
JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.1 (1-11)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Faster algorithms for 1-mappability of a sequence ✩

Mai Alzamel a,b,∗, Panagiotis Charalampopoulos a, Costas S. Iliopoulos a,
Solon P. Pissis c, Jakub Radoszewski d, Wing-Kin Sung e

a Department of Informatics, King’s College London, London, UK
b Department of Computer Science, King Saud University, Riyadh, Saudi Arabia
c CWI, Amsterdam, the Netherlands
d Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
e Department of Computer Science, National University of Singapore, Singapore, Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 December 2018
Received in revised form 12 April 2019
Accepted 24 April 2019
Available online xxxx

Keywords:
Algorithms on strings
Sequence mappability
Hamming distance

In the k-mappability problem, we are given a string x of length n and integers m and k,
and we are asked to count, for each length-m factor y of x, the number of other factors
of length m of x that are at Hamming distance at most k from y. We focus here on the
version of the problem where k = 1. There exists an algorithm to solve this problem for
k = 1 requiring time O(mn logn/ log log n) using space O(n). Here we present two new
algorithms that require worst-case time O(mn) and O(n log n log log n), respectively, and
space O(n), thus greatly improving the previous result. Moreover, we present another
algorithm that requires average-case time and space O(n) for integer alphabets of size
σ if m = �(logσ n). Notably, we show that this algorithm is generalizable for arbitrary k,
requiring average-case time O(kn) and space O(n) if m = �(k logσ n), assuming that the
letters are independent and uniformly distributed random variables. Finally, we provide an
experimental evaluation of our average-case algorithm demonstrating its competitiveness
to the state-of-the-art implementation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The focus of this work is directly motivated by the well-known and challenging application of genome re-sequencing—the
assembly of a genome directed by a reference sequence. New developments in sequencing technologies [2] allow whole-
genome sequencing to be turned into a routine procedure, creating sequencing data in massive amounts. Short sequences,
known as reads, are produced in huge amounts (tens of gigabytes); and in order to determine the part of the genome from
which a read was derived, it must be mapped (aligned) back to some reference sequence that consists of a few gigabases. A
wide variety of short-read alignment techniques and tools have been published in the past years to address the challenge of
efficiently mapping tens of millions of reads to a genome, focusing on different aspects of the procedure: speed, sensitivity,
and accuracy [3]. These tools allow for a small number of errors in the alignment.

The k-mappability problem was first introduced in the context of genome analysis in [4] (and in some sense earlier
in [5]), where a heuristic algorithm was proposed to approximate the solution. The aim from a biological perspective is to

✩ A preliminary version of this article has appeared in [1].

* Corresponding author.
E-mail addresses: mai.alzamel@kcl.ac.uk (M. Alzamel), panagiotis.charalampopoulos@kcl.ac.uk (P. Charalampopoulos), csi@kcl.ac.uk (C.S. Iliopoulos),

solon.pissis@cwi.nl (S.P. Pissis), jrad@mimuw.edu.pl (J. Radoszewski), ksung@comp.nus.edu.sg (W.-K. Sung).
https://doi.org/10.1016/j.tcs.2019.04.026
0304-3975/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.04.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:mai.alzamel@kcl.ac.uk
mailto:panagiotis.charalampopoulos@kcl.ac.uk
mailto:csi@kcl.ac.uk
mailto:solon.pissis@cwi.nl
mailto:jrad@mimuw.edu.pl
mailto:ksung@comp.nus.edu.sg
https://doi.org/10.1016/j.tcs.2019.04.026

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.2 (1-11)

2 M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–•••
compute the mappability of each region of a genome sequence; i.e. for every factor of a given length of the sequence, we
are asked to count how many other times it occurs in the genome with up to a given number of errors. This is particularly
useful in the application of genome re-sequencing. By computing the mappability of the reference genome, we can then
assemble the genome of an individual with greater confidence by first mapping the segments of the DNA that correspond
to regions with low mappability. Interestingly, it has been shown that genome mappability varies greatly between species
and gene classes [4].

Formally, we are given a string x of length n and integers m < n and k < m, and we are asked to count, for each length-m
factor y of x, the number of other length-m factors of x that are at Hamming distance at most k from y.

Example 1. Consider the string x = aabaaabbbb and m = 3. The following table shows the k-mappability counts for k = 0
and k = 1.

position 0 1 2 3 4 5 6 7
factor occurrence aab aba baa aaa aab abb bbb bbb
0-mappability 1 0 0 0 1 0 1 1
1-mappability 3 2 1 4 3 5 2 2

For instance, consider the position 0. The 0-mappability is 1, as the factor aab occurs also at position 4. The 1-mappability
at this position is 3 due to the occurrence of aab at position 4 and occurrences of two factors at Hamming distance 1 from
aab: aaa at position 3 and abb at position 5.

For k = 0, the k-mappability problem can be solved in O(n) time with the well-known LCP data structure [6]. For
k = O(1) and constant-sized alphabets, there is an algorithm requiring O(min{nmk, n logk+1 n}) time and O(n) space [7].
In [8] the authors introduced an efficient construction of a genome mappability array Bk in which Bk[μ] is the smallest
length m such that at least μ of the length-m factors of x do not occur elsewhere in x with at most k mismatches. The
construction algorithm was later improved in [9].

For k = 1, the first algorithm for the k-mappability problem was published by Manzini in [10]. This solution runs in
O(mn logn/ log log n) time and O(n) space and works only for strings over a constant-sized alphabet. Since the problem for
k = 0 can be solved in O(n) time, we focus on counting, for each length-m factor y of x, the number of other factors of x
that are at Hamming distance exactly 1 — instead of at most 1 — from y.

Our contributions. Here we make the following fourfold contribution:

(a) We present an algorithm that, given a string x of length n over an integer alphabet of size σ > 1 and a positive integer
m = �(logσ n), solves the 1-mappability problem for x in average-case time O(n) and space O(n). Notably, we show
that this algorithm is generalizable for arbitrary k requiring average-case time O(kn) and space O(n) if m = �(k logσ n).
Here we assume that the letters are independent and uniformly distributed random variables.

(b) We present an algorithm that, given a string of length n over an integer alphabet and a positive integer m, solves the
1-mappability problem in O(mn) time and O(n) space.

(c) We present an algorithm that, given a string of length n over a constant-sized alphabet and a positive integer m, solves
the 1-mappability problem in O(min{mn, n logn log log n}) time and O(n) space, thus improving on the algorithm of [10]
that requires O(mn log n/ log log n) time and O(n) space.

(d) We provide an open-source implementation of our average-case algorithm for arbitrary k and also experimental results
demonstrating its competitiveness to the state-of-the-art implementation for the same problem [4].

2. Preliminaries

Let x = x[0]x[1] . . . x[n − 1] be a string of length |x| = n over a finite ordered alphabet � of size |�| = σ = O(1). We
also consider the case of strings over an integer alphabet, where each letter is replaced by its rank in such a way that the
resulting string consists of integers in the range {1, . . . , n}.

For two positions i and j on x, we denote by x[i.. j] = x[i] . . . x[j] the factor (sometimes called substring) of x that starts
at position i and ends at position j (it is of length 0 if j < i). By ε we denote the empty string of length 0. We recall that
a prefix of x is a factor that starts at position 0 (x[0.. j]) and a suffix of x is a factor that ends at position n − 1 (x[i..n − 1]).
We denote the reverse string of x by rev(x), i.e. rev(x) = x[n − 1]x[n − 2] . . . x[1]x[0].

Let y be a string of length m with 0 < m ≤ n. We say that there exists an occurrence of y in x, or, more simply, that y
occurs in x, when y is a factor of x. Every occurrence of y can be characterized by a starting position in x. Thus we say that
y occurs at the starting position i in x when y = x[i..i + m − 1].

The Hamming distance between two strings x and y, |x| = |y|, is defined as dH (x, y) = |{i : x[i] �= y[i], i = 0, 1, . . . , |x| −1}|.
If |x| �= |y|, we set dH (x, y) = ∞. If two strings x and y are at Hamming distance k, we write x ≈k y.

The computational problem in scope can be formally stated as follows.

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.3 (1-11)

M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–••• 3
1-mappability

Input: A string x of length n and an integer m, where 1 ≤ m < n
Output: An integer array C of size n − m + 1 such that C[i] stores the number of factors of x that are at Hamming
distance 1 from x[i..i + m − 1]

2.1. Suffix array and suffix tree

Let x be a string of length n > 0. We denote by SA the suffix array of x. SA is an integer array of size n storing the
starting positions of all (lexicographically) sorted non-empty suffixes of x, i.e. for all 1 ≤ r < n we have x[SA[r − 1]..n − 1] <
x[SA[r]..n − 1] [11]. Let lcp(r, s) denote the length of the longest common prefix between x[SA[r]..n − 1] and x[SA[s]..n − 1]
for positions r, s on x. We denote by LCP the longest common prefix array of x defined by LCP[r] = lcp(r − 1, r) for all
1 ≤ r < n, and LCP[0] = 0. The inverse iSA of the array SA is defined by iSA[SA[r]] = r, for all 0 ≤ r < n. It is known that
SA, iSA, and LCP of a string of length n, over an integer alphabet, can be computed in time and space O(n) [12,6]. It is
then known that a range minimum query (RMQ) data structure over the LCP array, that can be constructed in O(n) time
and O(n) space [13], can answer lcp-queries in O(1) time per query [11]. A symmetric construction on rev(x) can answer
the so-called longest common suffix (lcs) queries in the same complexity. The lcp and lcs queries are also known as longest
common extension (LCE) queries.

The suffix tree T (x) of string x is a compact trie representing all suffixes of x. The nodes of the trie which become nodes
of the suffix tree are called explicit nodes, while the other nodes are called implicit. Each edge of the suffix tree can be
viewed as an upward maximal path of implicit nodes starting with an explicit node. Moreover, each node belongs to a
unique path of that kind. Thus, each node of the trie can be represented in the suffix tree by the edge it belongs to and an
index within the corresponding path. The label of an edge is its first letter. We let L(v) denote the path-label of a node v ,
i.e., the concatenation of the edge labels along the path from the root to v . We say that v is path-labeled L(v). Additionally,
D(v) = |L(v)| is used to denote the string-depth of node v . Node v is a terminal node if its path-label is a suffix of x, that is,
L(v) = x[i..n − 1] for some 0 ≤ i < n; here v is also labeled with index i. It should be clear that each factor of x is uniquely
represented by either an explicit or an implicit node of T (x). In standard suffix tree implementations, we assume that each
node of the suffix tree is able to access its parent. Once T (x) is constructed, it can be traversed in a depth-first manner to
compute D(v) for each node v .

It is known that the suffix tree of a string of length n, over an integer alphabet, can be computed in time and space
O(n) [14]. For integer alphabets, in order to access the children of an explicit node by the first letter of their edge label,
perfect hashing [15] can be used.

3. Efficient average-case algorithm

In this section we assume that x is a string over an integer alphabet �. For clarity of presentation, we first describe
the algorithm for k = 1 and then show how it can be generalized for arbitrary k. Recall that if two strings y and z are at
Hamming distance 1, we write y ≈1 z.

Fact 1 (Folklore). Given two strings y and z of length m, we have that if y ≈1 z, then y and z share at least one factor of length �m/2�.

Fact 2. Given a string x and any two positions i, j on x, we have that if x[i..i + m − 1] ≈1 x[j.. j + m − 1], then x[i..i + m − 1]
and x[j.. j + m − 1] have at least one common factor of length L = �m/3� starting at positions i′ ∈ {i, . . . , i + m − L} and j′ ∈
{ j, . . . , j + m − L} of x, such that i′ − i = j′ − j and i′ = 0 (mod L).

Proof. It should be clear that every factor of x of length m fully contains at least two factors of length L starting at positions
equal to 0 mod L. Then, if x[i..i + m − 1] and x[j.. j + m − 1] are at Hamming distance 1, analogously to Fact 1, at least one
of the two factors of length L that are fully contained in x[i..i +m − 1] occurs at a corresponding position in x[j.. j +m − 1];
otherwise we would have a Hamming distance greater than 1. �

We first initialize an array C of size n − m + 1, with 0 in all positions; for all i, C[i] will eventually store the number
of factors of x that are at Hamming distance 1 from x[i..i + m − 1]. We apply Fact 2 by implicitly splitting the string x into
B = � n

�m/3� � blocks of length L = �m/3�—the suffix of length n mod �m/3� is not taken as a block—starting at the positions
of x that are equal to 0 mod L. In order to find all pairs of length-m factors that are at Hamming distance 1 from each other,
we can find all the exact matches of every block and try to extend each of them to the left and to the right, allowing at
most one mismatch. However, we need to tackle some technical details to correctly update our counters and avoid double
counting.

We start by constructing the SA and LCP arrays for x and rev(x) in O(n) time. We also construct RMQ data structures
over the LCP arrays for answering LCE queries in constant time per query. By exploiting the LCP array information, we can

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.4 (1-11)

4 M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 1. Performing two LCE queries in each direction.

then find in O(n) time all maximal sets of indices such that the longest common prefix between any two of the suffixes
starting at these indices is at least L and at least one of them is the starting position of some block.

Then for each such set, denoted by P , we have to do the following procedure for each index i ∈ P such that i = 0
(mod L).

For every other j ∈ P , we try to extend the match by asking two LCE queries in each direction. I.e., we ask an lcs(i −
1, j − 1) query to find the first mismatch positions �1 and �′

1, respectively, and then lcs(�1 − 1, �′
1 − 1) to find the second

mismatch (�2 and �′
2, respectively). A symmetric procedure computes the mismatches r1, r′

1 and r2, r′
2 to the right, as shown

in Fig. 1. We omit here some technical details with regards to reaching the start or end of x.
Now we are interested in positions p such that �2 < p ≤ �1 and i + L − 1 ≤ p + m − 1 < r1 and positions q such that

�1 < q ≤ i and r1 ≤ q + m − 1 < r2. Each such position p (resp. q) implies that x[p..p + m − 1] ≈1 x[p′..p′ + m − 1], where
p′ = j − (i − p). Henceforth, we only consider positions of the type p, p′ .

Note that if x[p..p + m − 1] ≈1 x[p′..p′ + m − 1], we will identify the unordered pair {p, p′} based on the described
approach tp,p′ times, where tp,p′ is the total number of full blocks contained in x[p..p +m − 1] and in x[p′..p′ +m − 1] after
the mismatch position. It is not hard to compute the number tp,p′ in O(1) time based on the starting positions p and p′ as
well as �1 and r1 each time we identify x[p..p + m − 1] ≈1 x[p′..p′ + m − 1]. To avoid double counting, we then increment
the C[p] and C[p′] counters by 1/tp,p′ .

By EXTi, j we denote the time required to process a pair of elements i, j of a set P such that at least one of them, i or
j, equals 0 mod L.

Lemma 3. The time EXTi, j is O(m).

Proof. Given i, j ∈ P , with at least one of them equal to 0 mod L, we can find the pairs (p, p′) of positions that satisfy the
inequalities discussed above in O(m) time. They are a subset of {(i −m + L, j −m + L), . . . , (i − 1, j − 1)}. For each such pair
(p, p′) we can compute tp,p′ and increment C[p] and C[p′] accordingly in O(1) time. The total time to process all pairs
(p, p′) for given i, j is thus O(m). �

It should be clear that the aforementioned algorithm is generalizable for arbitrary k. We proceed with proving the
following theorem.

Theorem 2. Given a string x of length n over an integer alphabet � of size σ > 1 with the letters of x being independent and identically
distributed random variables, uniformly distributed over �, the k-mappability problem can be solved in average-case time O(kn) and
space O(n) if m ≥ (k + 2) · (logσ n + 1).

Proof. The time and space required for constructing the SA and LCP array for x and rev(x) and the RMQ data structures
over the LCP arrays is O(n).

Let B denote the number of blocks over x and L be the block length. We set

L = � m
k+2 �, B = �n

L �
to apply the pigeon-hole principle: at least one block must be an exact match (generalization of Fact 2). Recall that by P
we denote a maximal set of indices of the LCP array such that the length of the longest common prefix between any two
suffixes starting at these indices is at least L and at least one of them is the starting position of some block. Processing all
such sets P requires time

EXTi, j · Occ

where EXTi, j is the time required to process a pair i, j of elements of a set P ; and Occ is the sum of the multiples of the
cardinality of each set P times the number of the elements of set P that are equal to 0 mod L. We generalize Lemma 3 for
arbitrary k, showing that EXTi, j = O(m) as follows. We perform at most 2k + 2 longest common extension queries (to the
left and to the right); list all O(k) blocks that do not contain a mismatch within these extensions; and then consider O(m)

positions to be updated. Additionally, by the stated assumption on the string x, the expected value for Occ is no more than
Bn

L . Hence, the algorithm on average requires time

σ

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.5 (1-11)

M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–••• 5
O(n + m · B · n

σ L
).

Let m = (k + 2)q + r, for 0 ≤ r ≤ k + 1, q ≥ 1; note that here we assume that m ≥ k + 2; further note that �m/(k + 2)� = q.
If q satisfies n ≤ σ q we have

m · B

σ L
= m · � n

�m/(k+2)� �
σ � m

k+2 � = m · �n
q �

σ q
≤ m · n

q

σ q
≤ m

q
= (k + 2)q + r

q

= k + 2 + r

q
≤ 2k + 3.

Consequently, in the case when

m ≥ (k + 2) · (logσ n + 1)

we have that

m
B · n

σ L
≤ (2k + 3)n

and hence the algorithm requires O(kn) time on average. The extra space usage is O(n). �
We thus obtain the following corollary with respect to the 1-mappability problem; namely, for k = 1.

Corollary 4. Given a string x of length n over an integer alphabet � of size σ > 1 with the letters of x being independent and identically
distributed random variables, uniformly distributed over �, the 1-mappability problem can be solved in average-case time O(n) and
space O(n) if m ≥ 3 · logσ n + 3.

4. Efficient worst-case algorithms

4.1. O(mn)-time and O(n)-space algorithm

In this section we assume that x is a string over an integer alphabet �. The main idea is that we want to first find all
pairs x[i1..i1 + m − 1] ≈1 x[i2..i2 + m − 1] that have a mismatch in the first position, then in the second, and so on.

Let us fix 0 ≤ j < m. In order to identify the pairs x[i1..i1 + m − 1] ≈1 x[i2..i2 + m − 1] with x[i1 + j] �= x[i2 + j] (i.e.
with the mismatch in the jth position), we do the following. For every i = 0, 1, . . . , n − m, we find the explicit or implicit
node ui, j in T (x) that represents x[i..i + j − 1] and the node vi, j in T (rev(x)) that represents rev(x[i + j + 1..i + m − 1]) =
rev(x)[n − i −m..n − i − j − 2]. In each such node vi, j , we create a set V (vi, j)—if it has not already been created—and insert
the triple (ui, j, x[i + j], i).

When we have done this for all possible starting positions of x, we group the triples in each set V (v) by the node
variable (i.e., the first component in the triples). For each such group in V (v) we count the number of triples that have
each letter of the alphabet and increment array C accordingly. More precisely, if V (v) contains q triples that correspond
to the same node u, among which r correspond to the letter c ∈ �, then for each such triple (u, c, i) ∈ V (v) we increment
C[i] by q − r; we subtract r to avoid counting equal factors in C . Before we proceed with the computations for the next
index j, we delete all the sets V (v). We formalize this algorithm, denoted by 1-Map, in the pseudocode presented below
and provide an example.

1-Map(x,n,m)

1 T (x) ← SuffixTree(x)
2 T (rev(x)) ← SuffixTree(rev(x))
3 for string-depth j = 0 to m − 1 do
4 for i = 0 to n − m do
5 ui, j ← NodeT (x)(x[i..i + j − 1])
6 vi, j ← NodeT (REV(x))(rev(x)[n − i − m..n − i − j − 2])
7 Insert (ui, j, x[i + j], i) to V (vi, j)

8 for every node v of string-depth m − j − 2 in T (rev(x)) do
9 Group triples in V (v) by the node variable

10 for a group corresponding to the node u in V (v) do
11 Count number of triples with each letter c ∈ �

12 Update C[i] accordingly for each triple (u, c, i)
13 Delete V (v)

Example 3. Suppose we have V (v) = {(u, A, i1), (u, A, i2), (u, A, i3), (u, C, i4), (u, C, i5), (u, C, i6), (u, G, i7), (u, G, i8),

(u, T, i9)}, for some distinct positions i1, i2, . . . , i9. We then increment C[i1], C[i2], C[i3], C[i4], C[i5], and C[i6] by 6;
C[i7] and C[i8] by 7; and C[i9] by 8.

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.6 (1-11)

6 M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–•••
We now analyze the time complexity of this algorithm. The algorithm iterates j from 0 to m − 1. In the jth iteration, we
need to compute {ui, j, vi, j | i = 0, . . . , n − m}. When j = 0, ui,0 for every i is the root of T (x) and we can find vi,0 for all i
naïvely in O(mn) time. For j > 0, vi, j can be found in O(1) time from vi, j−1 by moving one letter up in T (rev(x)) for all
i, while ui, j can be obtained from ui, j−1 by going down in T (x) based on letter x[i + j]. We then include (ui, j, x[i + j], i)
in V (vi, j).

This requires in total O(mn) randomized time due to perfect hashing [15] which allows to go down from a node in T (x)
(or in T (rev(x))) based on a letter in O(1) randomized time. We can actually avoid this randomization, as queries for a
particular child of a node are asked in our solution in a somewhat off-line fashion: we use them only to compute vi,0 (m
times) and ui, j (from ui, j−1).

Observation 5. For an integer alphabet � = {1, . . . , n}, one can answer off-line O(n) queries in T (x) asking for a child of an explicit
or implicit node u labeled with the letter c ∈ � in (deterministic) O(n) time.

Proof. A query for an implicit node u is answered in O(1) time, as there is only one outgoing edge to check. All the
remaining queries can be sorted lexicographically as pairs (u, c) using radix sort. We can also assume that the children of
every explicit node of T (x) are ordered by the letter (otherwise we also radix sort them). Finally, all the queries related to
a node u can be answered in one go by iterating through the children list of u once. �

Lastly, we use bucket sort to group the triples for each V (v) according to the node variable (recall that the nodes are
represented by the edge and the index within the edge) and update the counters in O(n) time in total (using a global
array indexed by the letters from �, which is zeroed in O(|V (v)|) time after each V (v) has been processed). Overall the
algorithm requires O(mn) time. The suffix trees require O(n) space and we delete the sets V (vi, j) after the jth iteration;
the space complexity of the algorithm is thus O(n). We obtain the following result.

Theorem 4. Given a string of length n over an integer alphabet and an integer m, where 1 ≤ m < n, the 1-mappability problem can be
solved in O(mn) time and O(n) space.

Corollary 4 and Theorem 4 imply the following result.

Theorem 5. Given a string x of length n over an integer alphabet � of size σ > 1 with the letters of x being independent and identically
distributed random variables, uniformly distributed over �, the 1-mappability problem can be solved in average-case time O(n logn)

and space O(n).

Proof. If m ≥ 3 · logσ n + 3, apply Corollary 4. Otherwise, apply Theorem 4. �
Remark 6. Theorem 4 can also be obtained via utilizing the gapped suffix array data structure (see [16] for an efficient
construction algorithm).

4.2. O(n log n log log n)-time and O(n)-space algorithm

In this section we assume that x is a length-n string over an ordered alphabet �, where |�| = σ = O(1). Consider two
factors of x represented by nodes u and v in T (x); we observe that the first mismatch between the two factors is the first
letter of the labels of the distinct outgoing edges from the lowest common ancestor of u and v that lie on the paths from
the root to u and v . For 1-mappability we require that what follows this mismatch is an exact match.

Definition 1. Let T be a rooted tree. For each non-leaf node u of T , the heavy edge (u, v) is an edge for which the subtree
rooted at v has the maximal number of leaves (in case of several such subtrees, we fix one of them). The heavy path of a
node v is a maximal path of heavy edges that passes through v (it may contain 0 edges). The heavy path of T is the heavy
path of the root of T .

Consider the suffix tree T (x) and its node u. We say that an (explicit or implicit) node v is a level ancestor of u at
string-depth � if D(v) = � and L(v) is a prefix of L(u). The heavy paths of T (x) can be used to compute level ancestors of
nodes in O(log n) time. However, a more efficient data structure is known.

Lemma 7 ([17]). After O(n)-time preprocessing on T (x), level ancestor queries of nodes of T (x) can be answered in O(log log n) time
per query.

Definition 2. Given a string x and a factor y of x, we denote by range(x, y) the range in the SA of x that represents the
suffixes of x that have y as a prefix.

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.7 (1-11)

M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–••• 7
Fig. 2. Illustration; the heavy path of T (x) is shown in red. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

Every node u in T (x) corresponds to an SA range Iu = range(x, L(u)) = (umin, umax). We can precompute Iu for all
explicit nodes u in T (x) in O(n) time while performing a depth-first traversal of the tree as follows. For a non-terminal
node v with children u1, . . . , uq , we set vmin = mini{ui

min} and vmax = maxi{ui
max}. If v is a terminal node (with children

u1, . . . , uq), representing the suffix x[j..n −1], we set vmin = iSA[j] and vmax = max{iSA[j], maxi{ui
max}}. When a considered

node v is implicit, say along an edge (p, q), then I v = Iq .
Our algorithm relies heavily on the following auxiliary lemmas.

Lemma 8. Consider a node u in T (x) with p =L(u). Let suf(u, �) be the node v such that L(v) = p[�..|p| − 1]. Given the SA and the
iSA of x, v can be computed in O(log log n) time after O(n)-time preprocessing.

Proof. The SA range of the node u is Iu = (umin, umax); umin corresponds to the suffix x[SA[umin]..n − 1]. By removing the
first � letters, the suffix becomes x[SA[umin] + �..n − 1]. The corresponding SA value is vmin = iSA[SA[umin] + �].

Let v1 be the node of T (x) such that L(v1) = x[SA[vmin]..n − 1]. The sought node v is the ancestor of v1 located at
string-depth |p| − �. It can be computed in O(log log n) time using the level ancestor data structure of Lemma 7. �
Lemma 9. Let u and v be two nodes in T (x). We denote L(u) by p1 and L(v) by p2 . We further denote by concat(u, v) the node w
such that L(w) = p1 p2 . Given the SA and the iSA of x, as well as range(x, p1) and range(x, p2), w can be located in O(log log n)

time after O(n log log n)-time and O(n)-space preprocessing.

Proof. We can compute range(x, p1 p2) = (wmin, wmax) in O(log log n) time after O(n log log n)-time and O(n)-space pre-
processing [18]; we can then locate w in O(log log n) time using the level ancestor data structure of Lemma 7. �

We are now ready to present an algorithm for 1-mappability that requires O(n log n log log n) time and O(n) space. The
first step is to build T (x). We then make every node u of string-depth m explicit in T (x) and initialize a counter Count(u)

for it. For each explicit node u in T (x), the SA range Iu = range(x, L(u)) is also stored. We also identify the node vc with
path-label c for each c ∈ � in O(σ) =O(1) time.

PerformCount(T ,m)

1 HP ← HeavyPath(T)

2 for each side-tree Si attached to a node u on HP with D(u) < m do
3 Let (u, v) be the edge that connects Si to HP
4 c ← the edge label of (u, v)

5 d ← the edge label of the heavy edge (u, u′)
6 for each node z in Si with D(z) = m do
7 w ← suf(z,D(u) + 1)

8 for each c′ �= c, label of an outgoing edge from u do
9 t ← concat(u, concat(vc′ , w))

10 Count(z) ← Count(z) + |It |
11 z′ ← concat(u, concat(vd, w))

12 Count(z′) ← Count(z′) + |Iz|
13 PerformCount(Si,m −D(u))

We then call PerformCount(T (x), m), which does the following (inspect also the pseudocode above and Fig. 2). At first, a
heavy path HP of T (x) is computed. Initially, we want to identify the pairs of factors of x of length m at Hamming distance

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.8 (1-11)

8 M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–•••
1 that have a mismatch in the labels of the edges outgoing from a node in HP. Given a node u in HP, with L(u) = p1,
for every side tree Si attached to it (say by an edge with label c ∈ �), we find all nodes of Si with string-depth m. For
every such node z, with path-label p1cp2, we use Lemma 8 to obtain the node w = suf(z, |p1| + 1); that is, L(w) = p2.
We then use Lemma 9 to compute range(x, p1c′ p2) for all c′ �= c such that there is an outgoing edge from u with label c′
and increment Count(z) by |range(p1c′ p2)|. Let the heavy edge from u have label d; we also increment Count(z′), where
z′ = concat(u, concat(vd, w)) is the node with path-label p1dp2, by |Iz| while processing node z.

This procedure then recurs on each of the side trees; i.e. for side tree Si , attached to node u, it calls Perform-

Count(Si, m −D(u)). Finally, we construct array C from array Count while performing one more depth-first traversal.
On the recursive calls of PerformCount in each of the side trees (e.g. Si) attached to HP, we first compute the heavy

paths (in O(|Si |) time for Si) and then consider each node of string-depth m of T (x) at most once; as above, we process
each node in O(log log n) time due to Lemmas 8 and 9. As there are at most n nodes of string-depth m, we do O(n log log n)

work in total. This is also the case as we go deeper in the tree. Since the number of leaves of the trees we are dealing
with at least halves in each iteration, there at most O(log n) steps. Hence, each node of string-depth m will be considered
O(log n) times and every time we will do O(log log n) work for it. The overall time complexity of the algorithm is thus
O(n log n log log n). The space complexity is O(n). By applying Theorem 4 we obtain the following result.

Theorem 6. Given a string of length n over a constant-sized alphabet and an integer m, where 1 ≤ m < n, the 1-mappability problem
can be solved in O(min{mn, n logn log log n}) time and O(n) space.

Remark 10. The data structure presented by Cole et al. [19] for pattern matching with up to k mismatches can be used. For
k = 1, this data structure is of size O(n log n) and can be built in time O(n log n). We can then find all occ occurrences of a
given factor of x with at most 1 mismatch in time O(log n log log n + occ). However, the ω(n) space required for this data
structure is prohibitive for genome-scale analyses—in Theorem 6 we use O(n) space.

5. Experimental results

We have implemented the average-case algorithm described in Section 3 as a program to compute the mappability val-
ues. The program has been implemented in the C++ programming language and developed under the GNU/Linux operating
system. Our open-source implementation is made available at https://github .com /maialzamel /k-map under the GNU General
Public License.

Our task in this section is to evaluate the performance of our implementation with respect to the performance of the
implementation provided in [4]; we call our implementation k-map and the one of [4] Gemtool. Let us stress, however,
that Gemtool is a heuristic algorithm as opposed to k-map, which is an exact algorithm: it always returns the correct
solution.

As input we used sequences extracted from a real DNA corpus ranging in length from 1 MB to 512 MB. This DNA
corpus is available at http://pizzachili .dcc .uchile .cl /texts /dna/. For each input sequence we used different values for m and
k. All experiments have been conducted on a Desktop PC using one core of Intel Core CPU i5-4690 at 3.50 GHz. Both
implementations were compiled with g++ version 6.2.0 at optimization level 3 (-O3).

The experimental results (recorded elapsed times and memory usage) are depicted in Figs. 3 and 4:

1. For fixed values of k and m, our implementation requires time linear in n up until a certain value of n (see Theo-
rem 2—notice that the restriction is not exactly the one stated as the input is not uniformly random). After that n value,
the performance of k-map starts approaching the performance of Gemtool, which eventually becomes faster.

2. For fixed values of n, our implementation becomes considerably faster with increasing values of m (see Theorem 2).
3. The memory usage of our implementation grows linearly with n (see Theorem 2). The memory usage of Gemtool

grows also linearly with n but with a lower constant factor.

6. Final remarks

The k-mappability problem can be solved in O(min{nmk, n logk+1 n}) time and O(n) space for k = O(1) and constant-
sized alphabets [7]. In this paper, we investigated the special case of k = 1. We presented an algorithm that requires
O(min{nm, n logn log log n}) time and O(n) space for this special case.

We also presented another algorithm that requires average-case time and space O(n) for integer alphabets of size σ if
m = �(logσ n), and showed that this algorithm is generalizable for arbitrary k, requiring average-case time O(kn) and space
O(n) if m = �(k logσ n). We have provided an open-source implementation of this algorithm and also experimental results
demonstrating its competitiveness to the state-of-the-art implementation [4].

Let us note that it seems possible to apply the technique of Thankachan et al. [20] to obtain O(min{nm, n logn}) time
and O(n) space for when k = 1 (for a preliminary exposition of the ideas, see [21]). We leave as an open question whether
there exists an o(n log n)-time algorithm for the 1-mappability problem. To this end, the technique of Charalampopoulos et
al. [22] may prove useful.

https://github.com/maialzamel/k-map
http://pizzachili.dcc.uchile.cl/texts/dna/

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.9 (1-11)

M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–••• 9
Fig. 3. Elapsed-time comparison between k-map and Gemtool.

Another direction is to consider the k-mappability problem under the edit distance model. In this model, a decision
needs to be made whether sufficiently similar factors only of length exactly m or of all lengths between m − k and m + k
should be counted. The techniques presented recently in [23,9] may prove useful for counting. We also leave this problem
for future investigation.

Declaration of Competing Interest

None declared.

Acknowledgements

We warmly thank Szymon Grabowski who drew our attention via personal communication to Remark 6 and refer-
ence [18]; the latter reduced the complexity of the algorithm described in Section 4.2 from O(n log2 n) to O(n log n log log n).
Mai Alzamel was fully supported by the Ministry of Education – Kingdom of Saudi Arabi. Panagiotis Charalampopoulos was
partially supported by the Graduate Teaching Scholarship scheme of the Department of Informatics at King’s College London
and an A.G. Leventis Foundation Educational Grant. Jakub Radoszewski was supported by the “Algorithms for text process-
ing with errors and uncertainties” project carried out within the HOMING programme of the Foundation for Polish Science
co-financed by the European Union under the European Regional Development Fund.

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.10 (1-11)

10 M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 4. Memory-usage comparison between k-map and Gemtool.

References

[1] M. Alzamel, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, J. Radoszewski, W. Sung, Faster algorithms for 1-mappability of a sequence, in: X. Gao,
H. Du, M. Han (Eds.), Combinatorial Optimization and Applications - Proceedings of the 11th International Conference, Part II, COCOA 2017, Shanghai,
China, December 16-18, 2017, in: Lecture Notes in Computer Science, vol. 10628, Springer, 2017, pp. 109–121.

[2] M.L. Metzker, Sequencing technologies – the next generation, Nat. Rev. Genet. 11 (1) (2010) 31–46, https://doi .org /10 .1038 /nrg2626.
[3] N.A. Fonseca, J. Rung, A. Brazma, J.C. Marioni, Tools for mapping high-throughput sequencing data, Bioinformatics 28 (24) (2012) 3169–3177, https://

doi .org /10 .1093 /bioinformatics /bts605.
[4] T. Derrien, J. Estellé, S. Marco Sola, D. Knowles, E. Raineri, R. Guigó, P. Ribeca, Fast computation and applications of genome mappability, PLoS ONE

7 (1) (2012) 1–16, https://doi .org /10 .1371 /journal .pone .0030377.
[5] P. Antoniou, J.W. Daykin, C.S. Iliopoulos, D. Kourie, L. Mouchard, S.P. Pissis, Mapping uniquely occurring short sequences derived from high throughput

technologies to a reference genome, in: 2009 9th International Conference on Information Technology and Applications in Biomedicine, IEEE Computer
Society, 2009, pp. 1–4.

[6] J. Fischer, Inducing the LCP-array, in: F. Dehne, J. Iacono, J. Sack (Eds.), Algorithms and Data Structures - Proceedings of the 12th International Sympo-
sium, WADS 2011, in: Lecture Notes in Computer Science, vol. 6844, Springer, 2011, pp. 374–385.

[7] M. Alzamel, P. Charalampopoulos, C.S. Iliopoulos, T. Kociumaka, S.P. Pissis, J. Radoszewski, J. Straszynski, Efficient computation of sequence mappabil-
ity, in: T. Gagie, A. Moffat, G. Navarro, E. Cuadros-Vargas (Eds.), String Processing and Information Retrieval - Proceedings of the 25th International
Symposium, SPIRE 2018, Lima, Peru, October 9-11, 2018, in: Lecture Notes in Computer Science, vol. 11147, Springer, 2018, pp. 12–26.

[8] H. Alamro, L.A.K. Ayad, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, Longest common prefixes with k-mismatches and applications, in: A.M. Tjoa,
L. Bellatreche, S. Biffl, J. van Leeuwen, J. Wiedermann (Eds.), SOFSEM 2018: Theory and Practice of Computer Science - Proceedings of the 44th
International Conference on Current Trends in Theory and Practice of Computer Science, Krems, Austria, January 29-February 2, 2018, in: Lecture Notes
in Computer Science, vol. 10706, Springer, 2018, pp. 636–649.

http://refhub.elsevier.com/S0304-3975(19)30314-7/bib31302E313030372F3937382D332D3331392D37313134372D385F38s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib31302E313030372F3937382D332D3331392D37313134372D385F38s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib31302E313030372F3937382D332D3331392D37313134372D385F38s1
https://doi.org/10.1038/nrg2626
https://doi.org/10.1093/bioinformatics/bts605
https://doi.org/10.1371/journal.pone.0030377
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib4954414232303039s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib4954414232303039s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib4954414232303039s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib696E644C4350s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib696E644C4350s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F73706972652F416C7A616D656C43494B5052533138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F73706972652F416C7A616D656C43494B5052533138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F73706972652F416C7A616D656C43494B5052533138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F736F6673656D2F416C616D726F414349503138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F736F6673656D2F416C616D726F414349503138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F736F6673656D2F416C616D726F414349503138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F736F6673656D2F416C616D726F414349503138s1
https://doi.org/10.1093/bioinformatics/bts605

JID:TCS AID:12012 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:13/06/2019; 9:24] P.11 (1-11)

M. Alzamel et al. / Theoretical Computer Science ••• (••••) •••–••• 11
[9] L.A.K. Ayad, C. Barton, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, Longest common prefixes with k-errors and applications, in: T. Gagie, A. Moffat,
G. Navarro, E. Cuadros-Vargas (Eds.), String Processing and Information Retrieval - Proceedings of the 25th International Symposium, SPIRE 2018, Lima,
Peru, October 9-11, 2018, in: Lecture Notes in Computer Science, vol. 11147, Springer, 2018, pp. 27–41.

[10] G. Manzini, Longest common prefix with mismatches, in: C.S. Iliopoulos, S.J. Puglisi, E. Yilmaz (Eds.), String Processing and Information Retrieval -
Proceedings of the 22nd International Symposium, SPIRE 2015, in: Lecture Notes in Computer Science, vol. 9309, Springer, 2015, pp. 299–310.

[11] U. Manber, E.W. Myers, Suffix arrays: a new method for on-line string searches, SIAM J. Comput. 22 (5) (1993) 935–948, https://doi .org /10 .1137 /
0222058.

[12] G. Nong, S. Zhang, W.H. Chan, Linear suffix array construction by almost pure induced-sorting, in: J.A. Storer, M.W. Marcellin (Eds.), Data Compression
Conference, DCC 2009, IEEE Computer Society, 2009, pp. 193–202.

[13] M.A. Bender, M. Farach-Colton, The LCA problem revisited, in: G.H. Gonnet, D. Panario, A. Viola (Eds.), LATIN 2000: Theoretical Informatics, Proceedings
of the 4th Latin American Symposium, 2000, in: Lecture Notes in Computer Science, vol. 1776, Springer, 2000, pp. 88–94.

[14] M. Farach, Optimal suffix tree construction with large alphabets, in: 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, IEEE
Computer Society, 1997, pp. 137–143.

[15] M.L. Fredman, J. Komlós, E. Szemerédi, Storing a sparse table with O(1) worst case access time, J. ACM 31 (3) (1984) 538–544, https://doi .org /10 .1145 /
828 .1884.

[16] M. Crochemore, G. Tischler, The gapped suffix array: a new index structure for fast approximate matching, in: E. Chávez, S. Lonardi (Eds.), String
Processing and Information Retrieval - Proceedings of the 17th International Symposium, SPIRE 2010, in: Lecture Notes in Computer Science, vol. 6393,
Springer, 2010, pp. 359–364.

[17] A. Amir, G.M. Landau, M. Lewenstein, D. Sokol, Dynamic text and static pattern matching, ACM Trans. Algorithms 3 (2) (2007) 19, https://doi .org /10 .
1145 /1240233 .1240242.

[18] J. Fischer, D. Köppl, F. Kurpicz, On the benefit of merging suffix array intervals for parallel pattern matching, in: R. Grossi, M. Lewenstein (Eds.),
27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016, in: LIPIcs, vol. 54, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016,
pp. 26:1–26:11.

[19] R. Cole, L. Gottlieb, M. Lewenstein, Dictionary matching and indexing with errors and don’t cares, in: L. Babai (Ed.), Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, 2004, ACM, 2004, pp. 91–100.

[20] S.V. Thankachan, A. Apostolico, S. Aluru, A provably efficient algorithm for the k-mismatch average common substring problem, J. Comput. Biol. 23 (6)
(2016) 472–482, https://doi .org /10 .1089 /cmb .2015 .0235.

[21] S. Hooshmand, P. Abedin, D. Gibney, S. Aluru, S.V. Thankachan, Faster computation of genome mappability, in: A. Shehu, C.H. Wu, C. Boucher, J. Li, H.
Liu, M. Pop (Eds.), Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB 2018,
Washington, DC, USA, August 29-September 01, 2018, ACM, 2018, p. 537.

[22] P. Charalampopoulos, M. Crochemore, C.S. Iliopoulos, T. Kociumaka, S.P. Pissis, J. Radoszewski, W. Rytter, T. Walen, Linear-time algorithm for long LCF
with k mismatches, in: G. Navarro, D. Sankoff, B. Zhu (Eds.), Annual Symposium on Combinatorial Pattern Matching, CPM 2018, July 2-4, 2018 -
Qingdao, China, in: LIPIcs, vol. 105, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, pp. 23:1–23:16.

[23] S.V. Thankachan, C. Aluru, S.P. Chockalingam, S. Aluru, Algorithmic framework for approximate matching under bounded edits with applications to
sequence analysis, in: B.J. Raphael (Ed.), Research in Computational Molecular Biology - Proceedings of the 22nd Annual International Conference,
RECOMB 2018, Paris, France, April 21-24, 2018, in: Lecture Notes in Computer Science, vol. 10812, Springer, 2018, pp. 211–224.

http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F73706972652F41796164424349503138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F73706972652F41796164424349503138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F73706972652F41796164424349503138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib4D616E7A696E693A323031353A4C43503A323935323634392E32393532363738s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib4D616E7A696E693A323031353A4C43503A323935323634392E32393532363738s1
https://doi.org/10.1137/0222058
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib4E6F6E673A323030393A4C53413A313534353031332E31353435353730s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib4E6F6E673A323030393A4C53413A313534353031332E31353435353730s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib42656E64657232303030s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib42656E64657232303030s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib666172616368313939376F7074696D616Cs1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib666172616368313939376F7074696D616Cs1
https://doi.org/10.1145/828.1884
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib675341s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib675341s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib675341s1
https://doi.org/10.1145/1240233.1240242
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib666973636865725F65745F616C3A4C49504963733A323031363A36303636s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib666973636865725F65745F616C3A4C49504963733A323031363A36303636s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib666973636865725F65745F616C3A4C49504963733A323031363A36303636s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib436F6C653A323030343A444D493A313030373335322E31303037333734s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib436F6C653A323030343A444D493A313030373335322E31303037333734s1
https://doi.org/10.1089/cmb.2015.0235
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F6263622F486F6F73686D616E64414741543138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F6263622F486F6F73686D616E64414741543138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F6263622F486F6F73686D616E64414741543138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F63706D2F43686172616C616D706F706F756C6F733138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F63706D2F43686172616C616D706F706F756C6F733138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F63706D2F43686172616C616D706F706F756C6F733138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F7265636F6D622F5468616E6B616368616E4143413138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F7265636F6D622F5468616E6B616368616E4143413138s1
http://refhub.elsevier.com/S0304-3975(19)30314-7/bib44424C503A636F6E662F7265636F6D622F5468616E6B616368616E4143413138s1
https://doi.org/10.1137/0222058
https://doi.org/10.1145/828.1884
https://doi.org/10.1145/1240233.1240242

	Faster algorithms for 1-mappability of a sequence
	1 Introduction
	2 Preliminaries
	2.1 Sufﬁx array and sufﬁx tree

	3 Efﬁcient average-case algorithm
	4 Efﬁcient worst-case algorithms
	4.1 O(mn)-time and O(n)-space algorithm
	4.2 O(n n n)-time and O(n)-space algorithm

	5 Experimental results
	6 Final remarks
	Acknowledgements
	References

