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ABSTRACT 

Objective: Unstructured clinical narratives are continuously being recorded as part of delivery of care in 

electronic health records, and dedicated tagging staff spend considerable effort manually assigning clinical 

codes for billing purposes; despite these efforts, label availability and accuracy are both suboptimal. 

Materials and Methods: In this retrospective study, we trained long short-term memory (LSTM) recurrent 

neural networks (RNNs) on 52,722 human and 89,591 veterinary records. We investigated the accuracy of 

both separate-domain and combined-domain models and probed model portability. We established relevant 

baselines by training Decision Trees (DT) and Random Forests (RF), and using MetaMap Lite, a clinical 

natural language processing tool.  

Results: We show that the LSTM-RNNs accurately classify veterinary and human text narratives into top-

level categories with an average weighted macro F1 score of 0.74 and 0.68 respectively. In the “neoplasia” 

category, the model built with veterinary data has a high accuracy in veterinary data, and moderate 

accuracy in human data, with F1 scores of 0.91 and 0.70 respectively. Our LSTM method scored slightly 

higher than that of the DT and RF models. 

Discussion: The use of LSTM-RNN models represents a scalable structure that could prove useful in 

cohort identification for comparative oncology studies. 

Conclusion: Digitization of human and veterinary health information will continue to be a reality, 

particularly in the form of unstructured narratives. Our approach is a step forward for these two domains 

to learn from, and inform, one another. 

  

 

  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/429720doi: bioRxiv preprint 

https://doi.org/10.1101/429720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

1. OBJECTIVE 

 

The increasing worldwide adoption of electronic health records (EHRs) has created numerous clinical 

narratives that are now stored in clinical databases. However, given the nature of the medical enterprise, a 

big portion of the data being recorded is in the form of unstructured clinical notes. Cohort studies, a form of 

cross-sectional studies that sample a group of patients with similar clinical characteristics, require quality 

phenotype labels, oftentimes not readily available alongside these notes. 

 

In place of such labeling, diagnostic codes are the most common surrogates to true phenotypes. In clinical 

practice, dedicated tagging staff assign clinical codes to diagnoses either from the International 

Classification of Diseases (ICD) [1] or the Systematized Nomenclature of Medicine (SNOMED) after reading 

patient summaries. However, this time-consuming, error-prone task leads to only 60–80% of the assigned 

codes reflecting actual patient diagnoses [2], misjudgment of severity of conditions, and/or omission of 

codes altogether. For example, the relative inaccuracy of oncological medical coding [3-6] affects the quality 

of cancer registries [7] and cancer prevalence calculations [8-10]. Poorly-defined cancer types and poorly-

trained coding staff who overuse the “not otherwise specified” code when classifying text exacerbate the 

problem. 

 

Challenges in clinical coding also exist in veterinary medicine in the United States, where neither clinicians 

nor medical coders regularly apply diagnosis codes to veterinary visits. There are few incentives for 

veterinary clinicians to annotate their records; a lack of 1) a substantial veterinary third-party payer system 

and 2) legislation enforcing higher standards of veterinary EHRs (the U.S. Health Information Technology 

for Economic and Clinical Health Act of 2009 sets standards for human EHRs) compound the problem. 

Billing codes are thus rarely applicable across veterinary institutions unless hospitals share the same 

management structure and records system; even then, hospital-specific modifications exist. Less than five 

academic veterinary centers of a total of thirty veterinary schools in the United States have dedicated 

medical coding staff to annotate records using SNOMED-CT-Vet [11], a veterinary extension of SNOMED-

CT constructed by the American Animal Hospital Association (AAHA) and maintained by the Veterinary 

Terminology Services Laboratory at the Virginia-Maryland Regional College of Veterinary Medicine [12]. 

 

The vast majority of veterinary clinical data is stored as free-text fields with very low rates of formal data 

curation, making data characterization a tall order. Further increasing variance in the data, veterinary 

patients come from many different environments, including hospitals [13], practices [14], zoos [15], wildlife 

reserves [16], army facilities [17], research facilities [18], breeders, dealers, exhibitors [19], livestock farms, 

and ranches [20]. It is thus important that a general method, agnostic of patient environment, is able to 

categorize veterinary EHRs for cohort identification solely based on free-text. 
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Automatic text classification is an emerging field that uses a combination of tools such as human medical 

coding, rule-based systems queries [21], natural language processing (NLP), statistical analyses, data 

mining, and machine learning (ML) [22]. In a previous study [23], we have shown the feasibility of automatic 

annotation of veterinary clinical narratives across a broad range of diagnoses with minimal preprocessing, 

but further exploration is needed to probe what we can learn from human-veterinary comparisons. 

Automatically adding meaningful disease-related tags to human and veterinary clinical notes using the 

same machinery would be a huge step forward in that exploration and could facilitate cross-species findings 

downstream. 

 

Said integration has the potential to improve both veterinary and human coding accuracy as well as 

comparative analyses across species. Comparative oncology, for example, has accelerated the 

development of novel human anti-cancer therapies through the study of companion animals [24], especially 

dogs [25-28]. The National Institute of Health recently funded a multi-center institution called the Arizona 

Cancer Evolution Center (ACE) that aims to integrate data from a broad array of species to understand the 

evolutionarily conserved basis for oncology. As this group utilizes animal clinical and pathology data to 

identify helpful traits like species-specific cancer resistance, they would greatly benefit from improved cohort 

discovery through automated record tagging. 

 

Veterinary schools across the United States (15 out of 30) have formed partnerships with their respective 

medical schools in order to perform cross-species translational research within the Clinical and 

Translational Science Award One Health Alliance (COHA, [29]). Of these schools, only two have active 

programs to assign disease codes to their medical records. The data for the rest represents the very use 

case of automatic text classification. 

2. BACKGROUND AND SIGNIFICANCE 

Automatic medical text classification aims to reduce the human burden of handling unstructured narratives. 

These computational natural language processing (NLP) methods can be divided into two groups: a) 

semantic processing and subsequent ML; and b) deep learning. 

  

Semantic processing and subsequent ML. These methods range from simple dictionary-based keyword-

matching techniques and/or direct database queries to tools capable of interpreting the semantics of human 

language through lemmatization (removal of inflectional word endings), part-of-speech tagging, parsing, 

sentence breaking, word segmentation, and entity recognition [30]. Building the underlying dictionaries and 

manually crafting the rules that capture these diverse lexical elements both require time and domain 

expertise. 
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There is a growing interest in medical concept classification for clinical text; as such, many domain-specific 

semantic NLP tools (with various objectives, frameworks, licensing conditions, source code availabilities, 

language supports, and learning curves) have been developed for the medical setting. Such tools include 

MedLEE [31], MPLUS [32], MetaMap [33], KMCI [34], SPIN [35], HITEX [36], MCVS [37], ONYX [38], 

MedEx [39], cTAKES [40], pyConTextNLP [41], Topaz [42], TextHunter [43], NOBLE [44], and CLAMP [45]. 

However, there is no single NLP tool that can handle the broad problem of general medical classification. 

Instead, each method solves specific problems and applies its unique set of constraints. 

 

ML downstream of the methods above requires featurization (concept extraction into columns and 

subsequent feature selection) in order to characterize text narratives in a machine-readable way. This can 

be done via term frequency-inverse document frequency (tf-idf), other vectorization techniques like 

Word2Vec [46], or manually curated rules. Semantic processing and downstream ML models have been 

shown to achieve high classification accuracy in human [47,48] and veterinary [49] free-text narratives for 

diseases well represented in training datasets (e.g. diabetes, influenza, and diarrhea). Additional success 

has been achieved in overall classification of clinical narratives with Decision Trees (DTs), Random Forests 

(RFs), and Support Vector Machines (SVMs) [50].  

  

Deep learning. Deep learning (DL) methods eliminate the need of feature engineering, harmonization, or 

rule creation. They learn hierarchical feature representations from raw data in an end-to-end fashion, 

requiring significantly less domain expertise than traditional machine-learning approaches [51]. 

 

DL is quickly emerging in the literature as a viable alternative method to traditional ML for the classification 

of clinical narratives, even in situations where limited labeled data is available [50]. The technique can help 

in the recognition of a limited number of categories from biomedical text [52,53]; identify psychiatric 

conditions of patients based on short clinical histories [54]; and accurately classify whether or not radiology 

reports indicate pulmonary embolism [55,56] whilst outperforming baseline methods (e.g. RFs or DTs). 

Previous studies have shown the possibility of using DL to label clinical narratives with medical 

subspecialties [57] (e.g. cardiology or neurology) or medical conditions [58] (e.g. advanced cancer or 

chronic pain), outperforming concept-extraction based methods. Furthermore, the use of DL to analyze 

clinical narratives has also facilitated the prediction of relevant patient attributes, such as in-hospital 

mortality, 30-day unplanned readmission, prolonged length of stay, and final discharge diagnosis [59]. 

Significance: Text classification of human and veterinary medical records 

Traditional NLP methods boast interpretability and flexibility but come at the steep cost of data quality 

control, formatting, normalization, domain knowledge, and time needed to generate meaningful heuristics 

(which oftentimes are not even generalizable to other datasets). Automatic text classification using deep 

learning is thus a logical choice to bypass these steps, classifying medical narratives from EHRs by 
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leveraging supervised deep learning on big data. We expect that our efforts could facilitate rapid triaging of 

documents and cohort identification for biosurveillance. 

 3. METHODS 

Study Design 

This retrospective cross-sectional chart review study uses medical records collected routinely as part of 

clinical care from two clinical settings: the veterinary teaching hospital at Colorado State University (CSU) 

and the Medical Information Mart for Intensive Care (MIMIC-III) from the Beth Israel Deaconess Medical 

Center in Boston, Massachusetts [60]. Both datasets were divided in two smaller datasets - training 

datasets containing 70% of the original datasets (used to build TensorFlow [61] deep learning models), and 

validation datasets containing 30% of the original datasets. We measured the accuracy of the models, 

calculating the F1 score of each top-level disease category.  

 

For comparison, we investigated the effect of using MetaMap [33], a NLP tool that extracts clinically-relevant 

terms, on the accuracy of our models. We also explored the possibility of out-of-domain generalization, 

testing the MIMIC-trained model on the CSU validation data and vice versa (and ran separate tests for 

MetaMapped versions, as well). Finally, we investigated the effect of merging the MIMIC and CSU training 

datasets to test the efficacy of data augmentation.  Figure 1 shows a diagram of our study design. Our code 

to run all models can be found in a public repository (https://github.com/rivas-lab/FasTag). 

Clinical Settings 

Veterinary Medical Hospital at Colorado State University (CSU). This is a tertiary care referral teaching 

hospital with inpatient and outpatient facilities, serving all specialties of veterinary medicine. After 

consultation, veterinarians enter patient information into a custom-built veterinary EHR, including structured 

fields such as entry and discharge dates, patient signalment (species, breed, age, sex, etc.), and SNOMED-

CT-Vet codes. There are also options to input free-text clinical narratives with various sections including 

history, assessment, diagnosis, prognosis, and medications. These records are subsequently coded; the 

final diagnostic codes represent single or multiple specific diagnoses or post-coordinated expressions (a 

combination of two or more concepts). 

  

Medical Information Mart for Intensive Care (MIMIC-III). The Beth Israel Deaconess Medical Center is a 

tertiary care teaching hospital at Harvard Medical School in Boston, Massachusetts. The MIMIC-III 

database, a publicly available dataset which we utilize in this study, contains information on patients 

admitted to the critical care unit at the hospital [60]. We were interested in the free-text hospital discharge 

summaries in this database. These records are coded for billing purposes and have complete diagnoses 
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per patient (the database is publicly available, and thus represents the best possible medical coding 

annotation scenario for a hospital). Free-text fields in this database contain no protected health information. 

Top level disease categories 

Mapping between ICD and SNOMED codes is a challenging task but can promote semantic interoperability 

between our two domains. We used ICD top-level groups of diseases as the labels for the records that we 

aimed to extract. Table 1 shows the mapping between codes in ICD (versions 9 and 10) and SNOMED-CT 

(including the Veterinary extension), which was manually curated by two board-certified veterinarians 

trained in clinical coding (co-authors AZM, and RLP). 

  

 

 

Table 1. Top-level coding mapping between ICD 9, 10, and SNOMED-CT 

Top-level 

category Description ICD 9 ICD 10 SNOMED-CT 

1 Infectious and parasitic 
diseases 

001-139 A00-B99 105714009, 68843000, 78885002, 
344431000009103, 
338591000009108, 40733004, 
17322007 

2 Neoplasms 140-239 C00-D49 723976005, 399981008 

3 Endocrine, nutritional and 
metabolic diseases, and 
immunity disorders 

240-279 E00-E90 85828009, 414029004, 473010000, 
75934005, 363246002, 2492009, 
414916001, 363247006, 420134006, 
362969004 

4 Diseases of blood and 
blood-forming organs 

280-289 D50-D89 271737000, 414022008, 414026006, 
362970003, 11888009, 212373009, 
262938004, 405538007 

5 Mental disorders 290-319 F00-F99 74732009 

6 Diseases of the nervous 
system 

320-359 G00-G99 118940003, 313891000009106 

7 Diseases of sense organs 360-389 H00-H59, 
H60-H95 

50611000119105, 87118001, 
362966006, 128127008, 85972008 

8 Diseases of the circulatory 
system 

390-459 I00-I99 49601007 

9 Diseases of the respiratory 
system 

460-519 J00-J99 50043002 

10 Diseases of the digestive 
system 

520-579 K00-K93 370514003, 422400008, 53619000 

11 Diseases of the 
genitourinary system 

580-629 N00-N99 42030000 
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12 Complications of pregnancy, 
childbirth, and the 
puerperium 

630-679 O00-O99 362972006, 173300003, 362973001 

13 Diseases of the skin and 
subcutaneous tissue 

680-709 L00-L99 404177007, 414032001, 128598002 

14 Diseases of the 
musculoskeletal system and 
connective tissue 

710-739 M00-M99 105969002, 928000 

15 Congenital anomalies 740-759 Q00-Q99 111941005, 32895009, 66091009 

16 Certain conditions 
originating in the perinatal 
period 

760-779 P00-P96 414025005 

17 Injury and poisoning 800-899 S00-T98 85983004, 75478009, 77434001, 
417163006 

 Mapping of top-level categories was manually curated by two board-certified veterinarians trained in 
clinical coding. 

 

Deep learning 

We chose a long short-term memory (LSTM) recurrent neural network (RNN) architecture (which is able to 

handle variable-length sequences while using previous inputs to inform current time steps) for this multi-

label text classification task [62]. The LSTM shares parameters across time steps as it unrolls, which allows 

it to handle sequences of variable length. In this case, these sequences are a series of word “embeddings” 

(created by mapping specific words to corresponding numeric vectors) from clinical narratives. Words are 

represented densely (rather than sparsely, as in Bag-of-Words or tf-idf models) using the Global Vectors 

for Word Representation (GloVe) [63] word embeddings. These embeddings learn a vector space 

representation of words such that words with similar contexts appear in a similar vector space, and also 

capture global statistical features of the training corpus. 

 

LSTMs have proven to be flexible enough to be used in many different tasks, such as machine translation, 

image captioning, medication prescription, and forecasting disease diagnosis using structured data [62]. 

The RNN can efficiently capture sequential information and theoretically model long-range dependencies, 

but empirical evidence has shown this is difficult to do in practice [64]. The sequential nature of text lends 

itself well to LSTMs, which have memory cells that can maintain information for over multiple time steps 

(words) and consist of a set of gates that control when information enters and exits memory, making them 

an ideal candidate architecture. 

 

We first trained the model over a variety of hyperparameters for the model trained on MIMIC data and 

calculated the model’s validation accuracy over all combinations of them, finding the set of [learning rate = 

0.001, dropout rate = 0.5, batch size = 256, training epochs = 100, hidden layer size = 200, LSTM layers = 
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1] to be the optimal setting. We proceeded to use this hyperparameter set for all of the models trained, 

assuming that this set would be amenable to the task at hand regardless of training dataset. We then 

proceeded to train a set of six models on the MIMIC, CSU, and MIMIC+CSU data; one each in which 

MetaMap was used to map terms back to UMLS terms, and one each in which MetaMap was not. We finally 

determined F1 scores on the corresponding validation sets for each of these models. 

Baseline classifier comparisons 

A combination of several NLP and ML models have similarly aimed to classify clinical narratives [50,65]. 

We selected two of these classifiers: DTs and RFs. DTs are ML models constructed around a branching 

boolean logic [66]. Each node in the tree can take a decision that leads to other nodes in a tree structure; 

there are no cycles allowed. The RF classifier is an ensemble of multiple decision trees created by randomly 

selecting samples of the training data. The final prediction is done via a consensus voting mechanism of 

the trees in the forest. 

 

We featurized the narratives using tf-idf, a statistic that reflects word importance in the context of other 

documents in a corpus and a standard ML modeling strategy for representing text, to convert the narratives 

into a tabular format [50]. The hyperparameters of both baseline models, like the LSTM, were tuned on the 

validation set. 

 

We used MetaMap Lite [67], a NLP tool which leverages the Unified Medical Language System (UMLS) 

Metathesaurus to identify SNOMED [68] or ICD [69] codes from clinical narratives. MetaMap’s algorithm 

includes five steps: 1) parsing of text into simple noun phrases; 2) variant generation of phrases to include 

all derivations of words (i.e. synonyms, acronyms, meaningful spelling variants, combinations, etc.); 3) 

candidate retrieval of all UMLS strings that contains at least one variant from the previous step; 4) evaluation 

and ranking of each candidate, mapping between matched term and the Metathesaurus concept using 

metrics of centrality, variation, coverage, and cohesiveness; 5) construction of complete mappings to 

include those mappings that are involved in disjointed parts of the phrase (e.g. ‘ocular’ and ‘complication’ 

can together be mapped to a single term, ‘ocular complication’). MetaMap incorporates the use of ConText 

[70], an algorithm for the identification of negation in clinical narratives. For additional information on how 

we used and evaluated MetaMap, please refer to Supplementary Material 1. 

 

Statistical analysis 

Evaluation metric. For all models we trained (LSTM, DT, and RF), we used the same evaluation metrics 

previously reported for MetaMap Lite [67]: a) precision, defined as the proportion of documents which were 

assigned the correct category; b) recall, defined as the proportion of documents from a given category that 

were correctly identified; and c) F1 score, defined as the harmonic average of precision and recall. Formulas 

for these metrics are provided below: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 + 	𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Eq. 1 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 + 	𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Eq. 2 

𝐹6 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ⋅ 	𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑟𝑒𝑐𝑎𝑙𝑙
 

Eq. 3 

Our task is framed as a multi-label classification problem, where each approach predicts multiple top-level 

categories for each observation using a single model. In order to combine all class-specific F1 scores, we 

averaged the F1 score for each label, weighting the labels by their supports (the number of true instances 

for each label, to account for label imbalance). 

  

Domain adaptation. The portability of trained algorithms on independent domains has previously been used 

as a metric of model robustness in systems that leverage NLP and machine learning [71]. We evaluated 

the ability of our trained LSTM models to be used in a cross-species context. We utilized the MIMIC-trained 

model to classify the medical records in the CSU database, and vice versa, assessing performance as 

before. We also assess the classifier trained on the combined training sets. 

4. RESULTS 

We investigated the application of deep learning to free-text unstructured clinical narratives on two cohorts: 

veterinary medical records from CSU, and human medical records in the MIMIC-III database. We show the 

evaluation of the deep learning models built using human and veterinary records, as well as the portability 

between them. 

Patients 

The CSU dataset contains medical records from 33,124 patients and 89,591 hospital visits between 

February 2007 and July 2017. Patients encompassed seven mammalian species, including dogs (Canis 

Lupus, 80.8%), cats (Felis Silvestris, 11.4%), horses (Equus Caballus, 6.5%), cattle (Bos Taurus, 0.7%), 

pigs (Sus Scrofa, 0.3%), goats (Capra hircus, 0.2%), sheep (Ovis Aries, 0.1%), and other unspecified 

mammals (0.1%). In contrast, the MIMIC-III database contains medical records from 38,597 distinct human 

adult patients (aged 16 years or above) and 7,870 neonates admitted between 2001 and 2008, 

encompassing 52,722 unique hospital admissions to the critical care unit between 2001 and 2012. Table 2 
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summarizes the category breakdowns of both databases. Only those patients with a diagnosis in their 

record were considered. 

  

Table 2. Database statistics of patients, records, and species (records with diagnosis).  

 
  CSU   MIMIC 

Medical Records 

  
N = 89,591   N = 52,722 

   Patients   33,124   41,126 

   Hospital Visits   89,591   49,785 

Species 

        

   Humans (Homo Sapiens) 
  n.a.   52,722 

   Dogs (Canis Lupus) 
  72,420   n.a. 

   Cats (Felis Silvestris) 
  10,205   n.a. 

   Horses (Equus Caballus) 
  5,819   n.a. 

   Other mammals 
  1,147   n.a. 

Category 

        

   1. Infectious 
  11,454   10,074 

   2. Neoplasia 
  36,108   6,223 

   3. Endo-Immune 
  17,295   24,762 

   4. Blood 
  10,171   13,481 

   5. Mental 
  511   10,989 
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   6. Nervous 
  7,488   9,168 

   7. Sense organs 
  15,085   2,688 

   8. Circulatory 
  8,733   30,054 

   9. Respiratory 
  11,322   17,667 

   10. Digestive 
  22,776   14,646 

   11. Genitourinary 
  8,892   14,932 

   12. Pregnancy 
  136   133 

   13. Skin 
  21,147   4,241 

   14. Musculoskeletal 
  22,921   6,739 

   15. Congenital 
  3,347   2,334 

   16. Perinatal 
  54   3,661 

   17. Injury 
  9,873   16,121 

 The mappings in Table 1 were used to generate the categories and numbers presented here in Table 2. 
The seventeen categories represent the text classification labels. 

 

Evaluation of Deep Learning models 

We trained deep-learning models (as well as DT/RF baselines) for the human, veterinary, and merged 

(human and veterinary) datasets and tested each on their own domain, as well as the other domains. We 

built our LSTM model using the Python programming language (version 2.7), TensorFlow [61] (version 1.9), 

and the ‘scikit-learn’ library (version 0.19.2) [72]. The training was performed on an Amazon® Deep 

Learning AMI, a cloud-based platform running the Ubuntu operating system with pre-installed CUDA 

dependencies. Average weighted macro F1 scores for models across all categories are shown in Table 3; 

a full list of F1 scores by category can be found in Supplementary Material 1. The “neoplasia” category 

results, which we found interesting, are shown in Table 4. 
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Table 3. Average F1 scores using various training and validation dataset combinations for all categories. 

Configuration   
Model evaluation  

(Weighted F1 score) 

Training Validation MetaMap  DT RF LSTM 

MIMIC MIMIC No  0.60 0.64 0.65 

Yes  0.60 0.63 0.70 

CSU CSU No  0.55 0.61 0.72 

Yes  0.54 0.60 0.75 

MIMIC CSU No  0.22 0.24 0.28 

Yes  0.23 0.20 0.31 

CSU MIMIC No  0.31 0.20 0.23 

Yes  0.28 0.19 0.36 

MIMIC+CSU CSU No  0.57 0.62 0.67 

Yes  0.57 0.62 0.76 

MIMIC+CSU MIMIC No  0.60 0.63 0.58 

Yes  0.60 0.63 0.60 

MIMIC+CSU MIMIC+CSU No  0.59 0.64 0.68 

Yes  0.59 0.63 0.71 

Average   0.489 0.506 0.571 

Evaluation metrics for Decision Tree (DT), Random Forest (RF), and Long Short Term Memory Recurrent 
Neural Network (LSTM-RNN) on validation datasets with and without MetaMap term extraction. Bolded 

and underlined numbers represent the best scores for the specific configuration of training data, validation 
data, and MetaMap toggle. 
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Table 4. F1 scores using various training and validation dataset combinations for the “neoplasia” 
category. 

Configuration   
Model evaluation  

(Weighted F1 score) 

Training Validation MetaMap  DT RF LSTM 

MIMIC MIMIC No  0.39 0.45 0.66 

Yes  0.4 0.45 0.76 

CSU CSU No  0.81 0.86 0.91 

Yes  0.8 0.86 0.91 

MIMIC CSU No  0.3 0.53 0.69 

Yes  0.45 0.37 0.75 

CSU MIMIC No  0.46 0.58 0.70 

Yes  0.5 0.58 0.54 

MIMIC+CSU CSU No  0.74 0.8 0.87 

Yes  0.74 0.8 0.87 

MIMIC+CSU MIMIC No  0.4 0.47 0.67 

Yes  0.42 0.45 0.72 

MIMIC+CSU MIMIC+CSU No  0.81 0.86 0.85 

Yes  0.81 0.86 0.90 

Average      

Evaluation metrics for the “neoplasia” category Decision Tree (DT), Random Forest (RF), and Long Short 
Term Memory Recurrent Neural Network (LSTM-RNN) on validation datasets with and without MetaMap 

term extraction. Bolded and underlined numbers represent the best scores for the specific configuration of 
training data, validation data, and MetaMap toggle. 

5. DISCUSSION 

Applying deep learning to unstructured free-text clinical narratives in electronic health records offers a 

relatively simple, low-effort means to bypass the traditional bottlenecks in medical coding. Circumventing 

the need for data harmonization was very important for the datasets, which contained a plethora of domain- 

and setting-specific misspellings, abbreviations, and jargon (these issues would have greatly impacted the 

performance of the LSTM and the NLP’s entity recognition). MetaMap was useful in this regard given its 
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ability to parse clinical data, but much work is still needed to improve recognition of terms in veterinary and 

human domains. 

  

There is moderate evidence of domain adaptation in the “neoplasia” category, with F1 scores of 0.69-0.70 

(Table 4). This process involved training a model on the data in one database and testing on the data in 

the other, without fine-tuning. It is evident that the high classification accuracy (F1 score = 0.91) obtained 

by the CSU model in the neoplasia category is decreased when testing the same model on the MIMIC data. 

One possible explanation is the difference in clinical settings; CSU is a tertiary care veterinary hospital 

specializing in oncological care, and the clinical narratives that arise in a critical care unit like the MIMIC 

dataset do not necessarily compare. Moreover, the records were not coded in the same way, the clinicians 

did not receive the same training, and the documents apply to different species altogether. Despite these 

differences, however, our LSTM model was general enough to be able to accurately classify medical 

narratives at the top level of depth independently in both datasets. The achieved cross-domain accuracy is 

nonetheless encouraging. Given enough training data and similar-enough clinical narratives, one could 

conceivably imagine a general model that is highly effective across domains. 

 

Models performed usually better on their respective validation datasets in those categories with more 

training samples. For example, the CSU-trained model (25,276 samples) had significantly better 

performance in the “neoplasia” category than the MIMIC-trained model (4,356 samples), while the MIMIC-

trained model (21,038 samples) had better performance in the diseases of the circulatory system category 

than the CSU-trained model (6,133 samples). 

 

The usefulness of even top-level characterizations in the veterinary setting cannot be understated; usually, 

a veterinarian must read the full, unstructured text in order to get any information about the patient they are 

treating. Rapid selection of documents with specific types of clinical narratives (such as oncological cases, 

which our model performed well on) could lead to better cohort studies for comparative research. The 

repeated use of a series of such LSTM models for subsequent, increasingly-specific classifications thus 

represents a scalable, hierarchical tagging structure that could prove extremely useful in stratifying patients 

by specific diseases, severities, and protocols. 

6. CONCLUSION 

In this era of increasing deployment of EHRs, it is important to provide tools that facilitate cohort 

identification. Our deep learning approach (LSTM model) was able to automatically classify medical 

narratives with minimal human preprocessing. In a future with enough training data, it is possible to foresee 

a scenario in which these models can accurately tag every clinical concept, regardless of data input. The 

expansion of veterinary data availability and the subsequently enormous potential of domain adaptation like 

we saw in the neoplasia category could prove to be exciting chapters in reducing bottlenecks in public 
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health research at large; it is thus of critical importance to continue studying novel sources of data that can 

rapidly be used to augment classification models.  

 

A reliable addition to existing rule-based and natural language processing strategies, deep learning is a 

promising tool for accelerating public health research. 
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Figure legends 

 

Figure 1. Diagram of the training and evaluation design. Relevant acronyms: MIMIC: Medical Information 
Mart for Intensive Care; CSU: Colorado State University; MetaMap, a tool for recognizing medical concepts 
in text; LSTM: long-short term memory recurrent neural network classifier; RF: Random Forest classifier; 
DT: Decision Tree classifier 
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