s, > . . . > si), which contains c. 
Process q computed a snapshot snap, = {rml, . . . . rl} 
(where r,! > . . . > rl), which does not contain c. Then 
snap, C snapr, and in particular, r,r 5 s,. Since 
q entered column c, q 2 c, and q E snap,. It fol- 
lows that s, > c, and process p entered c at reflector 
network[c][2s, - 2c - 11. Let rz be the smallest ele- 
ment of snap. which is larger than c. Note that q > r,. 
Then by Lemma 3, q’s index exiting T, was at most 
2r,r - 2r, + 1. By part 1 of Lemma 1, q’s index ex- 
iting column c + 1 was at most 2r,r - 2r, + 1 + 2(fz- 
(c+1))=2r,, -2c-1 5 2&-2c-1. The lemmafollows. 
n 

Lemma 5 Let cr be a complete execution, let c be a 
column index, and let snap = {s,,, , . . . , SI} (where sm > 
. . . > ~1) be the largest snapshot returned in CY that does 
not include c. If network[c][i].down, then i 5 2s, - 
2c- 1 

Proof: Suppose network[c][i].down for some i. Let sj 
be the least element of snap such that sj 2 c, if such 
an element exists. Any process other than s,,, through 
sj either has input name less than c, or observed c in 
its snapshot, and entered column c from the top. Only 
s, through sj could have entered c from the bottom, 
setting down bits as high as their index exiting column 
c + 1. (Since network[c][i].down, this means sj exists, 
i.e. sm > c.) By Lemma 3, their index exiting column 
Sj W3.9 at most 2.9, - 2s.j + 1, and by Lemma 1, their 
index exiting column c + 1 was at most 2s, - 2sj + 1 + 
2(Sj - (C + 1)) = 2Sm - 2C - 1. a 

Lemma 6 Let a be an execution, and let c be a column 
index. Zf network[c][i].up and network[c][j].down then 
i > j. 

Proof: Suppose network[c][i].up, network[c][j].down 
and i < j. Since the down bits in a column are set 
by each processor from the bottom up, it follows that 

the down bits below j are also set at this point, partic- 
ularly network[c][i].down and network[c][i + l].down. 
By Lemma 4, any process entering column c from the 
top started above entry i, setting the up bits from 
the top down. Hence, networl[c][i].up also implies 
network[c][i + 11.21~. M oreover, there exists a process 
p, such that p wrote network[c][i].down := true and 
network[c][i + l].d own := true, and there exists a pro- 
cess q, such that q wrote networlc[c][i+l].up := true and 
network[c][i].up := true. Now, p set network[c][i].down 
and then read network[c][i + l].up = false, so this 
write by p preceded q’s setting of network[c][i + 11.~~. 
But similarly, q set network[c][i + l].up before reading 
network[c][i].down = false, so q’s write to networiE[c][i+ 
l].up preceded p’s write to network[c][i].down, a contra- 
diction. The lemma follows. n 

Lemma 7 Let a be a complete execution, and let c be a 
column index. If two processes compute different indices 
in column c + 1 then they exit column c with distinct 
indices. 

Proof: If c is not the input name of any process that 
took steps in CY, then no up bit is set in column c, every 
process retained its index from column c + 1, and the 
result follows by induction. So assume that process c 
performed a rename operation in cr. 

Suppose that two processes pj and pj-2 entered col- 
umn c from column c + 1 with indices j and j - 2, 
and that both exited with index j from column c. (Be- 
cause each process entering from an earlier column ei- 
ther kept its index or adds two to it, this is the only 
possible conflict between two such processes.) Then 
process pj read network[c][j].up = false, and pj-2 read 
networlc[c]b - 21.21~ = true when computing their in- 
dices in column c. 

There are two cases, depending on whether pj saw c 
in its snapshot operation. If so, then pj entered column 
c from the top. Since pj appeared in its own snap- 
shot, pj entered column c at or above network[c][j], 
and since pj later read network[c]b].up = false, pj read 
network[c]b’].down = true for some j’ 2 j. But this 
and networlc[c]lj - 21.21~ = true contradict Lemma 6. 

So assume that pj did not see c in its snapshot opera- 
tion. Then pj entered column c from the bottom, mov- 
ing from network[c][l] to network[c][j], finding each up 
bit false (since it later reads network[c]b].up = false), 
and setting every down bit to true in each reflector 
through at least network[c][j - 11. But again this and 
network[c]b - Z].np = true contradict Lemma 6. 

It follows that processes entering column c from col- 
umn c + 1 with distinct indices exit column c with dis- 
tinct indices. n 

Lemma 8 Let o be a complete execution, and let c be a 
column index. If the process with input name c executed 
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a renaming operation, it exited column c with an index 
that is distinct from that of any other process exiting 
column c. 

Proof: There are several cases to consider. First, c 
may have found all down bits it examined to be false 
and computes the index 1. For this case, we consider 
possible conflicts with processes exiting column c + 1 
with index 1. Second, c may have found network[c][i - 
l].down = true for some i and exited with index i. We 
consider possible conflicts with processes entering from 
column c + 1 with index i - 2 and i. 

0 Process c computed index 1 after setting 
network[c][l].up := true and finding 
networK[c][l].down = false. Suppose another 
process p entered c with index 1. If p read 
networlc[c][l].up = t rue then it computed in- 
dex 3, so suppose it read networlc[c][l].up = 
false. If p entered column c from the bot- 
tom, it set network[c][l].down := true and 
read networlc[c][l].up = false. We have c’s 
setting network[c][l].up := true before reading 
network[c][l].down = false, which in turn pre- 
cedes p’s network[c][l].down := true which pre- 
cedes reading network[c][l].up = false. But 
this last read by p in turn precedes c’s assign- 
ment network[c][l].up := true, a contradiction. 
If p entered column c from the top, it must 
not have set network[c][l].up := true, but read 
network[c][j].d own = true for some j 1 1. By 
Lemma 6, j = 1, and we have the same contra- 
diction. 

l Suppose then that c computes index i > 1, by ob- 
serving network[c][i - l].down = true. If i > 2, by 
Lemma 6 network[c][i - 2].up = false after (Y, so a 
process entering with index i - 2 will not compute 
index i. 

The only other possible conflict, for i > 1, is with 
a process p entering from column c + 1 with index 
i, and finding networlc[c][i].up = false when com- 
puting its index. Let snap, = {sm, . . . . sl} be the 
snapshot taken by process p, where sm > . . . > si . 

If p did not observe c in snapp, it entered column c 
from the bottom, setting down bits until it reached 
reflector i or observed an up bit set to true. By 
Lemma 4, every process (including c) that entered 
column c from the top entered at or above reflec- 
tor i. So if p observed network[c][j].up = true 
for j < i, then at that point network[c][i].up = 
true. But p later read this as false when comput- 
ing its index, a contradiction. Hence, p read every 
up bit false up through reflector i, and in partic- 
ular set network[c][i].d own to true before reading 
network[c][i].up = false. But c set network[c][i].up 

= true before reading network[c][i].down = false, 
leading to the usual precedence cycle. 

It follows that p did observe c in snapr. Since c 
observed network[c][i - l].down = true, some pro- 
cess q such that q > c left column c + 1 with in- 
dex at least i - 1 and entered column c from the 
bottom, setting the down bits as high as reflector 
i - 1. Let snapa = {T,), . . ..ri} be the snapshot 
taken by process q, where r,) > . . . > ri. Since 
c is in snapr and not snapq, q E snapP c snapp. 
Let sj be the smallest element of snapr, that is big- 
ger than c. By Lemma 3, p’s index leaving col- 
umn sj is at most 2s, - 2sj + 1, and by part 1 of 
Lemma 1, p’s index, i, leaving column c + 1 is at 
most 2s,-2sj+l+2(sj-(c+l)) = 2~,-2~-1. But 
this is exactly the reflector at which p entered col- 
umn c. Since p later read network[c][i].up = false, 
it must not have set network[c][i].up to true. Hence 
it read networlc[c][j].down = true for some j 2 i, 
and at the time of that read, network[c][i].down 
= true. In turn, this means some process with in- 
coming index i or higher entered column c from 
the bottom, and again by Lemma 3, c entered col- 
umn c at or above reflector i. Since it later read 
network[c][i].down = false, c must have found all 
down bits down to i set to false, and in particular 
set network[c][i].up = true. 

We have again that c set network[c][i].up = 
true and later read network[c][i].down = false, 
and network[c][i].down was true before p read 
network[c][i].up = false. But the later read by 
p preceded the assignment by c, and the read by 
c preceded the assignment to network[c][i].down, 
a contradiction. It follows that p must observe 
network[c][i].up = true, and compute i + 2 as its 
index leaving column c. The lemma follows. 

Lemma 9 Let Q be a complete execution, and let c be a 
column index. Then all processes with input names c or 
greater which invoke renaming operations exit column c 
with distinct indices. 

Proof: The proof is by induction on columns, from col- 
umn f(k) down to 1. Since input names are unique, at 
most one process (the one with input name f(k)) exited 
column f(k). So assume that all processes with input 
names c+ 1 or greater exited column c+ 1 with distinct 
indices. We must show this property holds also for col- 
umn c. By Lemma 7, all the processes with input names 
greater than c exited column c with distinct indices. By 
Lemma 8, if the process with input name c invoked a 
renaming operation, it exited column c with an index 
that is distinct from that of any other process exiting 
column c. The lemma follows. n 
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