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Fast-Wave Heating of a Two-Component plasma* 

THOMAS H. STIX 
Plasma Physics Laboratory, Princeton university 

Princeton, New Jersey 08540 USA 

ABSTRACT 

The use of the compressional hydromagnetic mode 

(also called the magnetosonic or, simply, the fast wave) 

is examined in some detail with respect to the heating 

of a tritium plasma containing a few percent deuterium. 

Efficient absorption of wave energy by the deuteron 

component is found when w = w (deuterons), with 
C 

Qwave 
g 100. Reasonable efficiencies are found also for 

electron heating, but coherence effects between transit- 

time and Landau damping for electrons reduce the total 

absorption for both processes to one-half of the transit- 

time power, calculated separately. 

The fusion output of a two-component neutral- 

injected plasma can be enhanced by selective heating of 

thc injcctcd deuterons. A130, selective deuteron 

absorption may be used for ion-tail creation by radio- 

frequency excitation alone, as an alternative to neutral 

injection. The dominant behavior of the high-energy 

deuteron distribution function is found to be 
v 

2 f (v) - exp [ ( 3 / 2 )  1 dv<Av>/< (Av,) > ]  , where <Av> is the 

2 Chandrasekhar-Spitzer drag coefficient, and <(Av,) > is 
7 

the Kennel-Englemann quasilinear diffusion coefficient 



4 

for wave-particle' interaction at the deuteron cyclotron 

frequency. An analytic solution to the one-dimensional 

Fokker-Planck equation, with rf-induced diffusion, is 

developed, and using this solution together with Duane Is 

fit to the D-T fusion cross-section, it is found that 

the nuclear fusion power output frbm an rf-produced two- 

component plasma can significantly exceed the incremental 

(radiofrequency) power input. 



1. INTRODUCTION 

The need for supplementary heating for a tokamak - supple- 

mentary, that is, to the Ohmic heating associated with the toroidal 

current - has been recognized for a number of years. Only 

recently, however, have the special benefits become clear for a 

specific form of supplementary heating: putting the heat in as a 

high-energy tail on the ion distribution. In bringing a classical 

(50-50) nT reactor to ignition, the high energy ions cause fusion 

reactions which release alpha particles arid enhance the heating 

power, while in the two-co~~~ponen,t fusion devico [11 , the crea.t.i.on 

. of the ion tail is an essential element of the total concept. 

The most direct way to produce the ion tail is evidently by 

neutral injection. It will be some years, however, before neutral 

beam technology allows us to test this heating method at the . 

requisite beam currents'and voltages, and the final answers on 

efficiency, penetration, impurities, plasma stability, and beam 

slowdown rates must await such testing. Meanwhile, it is appro- 

priate to look at radiofrequency methods as an alternative process 

for plasma heating and for ion tail creation. Radiofrequency 

heating can play a number of roles: 

a. Electron heating. A successful two-component fusion 

experiment needs an electron temperature of 5 keV or more. 

Neutral injection provides supplementary heat to both the 

background ions and electrons, .and too much background ion 

heating can be wasteful. In addition, it may turn out that 
\ 

rf electron heating is less costly to install than injection 

-heating with similar capability. . 



b. Supplementary heating: Supplementary i o n  h e a t i n g  i s  

t h e  t r a d i t i o n a l  r o l e  a s s igned  t o  r f  h e a t i n g ;  

c. Ion  t a i l  c r e a t i o n .  S e l e c t i v e  a b s o r p t i o n  of  r f  energy 

by a  minor i t y  o f  t h e  plasma i o n s  may be ach ieved  by cyclo-  

t r o n  resonance tuned t o  t h e  m i n o r i t y  i o n s  12-41, o r  by cyc lo-  

t r o n  harmonic h e a t i n g  which d e l i v e r s  power t o  

t h e  high. energy ( l a r g e  Larmor r a d i u s )  component r 4 - 6 1  . 
d .  Ion  t a i l  enhancement. Radiofrequency h e a t i n g  may be 

used t o  enhance n e u t r a l  i n j e c t i o n  i t s e l f  by tun ing  t h e  r f  

t o  resonance w i t h  t h e  i n j e c t e d  beam p a r t i c l e s  i n  t h d  plasma. 

Such. hea t ing  can . e a s i l y  add pe rpend icu la r  energy . t o .  beam . ' . 

. . i o n s ,  and .can i n c r e a s e  a n d m a i n t a i n  t h e  energy d ' i spe r s ion  

.of t h e  beam and t h e  fu s ion"  r e a c t i o n  rate.  

The: wave mode. which i s .  uncanni ly  w e l l  s u i t e d  t o  the .variou's  

o b j e c t i v e s  o u t l i n e d  above i s  t h e  compress ional  hydromagnetic,wave,  

a l s o  c a l l e d  t h e  magnetosonic mode o r  simply the .  fas ' t  .wave. The 

wave l e n g t h s  i n  t h e  d e s i r e d  f requency ( w  . wci)  and d e n s i t y  

(n  .. 1014 ranges  are long enough t o  a l l o w  reasonab le  mode 

s e p a r a t i o n  i n  t h e  l a r g e  tokamak plasmas and good coup l ing  t o  t h e  

ante,nna s t r i ~ c t u r e s .  F a s t  wave h e a t i n g  [7]  f o r  l a r g e  plasma d e v i c e s  

w a s  f i r s t  s e r i o u s l y  examined by Adam.'and Samain[4] . O n  t h e  e x p e r i -  

mental  s i d e ,  e x p e r i m e n t s . i n  1967 on t h e  Model C - s t e l x a r a t o r  showed 

bo th  fast-wave g e n e r a t i o n  and plasma h e a t i n g  [ S l .  'More r e c e n t l y ,  t h e  
. . 

1974 ST tok:amak experiments [ 9 I s t r o n g l y  conf irmed f a s t  wave h e a t i n g  

and,  e q u a l l y  impor tan t ,  demonstrated t h e  e x i s t e n c e  of and showed 

t h e  a b i l i t y  t o  e x c i t e  high-Q d i s c r e t e  fast-wave t o r o i d a l  modes [ 5 ] .  

By proper  s e l e c t i o n  of  , the  fast-wave f requency ,  mode numbers, 



' magnetic field strength and plasma composition, it is possible to 

heat ions and/or electrons, to vary the deposition patterp of the 

heating, and to modify the ion velocity distribution. Using fast- 

wave heating equipment, the experimentalist therefore has availa- 

ble to him, with rather modest parameter changes, a great flexi- 

bility in his experimental approach and-a great range of physical 

- 
processes. 

In this paper we examine in some detail the specific use of 

fast-wave excitation for heating large magnetically-confined 

toroidal plasmas. We look at electron heating through wave- 

absorption via Landau and transit-time damping (the two effects 

are coherent and cross-terms must be considered), and ion heating 

through cyclotron damping. A Fokker-Planck calculation with a 
. . 

quasilinear-type rf diffusion coefficient shows that selective 

rf cyclotron absorption is competitive with neutral injection for 

the formation of a fusion-producing two-component ion velocity 

distribution. 

2. ALLOWED MODES AND MODE-TRACKING 

We start our detailed consideration of fast-wave heating by 

looking at the properties of this mode in a homogeneous cold plasma 

immersed in a uniform static magnetic field. The wave equation can 

be written in the usual matrix foi-i.3, with k set equal to zero, 
Y 



"x 
t kxc/w and nZ E k;c/w are the two remaining components of 

2 
and, we have .neglected the vector refractive~~index, n = n2 + nZ, 

X '  

components of the dielectric tensor, i f ,  which are finite only 

for T # 0: The usual. low-frequency high-conductivity approxima- 

2 
tion is now taken, IKZZ( "nx, n and we may further denote 

xz " 

Kxx 
= K = S. = (1/2) (R + L) and .K = -K = -iD:.= - (i/2) (R - L) , 

YY XY YX 

leaving 
4 

. . 

For I 0 I << wce , w and neglecting displacement current, but' 
Pe 

'.* 

including the electron contribution, the cold-plasma dielectric 

tensor elements are R 2 (4nnimicL/BL) [w . / (wci+w) ] ; 
C1 

, . 2 2 
L = (4nn.m.c /B ) [w :/ (wci-w) 1 .   he' dispersion relation for hydro- 

1 1  C1 
. . 

magnetic waves is given just by the determinant o£ the 2 x 2 

matrix, and may then be written 

where N, and N,,, the Alfvgn refractive indicestare defined 



The dispersion relation is sketched in Fig. 1 for the two cases, 

A > 1 (w < wci) and A < 0 (w > wci). The curve for w > wci 

shows the two well-known ~lfv6n waves, 'the shorter-wavelength 

shear or ion cyclotron mode, and the longer-wavelength compress- 

ional mode, also called the magnetosonic or fast wave. The case 

of espec'ial interest to us is that where the plasma ions are pre- 

dominatly tritons, but where w is set equal to the deuteron 

cyclotron treqeuncy. In this case A - -4 /5 .  ~t 13 fnotruotive 

to draw the dispersion relation for just the propagating region 

of the fast wave, using N,, N, as coordinates rather than 

2 2 
N, and N,,, and such a plot is shown in Fig. 2. New in a 

finite-geometry plasma, wavenumbers for the allowed modes will 

be approximate multip1.es.of some fundamental wavenumbers, e.g., 

(0) . N,, = nN.. , Ni - VN!~). Therefore, the natural modes of the 

finite-geometry plasma will occur where the dispersion relation 

curve passes through an intersection of the background cartesian 

grid laid out with spacings corresponding to the fundamental wave- 

numbers, as indicated in Fig. 2. As the device size and plasma 

density are increased, the grid spacingsin Fig. 2 will decrease. 

For. instance, in a torus [lo] , 



Actually the mode spectrum is slightly more complicated than 

(0) 
just described. The approximation that N, - VN!~).. with N, 

given by Eq. 4 is valid for modes with toroidal and radial but no 

poloidal variation. But the complete dispersion relation,for a 

toroidal system will have a structure'simiiar to that given by 

Bernstein and Trehan[111 for a finite-radius cylinder of uniform- 

density cold plasma: the field amplitude varies as E3i1) = constant - 
Jm(vr) exp(im0 + ikz - iwt) and the dispersion relation is of the 
form 

I-O where A and B are functions of w, k,, , and .the plasma para- 
. . 

meters. solutions of this dispersion' relation appear between 
>" 

each pair,of zeros of Jm(k,a) and therefore can be categorized 

simply by k,a - IT (r + lm/2 1 1 + E (r ,m) , where r and m are the 

radial and poloidal mode numbers, and E is an angle of magnitude 

less than'r. The integer quantity we had called v would be 

-k,a/w, but-we see now that the complete spectrum shows modes 

at half-integral'values of v, for v > 1, and each such mode 

has a (2v - 1)-fold multiplicity, iie., v = 1 corresponds to 

r = 1 ,  m = O ;  v = 3 / 2 t o r = 1 , m = + 1 ; ~ = 2 t o r = 2 , m = O  

etc .'. and r = 1, m = +2, 

 h he mode spectrum for a straight cylinder is degenerate with 

" +- 
respect to propagation parallel or antiparallel to' zB i.e., 

0 

with respect to +k,. It has been pointed out by Chance and . 

Perkiris [I21 that this degeneracy 'is resolved in a tokaniak plasma, 

the line separation being. related to mode rotation due to the' 



helical magnetic lines of force. Just as each designated v-value 

in Fig. 2 is actually a (2v - 1)-fold multiplet (not shown on the 

drawing), it is then also true that each n value actually 

designates a doublet (not shown) in the spectrum. Certain 

important qualitative conclusions can be drawn immediately from 

this interpretation of Fig. 2. We consider the possibilities 
- 

for fixed w/B, corresponding to setting w = w for a j-type 
c j 

1. For a toroidal device which is too smali in minor radius, 

or in which the desired density has too small a value, even the 

nearest grid intersection will fall outside the dispersion curve, 

and no natural fast-wave modes will propagate. The Princeton 

, C-stellarator plasma fell in this category. V 

2'. For an intermediate-size plasma, a small number of modes 

will be possible, and these will be reasonably well separated in 

density. The recent fast-wave experiments in ST fall into this 

category. 

3. For a somewhat larger plasma, many modes will be possible, 

but the mode separation in density will still be large enough that 

rather broad-spectrum excitation can be used successfully to excite 

the desired single modes. Princeton's PLT, PDX, and perhaps TFTR 

would be in this category. 

4. For reactor-size plasmas, the dense'mode spectrum will 

tend to frustrate efforts to excite optimum single modes to achieve, 

say, ion heating without electron Landau damping, or core heating 

I. ' 
without surface heating. In such large devices', then, considerable 

attention will have to be paid to the use of antenna structures 

which narrow the k, and k ,  excitation spectra. 



5. For any plasma, the occurrence of a natural mode with 

specified k,, k,, w, and B requires the proper value for 

ion density. In pulsed plasmas and in the start-up of steady- 

state plasmas, the density will vary with time, and allowance 

must be made for tracking resonant conditions either by varying 

w or, jumping modes, by changing the $-excitation spectrum. 

The natural sense of rotation of ions around the magnetic 

field lines is that of left-handed screw motion progressing along 

'the vector. Cyclotron acceleration of the ions therefore 

depends principally on the amplitude of the left-handed circularly- 

polarized component of the wave el.ectric field in the plasma. . In 

detail, if one.goes to finite-Larmor-radius theory, it will be. 

found that ion acceleration due to a pure right-hand E-field 

component will be weaker by a factor 
4 4 

"k,<pLi> than that 

due to the left-hand component, a result which holds even for 

cyclotron-harmonic acceleration. (Examine the structure of 1 €I I 
n,k 

in Eq. (18) below.) Going back to Eq. (2) , we can determine the 

ratio of the left-hand d component (Ex + iEy) to the right- 

hand component (Ex - iE ) , 
Y 

and provided that w > wci and wci/(w + w ) > N: > 0 (that is, for ci 

a propagating f art wave at o > oci) then 



E +iE w-w 
X Y <  ci 
E ~ - ~ E  w+w 

Y ci 

For w = (3/2)wci, corresponding to deuteron cyclotron resonance 

in a triton plasma, the right-hand side of (6) equals 1/5. The ratio 

in (5) is a maximum fdr N: = 0 and drops to zero for parallel propaga- 

2 
tion, which is characterized by the dispersion relation n:=~ (n, = 0) 

and cure riaht-hand circular polarization.  he ~ ~ 1 % ~  relation, 

Eq. ( S ) ,  applies, of course, also to ion cyclotron waves, but 

reduction of EL 
2 

is avoided in this instance because nZ - L. 
For dense plasmas, this condition on n2 z requires very short parallel 

wave-lengths. ) The relative magnitude of 'the left-hand E . field 

is. also reduced if the number of resonant ions is increased - up 

to now, we have neglected the contribution of the resonant deuterons 

to the dielectric tensor. 'llAeir principal cu~ilribution is to L, 

but hot-plasma theory limits the magnitude even at exact resonance. 

Writing L = LT + LD for the tritium (plus electrons) and deuterium 

components, one will find the extremum value for LD/LTr occurring 

The power going into deuteron heating will be proportional to 

+ iE 1 and will be a maximum for n such that I L ~ / L ~  I extr. 
nD *x Y D 

is of the order of unity. Typically this leads to optimal fraction- 

al deuteron concentrations of a few percent. A similar argument 



can be applied to second-harmonic heating in, for instance, a 

50-50 D-T plasma. In that case, however, the contribution to L 

from the resonant ions is reduced by a factor proportional to 

4. ION CYCLOTRON DAMPING 

Collisionless cyclotron damping can take place with absorption 

.of wave energy by the particles that, in their own frame of 

reference, feel the wave E-field at their cyclotron frequency. 

The well known condition for- such single-particle resonance is 
. . 

w-k,,~,, = w . We will return to the standard uniform-B calcu- 
, . C 

lation, but it is instructive first to calculate particle heating " 

in the inhomogeneous tokamak magnetic field. Given w, k,, and 

v,, for a'test.ion, resonance will occur in themneighborhoo.d of 

a certain  constant surface. Ions fcllowing along the B-lines 

which twist around the magnetic axis can pass through the resonant 

surface twice each complete revolution. On each passage through 

resonance the ions receive a kick in mv, which is not difficult 

to calculate. The single-particle equations of motion perpendicu- 

lar to I5 are 

; x - R(t)vy=9 m Ex coswt 

; +n(t)vx=- 9 E sinwt 
Y m Y 

Let E+ E (I./%) ( E ~  * E ) , u G,vx + iv . Si (t) is the cyclotron frequency - Y Y - 

at the instantaneous particle position. Expand R(t) around the ; 
. . r .  

resonant surface, 



The two r e a l - v a r i a b l e  equat ions  can then  be w r i t t e n  as a  s i n g l e  

equa t ion  i n  t h e  complex v a r i a b l e  U r  

W e  neg lec t  t h e  non-resonant (E - ) d r i v i n g  t e r m  and i n t e g r a t e ,  

f o r  t >> to. W e  assume t h a t  u(-a)  i s  randomly phased with r e s p e c t  

t o  E+ 
( b u t  w i l l  r e t u r n  t o  t h i s  p o i n t  i n  Sec t ion  8 )  and compute t h e  'd 

average change i n  energy p e r  t r a n s i t  of t h e  resonant  s u r f a c e ,  

T o  f i n d  t h e  t o t a l  r a t e  of power absorp t ion  pe r  u n i t  volume, P ,  

w e  mul t ip ly  t h e  energy gained per  t r a n s i t ,  W by t h e  t o t a l  ion  

t r a n s i t i n g  r a t e ,  v ,  forming P = v (r) w (;) . For t h i s  c a l c u l a t i o n  we 

A 

choose a  l o c a l  coordina te  system i n  which z is  t h e  d i r e c t i o n  of  

A 

t h e  t o r o i d a l  component of 8, x i s  i n  t h e  d i r e c t i o n  of t he  major 

A 
* 

r a d i u s ,  and y i s  v e r t i c a l ,  p a r a l l e l  t o  t h e  major a x i s  of t h e  t o r u s .  

The e x a c t  l o c a t i o n  of t h e  resonant  s u r f a c e  f o r  each ion  depends on 
/ 



v,, in order to satisfy w - k.,,v,, - w = 0, and v (.x,.y) is .the number 
C 

of ion transits across such resonant surfaces that occur per unit 

time in each unit volume of the plasma, 

where 

and 
w-w (x+Ax) 

u + A u =  C 

k I, 

I 

and where v is the x-component of the ion guiding-center velocity. 
xg 

From these equations we derive 

: ~lso, we may write 

where v is again the guiding-center velocity. In forming 
xg 

P, it is interesting to note that v cancels out, leading to 
xg 

a result which is independent of the local value of tokamak rota- 

tional transform, etc. We find simply 

which is precisely the result one obtains [13] from conventional 

uniform-B hot-plasma theory. This identity of results has the 



f6rther welcome co.nseguence that the use of the uniform-B-theory 

monochromatic-spectrum quasilinear diffusion coefficient may now 

be justified for the calculation of ion heating in the inhomogeneous 

B-field of a tokamak. The point will be discussed in Section 7 .  

The next step is to average P(;) over the volume between 

two magnetic surfaces, of minor radii r and r2. 1 
For this 

purpose we write . 

and then 

where n(y), m and wci refer to the resonant ions only (e.g., 

deuterons) and where the integral is carried out along y at a 

value of major radius (x) corresponding to the center of the 

resonant region. See Fig. 3. Symmetry for +y is assumed. 

el and O 2  are the angles between the minor radii, rl and r 
2' 

and the x-axis. The heat which is first generated in the two 

resonant regions then is quickly distributed, by the flow of ions 

along the magnetic lines of force, to the volume between the 

torus-shaped magnetic surfaces with minor radii r and r 
1 2 ' 



For r2 and rl close together, the average power per unit 

volume to the resonant ions, of density n(r), on a toroidal magnetic 

surface with minor radius r is simply 

n(r) Zec . 

<p> = 
2 

B - q Y 5 q  IE+I * 

This same result, averaged over the tokamak cross-section,was 
. . 

already obtained by Adam and Samain [141. 

A happy consequence of this rf heating is the appearance of 

a geometrical effect which favors the deposition of heat in the 

core (small r) of the tskamak plasma. 

5. ELECTRON LANDAU AND TRANSIT-TIME: DAMPING 

Landau damping and transit-time damping both involve energy 

-b 

absorption by particles moving along B with the phase velocity 

of the wave, i.-e., particles for which w - k,,v,, = 0. In Landau 

damping, the force on the particle due to the wave is &; for 

transit-time damping the acting force is -pVB. Both processes 

are effective in fast-wave damping by the thermal electrons. The 

exact calculation is tedious in its algebra as the two effects are 

coherent and cross-terms need be retained. Symbolically, the 

power abosrbed per unit volume is given simply by 

-t -% 
p . =  - - iw $**K.E + complex conjugate , 1 6 .rr 

in which $ is the complex amplitude in the representation of the 

-+ -b -b -% -% -% 

real wave field Eo, Eo = R~{E exp.(-iwt+ik.r) } , and K is the 



+ 
usual hot plasma dielectric tensor. The only terms of K that 

need be retained in the expression for P are the collisionless 

absorption terms from the w - k,,v,, = 0 electron resonance, 

where we have made use of the Onsager relation K =-K 
YZ zy' 

and 

where 

The evaluation of the amplitude and phase relations between 

E and Ez is made in a straiqhtforward fashion from the vector 
-- Y 

wave equation, Eq. (1) , using the hot-electron forms for 2 

including K and K 
zy' 

The calculation is simplified in the 
YZ 



weak-damping limit in that it suffices to retain only the reactive 

-b 

elements in K. From the x and z components of the wave-equation 

one derives 

KXX 
and K involve mainly ions and the cold-plasma forms may 

XY 
- be used. KZz - - u2 /w2 or (kZ") 

2 

pe 
whed (w/k,,s) >> 1 and 

- 

2 
(w/k,,s) << 1 respectively, and K = 0 or ik w / (kZw 1 wee 1 ) in 

ZY x Pe 

the same two limits respectively. If desired, s n e  may use 
. ., 

BZ = (kxc/w)~ to express the transit-time damping in terms of the 
Y 

wave, BZ-field. 

~ q .  (13) is of interest to us in this application only when 

Landau or transit-time damping are not negligible. In such regimes 

/ k  s 1 , and the K term in the denominator will dominate. 
ZY 

Then we may reasonably approximate 

For low frequencies, a simple argument gives the same result. Say 
-t 

ions move in and out with B - then by quasineutrality, ne - BZ. 
Also, for hot electrons, ne=n exp(e@/kTe). Finally, using the 

0. 

induction equation, aBZ/at=-caE /ax,. the above relation follows. 
Y 

It is particularly interesting to observe that the substitu- 

tion of this phase and amplitude relationship for E and EZ 
Y 

leads to exact cancellation between the transit-time term (AK . ) 
YY 

and the cross-term (AKyZ) , leaving only the Landau damping term 

(AKZz) which is then equal in magnitude to one-half of the 



transit-time term, 

6. WAVE ENERGY UBNSITY 

A convenient way to compute the wave damping rate is to 

divide the power absorption by the wave energy density, W. 

From conventional wave theory, 

-k 

where Kh is the Hermitian portion of the dielectric tensor. 

With the cold-plasma dielectric tensor elementstand making use 

of the phase relation between Ex and E derived from Eq. (1) , 
. . Y 

\ 

we fihd 

2 ~f and N, are related, of course, by the dispersion relation 

in Eq. ( 3 ) .  The first two terms inside the brackets represent 

AZ 
magnetic field energy, and the term is the kinetic energy 

of the coherent particle motion. 

7. AN EXAMPLE 

To illustrate the calculations presented here, we look at one 

representative case, a tokamak plasma with the followins parameters: 

. . .. 



T r i t o n  d e n s i t y  

Deuteron d e n s i t y  n = 2.5 x 1012 
D 

Temperature kT i=kTe =4000  e V  

Magnetic  f i e l d  40 kG 

Major r a d i u s  

Minor r a d i u s  

Wave f requency  w = wc(deu te rons )=  2 1 ~ ( 3 0 . 5 )  MHz 

P a r a l l e l  wavelength A , ,  = 123 c m  

The f i r s t  group o f  computa t ions  concerns  t h e  background plasma,and 

t h e  de u t e r o n  c o n t r i b u t i o n  i s  n e g l e c t e d .  

nz  = 7 .99  

2 
N,, =0.0362  



w = 65.0 I E  1  ( 5 4 %  m a g n e t i c ,  46% k i n e t i c )  
Y 

E + / i E  = -0.218 
Y 

7  3  
Volume = 1 . 9 4 7  x 1 0  c m  

The  power  c o m p u t a t i o n s  show 

7  2 . -1 
( A K  ) = 3.92 x 1 0  I E  I  sec 

' t r a n s i t - t i m e  y y  Y 

7 2  -1 
(AIZ ) = - 3 . 9 7 ~ 1 0  I E  I sec 

Pcross-terrns y z  Y 

7 
'Landau ( A K ~ ~ )  = 2.04 x 1 0  I E  Y 1 'set-' 

t 7  2  -1 , 

' T o t a l  
( e l e c t r o n s )  = 1 .99  x :10 I E  I sec 

Y 

Q ( e l e c t r o n s )  E oW/P 
t o t a l  

= 628  

W i t h  t h e  a d d i t i o n  of 5% d e u t e r o n s  a n d  e l e c t r o n s ,  b o t h  a t  k ~ =  4000 eV, 

we compu te  
i 

A R ( d e u t e r o n s  p l u s  e l e c t r o n s )  = 29 .5  

AL ( e l e c t r o n s )  = -59.0 

AL ( d e u t e r o n s )  = i 6 3 3 0 .  

. . 

W e  a s s u m e  t h e  c e n t r a l  r e s o n a n t  s u r f a c e  p a s s e s  t h r o u g h  m a g n e t i c  a x i s .  



Then sin0 =1 in Eq. (lo), and the power absorbed per unit volume is 

2 
<P> ! (2/a ) P(r)rdr, for I E  12=const, 

Y 

The kinetic energy of the deuterons has not been included in W 

in the last expression; its inclusion will increase Q(ions). 

However, the small fraction of deuterons present and the unfavorable 

-f 

polarization of E wil.1 limit the size of this contribution. 

8.. QUASILINEAR DIFFUSION COEFFICIENTS 

.Generally in rf heating applications it is sufficient to know 

just' the rate of power absorption from a wave of given amplitude. 

For creating a fusion-producing ion tail, however, we want to know 

precisely how the ion velocity distribution is affected. The means 

for this computation are readily available by including the quasi- 

linear diffusion coefficient among the Fokker-Planck terms in the 

Boltzmann equation.  h he quasilinear diffusion coefficient for 

cyclotron absorption was' calculated by Kennel and Engelmann [15], 

and in the absence of other diffusive processes, the kinetic ion 

equation reads. 

where 
(18) 



V is the plasma volume, and SIC are the Fourier amplitudes in the 

usual complex analysis ot the wave tield. For present purposes we 

can drop the parallel velocity effects in the L operator, Eq. (18) , 

but this point will be discussed at the end of this section. We may 

also neglect the EZ and Ex-iE (riqht-handed) contributions to 
Y 

en,kf 
assume $ =  0 and a monochromatic spectrum. Then, carrying 

-+ 
out the integration in [18] over k, 

2 2 
3f ( 2 )  - _ .TZ s 2 1 a 2  . w - n w  
a t  IEx+i~yI E I J 1 6 [v,, - ( ci) 1 3f  

~ . m ~  1 k ,, I n w ci k ,, vA av, 
I- - 

summed over the cyclotron harmonics. The electric field in (19) is 

+ A + -). 

E = Re ( & E ~ + ~ E  ) exp (ik* r-.iwt) . For acceleration at the cyclotron 
Y 

fundamental, the Bessel factor is Jo(k,v,/wci) + l  in the small 

 armor-radius limit. To recover our previous result, Eq. (8), on 

ion heating, we simply integrate twice by parts, 

. .  . 

2  or comparison with (8) and (10) , w e  observe that I E ~ + ~ E  Y I = 4 13+1 2. 



Two points of general interest now come up which concern 

the use of the quasilinear diffusion coefficients for the cyclo- 

tron heating calculation. The first, already referred to in 

Section 4 ,  is that the direct calculation of resonant-ion heating 

in the inhomogeneous magnetic field leads tothe identical result, 

Eq. (8), as the local use of the quasilinear diffusion coefficient, 

Eq. (20), and that this'identity of results therefore justifies 

the use of this coefficient even though the electric field spectrum 

is monochromatic. The critical consideration is that the usual 

quasilinear calculation demands a spectrum of randomly phased 

modes to justify the concept of true particle diffusion resulting 

fr0m.a number of incoherent.velocity displacements; whereas in 

the -present heating calculation we consider that the irradiation 

is monochromat.ic in both frequency and wavenumber. The usual 
. . 

problem for the monochromatic spectrum is that wave-particle phase 

relations can be altered by the very coherence of the wave, as 

when trapping occurs. However, this difficulty is easily avoided 
. . 

in the tokamak heating provess under consideration. In each passage 

through the resonant surface the particles here pick up small in- 

crements to their perpendicular velocity and to justify the descrip- 

tion of this process as velocity-space diffusion we require just 

that successive velocity increments be randomly phased, i.e., that 

u(--) in the Section 4 calculation be randomly phased with respect 

to the oscillating electric field. The necessary randomness easily 

appears from col1,isions - the collision rate need only be such that 

particles "forget" the phase of,the cyclotron heating field 

between successive transits of the resonant surface. Typically 
./ 

the time between successive transits will be the time for' an ion to 



execute half a poPoidal rotation in a tokamak, T z ~Rq/v,. The 
P 

2 
irreproducibility in T will be AT :: T R ~  (A-v,,) /v,, , and 

P P 

dispersion by Coulomb scattering will lead to rms Av, values of 

2 
order (<(Av,) >T 

P 
after half a poloidal rotation. Requiring 

that ions "forget" the cyclotron phase between transits just says 

that uciA' >> 1, or that 
P 

2 
The diffusion coefficient < (Bv,,) > is evaluated in 

Eq. (28) in this paper, and the randomization criterion can be 

seen .to be very easily satisfied in actual tokamaks, even in the 

ion banana regime. 

The second point of general interest in this quasilinear 

diffusion calculation is that cyclotron heating is generally 

, considered a process which causes dispersion only in v,. However, 

a look at the structure of the diffusion operator, L, shows that 

dispersion in parallel velocities is also involved. In fact, the 

L operator is a gradient operator in velocity space directed along 

the circle 

2 
v, + v - K) = constant 

k I, 

and quasilinear diffusion takes place only along these circles, 
C 

Fig. 4..  The sketch illustrates that the amount of para,llel diffusion 

occurring under cyclotron resonance can be appreciable. It must be, 

remembered, however, that resonant particles are involved, so the 

diffusion occurs on the circles only where they intersect the line 



v, = (W -- nu )/kI and the slope of the curves away from this 
ci 

intersection does not have physical meaning. 

9. FOKKER-PLANCK EQUATION 

We now want to write down a kinetic equation for the ion 

velocity distribution incorporating the combined effects of 

quasilinear heating and Coulomb thermalization. A convenient 

form for the Fokker-Planck equation is 

. . . . ,  

the first term representing drag, the second term dispersion. 

We wiil be satisfied to examine the evolution of the distribution 

function for a.smal1 number of ions (e.g., a small minority component 

of deuterons in a thermal triton plasma, or the high-energy non- 

Maxwellian ion tail thermalizing against an approximately 

. Maxwellian ion body distribution) and ask only for the Fokker-Planck 
. . 

coefficients for test particles diffusing in an isotropic Maxwellian 

plasma of ions and electrons. The needed Coulomb coefficients are 

those of Chandrasekhar and Spitzer [16lt given for Cartesian coordi- 

2 2 nates in velocity space as <Av,,>, < (Av.) > and < ( Av,) > (For 

these Coulomb coefficients, , and ,, denote directions with 

G, , -+ 
respect to the test-particle v, and do not pertain to B.) Going 

to spherical coordinates in velocity space and adding the' quasilinear 

diffusion to the Coulomb terms [171 , the total kinetic equation is 



2 m+lv2m-2 8 - (1-P 1 - a 2 m+lv2m-2 a a, lJ vf - 2m(l-lJ 1 - lJf , a!J 

, where Q )  is the coefficient of v:" in the power series 

where p is the cosine of the angle in velocity space between 

-t 

v and , and where we have used the relation for differentiation 

2 2 2 
with respect to v, = v (1-p ) , 



Since .o 
ci 

.is a function,of the major radius in a tokamak,. 

: we can eliminate the .delta function in Eq. (22) by averaging over 

a toroidal magnetic surface of :minor radius r, major radius R, 

as in the derivation of Eq. (10) , 

-1 
where €lo = tan ( I yo 1 /xo) I and xo I Y, are the coordinates in the 

plasma cross-section where the selected magnetic surface intersects 

the central (v, = 0) resonant surface. Compare Fig. 3. We have 

assumed that the cross-section of the magnetic surface is a circle 

-t 

centered around (x,y) = (0,O) , that. f = f (r ,v) , independent of 

the spatial angle 8, and that Qmn (x,y) is symmetric for = t 1 yb 1 

and is well approximated over the resonant interaction region by its 

central value at x = xo. 

1 

10 .. EXPANSION OF f (c) IN LEGENDRE POLYNOMIP-LS 

The conventional way to obtain an analytic solution to a 

partial differential equation such.as Eq. (22) is by the expansion. 

of f in a series of Legendre polynomials in y ,  

For Q(f) = 0, the expansion is particularly appropriate since the 

pk(p) are eigenfunctions.of the C(f) operator. ~ ( f )  # 0 



unfortunately mixes the various Pk(y)'functionsr but the 

expansion is still useful because the y integrations are easy, 

and the problem is quickly reduced to a set of coupled linear 

differential equations in v and t. Restricting our attention 

to the' case for heating at the fundamental cyclotron frequency 

(n = l), and keeping only the first two terms in the y-expansion, 

we obtain from, the PO(y) and P2 (11) moments of Eq. (22) 
- 

in which, using Eqs. (10) , (231, and (24), 



11. THE COULOMB DIFFUSION COEFFICIENTS 

The Coulomb diffusion coefficients are given in Spitzer [161. 

We use subscript f to designate the background-plasma field 

particles, ions and electrons, 

~ ( x ) '  5 
@ (x) -x4 ' (x) 

\ 

2x 3 .  

In working with these diffusion coefficients, we will find the 

following identity useful, 



In addition, we introduce simple approximations to the somewhat 
- 

cumbersome G and @ functions. Both approximations produce 

the correct leading terms in the two limits of small and large 

x; in midrange, at the points of maximum fractional error, 

G(1.819) is about 10.5% too low, while Q(1.040) is about 

27.4% too high. The two approximating forms are 

It will be seen shortiy that the use of these specid1 I U L ~ ~ S  

permits the complete solution of the one-dimensional Fokker-Planck 

equation by elementary integrals. Meanwhile, the following more 

easily interpreted forms for the Coulomb diffusion coefficients 

may be derived from the preceding equations using just .the leading 

terms for G(x) and @(x), 

Range I D / v  D 2D 

v 
Range I1 - -(I+ v,' 

ts -3) v 



where Range I is for v << (2kTi/mi) and Range I1 for 

( 2kTi/mi) 'I2 << v << (2kTe/me) , and "here, summing over the 

f species of field ions and electrons, 

8 A(kTe) 3/2 
= 6.27 x 10 seconds a 

Summing over the j species of field ions, 

A and A are the atomic masses of the test and field ions, ne 
j 

-3 
is in cm , and kTe in eV. 

NOW armed with explicit forms for the diffusion coefficients, 

we can look for solutions to the Fokker-Planck equation for the 



rf-heated resonant ions. In most rf-heating experiments, the 

experimentalist is able to irradiate the plasma with an rf pulse 

of sufficient duration that the temperatures reach a steady-state 

value or, due to impurity influx, may even start to droop. It is 

meaningful then to look for steady-state solutions to Eq. (22) 

or Eqs. (25) and (26) . It should be noted, however, that the 

occurrence of a steady-state solution is peculiar to heating at 

tll 
the fundamental cyclotron frequency. n- -harmonic cyclotron 

heating would replace K in the integral of Eq. (31) by a 

quantity proportional to ~v~~ +. . . , as required by Eqs. (22) and 

(23), and the calculated distribution function will no longer give 

convergent number and energy densities. Physically, harmonic 

heating acts preferentially on the higher-energy, larger-larmor- . 
radius particles, and if unchecked,leads to time-dependent runaway 

b 

of their energy. 

For thermal energies and above, the full determination of 

f(v,p) probably requires computer analysis, but in the lowest 

energy range, i. e. , for v << ( 2kTi/m. ) 'I2, the diffusion 
1 

coefficients ,are sufficiently simple that an explicit solution 

to Eqs. (25) 'and (26) is easily obtained. In steady-state, 

a~/at = 0 and Eq. (25) can be integrated one time immediately. 

Furthermore, the condition that A and its derivatives vanish 

as v + requires that the constant of integration be zero. 

Then using identity (29) and the Range I approximations for 

a, B and y ,  we find 



2 
A = constant,exp- (mv /2k~,~~) , 

The f-sum, again, is over background ions and electrons. When 

- all Tf are equal, Tf - To,, then kTeff = (D + 2K) kTo/D. And 

further, when K + O', then Tef 
+ To 

and B +  0. When K #  0, 

the resonant-ion velocity distribution is still approximately 

Maxwellian for the lowest range of velocities, but with an effect- 

ive'temperature above that of the background ions and electrons. 

A curious artifact of this K # 0. solution is that the constant- 

f($) surfaces near the origin of velocity space are prolate spheroids 

-t 

around the B direction even though the applied wave-diffusion 

introduces dispersion in v,. Were it not for a certain cancella- 

tion of terms in Eq. (26) when A is of the Maxwellian form, the 

2 
lowest term for B would be B ' - - v  A and the corresponding 

constant-f ( G )  surfaces would be ihe expected oblate spheroids. 

As indicated earlier, the complexity of the diffusion coeffi- 

cients makes the full determination of" f(v,y) much more difficult 

at thermal energies and above. Nevertheless, a very useful- 

estimate of the magnitude of the angular dependence may be obtained 

by inteiration of Eq. (26 )  over v2dv from 0 to ?. The only 

surviving terms are 



which suggests that 

Y (v) +' gK1 
B(v) - - KA(v)/[' - 7 I 

as a very rough estimation. We note that the indicated 

ellipticity is, happily in this case, oblate, proportional to K 

for small K, and that B/A approaches a constant negative value 

for large K.  he expansion in Leqendre ~oloynomials for the 

extreme case of 'a thin-disc distribution function, f (c) -6 (p) , 
would lead to the value -514 for the ratio of the coefficient 

of r2 ( y )  Co that of Po(lr). 

The use of just two terms in the P ( 1  expansion is a 

rather unsatisfactory way to represent the angular dependence of 

f ( G )  when K is, large. Additional terms could be included, at 

the obvious cost of increasing analytic complexity, but for the 

large-K case it is worthwhile to explore the alternative representa- 

tion of the Fokker-Planck equation using. v,,v,, as variables rather 

than v .  We will discuss the v,, v,, representation in some 

detail in Section 14. 

13. STEADY-STATE f (v) SOLUTION 

The determination of the resonant-ion velocity distribution 

function is impressively simplified if we drop angular dependence 

from the model. The expansion of the Fokker-Planck equation, trunca- 

ted at ~ ( ~ ) = A ( v ) = ( ~ / ~ ) J ~ ( v , M ) ~ P ,  is then just Eq. (25) with B = O  
.. ' 
c: 

and it is immediately integrable, 

2 2 '  

* f(v) = f ( 0 )  exp - -2av 2 +(Bv 2 ) 

Bv +21<v 



+ 
d
 

U
 

h
 

u
'
 

+ 
H

r
l
 

u
 a

,
.
 

B
 

.
x

 

- n 
l-l 

N
 
\
 

l-l X
 

N
 

I
c

V
 

. 

\
 

4
 m

 



Intermediate pairs of values for x,H(x) are 0.1, 0.9876; 

0.2, 0.9661; 0.4, 0.9124; 0..7, 0.8263; 1, 0.7471; 2, 0.5544; 

4, 0.3619; 7, 0.2389, and 10, 0.i791. 

Z, m, n and v designate the charge number, mass, density 

and ve'locity of the resonant (test) ions. The effect of wave 

heating appears through the single dimensionless parameter 5 

which is directly proportional to <P>, the wave-heating power 

per unit volume delivered to the test ions, averaged .over 'a 

magnetic surface. 

To discuss the behavior of f(v) in Eq. (34), it is useful 

2 
to define an effective temperature at each value of E = mv /2, 

For 6 = 0 the body of the test-ion distribution is Maxwellian with 

temperature very close to that of the background ions (kTeff = kT.), 
3 

while the tail of the test-ion distribution (E >/ E . )  is influenced 
3 

by the background electrons. For 5 > 0, kTeff for " E << E. (5) , 
3 

identical. to derived earlier in Section 12, is somewhat 
kTeff 

above the background ion.temperature. As E increases, the 

effective temperature increases and, for E >> E.(c), 
3 kTeff 

approaches the asymptotic value kTe(l+C) at which the wave- 

induced test-ion dispersion is entirely'balanced by electron 

drag. 

Plots of Rn f(v) versus E are shown in Fig. 5 for the 

2 parameters of the example introduced earlier, using n. Z ./ne = 3 
3 3 



for a Zeff = 3 in computing R 
I* 

For these same parameters, 

the wave-induced dispersion level 5 = 100 corresponds to 

1.3 watts per cm3 rf power input to the plasma, averaged 

over a magnetic surface. Maintaining this average power level 

over the full volume of the model plasma in Section 7 would 

require a total- rf power input of 24. megawatts. 

14. .STEADY-STATE f (v,) SOLUTION 

Our efforts to determine the angular dependence of f (;) 

were fully successful only in the sub-thermal range of ion velocities, 

although the integral relation (32) provides a useful estimate 

of the anisotxopy at thermal energies and above. However, at 

the .very high energies in the tail of the two-component plasma, ; :-, 

2 
specifically, at . . test-ion energies above - mva/2, the dominant 

Coulomb process is electron drag which does not introduce apprecia- 

ble pitch-angle scattering. Of especial interest is that the . . . .  
> - 

perpendicular energy acquired from cyclotron heating is not shared : . .  . 

with the parallel degree of freedom, so that the coefficient of 

wave-induced dispersion is increased by 50% throughout this energy 

range. 

. .. 
To describe the strongly anisotropic velocity distribution 

expected at high energies, it is fitting to change from v, p 

coordinates in velocity space to v,, v,, coordinates. In the 

new variables, the Coulomb terms in Eq. (22) are more intricate 

but the ,quasilinear term reverts to the simpler form seen in Eq. (19). 

The test-ion Fokker-Planck equation becomes 



2 2 1 / 2  
V E (v, + v,,) Qmn 

i s  def ined  i n  (231, and a, B ,  and Y a r e  

de f ined  i n  (27) . Equation (35) is  equ iva len t  t o  Eq. (22) , b u t  

w e  now d i r e c t  our  a t t e n t i o n  t o  regions  where t h e  d i s t o r t i o n  i s  

2 2 
s t r o n g  enough t h a t  <v,> >> <v,> and o rde r  t e r m s  according t o  

V, >> I v,, 1 , V, - V ,  v,, (a/av,, 1 - v, (a/av,) . W e  average ~ q .  (35) 

over  a magnetic s u r f a c e ,  us ing  ( 2 4 ) ,  then  d e f i n e  

and i n t e g r a t e  (35) over  v .  Af te r  some f u r t h e r .  s t r a igh t fo rward  

i n t e g r a t i o n s  by p a r t s  (some small  c a r e  must be taken  wi th  t h e  

2  2 ' 2  2 2 
v,a (y f) /4v a v,, t e rm) ,  t h e  dominant terms a r e  found f o r  a  

one-dimensional Fokker-Planck equat ion desc r ib ing  hea t ing  a t  t h e  

c y c l o t r o n  fundamental frequency, 



Like Eq. (25), Eq. (36) , 'with af(v,,t)/at = 0, can be quickly 

integrated twice to yield a steady-state solution, 

VL -~ccv,+~ (gv,jt + y 
f(v,) = f(O) exp- 6 dv, 2f3v,+6~v, 

(37) 

Apart from the 50% increase in K, 'already discussed, Eq. (37) 

differs from its counterpart, Eq. . (33) , by the presence of the 

pitch-angle scattering coefficient inthe numerator of the inte- 

grand. Pitch-angle scattering, like dispersion and drag, reduces 

2 2 VI when 'v, >,> <v,,>. 

Following the same steps which led from (33) to (34) , making 

use in this instance as well of the approximating form for @(x) 

in (30), we find 

Apart from E 
j ' 

the quantities in (38) are .defined as in (34) . 
A and A are the atomic masses of the test and field ions, 

j 

respectively. 

It should be remembered that Eq. (38) only applies to the 

velocity range where f (;) is strongly anisotropic. An estimate 

of the lower boundary for this range of v, can come from 

examining the numerator of the integrand in (37):.the pitch-angle 



scattering term is smaller in magnitude than the electron drag , 

term when v2 > ~,/4, defined in Eq. (31) . Above this. value of , 

test-ion velocity, where pitch-angle scattering becomes relatively 

weak, the main source of .parallel energy to the distribution will 

be by its incidental transport as particles wave-diffuse upward 

in v, carrying their v, with them. The argument suggests that 

while the perpendicular distribution in the tail is described by 

(38), the parallel distribution for these same particles might 

be characterized by kTlt - mv3/8. 
Y 

15. f(v) FOR STEADY-STATE ISOTROPIC ION INJECTION 

It is interesting, for the purpose of comparison,to examine 

the velocity distribution which results from the Coulomb slowing- 

down and diffusion of a group of test ions injected at high energy 

(as energetic neutral atoms)' into a tokarnak plasma. We assume 

2 
the injected beam is originally monoenergetic at mv /2 = W and 

isotropic in its velocity distribution. To formulate a steady- 

state model, we also assume an ion sink at some much lower energy, 

WS, which absorbs test ions at the same rate that the source emits 
- .  

them. The Fokker-Planck equation is again Eq. (25) with 

a~/at = 0, B = 0, K = 0, and with a'source term, 

and a sink term, 

added to the right-hand side. The first integration is immediate, 

the delta functions integrating into step functions; introductiop 

of an integrating factor facilitates the second integration. 

Enormous simplification of the result occurs when the background 



ions and electrons' have the same temperature, kT. Then 

A. = constant- exp-mvL/2k~ must satisfy the steady-state equation 

without sources or sinks, and this very solution in fact follows 

2 2 
directly from A. = constant exp - jdv[2av2- (Bv ) ' 1  / ( B v  ) and 

Eqs. (27) , (28) and (29) . With source and sink as just described, 

the full solution in the range Ws < mv2/2 < w is 

f (v) = constant-exp - - mvL 
mvL 2kT idv(exp -)/BY 2 

and use of the Range I1 approximation for B then leads to 

/ 

E 
exp(U/kT) ' 

f (v) :: constant- exp - - 
3/2 

(39) 
l+ [WEj (0) I 

provided both E ?vZ/2 >> kT and Ws < E < W .  For E > W ,  

2 the upper limit in the integral is W. E.(O) = mVB/2 is defined 
3 

in Eqs. (31) and (34). Moreover, for kTe = kT = kT, Eq. (31) 
j 

shows 
2 

and provided the denominator in the integrand of vB = 

(39) does not change significantly over a range of U, AU - kT, 
the integral may be approximated 

f (v) 2 
constant 
3 3 

v + v, 

which is the customary solution for the distribution of originally- 

monoenergetic test ions, from a calculation based on drag alone 

and neglectinq dispersion. 

A plot of Eq. (39) for 200 keV deuteron injection into a 

4 keV temperature tritium plasma is shown for comparison in Fig. 5. 



16. EFFICIENCY FOR PRODUCTION OF FUSION REACTIONS 

A primary objective in two-component plasma research will 

be the production of abundant D-T nuclear reactions, hopefully 

matching or exceeding the rate per unit plasma volume required 

for an economic fusion reactor. Toward achieving this goal, rf 

heating can be helpful in heating the background,plasma, in 

enhancing the fusion output in a primarily beam-injected two- 

component plasma, or in the production by rf alone of an energetic- 

tail two-component plasma. Having determined the expected 

resonant-ion velocity distribution for different levels of rf 

\ 
heating, we are in a position to calculate the rf power cost for 

a certain rate of fusion reactions. 

The D-T nuclear power produced per unit volume is 

where nT is the tritium density, Wn the nuclear energy released 

per D-T fusion reaction, and u (v) the D-T cross-section as a 

function of the deuteron velocity. The rf power per unit volume 

is proportional to wave-induced dispersion, 5 .  Taking this 

factor of proportionality f'rom ( 3 4 ) ,  we find the ratio, QRF, of 

nuclear power produced to rf power input 



The av average is to be taken over the distribution of resonant 

ions (deuterons). Especially convenient in computer calculation 

here is Duane's fit [18] to the D-T fusion cross-section. For the 

conditions pertaining to the example of Section 7, that is, 

kT = 4 keV, using Zeff = 3 in computing R 
j 

Eq. (34), and using 

'n 
= 22.4 MeV, the computed QRp values are 0.20 for 5 = 100, 

0.38 for 5 = 30, and 0.045 for 5 = 10. The maximum value for 

<av>/E, for the same conditions, occurs for 5 = 42, at which 

value QRF = 0.45. 

For comparison, we consider the injection into the same 

tritium plasma of I deuterons per cm3 per second with energy 

Eo 
. The deuteron velocity distribution, in accordance with Eq.(40), 

2 2 
is f(v) = I/~ITCXV~ for mv /2 < EL, f(v).= 0 for mv /2 > Eo. 

Putting this distribution into (41) determines the nuclear power, 

while the injected power is simply IEo. The ratio, QI, for 

nuclear power to injected power is then 

With Zeff 2 = 3 in computing Vat Eq. (31), and with kT = 4 keV, 

QI = 0.42 for Eo = 100 keV.0.74 f0r.E; = 150 keV, and 0.81 for 

Eo = 200 keV. Conparing these two sets of Q values we see that 

the efficiency for fusion,power production from a 
'eff 

= 3 two- 

component plasma produced by selective rf absorption comes within. 

a factor of two with the corresponding efficiency for a neutrab- 

injection system. 

For 'eff 
= 1, computation shows QW values significantly 

greater than unity. Figure 6 is a plot of QRF versus rf power, 



parameterized by ' 6 ,  for various electron temperatures, with 

'eff 
= 1 and temperature T = 4 keV for the background triton 

j 

ions. The QRF values decrease for very high rf powers and for 

very large electron temperatures because too large a fraction of 

the deuteron distribution then appears in the far tail (E > 200 keV) 

past the maximum of the fusion cross-section. 

Figure 7 illustrates the effect of changing Zef and also 

the effect of lowering the background ion temperature. 

We have examined in considerable detail the use of the fast 

hydromagnetic wave for heating large magnetically-confined toroidal 

plasmas. Landau and transit-time damping, which are coherent 

processes, can couple power effectively into the electrons while 

the ions can be rf-heated with high efficiency at the second 

harmonic of their cyclotron frequency or at the fundamental cyclo- 

tron frequency of a minority ion species. In a particular 

application of the latter principle, selective rf absorption by 

deuterons in.a predominantly triton plasma can lead to a two- 

component velocity distribution suitable for the production of 

abundant fusion reactions. 'The process is analyzed by a Fokker- 

Planck equation with a Kennel-Engelmann quasilinear-type rf 

diffusion term, and'an explicit analytic solution is found for the 

one-dimensional case. Using the resonant-ion distribution 

function thus derived, and th.e Duane-formula fit to the D-T fusion 

cross-section, the computed efficiencies for the rf two-component 

formation process in a Z = 1 plasma show QRF E (nuclear power 

out) / (rf power in) values significantly .above unity. 
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753034 
Fig. 1. Dispersion' curves for hydromagnetic Kaves above 

and below the ion cyclotron frequency. N, and N, are the ~ l f v 6 n  
refractive indices. 



753035 
Fig. 2. Dispersion curve for the hydromagnetic fast wave 

at w = 1.5 w The curve here retraces the solid curve through 
just the. firsfiguadrant of Fig. 1. The grid lines correspond to 
the different poloidal and toroidal mode numbers. Actually, each 
poloidal ( v )  mode is a (2v - 1)-fold multiplet, and each toroidal 
(n) mode is a doublet. 
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Fig. 3 .  Geometry f o r  cyc lp t ron  resonance e x c i t a t i o n  i n  a 
t o r u s .  Due t o  t h e  1 / R  dependence of B, t h e  resoxance region  i s  
a ' v e r t i c a l  c y l i n d r i c a l  s h e l l .  Ions moving a l o n g - a  magnetic l i n e  of 
f o r c e  and confined t o  a magnetic su r face  w i l l  i n t e r s e c t  t h e  resonance 
s h e l l  above-and below t h e  midplane. 



753038 
Fig. 4. Contours for quasilinear diffusion. The quasilinear 

diffusion operator is a gradient operator in velocity space along 
the indicated circles. Diffusion takes place just in the circum- 
ferential direction, but only where the resonance condition is 
satisfied, i.e., only where the circles intersect the vertical 
lines. 



Fig. 5. Plots of f(v) versus E for the plasma parameters 
of the example in Section 7, and for different levels ( 5 )  of rf 
excitation at the minority-species cyclotron frequency. z = 3. 
The ion velocity distribution for injection at 200 keV intgffhe 
same plasma is also shown. 
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Fig. 6. 
QRF 

Z (nuclear power out)/ (rf power in 
is plotted versus rf power per unit volume selectively 
absorbed by the resonant minority deuterons. Zeff = 1. 
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Fig. 7. Q versus rf power for kT = keV, for 

= ff = 1 and 3, %d for temperatures of lekev and 4 keV 
f&r the background triton ions. 
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