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Fast-Wave Heating of a Two-Component Plasma”
THOMAS H. STIX

Plasma Physics Laboratory, Princeton University
: Princeton, New Jersey 08540 USA

ABSTRACT

The use of the compressional hydromagnetic mode
(also called the magnetosonic or, simply, the fast wave)
is examined in some detail with respect to the heating
of a tritium plasma containing a few percent deuterium.
Efficient absorption of wave energy by the deuteron
component is found when w = W (deuterons), with
Qwave » 100. Reasonable efficiencies are found also for
electron heating, but coherence effects between transit-
time and Landau damping for electrons reduce the total
absorption for both processes to one-half of the transit-
time power, calculated separately.

The fusion output of a two-component neutral-
injected plasma can be enhanced by selective heating of
the injccted deuterons. Also, selective deutérOn
absorption may be used for ion-tail creétion by radio-
frequency excitation alone, aé an alternative to neutral
injection. The dominant behavior of the high-energy
deuteron distribution function is found to be
E(v) ~ exp[(3/2)fvdv<Av>/<(Av¢)2>], where <Av> is the
2

Chaﬁdrasekhar—Spitzer drag coefficient, and < (Av,)"> is

by

the Kennel-Englemann quasilinear diffusion coefficient
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for wave-particle interaétion a; the deuteron cyclotron
frequency. An analytic solution to the one-dimensional
Fokker—flanck equation, with rf-induced diffusipn, is

developed, and using this solution togééﬁer with Duane’'s

fit to the D-T fusion cross-section, it is found that

"the nuclear fusion power outpﬁt from an rf-produced two-

component plasma can significantly exceed the incremental

(radiofrequency) power input.

/



1. INTRODUCTION

The need for supplementary heating for a tokamak — supple- “
mentary, that is, to the Ohmic heating associated with the toroidal
current — has been recognized for a number of years. Only
recently, however, have the special benefits become clear for a
specific form of supplementary heating: putting the heat in as a
high-energy tail on the ion distribution. In bringing a classical
(50-50) DT reactor to ignition, the high energy ions cause fusion
reactions which release alpha particles and enhance the heating
'pOWer, while in the two-component fusion device [1l], the creation
of the ion tail is an essential element of the total concept.

The most direct way to produce the ion tail is evidently by
neutﬁal injection. It will be some years, however, before neutral .
beam technology allows us to test this heating ﬁethod at the
requisite beam currents ‘and voltages, and the final answers on
efficiency, penetration, impurities, plasma stability, and beam
slowdown rates must await such testing. Meanwhile, it is appro-
priate to look at radiofrequency methods as an alternative process'
for plasma heating and for ion tail creation. Radiofrequency
heating can play a number of roles:

a. Electron heating. A successful two-component fusion

experiment needs an electron temperature of 5 keV or more.

Neutral injection provides supplementary heat to both fhe

background ions and electrons, -and too much background ion

heating can be wasteful. In addition, it may turn out that

rf electron heating is less costiy to install than injection

-heating with similar capability.
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.b. Supplementary heating.:' Supplementary ion hHeating is

the traditional role assigned to rf heating.

c. Ion tail creation. Selective absorption of rf energy

by a minority of the plasma ions may be achieved by cyclo-

tron resonance-tuned to the minority ions [2-4], or by cyclo-

tron harmonic heating which preferentially delivers powerito

the high enérgy (large Larmor radius) component [4—6];.

d. Ion tail enhancement. Radiofrequency heating may be

used to enhance neutral injection itself by tuning the rf

to resonance with the injected beam particles in thé'plasma.

Such heating can easily add perpendicular energy to- beam

.ions, and can increase and maintain the energy dispersion

of the beam and the fusioh“reaction rate.

The wave mode which is uncannily well suited to the ‘various
objectlves outlined above is the compressional hydromagnetlc wave,
also called the magnetosonlc mode or simply the fast- wave;‘ The
wave lengths in the desired frequency (w -~ wci) and density
(n ~ lO14 qm—3) ranges are long enough to allow reasonable mode
separation in the large tokamak plasmas and good coupling to the
antenna structures. :Fast wave heating .[7] for large plasma devices
was first.seriously examined by Adam-and Samain[4] . On the experi-
mental side, experiments.inV1967 on the Model C-stelIarator showed
both fast—waye generation and plasma heating [8]. ~“More recently, the
19l4 ST tokamak experiments [9] strongly confirmed fast wave heating
and, equally important, demdnstrated the existance of and showed
the ability to excite high-Q discrete fast-wave toroidal mgdes[S].

By proper selection of the fast-wave frequency, mode numbers,.
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" magnetic field strength and plasma composition, it is possible to
heat ions and/or eleétrons, to vary the deposition pattern of the
heating, and to modify the ion velocity distribution. Using fast-
wave heating equipment, the experimentalist therefore has availa-
‘ble to him, with rather modest parameter changes, a great flexi-
bility in his experimental approach and a great range of physical
processes.

In this paper we examine in some detail the specific use of
fast-wave excitation for heating large magnetically-confined
toroidal plasmas. We look at electron heating through wave-
absorption via Landau and transit-time damping (the two effects
are‘coherent and cross-terms must be considered), and ion heating
through cyclotron damping. A Fokker—Planqk calculation with a
quasilinear—fype rf diffusion coefficient shows that selective
rf cyclotron absorption is competitive with neutral injection for
the formation of a fusion-producing two-component ion velocity

distribution.
2. ALLOWED MODES AND MODE-TRACKING

We start our detailed consideration of fast-wave heating by
looking at the properties of this mode in a homogeneous cold plésma
immersed in a uniform static magnetic field. The wave emiation can

be written in the usual matrix form, with k set equal to zero,

XX Xy X'z X

2
yx Kyy n 0 Ey = 0 . (1)
n n 0 K -n \ E



n = kxc/w and n, = k_c/w-. are the two remaining components of
the vector refractive  -index, n2 = n§_+ ng, and we have neglected
-5

components of the dielectric tensor, K, which are finite only

for T # 0. The usual low-frequency high-conductivity approxima-

tion is now taken, 1Kzz|>>'n§, n_,r and we may further denote
Ko = Kyy = 8= (1/2) (R + L) and K = =K = -iD.= -(i/2) (R - L),
leaving ‘
2 . .
R+L-2n"" -~ 1(R-L) E
Z X
S U . 50 . .- . (2)
1R -L) R+L—2n,.2 NE,

For |w]| S w and neglecting displacement current, but

, . pe N .
including the electron contribution, the cold-plasma dielectric
o e 2,020 o

tenso? elements are R = (4ﬂnimic /B )[wci/(wci+w)],v

L = (4nn.m.c2/B2)[w (o ~w)] . The dispersion relation for hydro-
- iti ci ci : B |

magnetic waves is given just by the determinant of the 2 x 2

matrix, and may then be written

Nf:A-N3+é(—1;ﬂ . ' (3)

A-N, -

where N, and N,, the Alfvén refractive indices,are defined



The dispersion relation is sketched in Fig. 1 for the two cases,
A>1 (w< wci) and A < 0 (w > wci). The curve for w > Wy
shows the two well-known Alfvén waves, the shorter-wavelength
shear or ion cyclotron mode, and the longer-wavelength compress-
ional mode, also called the magnetosonic or fast wave. The case
of espedial interest to us is that where the plasma ions are pre-
dominatly tritons, but where w is set equal to the deuteron
cyclotron treqeuncy. In this case A = -4/5. 1t i3 inotruotive
to draw the dispersion relation for just the propagating region

of the fast wave, using‘ N,, N, as coordinates rather than

Nf and NE, and such a plot is shown in Fig. 2. Now in a
finite-geometry plasma, wavenumbers for the allowed modes will

be apbroximate multiples of some fundamental wavenumbers, e.g.,

N, = nN£0); N, = vao). Therefore, the naﬁural modes of the
finite-geometry plasma will occur where the dispersion relation
curve passes through an intersection of the background cartesian
grid laid out with spacings'corresponding to the fundamental wave=-
numbers, as indicated in Fig. 2. 'As the device size and plasma

density are increased, the grid spacings in Fig. 2 will decrease.

For - instance, in a torus [10}],

, 2 1/2
(0) _ ¢ B
N Ro <_‘—7) ' 4y

4Tn.m.c
ivi

N(0) . mc B’ 1/2
i aw 4 2 .

Tn,m,C
Tii



Actually the mode spectrum is slightly more complicated than
just described. The approximation that N, = vNio)f with Nio)
given by Eq. 4 is valid for modes with toroidal and radial but no
poloidai variation. But the complete dispersion relation, for a
toroidél system will have a structure similar to that given by
Bernstein and Trehan [11] for a finite-radius cylinder of uniform-
denéity cold plasma: the field amplitude varies as B;l) = constant -
Jm(vr) exp(imd + ikz - iwt) and the dispersion relation is of the
form

- kyad (k,a)

= A + mB
'Jm(k*a)

where A and B are functions of w, k,, and the plasma para-
ﬁéﬁérs. Solutions of this dispersion relation appear between
each pair of zeros of Jm(kla) and therefore can be categorized
simply by k,a = w(r + |m/2])+ e(r,m), where r and m are the
radial and poloidal mode numbers, and € 1is an angle of magnitude
less than " 7. The integer quantity we had called v would be

~k,a/m, but we see hpw that the complete spectrum shows modes
at half-iptegral'values of v, for v > 1, and each su¢ch mode
has a (2v - 1)-fold multiplicity, i;e.; v = 1 corresponds to
r=1, m=0; v=3/2tor=1,m=+%1; v=2¢tor =2, m=0
and r = 1; m = 2, etc.:

The mode spectrum for a straight cylinder is degenerate with
respect to propagation parallel or antiparallel to gﬁo, i.e.,
with respect to #k,. It has been pointed out by‘Chance and -
Perkins[lZ] that this degeneracy is resolved in a tokamak plasma,

the line separation being related to mode rotation due to the.



helical magnetic lines of force. Just as each designated v-value
in Fig. 2 is actually a (2v - 1)-fold multiplet (not shown on the
drawing), it is then also true that each =n value actually
designates a doublet (not shown) in the spectrum. Certain
important qualita;ive conclusions can be drawn immediately'from

this interpretation of Fig. 2. We consider the possibilities

w_ . for a j-type

for fixed w/B, corresponding to setting w 3

ioni

1. For a toroidal device which 1s too small in minor radius,
or in which the desired density has too small a value, even the
nearest grid intersection will fall outside the dispersion éurve,
and no natural fast-wave modes will propagate. The Princeton
C-steilarétor plasma fell in this category.

2. For an intermediate-size plasma, a small numbér of modes
will be possible, and these will be reasonably well separated in
density. The recent fast-wave experiments in ST fall into this
category.

3. For a somewhat larger plasma, many modes will be possible,
but the mode separation in density will still be large enough that
rather broad-spectrum excitation can be used successfully to excite
the desired single modes. Princeton's PLT, PDX, aﬁd perhaps TFTR
would be in this category.

4. For reactor-size plasmas, the dense mode spéctrum Qill
tend to frustrate efforts to excite optimum single modes to achieve,
say, ion heating without electron Landau damping, or core heating
“without surface heating. 1In such large devices, then, considerable
attention will have to be paid to the use of antenna structures

which narrow the k; and k, excitation spectra.



5. 'for any plasma, the occurrence of a natural mode with
specified .k", k,, w, and B requires the proper value for
ion density. In pulsed plasmas and in the start-up of steady-
state plasmas, the density will vary with time, and allowance
must be made for tracking resonant conditions either by varying

w or, jumping modes, by changing the i-excitation,spectrum.
3. E-FIELD POLARIZATION

The natural sense of rotation of ion§ ardund the magnetic
field lines is that of left-handed screw motion progréssing along
the B vector. Cyclotron acceleration of the ions therefore
aepends principally on the amplitude of the left-handed circularly-
polarized‘component of the waﬁe electric field in the plasma. . In
detail, if one goes to finite-Larmor~radius theory, it will be
found that ion aqceieration due to-a pure right-hand E-field
component will be weaker by a factor ~ki<pgi> than that
due to the left-hand component, a result which holds even for
cyclotron-harmqnic acceleration. (Examine the structure of |6n,k|2
in Eq. (18) below.) Going back to Eq. (2), we can determine the
ratio of the left-hand E component (EX + iEy) to the right-

hand comp?nent (Ex - iEy),

w_ .
. 2 —_cr _ N2
E.+1E_ R-n_ ww " A
E. - iE._ 2 ’ (5)
X Y L_nz Yoi 2
- + Ny
W01

2

and provided that w > w and wci/Uu+-wci) >Ny >0 (that is, for

ci

a propagating fast wave at w > wci), then
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E +iE w=w _. ~
X Yy

ci
<
E_~1iE wHw . . (6)
X Yy ci
For w = (3/2)wci, corresponding to deuteron cyclotron resonance

in a triton plasma, the right-hand side of (6) equals 1/5. The ratio
in (5) is a maximum for N3==O and drops to zero for parallel propaga-
tion, which is characterized by the dispersion relation n§=R (nf==0)
and oure right-hand circular polarizatiodn. ('r'he EL/'ER relation,

Eq. (5), applies, of course, also to ion cyclotron waves, but

L

For dense plasmas, this condition on nf requires very short parallel

reduction of E is avoided in this instance because ni ~ L.

wave—lengths.)' The relative magnitude of the left-hand E. field
is also reduced if the number of resonant ions is increased — up

to now, we have neglected the contribution of the resonant deuterons
to the dielectric tensor. Théif principal cuntribution is to L;
but hot-plasma theory limits the magnitude even at exact resonance.
Writing L = LT + LD

components, one will find the extremum value for LD/LT, occurring

for the tritium (plus electrons) and deuterium

at w = ch,

extr. .
(EQ) o ii1/2 22 Moy m, 1/2 -
Lip 3 np [k, 1\ gpep™)

D

The power going into deuteron heating will be proportional to

. 2 . . extr
+ *
nDlE iE_| and will be a maximum for ny such that ILD/LTI

is of the order of unity. Typically this leads to optimal fraction-

. ¥
al deuteron concentrations of a few percent. A similar argument
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can be applied to second-harmonic heating in, for instance, a
50-50 D-T plasma. In that case, however, the contribution to L

from the resonant ions is reduced by a factor proportional to

2, 2
k1<pLi>'

4. ION CYCLOTRON DAMPING

Ccllisionless cyclotron damping can take place with absorption
‘of wave energy by the particles that, in their own frame of
reference, feel the wave E-field at their cyclotron frequency.
The well known condition for such single-particie resonance is
w=KuVy = w_. We will return to the standard uniform-B calcu-
lation, but it is instructive first to calculate particle heating
in thé inhomogeneous tokamak magnetic field. Given w, k,, and
v, for a test ion, resonance will occur in the neighborhood of
a certain B = constant surface.. Ions fcllowing along the leines.
which twist around the magnetic axis can pass through the resonant
surface twice each complete revolution. On each passage through
resonance the ions receive a kick in mv, which is not difficult
to calculate. The single-particle equatioﬁs of motion perpendicu-

-5
lar to B are

. . =.q—
vx Q(t)vy o EX coswt

. =-g .
vy+§2(t)vx o Ey sinwt

Let Eiz(l/z)(EX:tEy),tlivX-kivy. Q(t) 1is the cyclotron frequgncy
at the instantaneous particle position. Expand §(t) around the

resonant surface,
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Q(t) = w + (t—to)Q'(t)+ N .

The two real-variable equations can then be written as a single

equation in the complex variable u,

We neglect the non-resonant (E_) driving term and integrate,

iQ'(t'—to)2
5 I

t t
u(t)exp(if Qdt) = u(-w)4-% E+ f dt'expl

-0 =00

2riy 1/2
> u(-=) + A g (-)

m U\ o
for t >> to'~ We assume that u(-») is randomly phased with respect
to E, (but will return to this point in Section 8) and compute the

average change in energy per transit of the resonant surface,

2|27

Ql

| = W(T) .

M

< u(t)lu(t)* - u(-e)u(-»)*>= %I% E,

To find the total rate of power absorption per uni£ volume, P,
we.multipiy the energy gained per tfansit, W by the total ion
transiting rate, v, forming P = v(?)W(;). For this calculationwe
choose a local coordinate system in which z is the direction of
the toroidal component of ﬁ, %X is in the directibn of the major

radius, and Vv 1s vertical, parallel to the major axis of the torus.

The exact location of the resonant surface gpr each ion depends on
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V, in order to satisfy w-—knv"-ﬂwc==0, and v(x,y) 1is the number
of ion transits across such resonant surfaces that occur per unit

‘time in each unit volume of the plasma,

u+Au © © >
|\)dx|==£1 dvzf dvxj dvylvxglf(xry,v) '

-0 - 00

where
w-w _(x)
and
: w=-w _ (x+Ax)
u + Au = =

kll !
and where vXg is the x-component of the ion guiding-center velocity.

From these equations we derive

... (res) )
— dv, = - 1l 4
Au = Ax ax Ax(k" Ix wci) "
Also, we may write . :
grode_a o _ o a
dt dt ci xg dx ci !

where vxg is again the X guiding-center velocity. In forming
P, it is interesting to note that ng cancels out, leading to
a result which is independent of the local value of tokamak rota-

tional transform, etc. We find simply

2 . .
nTﬁ?.,T Jdvxdvy £(2,%,,v{%)) B, (&) |'2 (8)

g
54«
It

which is precisely the result one obtains [13] from conventional

uniform-B hot-plasma theory. This identity of results has the
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further welcome consequence that the use of the uniform-B—thgory
monochromatic-spectrum quasilinear diffusion coefficient may now
be justified for the calcﬁlation of ion heating in the inhomogeneous
B-field of a tokamak. The point will be discussed in Section 7.

The next step is to average P(?) over the volume between

two magnetic surfaces, of minor radii ry énd r,. For this
purpose we write
£(,viFe%) = £17, =4,
aﬁd
dx = dw_./(dw_,/dx) =-—2— du
' ci ci w_ . ci '’
ci
and then
r.|siné. |
2 2, _ 4n’q’r? 2 ? 2
(27R) 7 (ry-r]) <P>= ——3— dy n(y)|E+(y)| ' (9)
cL r,|sind, |
1 1

where n(y), m and Woy refer to the resonant ions only (e.qg.,
deute;ons) and where the integral is carried out along y at a
value of major radius (x) corresponding to the center of the
resonant region. See Fig. 3. Symmetry4for ty 1is assumed.

61 and 62 are the angles between the minor.radii, r and r

1
and the x-axis. The heat which is first generated in the two

2'

resonant regions then is quickly distributed, by the flow of ions
along the magnetic lines of force, to the volume between the

torus-shaped magnetic surfaces with minor radii «r and r

1 2°
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For r, and r, close together, the average power per unit
volume to the resonant ions, of density n(r), on a~toroiQal magnetic

surface with minor radius r is simply

. Qo)

This same result, averaged over the tokamak cross-section,was
- already obtained by Adam and Samain [14].

A happy conséquence of this rf heating is the appearance of
a geometrical effect which favors the deposition of heat in the

core (small r) of the tokamak plasma.
5. ELECTRON LANDAU AND TRANSIT-TIME DAMPING

Landau damping aﬁa transit—tiﬁe damping bbth involve energy
absorption by éarticles moving along B with the phase velocity
of the wave, i.e., particles for which w - k,v, = 0. In Landau
damping, the force on the particle due to the wave is qﬁ; for
transit-time damping the acting force is =-uVB. Both processes
are effective in fast-wave damping by the thermal electrons. The
exact calculation is tedious in its algebra as the two effects are
coherent and cross-terms need be retained. Symbolically, the
éowef abosrbed per unit volume is given simply by

iw > >

P = - m E*‘K'E + Complex Conjugate ’

in which E is the complex amplitude in the repreéentation of the

real wave field Eo’ Eo = Re{E exp(-iwt+iﬁ-§)} , and R is the
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usual hot plasma dielectric tensor. The only terms of K that
need be retained in the expression for P are the collisionless

absorption terms from the w-k,v, =0 electron resonance,

__ iw 2 _ o . 2
P=- 5o [IEyl AKyy 21|EyEzl51naAKyz+ |E, | bR, 1, (11)
where we have made use of the Onsager relation Kyz==—sz, and
where
i kis2
AR = G , (12)
vy Jw ol w
kx
AK _=-—7—"G ’
vz kz \
2iwlwce|
AK_ = G
zz k252 !
z
2
_1/2 “pe 1 w2
G=m — exp ( Y.
|wceI Ikzls- kis2
9 2kT E E .
s = hal ’ _X= —X ela .
Me E, Ez

The evaluation of the amplitude and phase relations between
EY and Ez is made in a straightforward fashion from the vector
wave equation, Eq. (1), using the hot-electron forms for K

including Kyz and sz. The calculation is simplified in the
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weak-damping limit in that it suffices to retain only the reactive

elements in K. From the x and 2z components of the wave-equation

one derives

2 _.2 C_ 2
Ex - (nxnz) (Kxx nz)(Kzz nx) (13)
B - : 3 .
z -nxnszy+(KXx nz)Kzy
.
KXX and KX involve mainly ions and the cold-plasma forms may
‘ 2,2 2,2, -1 , 2

be used. Kzz- wpe/w or (kZAD) when (w/k,s)“>>1 and

(m/k“s)2'<<l ‘respectively, and sz==0 or ikxw;e/(kzwlwcel) in
the same two limits respectively. If desired., one may use
Bz==(kxc/w)Ey to express the transit—gime'damping ip ter@s of thé
wave{Bz—field.

Eq. (13) is of interest to us in this application only when
Landaﬁ or trahsit—time damping are not negligible. In such reéimes

(w/kns) 1, and the K,y term in the denominator will dominate.

Then we may reasonably approximate

EY._,_ KZZ:i 4(1)eB (14)
E K k k kT c
X z Te
" For low frequencies, a simple argument gives the same result. Say

ions move in and out with ﬁ — then by quasineutrality, ne"'Bz'

Also, for hot electrons, n,=ng exp(e¢/kTe). Finally, using the

induction eantion, 3B2/3t==-caEy/3x; the above relation follows.
It is particularly interesting to observe that the substitu-
tion of this phase and amplitude Felationship for Ey and E,
leads to exact cancellation between tﬁe tfansit—time term (AKyy)
and the crosé-term (AKyz), ~leaving oﬁly the Landau damping term

(AKZZ) whiéh is then equai in magnitude-to one-half 6f the
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1

transit-time term,

- 32 Ak

i 2
Ten yy|Ey| . (15)

Ptota1=
6. WAVE ENERGY DENSITY
A convenient way to compute the wave damping rate is to

divide the power absorption by the wave energy density, W.

From conventional wave theory,

I - S-S BRI TR
W—IGTT [B*+B + E* o (th) B] o (16)

where K is the Hermitian portion of the dielectric tensor.

h
With the cold-plasma dielectric tensor elements,and making use

of the phase relation between EX and Ey derived from Eq. (1),

~

we find
2
4tn.m.c
_ 1 . 2,.2 2
W= 167 2 {NG (H7+1) +N} (17)
A’ 2 W 2 2 G L2 2
+ 5 [A+H) 7 (1-2=) T+ (1-0) © (1+5—) 1YE |
‘ci ci y
- 2,...2
H:iEé=_ Woi | Nj+Ny-A 2 /(wz _wz) A
'Ey W A ! el ci °

N% and Nz are related, of course, by the dispersion relation
in Eq. (3). The first two terms inside the brackets repreéent
magnetic field energy, and the A term 1is the kinetic energy

of the coherent particle motion.

7. AN EXAMPLE
To illustrate the calculations presented here, we look at one

renresentative case, a tokamak plasma with the following varameters:



Triton density i . np=5x 1013 em™3
Deuteron density ny=2.5x 1012 cm™3
Temperature A kTi==kTe==4000 ev
Magnetic field 40 kG
Major radius 274 cm
" Minor radius | 60 cm -
Wave frequency : w = w_(deuterons)= 2m(30.5) MHz
Parallel wavelength Ag =123 cm

The first group of computations concerns the background plasma,and

the deuteron contribution is neglected.

2 3
4tn.m.c
= 1770 .
")
(2kT_/m_) 172 _ 3,75 x 102 cm/sec

(2kTi/mi)1/2==5.06X 107 cm/sec

-1/2 _

(w/ku) (2kTe/me) 1
n, = 7.99
2 .
N" =000362 . +
nx==39.6
Ax =, 21r/kX =24.8 cm
- N2 =0.886
w/wc =1.50
A=-0.8
Kxx % Kyy =-=1410
Xy=-ny=-12120 -
R=707 .
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K =-K__=-3810-i445
zy: vz
K =-6.60x10° + i5.65 x 10°
A4
=i5.14
AKyy i5
AK. = 3810
Y2
AK__ =i5.65 x 10°
Z2Z .
H=1.435
W==65.0|Ey|2 (54% magnetic, 46% kinetic)
_ 3
|Ey/Ezl-1.453 x 10
n=83.4°
G =3670

E,/E_=0.17Y

s ! . (
E+/1Ey-— 0.218 |

Volume = 1.947 X 107 cm3

The power computations show

' _ 7 2 -1
Ptransit-time(AKyy) =3.92x 10 lEyl sec

(AR ) ==-3.97 x 10" |E_ | %sec™t
vz y

P
cross—-terms

2sec-l

_ - .7
Plandau (8K,pz) =2.04 %10 IEYI

P (electrons)==l.99><,'107|Eylzsec_l :

Total

"Q(electrons) = wW/P 628

total =
With the addition of 5% deuterons and electrons, both at kT = 4000 eV,

we compute

AR (deuterons plus electrons) =29.5
'~ AL(electrons) ==59.0
AL (deuterons) = i6330.

E,/E_=0.0920 /60.0°
E+/1Ey =0.0961 /-115.3°

We assume the central resonant surface passes through magnetic axis.
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Then sin®=1 in Eq. (10), and the power absorbed per unit volume is

1>=8.32$<1o6(R/r)|EY|2 -l

a
<p> = (2/a2) f P(r)rdr, for |Ey|2==const,
(o}

= 7.60x 10 |E_|?
| y

Q(ions) = wW/<P> =164 .

The kinetic energy of the deuterons has not been included in W
in the last expression; its inclusion will increase Q(ions).
However, the small fraction of deuterons present and the unfavorable
polarization of B will limit the size of this contribution.
8. QUASILINEAR DIFFUSION COEFFICIENTS

Generally in rf heating applications it is sufficient to know
just the rate of power absorption from a wave of given amplitude.
For creating a fusion-producing ion tail, however, we want to know
precisely how the ion velocity distribution is affected. The meané
for this computation are readily available by including the quasi-
linear diffusion coefficient among the Fokker-Planck terms in the
Boltzmann equation. The quasilinear diffusion coefficient for
cyclotron absorption was calculated by Kennel and Engelmann [15],
and in the absence of other diffusive processés, the kinetic ion

equation reads.

2 2
Bf(g)L_ I TZ%e d3§
5o lim L — 3
V+on m (2m) "V

) - » 2
Lv, 8 (w-K,V, ani)IOn,kl

v,Lf

- (18
where (18)

kllvll- l a kll

o _ 1 ko 5
L=0Q w )V; ov, + w oV, !
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k,v k,v
1w Va1 iy 2V
On,k =7 €  (Eg7iE ) n+l(wci) t 3 (B +iE )y J l(wci)
+ 21 (E ) (leJ)
’
v, Jn w_g

E==§k1cosw-+§klsinw-+§k"

V is the plasma volume, and Ek are the Fourier amplitudes in the
usual complex analysis ot the wave tield. For present purposes we
can drop the parallel velocity effects in'the L operator, Eq. (18),
but thié poiﬁt will be discussed at the end of this section. We may
also neglect the Ez and EX-iEy (right-handed) contributions to

en K’ assume P=0 and a monochromatic spectrum. Then, carrying
r -

out the integration in [18] over k,

2E () . _mze? 2| Kava (w-nw_.)

L 12¢ 19 2 1 of
At 2|k"’ 'EX+lEyl Z.l V.i. OV )l 6[V|l - cl ]*""’

11- w kKo vy av*

ci
(19)
summed over the cyclotron harmonlcs. The electric field in (19) is
E = Re(xE +yE )exp(1k°r-1wt) For acceleration at the cyclotron
fundamental, the Bessel factor is Jo(k;V;/wci)'*l in the small

Larmor-radius limit. To recover our previous result, Egqg. (8), on

ion heating, we simply integrate twice by parts,

2 2
2 T2 e
mv- 9f _ . 2 res)
Z"IV;dV;dV"'—j— 3E = 2HIV*dV4[ZETE:T |Ex+1Ey| f(v£ )l . (20)
’ ‘ . . s 2 2
For comparison with (8) and (10), we observe that IEX+1Ey| = 4|E ]
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‘Two points of general interest now come up which concern
the use of the quasilinear diffusion coefficients for the cyclo-
tron heating calculation. The first, already referred to in
Section 4, is that the direct calculation of resonant-ion heating
in the inhomogeneous magnetic field leads to the identical result,
Eq. (8), as the local use of the quasilinear diffusion coefficient,
Eq. (20), and that this identity of results therefore justifies
the use of this coefficient even though the electric field spectrum
is monochromatic. The critical consideration is that the usual
quasilinear calculation demands a spectrum of randomly phased
modes to justlfy the concept of true particle diffusion resulting
from a number of incoherent: ve1001ty displacements, whereas 1n
the present heatlng calculation we consider that the irradiation
is monochromatic in both frequency and wavenumber. The usual
problem for the monochromatlc spectrum is that wave-particle phase
relatlons can be altered by the very coherence of the wave, as
when trapplng occurs. However, this dlfflculty is easily av01ded
in the tokamak heating provess under consideration. In each passaée
through the resonant surface the particles here pick up small in- x
crements to their perpendicular velocity and to justify'the descriﬁ—
tion of this process as velocity-space diffusion we require just
that successive velocitylincrements be randomly phased, i.e., that
u(-») in the Section 4 calculation be randomly phased with respectj
to the oscillating electric field. The necessary rendomness easily
appears from collisions — the collision rate need only be such that
partieles "forget" the phase of the cyclotron heating field
between successive transits of.the resonant surface. Typically

. the time between successive transits will be the time for an ion to
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execute half a poloidal rotation in a tokamak, Tp x mRq/v,. The
irreproducibility in 5 will be Arp = ﬂRq(AV")/V%, aéd
dispersion by Coulomb scattering will lead to rms Av, values of
order _(<(13V‘..)2>Tp)l/2 after half a poloidal rotation. Requiring
that ions "forget" the cyclotron phase between transits just says

that wciATp >> 1, or that

< (Av"x) 2> we __l i llie'
2 o 2
Vi (0 iTp) 'p

Tﬁe diffusion coefficient <(Av")2> is evaluated in

Eq. (28) in this paper, and the raﬁdomization criterion can be
seen to be very easily satisfied in actual tokamaks, even in the
ion‘banana regime.

The second point of general interest in this quaéilinear
diffusion calculation is that cyclotron heating is generally
considered a process which causes dispersion only in v,. However,
a look at the structure of the diffusion operator, L, shows that
dispersion in parallel velocities is also involved. 1In fact, the
L operator.is a gradient operator in velocity space directed along

the circle

VE + (v, - %%)2 = constant

and quasilinear diffusion takes place only along these circles,

Fig. 4. The sketch illustrates that the amount of parallel diffusion
occurring under cyclotron resonance can be appreciable. It must be
remembefed, however, that resonant particles are involved, so the

diffusion occurs on the circles only where they intersect the line
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Ve = (0 - nwci)/kﬁ, and the slope of the curves away from this

intersection does not have physical meaning.

9. FOKKER-PLANCK EQUATION

We now want to write down a kinetic equation for the ion
velocity distribution incorporating the combined effects of
quasilinear heating and Coulomb thermalization. A convenient

form for the Fokker-Planck equation is

1

of _ _o . > 1
= Vv (<Av>f)+2 VV

3 . [Vv.’ (<AVAVSE)] , (21)

the first term repfeséntiné dféé; the éecond term dispersion.

We willlbe satisfied to examine the evolution of the distribuﬁion
function for a. small number of ions (e.g;, a small minority component
of deuterons in a thermal triton plasma, or the high-energy non-
Maxwellian ion tail thermalizing agaiﬁst an approximately
Maxwelli;p-ion body distribution) and ask only for the Fokker-Planck
coefficients for test particles diffusing in an isotropic Maxwellian
plasma of ions and electrons. The needed Coulomb coefficients are
those of Chandrasekhar and Spitzer [16], givén foerarteéian coordi-
nates in velocity space as <Av,>, <(Av")2> and <( Avl)2>2 (For
these Coulomb coefficienfs, . and , denote directions with
respect to the test-particle 3; énd do not perfain to .§.) Going

to spherical coordinates in velocity space and adding the quasilinear

diffusion to the Coulomb terms [17], the total kinetic equation is
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3

Hh

9t _ , 22
5T c(f) + Q‘f) _ (22)
C(f) = - _12_ E—;i-[v (<Av..>+ l <(AV ) >)f]
v
1 3% 2 2
+ - —5 (V <(AV") >f)
2
2v- ov
+ =5 (1 2) g (< (8vy) 25£)
2 1 '
v '
Q(E) £1 o 8w~ WkaVulyp (£)
mn
- 2ym+l 1 3 _2m+l 3 2m-2 3 _,2,m+l 3
Rm(f):(l-u ) 5 3¢ Y avf+v Wu(lu) au,uf
2m-2 9 2, m+l 23
-V Em H(1-u7) v vE
2,m+l 2m-2 9 d _ 2 m+l 2m-2 9
- (1-p7) v a_i“a_f 2m(1-u“) au“f'

N

where Q (r) is the coefficient of me in the power series

2 2 k,v,
1o yom o TZ_e |E, +iE |2|Jn-1(w_') |2
8mi|n| Y | ci

' . (23)

where u 1is the cosine of the angle in velocity space between
v and B, and where we have used the relation for differentiation

with respect to v3==v2(l-u2),
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Since Wog -is a function ‘of the major radius in a tokamak,:
"we can eliminate the .delta function in Eq. (22) by averaging over
a toroidal magnetic surface of ‘minor radius r, major radius R,

as in the derivation of Eg. (10),

1 ‘ ((.U‘k"V")
'EF_fde an(x,y)élwci‘f —7—5————] o “(24)

R
Tw .Y |[sinf |
ci o

Q n(xo,lyol) ;-

where b, = tan_l(|y0|/xo), and x_,y_  are the coordinates in the
plasma cross-section where the selected magnetic surface intersects
the central (v, = 0) resonant surface. Compare Fig. 3. We have
assumed that the cross-section of the magnetic surface is a circle

- centered around (x,y) = (0,0), that £ = f(r,z), independent of
the spatial angle 6, and that _an(x,y) is symmetric for y==t|y6|
and is well approximated over the resonant interaction region by its

central value at x = xo.

10.. EXPANSION OF £(¥) IN LEGENDRE POLYNOMIALS

The conventional way to obtain an analytic solution to a
partial differential equation such as Eq. (22) is by the expansion

of f 1in a series of Legendre polynomials in u,

£(r,v,t) =
%

Il ~8

0 I (L,V i B) P, (M)

For Q(f) = 0, the expansion is particularly appropriate since the

Pk(u) are eigenfunctions-of the C(f) operator. Q(f) # 0



-28-

unfortunately mixes the various Pk(u)'functions, but the
expansion is still useful because the u integrétions are easy,
and the problem is quickly reduced to a set of coupled linear
differential equations in v and t. Restricting our attention
to the case for heating at the fundamental cyclotron frequency

(n= 1), and keeping only the first two terms in the uy-expansion,

f(v,t) = Alv,t) + 3B(v,t) (3u-1) ,

we obtain from the Po(u) and Pz(u) mdments of Egq. (22)

A _ 1 3. 2 .13 .. 2.
at - 2 Syl OVTA + 5 55 (BVTA) (25)
3 B, _ 2
+ Kv WV(A '5' K(a + EB)V] ’
9B 1 3, 2 1 32 2 3
5E = T T2 av (VB + —=5 = (8v°B) - 3 % B
v 2v©® av \V4
K D o .5, K i, 30
+ 5 5v V 5v v A+7B] -—2-[3A+—.-/—B]
v v
X 3 _5 o |
* J2 v[4Aa - 5 B] , (26)

in which, using Egs. (10), (23), and (24),



- 2R ’ _ <P>
K =37 oir1sind_] Qo (¥ or 1% = 3ngm, (27)

o = <Av,> + g; <(Av1)25 -,

B = <(Ava)2> .

y = <(av,) %> .
11. THE COULOMB DIFFUSION COEFFICIENTS

The Coulomb diffusion coefficients are given in Spitzer [16].
We use subscript f to designate the background-plasma field

particles, ions and electrons,

ave> = - ] e tar e
£ £
c
<(av) %> = 7§ ch(mfv) ,
2. Ce
<(bv,) "> = b = [o(2 V) - G(2 V)] ' (28)
£V
8mn ZZZZe4 ¢n A
N s 1 _
£ = ) ‘
m
02 = m_/2kT
£ = Mg/2kTe '
X
2 [
d(x) = n1/2 o ©XP (-y® dy) .

O (x)-xd" (%)

2x3

G(x) =

In working with these diffusion coefficients, we will find the

following identity useful,
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—av? + % g%(gvz) = % Ce E%%; G(2cV) (29)
In addition, we introduce simple approximations to the somewhat
cumbersome G and ¢ functions. Both approximations produce
the correct leading terms in the two limits of small and large
x; in midrange, at the points of maximum fractional error,
G(1.819) is about 10.5% too low} while ¢$(1.040) is about
27.4% too high. The two approximating forms are

A

G(x) = ax/(14~2ex3) F (30)

O(%) % & (3%+2x0) /(1 + 2%x7) ,

(y]
il

2/31r1/2 ' .

It will be seen shortly that the use of these specidal [urms
permits the complete solution of the mne-dimensional kaker—Planck
equation by elementary integrals. Meanwhile, the following more
easily interpreted forms for the Coulomb diffusion éoefficients
may be derived from the preceding equations using just_tﬁe leading

terms for' G(x) and ¢(x),

\

a B X
Range I D/v . D : 2D -
3 3 " xr 3
v 2kT v v
- _a_ e 8 1 Yy
Range II T (1+ 3) Py (1 + 3) s v
s v s s
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where 'Range I is for v << (2kTi/mi')1/2 and Range II for

(2kTi/mi)l/2 << v << (2kTe/me)l/2, and where, summing over the

f species of field ions and electrons,

D = ¢ z Cf2

£ f
2
-, z anf (mee)l/Z.kTe
£ ne meTf mts
m 2kT  3/2
t = —— (—%
S emCe me
. A(kTe)3/2
= 6.27 % 10 - seconds .
Z°n Ln A

e

Summing over the j species of field ions,

I s o 23/2 njz§ 2/3
Fm Ve = 14.8 kT [ Z= v ' (31)
e j j
2 2/3
3/2 n.Z kT
1 2 1/3 A J 3
= mvVv: = 14.8(kT ) [ ) 1,
A
2 B e ng 3 3
. 1/2 2/3
1 2 22 o 2
3 m VY =14.8 kT y anj] .

A and Aj are the atomic masses of the test and field ions, ng

is in cm-3, and kTe in eV.
12. STEADY-STATE f(V,u), LOWEST ENERGY RANGE

Now armed with explicit forms for the diffusion coefficients,

we can look for solutions to the Fokker-Planck equation for the
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rf-heated resonant ions. In most rf-heating experiments, the
experimentalist is able to irradiate the plasma with an rf pulse
of sufficient duration that the temperatures reach a steady-state
value or, due to impurity influx, may even start to droop. It is
meaningful then to look for steady-state solutions to Eq. (22)

or Egs. (25) and (26). It should be noted, however, that the
occurrence of a steady-state solution is peculiar to heating at
the fundamental cyclotron frequency. nEli ~harmonic cyclotron
heating would replace K iﬁ the integral of Eq. (31) by a

2n+..., as required by Egs. (22) and

quantity proportional to Kv
(23), and the calculated distribution function will no longer give
convergent number and energy densities. Physically, harmonic
heating acts preferentially on the higher-energy, larger-Larmor-
radius particles, and if unchecked, leads to time-dependent runaway
of their energy. .

For thermal energies and above, the full aetermination of
f(v,u) probably requires computer analysis, but in the lowest
energy range, i.e., for v << (2kTi/mi)l/2, the diffusion
coefficients are sufficiently simple that an explicit solution
to Egs. (25) and (26) is easily obtained. 1In steady-state,
9A/dt = 0 and Eq. (25) can be integrated one time immediatély.
Furthermore, the condition that A and its derivatives vanish
as VvV > » requires that the constant of integration be zefo.

Then using identity (29) and the Range I approximations for

¢, B and ¥, we find‘
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2
A = constant.exp- (mv /ZkTeff) ,
KT ¢ = (D + 2K)/[€§(Cf2f/ka)]
2 2
"B = 4K mv ) A

= (
7D + 10K ALZkTeff

The f-sum, again, is over background ions and electrons. When

all T are equal, Tf =T , then kTe = (D4-2K)kT0/D. And

£ o) ff
further, when K - 0, then T > To and B > 0. When K # 0,

eff
the resonant-ion velocity distribution is étill approximately
Maxwellian for thé lowest rangelof velocities, but with an effect-
ive temperature above that of the background ions and electrons.
A curious artifact of this K # 0 soluﬁion is that the constant-—
f($)surfaces near the origin of velocity space are'grblate spheroids
around the B direction even though the épplied wave-diffusion
introduces dispersion in v,;. Were it not for a certain cancella-
tion of terms in Eqg. (26) when A 1is of the Maxwellian form, the
lowest term for B would be B“"VZA and the corresponding
constant-f(?)vsurfaces would be Ehe expected oblate spheroids.

As indicated earlier, the éomplexity of the diffusion coeffi-
cients makes the full determination of  f(v,u) much more difficult.
at thermal energies and ébove. Nevertheless, a very useful
estimate of the magnitude of the angular dependence may be 6btained
by inteération of Eq. (26) over .vzdv from 0 to «. The only

surviving terms are

L (Y§V)4f%g K)B(v)dv = - K L)A(v)dv . (32)
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which suggests that
.
B(v) ~ - Ka(v)/ [ + k),
as a very rough estimation. We note that the indicated
eliipticity is, happily in this case, oblate, proportional to K
for small K, and that B/A approaches a constant negative value
for large K. I(The expansion in Legendre poldynomials for the
extreme case of‘a thin-disc distribution function, f(3)~6(u),
would lead to the value ~-5/4 for the ratio of the coefficient
of Pz(u) to that of Po(u).) .
The use of just two terms in the P (u) expansion is a
rather unsatisfactory way to represent the angular dependence of
f($) 'when K 1is,large. Additional terms could be included, at
the obvious cost of increasing analytic complexity, bﬁt for the
large-K case it is worthwhile to explore the alternative representa-
tion of the Fokker-Planck equation using v,,v, as variables rather
than v,u.-’We will discuss the v,, v, representation in some

detail in Section 14.

: " 13. STEADY-STATE f£(v) SOLUTION

The determination of the resonant-ion velocity distribution
function is impressively simplified if we drop angular dependence
from thg model. The expansion‘of the Fokker-Planck‘equation, truncé;
ted at f(V)=A(v)=(1/2)ff(v,u)du, is then just Eq. (25) with B=0

and it is immediately integrable,

v 2 2,
" f(v) = £(0) exp - Jdv -2a§ +(B§ ) . (33)
0 Bv©+2Kv '
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The Coulomb diffusion coefficients o

and B

are given in (27)

and (28), and identity (29) provides a. convenient form for the

numerator of the integrand.

butions to G(x) it suffices ‘to use

velocity range of interest Vv << (2kTe/me

G(Xe)~z

)1/2

For the background electron contri-

since in the

We assume a

single species of background ions with density, temperature.and

charge Anj, Tj' and Zje, and use the approximating form for
G(xj) offered in (30). Algebraic manipulation of the integrand
then leads to the explicit solution for f£(v),
. : E R-(Te-Tj+ETe)
En £ (v) - kT (1+£)[l4- Tj(1+Rj+£) H(E/Ej)] (34)
_ 2 - 1/2
E = m 2 2. = e .
v- /2 , 5 (mJ/ZkTJ) ’
- 2 -
Rj = J JQj/n L , € = 2/3Wl/2 '
_ _ <p> 2kTe 1/2
g = 2K/ece2e = —173 54 (=) '
: 8w nenZ e nA e
ka 1+R +g 2/3 :
S .
Ej(O) = 5 mVB, cf. Eg. (31),
X
, 1 du
‘H{x) = = J
X Jg l+u372_
X' 6 l+2x1/2+x 1/2 6 31/2
.1 _ 2.3/2,13_ 2 9/2
z 1 £X + 4x 11X e
= 2.4184x L-2x"3/2 +2x 732y ’9/2+... )
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Intermediate pairs of Qalues for x,H(x) are 0.1, 0.9876;
0.2, 0.9661; 0.4, 0.9124; 0.7, 0.8263; 1, 0.7471; 2, 0.5544;
4, 0.3619; 7, 0.2389, and 10, 0.1791.

Z, m, n and v designate the charge number, mass, density
and velocity of the resonant (test) ions. The effect of wave
heating appears through the single dimensionless parameter §
which is directly proportional to <P>, the wave-heating power
per unit volume delivered to the test ions, averaged over a
magnetic surface.

To discuss the behavior of f(v) in Eq. (34), it is useful
to define an effective temperature at each value of E = mv2/2,

1

KT ¢ = —[d(2n £) /dE] +,

2:

R, (T _ -T.+&T '
1+ J( e 7j £ e) 1

1 1 . .
Tj(1+Rj+g) 1+(E/Ej)3/2

kTeff’ kTe(l+€)'

For &£ = 0 the body of the test-ion distribution is Maxwellian with
temperature very close to that of the background ions (k'I‘eff x ij),
while the tail of the test-ion distribution (E'}Ej) is influenced
by the backgfbund electrons. For g > 0, kTeff for ' E << Ej(E),
identical. to kTeff derived earlier in Section 12, is somewhat
above the background ion-temperature. As E increases, the
effective temperature increases and, for E >> Ej(g), kTef.f
approaches the asymptotic value -kTe(l+£) at which the wave-
induced test-ion dispersion is entirely balanced by electron
drag.

Plots of 4n f£(v) versus E are shown in Fig. 5 for the

parameters of the example introdﬁced earlier, using njzg/ne =3
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for a Zeff = 3 in computing Rj; For these same parameters,
the wave-induced dispersion level £ = 100 cofrespohds to

}.3 watts per cm3 rf power input to the plasma, averaged

over a magnetic surface. Maintaining this average}power level

over the full volume of the model plasma in Section 7 would

require a total rf power input of 24 megawatts.
14. STEADY-STATE £ (v,) SOLUTION

Our efforts to determine the angular dependence of f(s)

were fully successful only in the sub-thermal range of ion velocities,
although the integral relation (32) provides a useful estimate
of the.anisotropy at thermal enefgies and above. However, at
thevvéry high energies in the tail of the’two—component plasma,
specifically, at test-ion energies above ~‘mV§/2, the.dominant
Coulomb process is electronadrag which does not introduce apprecia-
ble pitch-angle scattering. Of especial interest is that the
perpendicular energy acquired from cyclotron heating is not shared
with the parallel degree of freedom, so that‘the coefficient of
wave-induced dispersion is inqreased by 50% througﬁout this energy
tange. |

- To déscribe the strongly anisotropic velocity distribution
expected at high eneréieé, it‘is fittiné to change from v, u
coordinates in velocity space to v,, v, coordinates. in the
new variables, the Coulomb termslin Eg. (22) are more intricate
but the quasilinear term reverts to the simpler form seen in Eq. (19).

The test-ion Fokker-Planck equation becomes
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BE (v, Vi t) 1. 3 3

~E L= e v(vl -a—‘rj + Vo E)T,, + 2) (Ol.f) (35)
S NP N P L S B I I —+2) (BE)
-5 WA~y  Axr [ —y 1 Axr "
2v2 1 3v E 1L°"3v, 9V, avf oV, V.
’ 2_ 2
2 2 2 Vu—Vy
+—1—2-(v3 _32_ -2v,v, 3 +vf - 82 + v " 2v.,§‘—a’—-) fy £)
4v vy oV, 3V, 3V L "
. (w=kyVy) 1 4 Im+1l 3f
) th 6(mci- n )VT oV, Vi v, )
1, It =
v = (v_?_-i-vz)l/2 Qun 18 defined in (23), and o, B8, and Yy are

defined in (27). Equation (35) is equivalent to Eq. (22), but
we ndw direct our attention to regions where the distortion is
strong enough that <vf> >> <v3> .and order terms according to

Vy >>|VII|I Vg ™V, v, (3/9v,) ~ Vl(a/avL)‘- We average Eq. (35)

over a magnetic surface, using (24), then define

f(v,) = [ £(V)av,

and integrate (35) over v,. After some further straightforward
integrations by parts (some small care must be taken with the
vla (y'f)/4v282v§ term), the dominant terms are found for a

one-dimensional Fokker-Planck equation describing heating at the

cyclotron fundamental frequency,

dE (v, t)

| 2
. _ 1 3 1 d 1 9
—3F T3, 8Vl(a 1)+ 5 Vi 3u2 (Bv, f) + v, v, (v£)
4
3 K 3 of
T2V vy Ve, o (36)
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Like Eq. (25), Eq. (36), with 0f(v,,t)/ot = 0, can be quickly
integrated twice to yield a steady-state solution,

Vv, -4av,+2(Bv,y)' +¥v

f(v = £f(0) exp- I dv '
(vy) (0) exp- | "av) gy

. (37)

Apért from the 50% increase in K, already discussed, Eq. (37)
differs ffom its counterpart, Eq.- (33), by the presence of the
pitch-angle scattering coefficient in:the numerator of the inte-
grand. Pitch-angle scattering, like dispersion and drag, reduces
v, when 'vf >> <v§>.

Following the same steps which led from (33) to (34), making

use in this instance as well of the approximating form for ¢ (x)

in (30), we find

. om . Ry[(2+A) (2430)T -4AT,)
In £(v,) = kTe(2+3g){1'*2ATj(2+gRj+3g) H(E/E5) )}
(38)

=
i

Aij [2+2Rj+3£ 2/3
S Aj 2c (2+3E) :

Apart from Ej’ the quantities in (38) are .defined as in (34).
A and Aj are the atomic masses of the test and field ions,
respectively.

It should be remembered that Eq. (38) only applies to the
velocity range where f(z) is strongly anisotropic. An estimate
of the lower boundary for this range of v, can comé from

examining the numerator of the integrand in (37):. the pitch—angle'
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scattering term is smaller in magnitude than the electron drag
term when Vi > V3/4, defined in Eq. (31). Above this value of
test-ion velocity, where pitch-angle scattering becomes relatively
weak, the main source of parallel energy to the distribution will
be by its incidentél transport as particles wave-diffuse upward

in v, carrying their v, with them. The argument suggests that
while the perpendicular distribution in the tail is described by
(38) , the parallel distributioq for these same particles might

be characterized by kT, ~ mV$/8.
15. f(v) FOR STEADY-STATE ISOTROPIC ION INJECTION

"It is iﬂteresting, for the purpose of comparison,to examine
the velocity distribution which results from the Coulomb slowing-
down énd diffusion of a group of test ionsAinjected at high energy
(as energetic neutral atoms) into a tokamak plasma. We assume
the injected beam is originally monoenergetic at mv2/2 = W and
isotropic in its velocity distribution. 710 formulate a steady-
state model, we also assume an ion sink at some much lower energy,
WS; which absorbs test ions at the same rate that tbe'source emits
them. The Fokker-Planck equation is again Eq. (25) with
3A/%t =0, B =0, K=0, and with a source term,

~v™2. 5 [v- (2W/m) 1/ 2

], and a sink term, ~-v—2-6[v—(2WS/mﬂ/2],
added to the right-hand side. The first integration is immediate,
the delta functions integrating into step functions; ihtroductiqp

of an integrating factor facilitates the second integration.

Enormous simplification of the result occurs when the background
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ions and electrons have the same temperature, KkT. Then

Ao = constant-exp—mvz/ZkT must satisfy the steady-state equation
without sources or sinks, and this very solution in fact follows
directly from A= constant exp - fdv[2av2—(8v2)']/(BV2) and
Egqs. (27), (28) and (29). With source and sink as just described,

the full solution in the range Ws < mv2/2 < W |is
£(v) = tanteexp - =_ |dav(ex Illﬁ)/sv2
(v) = constante+exp KT eXP 1%

and use of the Range II approximation for g then leads to

E E exp (U/KT) /
constant'exp-ET f du

0

£(v) (39)

1

1+ [U/E, (0) ) 3/2

provided both 'E = mv2/2 >> kT and Ws < E<W. For E > W,

the upper limit in the integral is W. Ej(O) = mvé/z is defined
in Egs. (31) and (34). Moreover, for kTe = ij = kT, Eqgq. (31)
shows Vé = Vi, and provided the denominator in the integrand of

(39) does not change significantly over a range of U, AU -~ kT,

the integral may be approximated

constant (40)

3 3

f(v) =
: v +-Va

which is the customary solution for the distribution of oriéinally—
monoenefgetic test ions, from a calculation based on drag alone
and neglecting dispersion.

A plot of Eqg. (39) for 200 keV deuteron injection into a

4 keV temperature tritium plasma is shown for comparison in Fig. 5.
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16. EFFICIENCY FOR PRODUCTION OF FUSION REACTIONS

A primary objective in two-component plasma research will
be the production of abundant D-T nuclear reactions, hopefully
matching or exceeding the rate per unit plasma volume required
for an economic fusion reactor. Toward achieving this goal, rf
heating can be helpful in heating the background plasma, in
enhancing the fusion output in a primarily beam-injected two-
component plasma, or in the production by rf alone of an energetic-
tail two-component plaéma. Having determined the expected
resonant-ion velocity distribution for different leQels of rf
heating, we\ére in a position to calculate the rf power coét for
a certain rate of fusion reactions.

The D-T nuclear power producgd per unit volume is
- ® w24v ¢
Pn = 41rnT Wn L) vidv f£(v) o(v) v (41)

where N, is the tritium density, Wn the nuclear energy released
per D-T fusion reaction, and o (v) the D-T cross-section as a
function of the deuteron velocity. The rf power per unit volume

is proportional to wave-induced dispersion, §£. Taking this

factor of proportionality from (34), we find the ratio, Qrp? of
nuclear power produced to rf power input
anJv>-nTmD(2kTe)l/?
Q,u = ' . (42)
RE 8nl/zgné/2nee4inA
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The ov average is to be taken over the distribution of resonant
ions (deuterons). Especially convenient in computer calculation
here is Duane's fit [18] to the D-T fusion cross-section. For the
conditions pertaining to the example of Section 7, that is,

kT = 4 keV, using Zogg = 3 in computing Rj’ Eq. (34), and using
22.4 MeV, the computed 0 values are 0.20 for £ = 100,

n RF
0.38 for &£ = 30, and 0.045 for £ = 10. The maximum value for

W

<ov>/%, for the same conditions, occurs for £ = 42, at which

value QRF = 0.45.

For comparison, we consider the injection into the same
tritium plasma of I deuterons per cm3 per second with energy
E0° The deuteron velocity distribution, in accordance with Eq. (40),
is f(v) = I/41roLv2 for mv2/2 < Eb' f(v) = 0 for mv2/2 > Eo'
Putting this distribution into (41) determines the nuclear pdwer,
while the injected power is simply IEO. The ratio, -QI, for

nuclear power to injected power is then

2

of Eq. (31), and with kT = 4 keV,

With Zeff = 3 1in computing V

QI = 0.42 for Eo = 100 keV, 0.74 for~E6 = 150 keV, and 0.81 for

Eo = 200 keV. Comparing these two sets of Q values we see that

the efficiency for fusion power production from a .Zeff = 3 two-
component plasma produced by selective rf absorption comes within .
a factor of two with the corresponding efficiency for a neutral-
injection system. |

For Z

= 1, computation shows values significantly

ef Qrr
greater than unity. Figure 6 is a plot of QRF versus rf power,
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parameterized by £, for various electron temperatures, with

Z = 1 and temperature Tj = 4 keV for the background triton

eff
ions. The QRF. values decrease for very high rf powers and for
very large electron temperatures because tob large a fraction of
the deuteron distribution then appears in the far tail (E > 200 keV)
past the maximum of the fusion cross-section.

Figure 7 illustrates the effect of changing Zeff and also

the effect of lowering the background ion temperature.
1l7. SUMMARY

We have examined in considerable detail the use of the fast
hydromagnetic wave for heating large magnetically-confined toroidal
plasﬁas. Landau and transit-time damping, which are coherent
processes, can couple power effectively into the electrons while
the ions can be rf-heated with high efficiency at the second
harmonic of their cyclotron frequency or at the fundamental cyclo-
tron frequency of a minority ion species. In a particular
application of the latter principle, selective rf absorption by
deuterons in a predominantly triton plasma can lead to a two-
component velocity distribution suitable for the produétion of
abundant fusion reactions. ' The process is analyzed by a Fokker-
Planck equation with a Kénnel—Engelmahn quasilinear-type rf
diffusion term, and an explicit analytic éolution is found for the
one-dimensional case. Using theAresonant-ion distfibution
function thus derived, and the Duane-formula fit to the D-T fusion
cross-section, the computed efficiencies for the rf two-component
formation process ina Z = 1 plasma show QRF = (nuclear power

out) /(rf power in) values significantly above unity.



-45-

ACKNOWLEDGMENTS

It is a pleasure to acknowledge a number of helpful discuss-
ions with Dr. W. M. Hooke, Dr. D. Jassby, and Dr. F. W. Perkins.
This work was supported by the U.S. Atomic Energy Commission

Contract AT(11-1)-3073.



[1]

[2]

(31

(4]

(5]

[6]

[7]

[8]

{91

[10]

[11]

(12}

[13]
(14]

-46-

REFERENCES
DAWSON, J. M., FURTH, H. P., and TENNEY, F. H., Phys. Rev.
Letters 26 (1971) 1156.
STIX, T. H., Phys. Fluids 1 (1958) 308.
YOSHIKAWA, S., ROTHMAN, M. A., and SINCLAIR, R. M., Phys.
Rev. Letters 14 (1965) 214.

ADAM, J., and SAMAIN, A., Fontenay-aux-Roses, Report EUR-

CEA~FC=579 (1971) 29.

PERKINS, F. W., Symposium on Plasma Heating and Injection,

varenna (1972) 20.

JASSBY, D. L., 2nd Conference on RF Heating, Lubbock, Texas,

- (1974) .

HOOKE, W. M., ROTHMAN, M. ‘A., AVIVI, P., ADAM, J., Phys.
Fluids 5 (1962) 864.

CHUNG,. K., and ROTHMAN, M. A., Phys. Fluids 10 (1967) 2634.
ADAM, J., CHANCE, M., EUBANK, H., GETTY, W., HINNOV, E.,
HOOKE, W. M., HOSEA, J., JOBES, F., PERKINS, F., SINCLAIR, R.,
SPERLING, J., and TAKAHASHI, H., IAEA~-CN-33/A3-2 (1974).
STIX, T..H., The Theory of Plasma Waves, McGraw-Hill,

New York (1962), Egq. (5-26). |

BERNSTEIN, I. B., and TREHAN, S. K., Nuclear Fusion 1 (1960)
3, Eq. (24). |

CHANCE, M., and PERKINS, F. W., private communication.

See also Ref. [91, Figure46. |

STIX, T. H., (1962), op. cit., Egq. (8-10).

ADAM, J., and SAMAIN, A., op. cit. An incorrec£ expression
is used for the circumference of a circle in Eq. (2), p. 32,

and the value cited there for P is too large by a factor of 2.



[15]

[16]

[17]

(18]

-47-

KENNEL, C. F., and ENGELMANN, F., Phys. Fluids 9 (1966)
2377.
SPITZER, L., Jr., The Physics of Fully Ionized Gases, 2nd

Revised Edition, Interscience, New York (1962).

COHEN, R. S., SPITZER, L., Jr., and ROUTLY, P. M., Phys.

Rev. 80 (1950) 230.

DUANE, B. H., Battelle Pacific Northwest Laboratories,

BNWL-1685 (1972) 75.



-48-

4 ' m
\
\
5l 3 \\ i
ION \
CYCLOTRON \
2 WAVE \:\ -

_FAST WAVE
\ .

753034
Fig. 1. Dispersion curves for hydromagnetic waves above
and below the ion cyclotron frequency. N, and N, are the Alfvén
refractive indices.
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Fig. 2. Dispersion curve for the hydromagnetic fast wave
at w = 1.5 w i The curve here retraces the solid curve through

just the. firsE?! quadrant of Fig. 1. The grid lines correspond to

the different pololdal and toroidal mode numbers. Actually, each

poloidal (v) mode is a (2v - 1)-fold multiplet, and each toroidal
(n) mode is a doublet
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Fig. 3. Geometry for cyclotron resonance excitation in a
torus. Due to the 1/R dependence of B, the resonance region is
a vertical cylindrical shell. Ions moving along a magnetic line of
force and confined to a magnetic surface will intersect the resonance

shell above "and below the midplane.
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Fig. 4. Contours for quasilinear diffusion. The quasilinear
diffusion operator is a gradient operator in velocity space along
the indicated circles. Diffusion takes place just in the circum-
ferential direction, but only where the resonance condition is
satisfied, i.e., only where the circles intersect the vertical
lines.
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. Fig. 5. Plots of f(v) versus E for the plasma parameters
of the example in Section 7, and for different levels (£) of rf
excitation at the minority-species cyclotron frequency. =z = 3.

The ion velocity distribution for injection at 200 keV int8 ghe
same plasma is also shown.
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Fig. 6. Qp. = (nuclear power out)/(rf power in
is plotted versus rf power per unit volume selectively
absorbed by the resonant minority deuterons. Zeff = 1.
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Fig. 7. Q versus rf power for kT = keV, for

= 1 and 3, §Fd for temperatures of 1%keV and 4 kev
f8r the background triton ions.
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