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Abstract-In this paper a fast algorithm for computing the 
capacitance of a complicated 3-D geometry of ideal conductors 
in a uniform dielectric is described and its performance in the 
capacitance extractor FastCap is examined. The algorithm is 
an acceleration of the boundary-element technique for solving 
the integral equation associated with the multiconductor ca- 
pacitance extraction problem. Boundary-element methods be- 
come slow when a large number of elements are used because 
they lead to dense matrix problems, which are typically solved 
with some form of Gaussian elimination. This implies that the 
computation grows as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn3, where n is the number of panels or 
tiles needed to accurately discretize the conductor surface 
charges. In this paper we present a generalized conjugate re- 
sidual iterative algorithm with a multipole approximation to 
compute the iterates. This combination reduces the complexity 
so that accurate multiconductor capacitance calculations grow 
nearly as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnm, where m is the number of conductors. Perfor- 
mance comparisons on integrated circuit bus crossing problems 
show that for problems with as few as 12 conductors the mul- 
tipole accelerated boundary element method can be nearly 500 
times faster than Gaussian elimination based algorithms, and 
five to ten times faster than the iterative method alone, de- 
pending on required accuracy. 

I .  INTRODUCTION 

the design of high-performance integrated circuits and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf” ntegrated circuit packaging, there are many cases where 
accurate estimates of the capacitances of complicated 
three-dimensional structures are important for determin- 
ing final circuit speeds or functionality. Two examples of 
complicated three-dimensional structures for which ca- 
pacitance strongly affects performance are dynamic mem- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ory cells and the chip carriers commonly used in high den- 
sity packaging. In these problems, capacitance extraction 
is made tractable by assuming the conductors are ideal 
and are embedded in a piecewise-constant dielectric me- 

dium. Then to compute the capacitances, Laplace’s equa- 
tion is solved numerically over the charge-free region, 
with the conductors providing boundary conditions. 

Although there are a variety of numerical methods that 
can be used to solve Laplace’s equation, for three-dimen- 
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sional capacitance calculations the usual approach is to 
apply a boundary-element technique to the integral form 
of Laplace’s equation [ I l l ,  [12], [14]. In these ap- 
proaches the surfaces or edges of all the conductors are 

broken into small panels or tiles and it is assumed that on 
each panel i ,  a charge, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq i ,  is uniformly or piecewise lin- 
early distributed. The potential on each panel is then com- 

puted by summing the contributions to the potential from 
all the panels using Laplace’s equation Green’s functions. 
In this way, a matrix of potential coefficients, P ,  relating 
the set of n panel potentials and the set of n panel charges 
is constructed. The resulting n X n system of equations 
must be solved to compute capacitances. Typically, 

Gaussian elimination or Cholesky factorization is used to 
solve the system of equations, in which case the number 
of operations is order n3. Clearly, this approach becomes 

computationally intractable if the number of panels ex- 
ceeds several hundred, and this limits the size of the prob- 
lem that can be analyzed to one with a few conductors. 

An approach to reducing the computation time that is 
particularly effective for computing the diagonal terms of 
the capacitance matrix, also referred to as the self-capac- 
itances, is to ignore small contributions to the potential 

coefficient matrix from pairs of panels which are sepa- 
rated by large distances [ l ] .  In this paper we present a 
similar approach, which approximates small potential 
coefficients with multipole expansions. We show that this 
approach produces an algorithm which accurately com- 
putes both the self and coupling capacitances, and has a 

computational complexity of nearly mn, where m is the 
number of conductors. Our algorithm, which is really the 
pasting together of three well-known algorithms [ 131, is 
presented in three sections. To begin, in the next section 
one of the standard integral equation approaches is briefly 
described, and it is shown that the algorithm requires the 

solution of an n x n dense nearly symmetric matrix. Then, 
in Section 111, a generalized conjugate residual algorithm 
is described and is shown to reduce the complexity of the 
calculation to roughly order mn’. In Section IV, it is 

shown that the major computation of the conjugate resid- 
ual algorithm, evaluation of a potential field from a charge 

distribution, can be computed in order n time using a mul- 
tipole algorithm. In Section V, we describe some exper- 
imental results and in Section VI we present our conclu- 

sions. Finally, some implementation details are presented 
in an appendix. 
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11. THE INTEGRAL EQUATION APPROACH 

Consider a system of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ideal conductors embedded in 
a uniform lossless dielectric medium. For such a system, 

the relation between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm conductor potentials, denoted 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA91m, and thg m total charges on each conductor, 
denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 E 91m, is given by 9 = Cb, where C E !Rm x m  

is referred to as the capacitance matrix. Thej th  column 
of C can be calculated by solving for the total charges on 
each of the conductors when the j t h  conductor is at unit 

potential and all the other conductors are at zero potential. 
Then the charge on conductor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, q, , is equal to C,, . 

To find the conductor charge distributions given the 

conductor potentials, it is necessary to solve the first-kind 
integral equation 

$ ( x )  = i G(x, x ’ ) u ( x ’ )  du’ (1) 
surfaces 

for the surface charge density U ,  where x ,  x ’  E 913 and are 
positions in three-dimensional space, du’ is the incremen- 
tal surface area, rl. is the surface potential and is known, 
and G(x, x ’ )  is the Green’s function, which is l / l l x  - 
x ’ 11 in free space. I Here, (Ix - x ’ 11 denotes the Euclidean 
distance between x and x ’. Given the surface charge den- 

sity (T, the total charge on the ith conductor, Q, , can be 
computed from 

P 

u ( x ’ )  du‘. (2) 
I th conductor’s Furface 

Q, = 3 
There are a variety of approaches for numerically com- 

puting the conductor surface charge density given the 
conductor potentials, some of which involve reformulat- 
ing (1) as a partial differential equation and using finite 
difference methods in three space dimensions [4], [16]. 
We will focus on the boundary-element methods applied 

directly to solving (1) [ 111 ,  [ 121, [ 141 as they have proved 
to be efficient and accurate when applied to problems with 
ideal conductors in a uniform dielectric medium. These 

methods are also referred to as panel methods [6] or the 
method of moments [5]  in other application domains. This 
class of method exploits the fact that the charge is re- 
stricted to the surface of the conductors, and rather than 
discretizing all of free space, just the surface charge on 
the conductors is discretized. The surface potential, which 

is known, is related to the discretized surface charge 
through integrals of Green’s functions. The system thus 
constructed can then be solved for the discretized surface 

charge. 
The simplest commonly used approach to constructing 

a system of equations that can be solved for the discre- 
tized surface charge is the “point-matching” or colloca- 
tion method. In this method, the surfaces of m conductors 
in free space are discretized into a total of n two-dimen- 
sional panels (see, for example, Fig. 5(b)). For each panel 
k ,  an equation is written that relates the potential at the 

‘Note that the scale factor 1 /47rc0 can be ignored here and reintroduced 
later to give the results in units of farads. 

center of that kth panel to the sum of the contributions to 
that potential from the charge distribution on all n panels. 
That is, 

( 3 )  

where xk is the center of panel k ,  x ’ is the position on the 
surface of panel 1, pk is the potential at the center of panel 
k ,  and U/  (x ’) is the surface charge density on the 1 th panel. 

The integral in ( 3 )  is the free-space Green’s function mul- 
tiplied by the charge density and integrated over the sur- 
face of the Eth panel. Note that as the distance between 

panel k and panel 1 becomes large compared with the sur- 
face area of panel I, the integral reduces to q l /  llxl - xkll, 
where xI  is the center of the lth panel and q/ is the total 
charge on panel 1. 

In a first-order collocation method (higher order meth- 
ods are rarely used), it is assumed that the surface charge 
density on the panel is constant [ 121. In that case ( 3 )  can 
be simplified to 

1 
da I ,  (4) 

where a/ is the surface area of panel 1. When applied to 
the collection of n panels, a dense linear system results, 

p q  = p ,  ( 5 )  

where P E 91n ‘; q,  p E V; and 

1 
Pk, = - da I .  (6) 

Note that q and p are the vectors of panel charges and 
potentials rather than the conductor charge and potential 
vectors, q and f i ,  mentioned above. The dense linear sys- 
tem of (5) can be solved, typically by some form of 

Gaussian elimination, to compute panel charges from a 
given set of panel potentials. To compute thej th  column 

of the capacitance matrix, ( 5 )  must be solved for q,  given 
a p vector where Pk = 1 if panel k is on t h e j  th conductor, 
and Pk = 0 otherwise. Then the ijth term of the capaci- 
tance matrix is computed by summing all the panel 
charges on the ith conductor, that is, 

c,, = q k .  (7) 
keconductor, 

111. SOLUTION BY THE GENERALIZED CONJUGATE 
RESIDUAL METHOD 

In order to solve for a complete m X m capacitance 
matrix, the n x n matrix of potential coefficients, P ,  must 

be factored once, usually into P = LU, where L and U 
are strictly lower and upper triangular respectively, and 
this requires order n3 operations. Then, as there are m 
conductors, the factored system must solved m times with 

m different right-hand sides, and this requites order mn2 
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operations. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is the total number of panels into 

which the conductor surfaces are discretized, m is neces- 

sarily much smaller than n. Therefore, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn3 time for fac- 
torization dominates for large problems, but factorization 
can be avoided by using iterative methods to solve the m 
charge distribution problems. 

From the definition of P given by (6), it is clear that P 
is a positive nonsymmetric matrix and that the largest ele- 
ment in each row is the diagonal, although the matrix is 
not diagonally dominant. Therefore, conjugate-descent 

methods, such as the generalized conjugate residual 
(GCR) algorithm [15] given below in Algorithm 1 ,  are 
likely to be more effective than the more familiar Gauss- 
Seidel or Gauss-Jacobi style algorithms. 

Algorithm 1 :  GCR Algorithm for Solving Pq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p 

/*  Setup. Note that uifer 's are search directions and */ 
/* w is the residual. */ 

/* GCR Loop. */ 
For iter = 0, 1, 2, 

w = p ; q  = o .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U l f e r  = w .  

/*  P-orthogonalize puf ter  with respect to pu". */ 
Form = 0 to iter { 

* until converged { 

pu"er = Pw,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p = p u " e r T p u m .  

U i f e r  = Ulfer  - p u m .  

pui ter  = p u  iter - Dpu". 
3 
pu I t e r  = pu [ f e r /  11 pu lferll . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ly = W T P U r f e r .  

q = q + CYutter. 
w = w + (YpUrfer. 

/*  Normalize the direction. */ 

i fer/ 1 )  pu  iter11 . i fer  = 

/* Update the charge and the residual. */ 

I 

IV. ACCELERATING THE MATRIX-VECTOR PRODUCT 

As can be seen from examining Algorithm 1 ,  assuming 
the number of iterations required is small, the major costs 
of the GCR algorithm are initially forming the dense ma- 
trix P and in each iteration computing the matrix-vector 
product Pw, both of which require order n2 operations. 

Computing the capacitance matrix with Algorithm 1 is 
therefore at least order mn2 and may be higher if the num- 
ber of GCR iterations increases with the problem size. 
Note that if the number of panels per conductor is low, 
Algorithm 1 may not be much more efficient than using 
direct factorization. 

An approach that avoids forming most of P ,  and re- 
duces the cost of computing the matrix-vector product 
Pw, can be derived by recalling that if w is thought of as 
representing charges distributed on panels, then Pw is a 
potential arising from that charge distribution. In addi- 
tion, if the distance between the centers of panel i and 

panelj is large compared with the panel sizes, then P,,  = 

n, chargepoints \ 

* *  
Fig. 1 .  The evaluation point potentials are approximated with a multipole 

expansion. 

l / l l x ,  - x, 1 1 .  That is, for widely separated panels, thejth 
panel charge has the same effect on the potential at x ,  as 
would a point charge of value w, located at panel j ' s  cen- 
ter. 

To see how these observations can help simplify the 

computation of Pw, consider the situation (depicted in 2- 
D for simplicity) in Figs. 1 and 2.  In either figure, the 
obvious approach to determining the potential at the n I  
evaluation points from the n2 point charges involves n1 * 
n2 operations; at each of the n 1  evaluation points one sim- 
ply sums the contribution to the potential from n2 charges. 
An accurate approximation for the potentials for the case 
of Fig. 1 can be computed in many fewer operations using 
multipole expansions, which exploit the fact that r >> R 
(defined in Fig. 1). That is, the details of the distribution 
of the charges in the inner circle of radius R in Fig. 1 do 
not strongly affect the potentials at the evaluation points 

outside the outer circle of radius r .  It is also possible to 
compute an accurate approximation for the potentials at 
the evaluation points in the inner circle of Fig. 2 in many 
fewer than n l  * n2 operations using local expansions, 
which again exploit the fact that r >> R (as in Fig. 2). 
In this second case, what can be ignored are the details of 

the evaluation point distribution. 

A. Multipole Expansions 

A rough approximation to the effect of the n2 charges 
in the inner circle in Fig. 1 can be derived by replacing 

those charges with a single charge equal to their sum, 
placed at the inner circle's center (see Fig. 3). The num- 
ber of operations to compute the n l  potentials given this 

simplification is then n2 + n I ,  n2 operations to compute 
the sum of charges, and n l  operations to calculate the po- 
tentials at the evaluation points. Note that the accuracy of 
this approximation improves as the separation, r ,  between 
the nearest evaluation point and the center of the inner 
circle containing the charges increases relative to the in- 

ner circle's radius. 
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are called spherical harmonics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2], [8] and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM: are 
complex weights known as the multipole coefficients. The 
coefficients are related to the charges by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n2 

M ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,P:' y i r n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(CY, 3 Or), (10) 
r = l  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, , CY,, and p, are the spherical coordinates of the 
ith charge relative to the sphere's center. It has been 
shown that the truncated multipole expansion error is 

bounded by 

' 1' Mln 

l$(r,, e,, 4,) - Zo ,, -+ y;ce,> @/)I 
@ a  

Fig 2 The evaluation point potentials are approximated with a local ex-  < Kl(:)'" 5 Kl ( ; ) ' + '  (1 1) 
pansion 

where Kl is independent of 1, and rand  R are, as in Figs. 
1 and 3 ,  the distance to the nearest evaluation point and 
the radius of the sphere of charge, respectively [2]. If the 
nearest evaluation point is well outside the sphere, then 
(1 1) implies that all the evaluation point potentials can be 
accurately computed using just a few terms of the multi- 
pole expansion. 

B. Local Expansions 

Multipole expansions cannot be used to simplify cal- 
culating the potentials for the evaluation points in the 
smaller circle of Fig. 2 ,  since the charges are too widely 
distributed. However, it is still possible to compute ap- 
proximate potentials at the n l  evaluation points because 

sider that the potential at any of the n l  evaluation points 

evaluated at the center of the circle. Thus the potential at 
an evaluation point can be approximated by 

@ 
of the n2 charges in n ,  + n2 operations. To see this, con- 

@ a  

Fig. 3 .  The charges are replaced by the first multipole expansion coeffi- 
cient. 

in the smaller circle is roughly the Same as the potential 

In the simplified approach above, the potential arising 
from the charges in Fig. 1 is approximated by 

17 2 

where r, is the distance between the center of the charge 
circle and thejth evaluation point. Such an approximation 
is referred to as a monopole approximation and is the first 
term in the general multipole approximation for charge 
distributions. In general, the true potential, $, arising 
from point charges inside a sphere at a location outside 

the radius of the sphere can be approximated arbitrarily 
accurately by a truncated multipole expansion, 

where 1 is the order of the expansion, and rj , e,, and $j 

are the spherical coordinates of t h e j  th evaluation location 
in relation to the sphere's center. The Y:(Oj,  4 j )  factors 

where pi is the distance from the ith charge to the center 
of the circle containing the evaluation points. Estimating 
the potentials at the n l  evaluation points therefore requires 

n2 operations to compute the potential at the circle's cen- 
ter by (12), and n l  additional operations to copy that result 
to the n l  evaluation points. Note that the approximation 

improves as the separation between the charges and the 
circle's center increases relative to the circle's radius. 

Just as in the multipole case, it is possible to improve 
the accuracy of the above local expansion by including 
the effect of the distance between an evaluation point and 
the enclosing sphere's center. In general, the truncated 

local expansion approximation for the exact potential in a 
sphere caused by charges outside the radius of the sphere 
is given by 
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where 1 is the order of the expansion, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArJ ,  e,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$J are 
the spherical coordinates of the j t h  evaluation location 
with respect to the sphere's center, and the Lr factors are 

the complex local expansion coefficients. For a set of n2 
charges outside the sphere, the local expansion coeffi- 
cients are given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n2 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp i ,  a i ,  and Pi are the spherical coordinates of the 
ith charge relative to the center of the sphere containing 
the evaluation points. As for the multipole expansion, the 

error introduced by the local expansion is related to a ratio 
of distances, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I  ti I 

where K2 is independent of 1, and r and R are, as in Fig. 
2, the distance to the nearest charge location and the ra- 
dius of the sphere of evaluation points, respectively [2]. 
Therefore, if the charges are well outside the sphere, then 
the potential inside the sphere can be accurately computed 
using just a few terms of the local expansion. 

C. The Multipole Algorithm 

Low-order multipole and local expansions can be used 
to accurately compute the potentials at n evaluation points 

arising from n panel charges in order n operations, even 
for general evaluation point and charge distributions, but 
the multipole and local expansions have to be applied 

carefully, both to ensure adequate separation and to avoid 
excess calculation. Below we give a multipole algorithm 
for computing the potentials at the n panel center points 

arising from n panel charges. The algorithm requires O ( n )  
operations, and was originally presented in [ 2 ]  with var- 
iants in [9], [13], and [17]. The algorithm is reproduced 
here, modified to fit the boundary-element calculations. 

To begin, the smallest cube that contains the entire col- 
lection of panels for the problem of interest is determined. 

This cube will be referred to as the level 0, or root, cube. 
Then, the volume of the cube is broken into eight child 
cubes of equal size, referred to as level 1 cubes, and each 
has the level 0 cube as its parent. The panels are divided 
among the child cubes by associating a panel with a cube 
if the panel's center point is contained in the cube. Each 
of the level 1 cubes is then subdivided into eight level 2 
child cubes and the panels are again distributed based on 
their center point locations. The result is a collection of 
64 level 2 cubes and a 64-way partition of the panels. This 
process is repeated to produce L levels of cubes and L 

partitions of panels starting with an eight-way partition 

and ending with an gL-way partition. The number of lev- 
els, L,  is chosen so that the maximum number of panels 

in the finest, or Lth, level cube is less than some threshold 
(four is a typical default). 

The following terms are used to concisely describe the 
multipole algorithm. 

Dejinition I :  The evaluation points of a cube are the 
center points of the panels associated with the cube. 

Dejinition 2: The nearest neighbors of a cube are those 
cubes on the same level which have a comer in common 
with the given cube. 

Dejinition 3: The second nearest neighbors of a cube 
are those cubes on the same level which are not nearest 

neighbors but have a comer in common with a nearest 
neighbor. 

Note that there are at most 124 nearest and second near- 

est neighbors of a cube, excluding the cube itself. 

Dejinirion 4: The interaction cubes of a given cube are 
those cubes which are either the second nearest neighbors 
of the given cube's parent, or children of the given cube's 

parent's nearest neighbors, excluding nearest or second 
nearest neighbors of the given cube. 

There are a maximum of 189 interaction cubes for a 

given cube; roughly half are from a level one coarser than 
the level of the given cube, the rest being on the same 
level. The interaction cubes have two important proper- 
ties. When combined with the given cube's nearest and 
second nearest neighbors, they entirely cover the same 
volume as the given cube's parent and the parent's nearest 

and second nearest neighbors. Also, the interaction cubes 
are such that the distance between a point in the given 
cube and a point in the interaction cube is more than half 

the distance between the centers of the given and inter- 
action cubes. This latter property guarantees that when 
multipole expansions are used to approximate the effects 

of interaction cubes, and when these multipole expan- 
sions are gathered together in a local expansion for the 
given cube, the resulting approximation will converge 
rapidly with increasing expansion order. 

Remark: As the charges in this problem are not point 

charges, but are distributed on panels, it is necessary to 
ensure that each panel is entirely considered in a finest 
level cube in order to ensure that evaluation points in a 
cube are well separated from panel charges in an inter- 
action cube. This may require breaking a panel up into 
several panels, but as the multipole algorithm grows lin- 

early with the number of panels, this is not a significant 
computational burden. 

The structure of the multipole algorithm for computing 
the n panel potentials from n panel charges is given be- 
low. The formulas for various transformations and shifts 
required are given in the Appendix. A three-letter key for 

each transformation is given to simplify finding the cor- 
responding appendix formula. 
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Algorithm 2: Multipole Algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor Computing Pw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I* 
THE DIRECT PASS: The potentials arising from 

nearby charges are computed directly. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*/ 
For each cube of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8L cubes on the finest level 

I* Map panel charge distributions to potentials (Q2P). 
*I  
Compute the potential at all the evaluation points in 

the cube arising from the charge distributions on all 
the panels in the cube, in the cube’s nearest neigh- 
bors, and in the cube’s second nearest neighbors. 

3 

/* 
THE UPWARD PASS: Computes a multipole expan- 
sion for every cube at every level. The computation is 

order n because the multipole expansion for any cube 
at a level coarser than the finest level is computed by 
combining the multipole expansions of its children. 

*/ 
For each cube of the 8L cubes on the finest level { 

I* Map panel charges to multipole coefficients 

(Q2M). *I 
Construct a multipole expansion for the charge dis- 
tributions on all the panels in the cube, about the 

cube’s center. 

3 

For each level i = L - 1 to 2 { 
For each cube of the 8’ cubes on level i { 

For each of the 8 children of the cube { 
/* Map multipole coefficients to multipole coef- 
ficients (M2M). * I  
Shift the multipole expansion about the child 
cube’s center to a multipole expansion about the 

cube’s center and add it to the multipole expan- 
sion for the cube. 

3 
1 

3 

/ *  
THE DOWNWARD PASS: Computes a local expan- 

sion for every cube. The local expansion includes the 
effects of all panel charges not in the cube or its nearest 
and second nearest neighbors. Note that at the finest 
level this includes the effects of all panels that are not 
treated in the direct pass. 
*/ 
For each level i = 2 to L { 

For each cube of the 8’ cubes on level i { 
/*  Map local coefficients to local coefficients 
(LZL). * I  
If the cube’s parent has a local expansion, shift that 

expansion to a local expansion about the cube’s 
center. 

For each of the cube’s interaction cubes { 
/* Map multipole coefficients to local coeffi- 
cients (M2L). *I 
Convert the multipole expansion about the cen- 
ter of the interaction cube to a local expansion 
about the cube’s center and add it to the local 
expansion for the cube. 

3 
3 

3 
/*  
THE EVALUATION PASS: Evaluates the local ex- 
pansions at the finest level. 

*I 
For each cube of the 8L cubes on the lowest level { 

I* Map local coefficients into potentials (L2P). *I  
Evaluate the cube’s local expansion for the potential 
at all the evaluation points in the cube, and add those 
computed potentials to the evaluation point poten- 

tials. 

3 

V. IMPLEMENTATION I N  FASTCAP 

Our implementation of the multipole-accelerated ca- 
pacitance extraction algorithm uses an optimization which 

exploits the fact that the conversion and shift operations 
are linear functions of the charges or the expansion coef- 
ficients when the geometry is fixed. That is, the compli- 
cated evaluations involved in converting charges to po- 
tentials or multipole coefficients, shifting multipole 

coefficients, converting multipole coefficients to local 

coefficients, shifting local coefficients, converting local 
coefficients to potentials are all computed once and stored 
as matrices which operate on charges or coefficients. 

As an example, consider forming a first-order multipole 

expansion for a collection of k charges. Following (9), a 
first-order multipole expansion has the form 

where M i ,  - , MI are complex multipole coefficients. 
Since M:  is real for all n ,  and M i ”  is always the complex 
conjugate of M f ,  the multipole expansion can be written 
in terms of real coefficients as 

P 1 (cos e) sin 4 + Mi 2 r2 
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Plp:(cos Q I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. * * pkPy(C0s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax) 

2p, PI (cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal) cos p1 . * 2p,PI (cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq) cos 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;, My, MI, and il?; are real coefficients and 

Pr(cos 0) is the associated Legendre function of degree 
n and order m. This equation appears as (A9) in the Ap- 
pendix, where it is discussed in more detail. This low- 
order expansion can be more simply represented as 

ces for all the other multipole algorithm conversions and 

shifts can be constructed and used repeatedly in subse- 
quent Pw product calculations. 

In our implementation of the complete multipole-ac- 

celerated capacitance extraction algorithm, given below, 
the shift and conversion coefficients are computed once 
and stored. 

Algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: Multipole-Accelerated Capacitance 

r l / (x ,y ,z)  ~ M ; - + M O 4 - a I ~ - f i p -  1 
r I r3  2 r 3  2 r 3 ’  

( 18) 

F o r j  = 1 t o m  { 
/* Set the Potential of the Panels on Conductorj to 

one. */ 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  y ,  and z are the Cartesian coordinates of the eval- 
uation points and r = dx’ + y 2  + z2,  as usual. 

The real coefficients are calculated using formulas 

(A1 1) and (A12) in the Appendix, which are analogous to 
(10). Writing the four equations for the four real coeffi- 
cients as one matrix equation yields the 4 x k linear sys- 

tem 

rp;(cos * . . Po,(cos ax) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Extraction Algorithm 

/* Setup Phase. * I  
Divide the m conductors into a total of n panels. 
Divide the problem domain into a hierarchy of cubes, 

so that each of the finest level cubes has a maximum 

of 4 panels. 
Compute the conversion and shifting matrices from the 

/*  Loop Through all the Conductors. */ 
topology. 

Fork = 1 to n { 
If panel k is on conductor j ,  set Pk = 1 

- Elsepk = 0. 

} 
/* Solve for the Panel Charges using MGCR. */ 
Use GCR (Algorithm 1) to solve Pq = p ,  using Mul- 

tipole (Algorithm 2) to compute Pw. 
/* Sum the Charges on Conductor i to Compute C,, 

*/ 
For i = 1 to m 

(19) 
. [;?I = [:I, 

MI 

c,, = Ckmnductor ,  q k .  where q l ,  . , qk are the values of the k charges. The 4 
X k matrix is called the Q2M conversion matrix. Its ith 
column depends only on the coordinates of the ith charge. 

j, 

Substituting for the associated Legendre functions using 
(A5) and (A6) from the Appendix and switching to rect- 
angular coordinates simplifies the matrix to 

Note that the first row of the matrix implies that is the 
sum of all the charge strengths, making it identical to the 
coefficient M; in (16). 

Since the Q2M matrix is a function of the charge po- 
sitions alone, its entries need be calculated only once if 

several multipole algorithm potential evaluations are re- 
quired for the same charge geometry. In the notation of 
Algorithm 2 ,  this amounts to using the multipole algo- 

rithm to compute several Pw products with the same P 
but with different w vectors. Each time the multipole al- 
gorithm is used to form a different Pw product, a new 
vector of charge strengths is multiplied by the Q2M ma- 
trix, yielding a vector of updated multipole expansion 
coefficients. In a similar way, geometry-dependent matri- 

To determine the effectiveness of this approach, the 
multipole accelerated algorithm was tested on the easily 
parameterized bus structure given in Fig. 4, for buses with 
2 X 2 conductors through 6 x 6 conductors. The con- 
ductor surfaces are discretized by first cutting each con- 
ductor into sections based on where pairs of conductors 

overlap. In the 2 x 2 bus example, each conductor is cut 
into five sections (see Fig. 5(a)), and in the 6 x 6 ex- 
ample each conductor is divided into 13 sections. The dis- 
cretization is then completed by dividing each face of each 
section into nine panels, as demonstrated in Fig. 5(b). 
The edge panels have widths that are 10% of the inner 

panel widths to accurately discretize the expected in- 
creased charge density near conductor edges [ 141. 

In Table I we report the results of our experiments with 
the various approaches to solving ( 5 ) ,  the matrix problem 

associated with the boundary element method. In the ta- 
ble, the total number of panels resulting from the conduc- 
tor surface discretization is given, followed by the CPU 

times (on an IBM 6000) required to compute the entire m 
X m capacitance matrix, where m is the number of con- 
ductors. Three methods for solving (5) are compared: di- 

rect or LU factorization, GCR, and multipole accelerated 
GCR (MGCR). The MGCR algorithm’s CPU times are 

I 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Bus structure test problem with 2 x 2 conductors 

(a) (b) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Conductor sections are divided into panels. 

TABLE I 
COMPARISON OF EXTRACTION METHODS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(CPU TIMES I N  IBM 6000 

SECONDS) 

Test Problem 

2 x 2  3 x 3  4 x 4  5 x 5  6 x 6  

Panels 792 1620 2736 4140 5832 
Direct time 275 2700 12969 44345 (141603) 
GCR time 121 570 2115 4881 (14877) 
MGCRtime(1 = 2) 55 218 378 790 1412 

48 98 216 356 MGCR time ( I  = 0) 

GCR iters 48 78 120 150 (180) 
82 120 150 180 MGCR iters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I  = 2) 

88 120 150 180 MGCR iters (/ = 1) 

90 120 150 180 MGCR iters (1 = 0) 

MGCR time ( I  = 1) 29 108 245 436 775 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 

48 
54 
58 

strongly dependent on the number of expansion terms, so 
the time required when zero-, first-, and second-order ex- 
pansions (1 = 0, 1, 2) are used is given. Also in the table 
are the total number of iterations required to reduce the 

max norm of the residual in GCR and MGCR to 1 %  of 
its original value. The CPU times in parentheses are ex- 

trapolated. They correspond to calculations that were not 

possible because of the excessive memory required to 
store the entire potential coefficient matrix, and our lack 
of patience. 

As is clear from the results, the multipole-accelerated 
GCR algorithm is very effective for the larger problems, 
particularly if the expansion order is low. To examine the 

effect of expansion order on accuracy, in Table I1 we 
compare the resulting capacitances computed by solving 
( 5 )  for the 4 X 4 conductor problem with LU factoriza- 
tion, GCR, and MGCR for expansion orders 0, 1, and 2. 
One row of the 4 X 4 capacitance matrix2 is given for the 
five different solution methods. The row chosen repre- 
sents the capacitance associated with one of the conduc- 
tors on the outer edge. Taking the direct method results 
as exact, the data indicate that MGCR can attain better 
than 10% accuracy in the diagonal entry of the capaci- 

tance matrix with only a zero-order (1 = 0) expansion. To 

'In the 4 X 4 conductor example the lengths have been normalized so 
that the conductors are each 5 m long, 1 m high, and 1 m wide, and all 
interconductor spaces are 1 m. The capacitances are given in picofarads by 
scaling the program results by 4neo = 111.27 pF/m. 
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TABLE I1 
COMPARISON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO F  EXTRACTION METHODS (4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 4 CONDUCTOR PROBLEM CAPACITANCES) 

Capacitance Matrix Entry (pF) 

Solution 

Method Cl, ClZ C17 C14 C,5 Cl, C17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 

Direct 404.6 -137.0 -12.04 -7.910 -48.42 -40.09 -40.09 -48.42 
GCR 404.2 -137.2 -11.64 -8.083 -48.37 -39.93 -39.93 -48.37 

MGCR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I  = 2) 405.2 - 137.8 - 11.91 -8.079 -48.36 -40.09 -40.01 -48.45 
MGCR ( /  = I )  406.6 -139.7 -12.36 -6.676 -48.48 -40.45 -40.27 -48.46 
MGCR ( I  = 0)  394.5 -124.0 -0.175 -2.471 -52.15 -43.39 -43.08 -52.92 

- GCR - MGCR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 = 2) - MGCR(l= 1) 

MGCR (1 = 0) 

// zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
I < 1000 2000 3000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4000 5000 6000 

Number of Panels, n 

Fig. 6 .  Multiply-add operations required for a single Pw calculation as a 
function of problem size. 

achieve reasonable relative accuracy in the smallest cou- 
pling capacitance, CI4, which is 50 times smaller than the 
diagonal entry, C I I ,  the second-order expansion is re- 
quired. In that case MGCR produces results nearly iden- 
tical to GCR, indicating that further increases in accuracy 

would require tightening the iterative loop tolerance as 
well as increasing the expansion order. 

As mentioned above, computing the potentials given a 
new charge vector using the multipole algorithm just in- 
volves applying mapping matrices to the changing charges 
or multipole and local coefficients. Viewed in  this way, 

the multipole algorithm can be compared more precisely 
with explicitly computing the matrix-vector product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPw 
by counting the number of multiply-add operations re- 
quired in each case. This is a way of comparing MGCR 
with GCR that eliminates the effects of implementation 
differences. The number of multiply-add operations re- 
quired by the four iterative methods of Tables I and 11 for 
each Pw product is plotted in Fig. 6 as a function of prob- 
lem size. As seen in the plot, all the MGCR methods re- 
quire fewer operations than GCR for each Pw product 
when the number of panels, n ,  exceeds approximately 
1000. Furthermore, the cost of a Pw calculation grows as 

n2 for GCR but roughly as n for the MGCR methods, with 
the expansion order affecting only the slope. 

VI. CONCLUSIONS 

The above results indicate that the multipole-acceler- 
ated GCR (MGCR) algorithm is faster than both LU fac- 
torization and GCR alone for problems with more than 

1000 panels. Capacitance extraction problems with nearly 
6000 panels can be solved using MGCR in about 10 min 

on a workstation, roughly ten times faster than GCR, with 
comparable accuracy. Furthermore, the multipole algo- 
rithm provides an approach for trading accuracy for CPU 

time by reducing the expansion order; if low accuracy is 
tolerable, another factor of 2 speed improvement can be 
obtained. Finally, MGCR does not require explicit stor- 

age of the entire potential coefficient matrix, as do GCR 
and LU factorization, resulting in significantly smaller 
memory requirements. Combining these features makes it 

feasible to perform capacitance extraction of complicated 
structures as the “inner loop” of a design optimization 
procedure. 

Additional work is under way to improve the efficiency 
of the multipole algorithm, and we are currently working 
on making the algorithm adaptive. Future research in- 
cludes investigating the use of block iterative techniques 
to reduce the number of iterations required and extending 
the approach to solving problems with piecewise-constant 
dielectrics and ground planes. In addition, we will extend 
our program to handle arbitrary triangular and quadrila- 
teral panels so that more esoteric structures can be discre- 

tized. 

APPENDIX 

MULTIPOLE ALGORITHM FORMULAS 

This Appendix presents the multipole algorithm expan- 
sion, shift, and conversion formulas used in the capaci- 
tance extraction algorithm implementation. The formulas 
used are equivalent to those in the original multipole al- 
gorithm formulation of [2] and [3] but avoid complex 

arithmetic. They are obtained by combining complex con- 
jugates in the original formulas to obtain expressions in 
the style of [7]. Subsection A defines the real-valued coef- 
ficients and the spherical harmonics which together are 
used to form the multipole formulas of subsection B. 

A .  Formula Components 

Each multipole or local expansion term involves a coef- 
ficient multiplying a spherical harmonic. When a real coef- 

ficient expansion is used, this fact is obscured by the com- 
bination of complex conjugates. However, since the real 
coefficient expansions are just reorganizations of the com- 

plex coefficient formulas, the same coefficients and spher- 
ical harmonics appear in slightly different form. 
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I )  Real-valued Expansion Coeficients: Given a mul- 

tipole or local expansion coefficient, G::, the correspond- 
ing real-valued coefficients are defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I ,  

otherwise 

(AI) 

lo1 otherwise. 

(A2) 

All the multipole algorithm formulas are converted to real 
coefficients using these substitutions for the complex coef- 
ficients. 

2) Spherical Harmonics: The functions 

are called spherical harmonics. A spherical harmonic is 
part of a solution to Laplace's equation obtained by sep- 
aration of variables. Here, as in [ 8 ] ,  a spherical harmonic 

is the elevation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(19) and azimuth (4) components of the 
solution. In contrast to the usual definition, however, a 
normalization constant is omitted following 121 and [3]. 

The function PT(cos 0) is the associated Legendre 
function of the first kind with degree n and order m. These 
functions are defined only when n is a nonnegative integer 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm is an integer such that -n 5 m I n. For conve- 
nience any PT(cos 0) whose indices do not satisfy these 
restrictions is taken to be zero. 

The recursion 

(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- m)P::(cos a)  

= (2n - 1) cos aP::)- I (COS a)  

- (n + m - l)P;-,(cos a) ,  (A4) 

valid for 0 I m I iz - 2, and the formulas 

(2m)! 
P;(cos a)  = ~ (- sin a)m, 

2"'m! 
0 I m (A5) 

PE+ I (cos a)  = (2m + 1) cos aP:;(cos a) ,  0 5 m 

(A6) 

can be used to recursively evaluate the Legendre func- 
tions [ 7 ] ,  [lo]. 

B. Real Coeficient Multipole Algorithm Formulas 

Using the real-valued coefficients and the spherical har- 
monics of the previous section, the multipole algorithm 
formulas used in the capacitance extraction algorithm are 
obtained. The resulting real coefficient formulas eliminate 
the need for complex arithmetic and square root calcula- 
tions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1) Multipole Expansion (Q2M, M2P): The order 1 
multipole expansion approximation to the potential, +, at 

the point ( r ,  0 ,  4) is 

' ' I  M"' 

, l = o m = - n  y n + l  
$(r ,  19, q5) = c Yr(I9, 4). (A7) 

Applying the definition of the spherical harmonic, YF, 
gives 

PPI (cos 19)eitn+. (A81 

Substituting the real coefficients using (Al)  and (A2) 
yields the real coefficient multipole expansion, 

The complex coefficient local expansion conversion is 
nearly identical. 

A multipole expansion is constructed from k charges 

with strengths q, and positions ( p , ,  a,, PI ) ,  i = 1, - , 
k ,  using 

I 

M; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA c q,p:Y"(a,, 0,). ('410) 
I =  I 

Substituting (Al)  and (A2) gives expressions for the real 
multipole coefficients corresponding to a set of k charges: 

r k 

2 I = I  c q,p:lP):n'(cos a,) cos (mol), 
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2) Local Expansion (Q2L, L2P): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe order 1 local ex- 
pansion approximation to the potential $, at the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( r ,  
e, 4) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I 1  

or 

- PPI (cos 8) eim+ rrl. (A14) 

Substituting the real coefficients using ( A l )  and (A2) 
yields the real coefficient local expansion: 

I 
(n  - m)! 

+( r ,  e, 4) = C rn  C ~ P : : ( ~ ~ ~  e) 
n = ~  m = ~  (n  + m)! 

. [ E ;  cos (m+) + sin (m+)]. (A15) 

A local expansion is constructed from k charges with 
strengths q; and positions ( p i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPi), i = 1 ,  . . . , k ,  
using 

Substituting ( A l )  and (A2) gives expressions for the real 
multipole coefficients corresponding to a set of charges: 

9 l h  0, otherwise. 

2 C P ~ ~ ( C O S  a,) sin (mp,), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 = I  p:+ '  

( m (  > 0,  Im( I n (A18) 
L; = 

3) Multipole Expansion Shift (M2M): Consider a mul- 
tipole expansion about the point ( p ,  a ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). The potential 
at a given point results when its coordinates relative to 

( p ,  a ,  0) are substituted into the expansion. If the expan- 
sion about ( p ,  a ,  0) has coefficients O;, then the coeffi- 
cients of a shifted multipole expansion about the origin, 

N,k, are given by 

Substituting for the spherical harmonics using (A3) and 
for the complex coefficients with ( A l )  and (A2) gives the 
real coefficient multipole expansion shift formulas for j 
2 k 1 0 :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J n P::(COS a) 

(n  + m)! N; = ( j  + k)!  p n  c f M ( m ,  k )  
n = O  m = O  

< : k - m - l k - m l  

- 

[O)'," cos (mp) (-- 1)" + 
( j  - n + k + m)! 

+ 0::; cos (mp)] 

( -  lyn + [--O;-C; sin (mp) 
( j  - n + k + m)!  

Here 

m f O ,  k # O  

\ 1 / 2 ,  m = 0, k = 0. 

4) Multipole to Local Expansion Conversion (M2L): 
An order 1 multipole expansion about the point ( p ,  CY, b),  
with coefficients OT, can be converted to an order I local 

j I I  ,/(j + k ) ! ( j  - k ) !  i I I I - ( m l - l ~ - ~ ~ r l y - r n (  a ,  p)o;:::'p" 
N ! = C  C 

n = O  m = - n  , / ( j  - n + k - m ) ! ( j  - n - k + m)!(n + m)!(n - m ) !  
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expansion about the origin, with coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN;, using 

Substituting for the spherical harmonics using (A3) and 
for the complex coefficients with (A l )  and (A2) gives the 
real coefficient multipole to local expansion conversion 
formulas for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 1 k 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: 

Substituting for the spherical harmonics using (A3) and 
for the complex coefficients with ( A l )  and (A2) gives the 
real coefficient local expansion shift formulas f o r j  2 k 
L 0: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i m  - k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- / m  - k l  

(n - j + Im - k l ) ! (n  - m)! 

( j  + n - m - k ) !  
(n + m)! 

+ P,",+,k(cos a) 
+ P;_:k(cos a) ( - I l k  

(n - j + m + k)!(n - m)! 

i m  - k -  Im - k l  

(n - j + (m  - k l ) ! (n  - m)! 

( j  + n - m - k ) !  
(n + m)! 

+ Pim++nk(cos a) 

. {-a; sin [(m - k ) ~ ]  + 0; cos [(m - k ) P ] }  

+ P;?)(cos a) ( -  
(n - j + m + k) ! (n  - m)! 

{ sin [(m + k )P ]  - 0; cos [(m + k ) P ] } .  

('429) 

* {a: sin [(m + - 0; cos [(m + k ) ~ ] ) .  The function fL (k) is given by (A26).  

Here 
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k # O  

[:;2, k = 0. 
(A26) h ( k )  = 

5) Local Expansion Shift (L2L): An order 1 local ex- 

pansion about the point ( P ,  a, P ) ,  with coefficients O r ,  
can be converted to an order I local expansion about the 
origin, with coefficients Njk, using 
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