
 Open access  Journal Article  DOI:10.1137/080737174

Faster Algorithms for All-pairs Approximate Shortest Paths in Undirected Graphs
— Source link 

Surender Baswana, Telikepalli Kavitha

Institutions: Indian Institute of Technology Kanpur, Indian Institute of Science

Published on: 01 May 2010 - SIAM Journal on Computing (Society for Industrial and Applied Mathematics)

Related papers:

 All-Pairs Almost Shortest Paths

 Approximate distance oracles

 Spanners and emulators with sublinear distance errors

 Fast Estimation of Diameter and Shortest Paths (Without Matrix Multiplication)

 $(1 + \epsilon,\beta)$-Spanner Constructions for General Graphs

Share this paper:    

View more about this paper here: https://typeset.io/papers/faster-algorithms-for-all-pairs-approximate-shortest-paths-
55toc2yt4q

https://typeset.io/
https://www.doi.org/10.1137/080737174
https://typeset.io/papers/faster-algorithms-for-all-pairs-approximate-shortest-paths-55toc2yt4q
https://typeset.io/authors/surender-baswana-561mf2c55n
https://typeset.io/authors/telikepalli-kavitha-1v1kvl1zi7
https://typeset.io/institutions/indian-institute-of-technology-kanpur-3mhbahla
https://typeset.io/institutions/indian-institute-of-science-3ga7vigs
https://typeset.io/journals/siam-journal-on-computing-3b0x8h83
https://typeset.io/papers/all-pairs-almost-shortest-paths-4lyv16lem8
https://typeset.io/papers/approximate-distance-oracles-w2a62eth6s
https://typeset.io/papers/spanners-and-emulators-with-sublinear-distance-errors-4d5ikhu8ck
https://typeset.io/papers/fast-estimation-of-diameter-and-shortest-paths-without-56jd975ub2
https://typeset.io/papers/1-epsilon-beta-spanner-constructions-for-general-graphs-3i8txtws1c
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/faster-algorithms-for-all-pairs-approximate-shortest-paths-55toc2yt4q
https://twitter.com/intent/tweet?text=Faster%20Algorithms%20for%20All-pairs%20Approximate%20Shortest%20Paths%20in%20Undirected%20Graphs&url=https://typeset.io/papers/faster-algorithms-for-all-pairs-approximate-shortest-paths-55toc2yt4q
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/faster-algorithms-for-all-pairs-approximate-shortest-paths-55toc2yt4q
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/faster-algorithms-for-all-pairs-approximate-shortest-paths-55toc2yt4q
https://typeset.io/papers/faster-algorithms-for-all-pairs-approximate-shortest-paths-55toc2yt4q


FASTER ALGORITHMS FOR ALL-PAIRS APPROXIMATE
SHORTEST PATHS IN UNDIRECTED GRAPHS∗

SURENDER BASWANA† AND TELIKEPALLI KAVITHA‡

Abstract. Let G = (V, E) be a weighted undirected graph having non-negative edge weights.

An estimate δ̂(u, v) of the actual distance δ(u, v) between u, v ∈ V is said to be of stretch t iff

δ(u, v) ≤ δ̂(u, v) ≤ t · δ(u, v). Computing all-pairs small stretch distances efficiently (both in terms
of time and space) is a well-studied problem in graph algorithms.

We present a simple, novel and generic scheme for all-pairs approximate shortest paths. Using
this scheme and some new ideas and tools, we design faster algorithms for all-pairs t-stretch distances
for a whole range of stretch t, and also answer an open question posed by Thorup and Zwick in their
seminal paper [Approximate Distance Oracles, Journal of ACM, 52(1), 2005, pp 1-24].

Key words. shortest path, distance, approximate distance, oracle, randomization.

AMS subject classifications. 05C12, 05C85, 68W05, 68W20, 68W25, 68W40

1. Introduction. The all-pairs shortest paths (APSP) problem is undoubtedly
one of the most fundamental algorithmic graph problems. The problem is defined as
follows : Preprocess a given graph G = (V, E) on n = |V | vertices and m = |E| edges
efficiently to build a data structure that can quickly answer a shortest path query
or a distance query for any pair of vertices. There are various algorithms for the
APSP problem depending upon whether the graph is directed or undirected, edges
are weighted or unweighted, weights are non-negative or negative. In its most generic
version, that is, for a directed graph with real edge weights, the best known algorithm
[13] for this problem requires O(mn + n2 log log n) time; note that for graphs with
m = Θ(n2), this algorithm has a running time of Θ(n3) which matches that of the old
and classical algorithm of Floyd and Warshal [9]. The existing lower bound on the
time complexity of the APSP problem is the trivial Ω(n2) lower bound. Researchers
have striven for years to improve the time complexity of the APSP problem but with
little success - the best known upper bound on the worst case time complexity of the
APSP problem is O(n3/ log2 n) due to Chan [6], which is marginally sub-cubic.

There exist sub-cubic (O(n3−ǫ) time) algorithms for the APSP problem for a
few classes of graphs. All these algorithms employ the fast (sub-cubic) algorithm
for matrix multiplication. The underlying intuition for taking this approach is the
fact that computing all-pairs distances in a graph is related to computing (min, +)
product (called distance product) of matrices. Let ω be the exponent of matrix multi-
plication, i.e., the smallest constant for which matrix multiplication can be performed
using O(nω) algebraic operations - additions, subtractions, and multiplications. The
fastest known algorithm for matrix multiplication due to Coppersmith and Winograd
[8] implies ω < 2.376. For undirected unweighted graphs, Seidel [15] designed a very
simple and elegant algorithm to solve the APSP problem in Õ(nω) 1 time. For undi-
rected graphs with integer edge weights from {0, 1, ..., M}, Shoshan and Zwick [16]

∗The results of the preliminary version of this paper appeared in FOCS 2006 [5].
†Computer Science and Engineering Department, IIT Kanpur, India; sbaswana@cse.iitk.ac.in.

Part of this work was done while the author was a postdoctoral researcher at Max-Plank Institute
for computer science, Saarbruecken, Germany.

‡Computer Science and Automation Department, Indian Institute of Science, Bangalore 560012,
India; kavitha@csa.iisc.ernet.in.

1we shall use Õ(f(n)) to denote O(f(n)polylogn), where f(n) is poly(n).

1



2 S. BASWANA AND T. KAVITHA

designed an Õ(Mnω) algorithm for the APSP problem; note the dependence of the
time complexity on the absolute value of max edge weight. For graphs with real edge
weights, researchers have recently explored the application of fast matrix multiplica-
tion algorithms for the APSP problem [6, 19]. For such graphs, Yuster [19] designed
an algorithm that achieves sub-cubic running time provided the number of distinct
weight edges emanating from each vertex is O(n0.338).

Though all the algorithms mentioned above that work for reasonably wide classes
of graphs are novel and insightful, designing a sub-cubic algorithm for the APSP prob-
lem for general graphs is yet a longstanding major open problem. Another parameter
of the APSP problem that is sometimes as important as the time complexity is the
space complexity. All the algorithms for the APSP problem achieve Θ(n2) space. On
the positive side, this upper bound on space complexity matches the lower bound
too. But on the negative side, this quadratic bound is a major bottleneck for many
applications, especially various large scale applications - consider a large network (for
example Internet), the n× n size table for answering distance queries is much larger
than the network itself which is already too large to be stored in RAM. These theoret-
ical as well as practical motivations are enough to inspire researchers to explore ways
to design efficient algorithms for the all-pairs approximate shortest paths (APASP)
problem. The aim of this research is to design a sub-quadratic space data structure in
sub-cubic (or even quadratic) time so that this data structure is capable of answering
efficiently any distance query approximately.

First we formalize the notion of an algorithm that computes approximate shortest-
paths/distances. As the name suggests, the distance reported by the algorithm be-
tween any given pair of vertices is not the exact distance, instead it may have some
error. This error can be additive (surplus) or multiplicative (stretch). Let δ(u, v)
denote the actual distance between vertices u and v in a given graph G = (V, E). An
algorithm is said to compute all-pairs t-approximate (stretch) distances for G if for
any pair of vertices u, v ∈ V , the distance reported by it is at least δ(u, v) and at most
tδ(u, v). In a similar manner, an algorithm is said to compute distance with surplus
a if the distance reported is at least δ(u, v) and at most δ(u, v)+ a. In the last fifteen
years, researchers have designed many novel combinatorial algorithms for the APASP
problem for undirected graphs.

We shall now summarize the existing algorithms for the APASP problem. How-
ever, first we mention some simple lower bounds on the space and time complexity
of the APASP problem. These bounds may be useful for a comparative evaluation of
the upper bounds of the existing algorithms for APASP problem.

• An algorithm that computes all-pairs t-approximate distances with t < 2
can be used to compute the Boolean matrix product of two n × n Boolean
matrices. Hence computing all-pairs distances with stretch less than 2 is as
hard as Boolean matrix multiplication [10].
• Any data structure that is capable of answering a distance query with stretch

less than 3 in constant time must occupy Ω(n2) space in the worst case [18].

Cohen and Zwick [7] designed an Õ(n3/2m1/2) time algorithm for computing all-pairs
2-approximate distances. Cohen and Zwick [7] also designed an Õ(n7/3) time algo-
rithm for computing all-pairs 7/3-approximate distances. The space complexity of
these algorithms is Θ(n2) which is indeed optimal as seen from the above mentioned
lower bound for stretch < 3. In the same paper [7], Cohen and Zwick also designed an
Õ(n2) time algorithm for stretch 3, and the space required is Θ(n2). These algorithms
are nontrivial extensions of the algorithms by Dor et al. [10] for computing approxi-



APPROXIMATE SHORTEST PATHS 3

mate distances in undirected unweighted graphs. For stretch ≥ 3, Thorup and Zwick
[18] designed algorithms which form a milestone in the area of all-pairs approximate
shortest paths. They showed that for any integer k ≥ 2, an undirected weighted
graph can be preprocessed in expected O(kmn1/k) time to build a data structure of
size O(kn1+1/k). This data structure is capable of answering any distance query with
a stretch 2k− 1 in just O(k) time. The fact that the data structure is not storing all-
pairs approximate distances explicitly, and yet it is capable of answering any distance
query in essentially constant time is indeed amazing. Due to this feature, this data
structure is called an approximate distance oracle. In addition, the space requirement
of the oracle is essentially optimal, assuming a 1963 girth lower bound conjecture of
Erdös [12]. With essentially constant query time (for small k) and optimal space,
the only feature of the approximate distance oracle of Thorup and Zwick [18] which
is not optimal is its preprocessing time, that is, the time needed to construct the
oracle. The O(kmn1/k) preprocessing time for (2k − 1)-approximate distance oracle
is indeed sub-cubic. The next natural limit to be achieved for the preprocessing time
appears to be O(n2) since it matches the worst case input size. However, the current
preprocessing time is larger than this limit especially when k is a small constant. For
example, for graphs with m = Θ(n2), the time taken to compute the 3-approximate
distance oracle is Θ(n2.5).

At this point, the reader may also notice that there exist two algorithms for all-
pairs 3-stretch distances. The first one is the 3-approximate distance oracle of Thorup
and Zwick [18] and the second one is the 3-APASP algorithm of Cohen and Zwick [7].
It can be observed that 3-APASP algorithm of Cohen and Zwick [7] is preferred when
time has to be optimized, and 3-approximate distance oracle of Thorup and Zwick
[18] is preferred when space has to be optimized. Ideally, one would like an algorithm
with the worst case preprocessing time of the former and the space requirement of
the latter. Thorup and Zwick [18] posed the following open question : is it possible
to construct an all-pairs stretch 3 oracle that uses only O(n3/2) space and Õ(n2)
preprocessing time? It is worth mentioning at this point that on studying the two
algorithms [7, 18] (for stretch 3) the reader would realize that these algorithms and
their underlying ideas appear to be quite different. This makes the open question
nontrivial since it appears difficult to somehow unite the two algorithms to achieve
the best of the two. A natural extension of the open question of Thorup and Zwick
[18] is to improve the existing preprocessing time of the (2k−1)-approximate distance
oracle to O(n2) in the worst case, for all values of k.

1.1. New Techniques and Contribution of this paper. In this paper we
answer the open question of Thorup and Zwick in its generality and also provide
substantially faster algorithms for computing all-pairs t-approximate distances for
various values of t in the range [2, 3].

A generic scheme for APASP.
A simple idea to achieve sub-cubic running time for APASP is the following:

Compute shortest paths from a large set of vertices in a sparse subgraph and from a
small set of vertices in a dense subgraph. Most of the existing algorithms for APASP
use this idea implicitly or explicitly to gain efficiency in running time. We present
a simple and general scheme A(H), with input parameter H which is a hierarchy of
k + 1 subsets S0 ⊇ S1 ⊇ · · · ⊇ Sk of vertices of the given graph. We use random
sampling to construct this hierarchy. For each set Si, we define a subset of edges
ESi
⊆ E suitably which captures the above idea naturally as follows. If the set Si is

very large, the set ESi
is very sparse, and vice versa. Our scheme executes Dijkstra’s



4 S. BASWANA AND T. KAVITHA

single source shortest paths algorithm from each vertex in Si in the graph (V, ESi+1).
This scheme is indeed simple and efficient, and it proves to be a generic and powerful
technique for the APASP problem leading to improved algorithms for various values
of stretch in the interval [2,3]. The new scheme also leads us to answer the open
question of Thorup and Zwick [18]. The 3-approximate distance oracle of Thorup and
Zwick[18], and the Θ(n2 log n) algorithm of Cohen and Zwick [7] for 3-APASP appear
to be emerging from the new generic scheme A as can be seen from the following short
summary of the scheme.

1. For a specific hierarchy H with V = S0 ⊇ S1 ⊇ · · · ⊇ Sk = ∅ and k =
log n, the scheme A(H) turns out to be similar to the algorithm of Cohen
and Zwick [7] for stretch 3. However, our resulting algorithm, combined
with a more careful analysis, leads to stretch which is almost 2. In precise
words, the distance reported between any pair of vertices u, v ∈ V is at most
2δ(u, v) + wuv, where wuv is the weight of the heaviest edge on the shortest
path between u and v. In other words, the algorithm solves the (2,w)-APASP
problem.

2. In a very natural manner, the scheme A(H) also leads to an O(n3/2) space
data structure capable of answering any 3-approximate distance query ef-
ficiently. The hierarchy H used here has the base set S0 of size O(

√
n)

which is formed by random sampling, and the set Sk is ∅. This data struc-
ture is parametrized such that its expected preprocessing time is O(m

√
n +

min(m
√

n, kn2+ 1
2k )) and the query answering time is O(k). For the spe-

cial case when there are only two levels in the hierarchy H, this data struc-
ture degenerates to the 3-approximate distance oracle of Thorup and Zwick
[18]. Further, we improve a bottleneck in the construction of this data

structure and this leads to an expected O(min(m
√

n, kn2+ 1
2k )) preprocess-

ing time for the data structure. For k = log n, our data structure achieves
expected O(min(m

√
n, n2 log n)) preprocessing time and O(log n) query an-

swering time. This almost answers the open question posed by Thorup and
Zwick [18].

3. The scheme A(H) also forms the foundation of our faster algorithms for dif-
ferent values of stretch in the interval [2, 3]. In particular, it provides faster
algorithms for stretch 2 and 7

3 . See Table 1. For each stretch, we define
the hierarchy H suitably such that A(H) directly or after some small aug-
mentation leads to a faster algorithm for APASP for that particular value of
stretch.

Quadratic time algorithm for approximate distance oracles.
The (2k − 1)-approximate distance oracles of Thorup and Zwick [18] build a

hierarchy of subsets of vertices : V ⊇ S1 ⊇ · · · ⊇ Sk−1 ⊇ Sk = ∅. In order to
achieve a sub-quadratic space data structure, for each vertex u and level i < k, the
preprocessing algorithm computes distances to a small number of vertices from Si−1,
called ball. In particular, the ith level ball for u consists of all those vertices in Si−1

that are closer to u than its nearest vertex from Si. Computing these balls efficiently
turns out to require building of truncated shortest path trees from vertices of Si−1.
Thorup and Zwick [18] design a variant of Dijkstra’s algorithm for this task which
guarantees expected O(mn1/k) time to compute the balls at a level. This computation
time is super-quadratic for dense graphs. In order to achieve a quadratic bound on
the expected time for computing balls, therefore, the goal is essentially to break the
dependency of the computation time on the number of edges of the given graph. In



APPROXIMATE SHORTEST PATHS 5

order to achieve this goal, we design an algorithm that has the following key feature.
The expected time of this algorithm for computing balls is independent of the degree
of a vertex. In fact, the computation time depends on the size of a ball which, due to
underlying randomization, depends upon n only. It is due to this unique feature that
the underlying technique of this algorithm might have applications in other algorithms
as well. This algorithm leads to expected O(min(n2, mn1/k)) time for computing the
balls at any level. Using this improved algorithm and graph spanners, we present a
(2k−1)-approximate distance oracle with expected O(min(kmn1/k, n2)) preprocessing
time for any k > 2. The query time is O(k) for all k > 2 and the space requirement
is O(kn1+1/k) which is away from the conjectured lower bound only by a factor of k.

Stretch Query Time Space Preprocessing Time Reference
1 O(1) O(n2) O(mn + n2 log log n)) [13]

1 + ǫ O(1) O(n2) Õ(n2.376) [21]

Algorithms for APASP with stretch < 3

O(n3/2√m log n) [7]
2 O(1) O(n2)

O((m
√

n + n2) log n) this paper

(2,w) O(1) O(n2) O(n2 log n) this paper

O(n7/3 log n) [7]
7/3 O(1) O(n2)

O((m2/3n + n2) log n) this paper

Algorithms for APASP with stretch ≥ 3

O(1) O(n2) O(n2 log n) [7]

3 O(1) O(n3/2) O(m
√

n) [18]

O(k) O(n3/2) O(min(m
√

n, kn2+ 1
2k )) this paper

2k − 1 O(kmn1/k) [18]

(for k > 2)
O(k) O(kn1+1/k)

O(min(n2, kmn1/k)) this paper

Table 1.1

Algorithms for approximate distances in weighted undirected graphs

1.2. Related Work. For the APASP problem in undirected unweighted graphs,
many results, in particular, results with additive error (surplus) are known. Aingworth
et al. [1] designed a simple and elegant Õ(n5/2) algorithm for finding all distances with
an additive error of at most 2 in an unweighted undirected graph. Their work [1] has
significantly inspired the research for designing simple and combinatorial algorithms
(without matrix multiplication) for all-pairs approximate shortest paths. Dor et al.
[10] improved and extended the algorithms of Aingworth et al. [1] - their algorithm

requires O(kn2− 1
k m

1
k polylogn) time for finding distances with surplus 2(k− 1) for all

pair of vertices in unweighted undirected graphs.
There also exist algorithms for APASP in unweighted graphs that have multi-

plicative error as well as additive error simultaneously and achieve close to quadratic
running time. Elkin [11] designed such an algorithm - Given an undirected unweighted
graph and arbitrarily small constants ζ, ǫ, ρ > 0, there is an algorithm that requires
O(mnρ + n2+ζ) time, and for any pair of vertices u, v ∈ V , reports distance δ̂(u, v)
satisfying the inequality :

δ(u, v) ≤ δ̂(u, v) ≤ (1 + ǫ)δ(u, v) + β



6 S. BASWANA AND T. KAVITHA

where β is a function of ζ, ǫ, ρ. If the two vertices u, v ∈ V are separated by a

sufficiently long distance in the graph, the ratio δ̂(u,v)
δ(u,v) ensured by Elkin’s algorithm

is quite close to (1 + ǫ), but this ratio will be quite huge for short paths since β
depends on ζ as (1/ζ)log 1/ζ , depends inverse exponentially on ρ and inverse polyno-
mially on ǫ. Baswana et al. [3] designed Õ(n2) time algorithms for all-pairs nearly
2-approximate distances - there is a constant additive error on top of the stretch 2.
However, the techniques of neither of these two algorithms [3, 11] lead to similar re-
sults for weighted graphs. Baswana and Sen [4] showed that for unweighted graphs,
a (2k− 1)-approximate distance oracle of size O(kn1+1/k) that returns 2k− 1 stretch
distances in O(k) time can be computed in expected O(min(n2, kmn1/k)) time. Re-
cently, Roditty, Thorup, and Zwick [14] showed that the results in [18] and [4] can
be achieved deterministically also. For a more comprehensive survey of the algo-
rithms and techniques for approximate shortest path problem and its exact variant,
the reader should refer to the excellent survey paper by Zwick[20].

All the algorithms for reporting approximate distances that we mentioned above,
including the new results of this paper, can be easily modified to report the corre-
sponding approximate shortest path, and the time for doing so is proportional to the
number of edges in the approximate shortest path.

Organization of the paper. In section 2, we introduce notations, definitions and
lemmas to be used in the rest of the paper. This is followed by our scheme A(H) for
APASP in section 3. In the same section, as an application of the scheme, we provide
a simple O(n2 log n) time algorithm for the (2,w)-APASP problem. In section 4,
we describe how the same scheme A leads in a natural manner to a new generic
data structure for 3-approximate distance oracles. We describe a faster algorithm
for computing balls in section 5. Applying the results of section 5 and using graph
spanners, we describe a quadratic time construction for (2k−1)-approximate distance
oracles for k > 2 in section 6. In section 7, we describe a slightly augmented scheme
Â which leads to faster algorithms for stretch 2 and stretch 7

3 .

2. Preliminaries. Let G = (V, E) be an undirected graph on n = |V | vertices
and m = |E| edges. Let w : E → R+ be a weight function on the edge set of G.
Without loss of generality we can assume that there are no edges of weight zero in the
given undirected graph. Otherwise, we may merge the endpoints of each such edge,
and work with the modified graph. We shall now introduce notations that will be
used throughout the paper.

– E(v) denotes the set of edges incident on vertex v.
– δ(u, v) denotes distance from u to v in the original graph. Note that δ(u, v) =

δ(v, u) since the graph is undirected.
– pS(v) denotes the vertex from S that is nearest to v (break the tie arbitrarily

if there are multiple vertices nearest to v). Note that pS(v) = v if v ∈ S.
[when we have a chain of subsets S0 ⊇ S1 ⊇ · · · , we shall use pi(v) to denote
the vertex pSi

(v)]
– δ(v, S) denotes the distance from v to pS(v). We define δ(v, S) =∞ if S = ∅.
– ES(v) denotes the set of edges incident on vertex v with weight less than

δ(v, S). Note that ES(v) = ∅ if v ∈ S.
– ES = ∪v∈V ES(v).

Given a set S ⊆ V , it is quite easy to compute pS(v) and δ(v, S) for all v ∈ V in
O(m + n log n) time as follows. Connect a dummy vertex to all the vertices of the set



APPROXIMATE SHORTEST PATHS 7

S with edges of weight zero, and then execute Dijkstra’s algorithm from the dummy
vertex in this augmented graph.

Now we define the basic hierarchy of subsets of vertices formed by random sam-
pling. This hierarchy, directly or after some slight alteration, will be used by all our
APASP algorithms.

Definition 2.1. Given any 0 ≤ α < β ≤ 1, the hierarchy R(α, β, k) consists of
k+1 subsets {S0, . . . , Sk} defined as follows. S0 is called the base set of the hierarchy,
and is formed by selecting each vertex v ∈ V independently with probability n−α.
Each set Si, for i > 0, is formed by selecting each vertex from Si−1 independently

with probability n
α−β

k . The set Sk is called the top set of the hierarchy. In case β = 1,
we define the top set Sk = ∅.

Most of our algorithms will use the following observation which exploits the undi-
rectedness of the given graph. We shall refer to this observation as the triangle
inequality on distances.

Observation 2.1. For any three vertices x, y, z ∈ V , it is always true that
δ(x, z) ≤ δ(y, x) + δ(y, z).

The following lemma will be used repeatedly in the rest of the paper.
Lemma 2.2. Given a graph G = (V, E) and S ⊆ V , the following assertions are

true.
1. For any two vertices u, v ∈ V , if δ(u, v) < δ(u, pS(u)), then the subgraph

GS = (V, ES) preserves the exact distance between u and v.
2. The subgraph (V, ES ∪ E(pS(u))) preserves the exact distance between u and

pS(u).
Proof. Consider the shortest path u(= v0), v1, · · · , vj(= v) between u and v. Since

δ(u, pS(u)) > δ(u, v) and v0, . . . , vj are the intermediate vertices on the shortest path
between u and v, it follows that

δ(u, pS(u)) > δ(u, vk) for 0 ≤ k ≤ j. (2.1)

All we need to show is that all the edges of the shortest path are present in ES . We
shall prove this assertion by contradiction. Let (vi, vi+1) be the first edge (from the
side of u) on the path that is not present in ES . Since this edge is not present in
ES , it follows from the definition of ES(vi) that there is some vertex x ∈ S such that
δ(vi, x) ≤ w(vi, vi+1). This fact when combined with Inequality (2.1) gives us

δ(u, pS(u)) > δ(u, vi+1)

= δ(u, vi) + w(vi, vi+1) {since u vi → vi+1  v is the shortest path}
≥ δ(u, vi) + δ(vi, x) ≥ δ(u, x).

Thus, for the vertex u, the vertex x ∈ S is closer than pS(u) (a contradiction!). Hence
all edges on the shortest path between u and v are present in ES . This proves the
first assertion of the lemma.

The second assertion of the lemma is just a corollary of the first assertion. If
u(= v0), v1, v2, · · · , vi, pS(u) is the shortest path between u and pS(u), it follows from
the first assertion that every edge of this path, excluding the last edge, must be present
in GS = (V, ES). The last edge (vi, pS(u)) is present in E(pS(u)). Thus the subgraph
(V, ES ∪ E(pS(u))) preserves the exact distance between u and pS(u).

The following lemma bounds the expected size of ES when S is formed by picking
each vertex with probability q.



8 S. BASWANA AND T. KAVITHA

Lemma 2.3. If the set S ⊆ V is formed by selecting each vertex independently
with probability q, then the expected size of the set ES is O(n/q).

Proof. Let us calculate the expected number of edges in ES(v) for any v ∈ V . If
the vertex v belongs to the set S, then ES(v) = ∅. Let us now estimate ES(v) when
v /∈ S. Consider the sequence 〈v1, v2, . . .〉 of neighbors of v arranged in non-decreasing
order of the weight of the edges incident on v. An edge (v, vi) will belong to ES(v)
if none of v1, . . . , vi is present in S. Since each vertex is selected in S independently
with probability q, Pr[(v, vi) ∈ ES(v)] ≤ (1 − q)i. Using linearity of expectation, if
v /∈ S, the expected number of edges in ES(v) is at most

∑

i(1− q)i = O(1/q). Hence
the expected number of edges in ES is O(n/q).

The following lemma can be viewed as an extension of Lemma 2.3.
Lemma 2.4. [18] Given a graph G = (V, E) and a vertex u, let Y be a set formed

by picking each vertex of a set X ⊆ V independently with probability q. Then the
expected number of vertices from the set X whose distance from v is less than δ(v, Y )
is O(1/q).

3. A(H) : a hierarchical scheme for APASP. For a given weighted undi-
rected graph G = (V, E), let H = {S0, · · · , Sk} be a hierarchy of subsets of vertices
with Si ⊇ Si+1 for all i < k. The construction and description of the generic scheme
A(H) for APASP is presented in Algorithm 1.

Algorithm 1: The construction and description of scheme A(H)

input : G = (V, E), and hierarchy H = {S0, · · · , Sk} of subsets of vertices
with Si ⊇ Si+1∀i < k.

output: A table d[·, ·] storing approximate distances between all pairs
(s, v) ∈ S0 × V .

foreach i ∈ [0, k − 1] do
foreach u ∈ V do compute δ(u, Si) and pi(u), d[pi(u), u]← δ(u, Si);
foreach s ∈ Si do

run Dijkstra’s algorithm from s in the subgraph (V, ESi+1 ∪ E(s)) and
update the entries of row d[s, ] accordingly;

As we shall show in the following subsection, the scheme A implicitly stores
approximate distances even from vertices not belonging to the hierarchyH. To provide
a better insight into the scheme, we now provide a visual description of the scheme
A(H) from the perspective of a vertex u ∈ V . This visual description will be quite
helpful in the analysis of the algorithms based on the scheme. Visualize the vertices
arranged in a 2-d plane according to their distance from u. For each 0 ≤ i < k, draw
a circle centered at u and passing through pi(u). Thus there are k concentric circles
around v. It can be observed from Algorithm 1 that the scheme performs Dijkstra’s
algorithm from pi(u) in ESi+1 ∪ E(pi(u)) for each i < k. It follows from Lemma 2.2
that all the edges of the sub-graph induced by the vertices which lie completely inside
(i+1)th circle will be preserved in the set ESi+1 . Therefore, approximate information
about the shortest paths from u to other vertices in the graph (in particular, to the
the vertices lying inside i + 1th circle) is implicitly computed by pi(u). However,
this observation alone will not be able to guarantee a small bound on the worst case
stretch for every δ(u, v). For this purpose, keeping the hierarchy of subsets Si’s proves
to be helpful. It ensures that for any arbitrary vertex v, there will be some suitable



APPROXIMATE SHORTEST PATHS 9

i ∈ [0, k − 1] such that the distance from pi(u) to v will approximate the distance
δ(u, v) with a small stretch even in the worst case. This intuitive idea is formalized
in Theorems 3.2 and 4.1 which in turn form the foundation of our algorithms for
(2,w)-APASP and 3-approximate distance oracle.

As mentioned in the introduction, the scheme A(H) provides faster algorithms
the APASP problem with various values of stretch by making a suitable choice of
the hierarchy H. To highlight these facts, we specifically give a description of the
hierarchies that provide faster algorithms for APASP with stretch (2,w), APASP
with stretch 2, and 3-approximate distance oracle.

uuu

(i) (ii) (iii)

(2,w)-APASP 2-APASP 3-approx. oracle

Fig. 3.1. The scheme A(H) from perspective of u for various stretches

• For (2,w)-APASP, we form the hierarchy H with base set S0 = V , top set
Sk = ∅ and choose k = log n. In other words, H = R(0, 1, logn). See Figure
3.1(i) for a better understanding of the scheme from the perspective of a ver-
tex u. The scheme A(H) guarantees the following crucial property (Theorem
3.2).
For any two vertices u, v ∈ S0, the scheme implicitly stores a (2,w)-approximate
distance between them.
This property directly leads to an O(n2 log n) time algorithm for (2,w)-
APASP.
• For the 3-approximate distance oracle, we form the hierarchyH with the base

set equal to a random sample of
√

n vertices, and the top set is empty set. In
other words, H = R(1

2 , 1, k). See Figure 3.1(iii) for a better understanding of
the scheme from the perspective of a vertex u. Here we exploit the following
property (Theorem 4.1) of the scheme A(H).
Let S0 ⊂ V . If δ(u, v) ≥ δ(u, p0(u)) then the scheme A(H) implicitly stores
3-approximate distance between u and v.
• For APASP with stretch 2, we keep the base set S0 = V , but choose the top

set Sk as a random sample of size O(
√

n) instead of an empty set. In other
words, H = R(0, 1

2 , log n). See Figure 3.1(ii) for a better understanding
of the scheme from the perspective of a vertex u. We employ a suitable
augmentation of this scheme A(H) in our algorithms for APASP with stretch
2 and stretch 7/3.

The following lemma bounds the time and space requirement for the scheme A(H)
for the hierarchy H = R(α, β, k).

Lemma 3.1. For a given graph G = (V, E), fractions β > α > 0, and an integer

k, the scheme A(R(α, β, k)) has expected O(min(kn2+ β−α
k , mn1−α)) preprocessing

time and O(nk + n2−α) space.



10 S. BASWANA AND T. KAVITHA

Proof. Computation of the scheme A(H) involves k iterations, where the ith
iteration executes Dijkstra’s algorithm from each vertex v ∈ Si−1 in the graph Gi =
(V, ESi

∪E(v)). From the randomization employed in the construction of the hierarchy
H, it follows that the expected running time of the ith iteration is bounded by

∑

v∈V

(deg(v) + E[Xv| v ∈ Si−1]) ·Pr[v ∈ Si−1] (3.1)

where Xv is the random variable denoting the number of edges of the set ESi
excluding

those that are incident on v. From the definition of ESi
, it is easy to observe that

the conditional expectation E[Xv| v ∈ Si−1] is upper bounded by the unconditional
expectation Xv. Furthermore E[Xv] is bounded by E[ESi

]. Applying Lemma 2.3, we
can thus conclude that

E[Xv| v ∈ Si−1] ≤ min

(

n

n−α+ (α−β)i
k

, m− deg(v)

)

Hence the expected running time of the ith iteration is

∑

v∈V

min

(

n

n−α+
(α−β)i

k

+ deg(v), m

)

·Pr[v ∈ Si−1]

< min

(

2n

n−α+
(α−β)i

k

, m

)

∑

v∈V

Pr[v ∈ Si−1]

= min

(

2n

n−α+ α−β
k

i
, m

)

n1−α+
(α−β)(i−1)

k = min(2n2+ β−α
k , mn1−α+

(α−β)(i−1)
k ).

Since β > α, so for the k iterations, the total computation time spent in constructing

A(H) is of the order of min(kn2+ β−α
k , mn1−α).

We now present our algorithm for (2,w)-APASP based on the above scheme in
the following subsection.

3.1. All pairs (2,w)-approximate distances. Let H = {S0, · · · , Sk} be a
hierarchy of subsets of vertices. We now prove a crucial property of A(H).

Theorem 3.2. Let u and v be any two vertices in a given graph G = (V, E), and
let wuv be the weight of the maximum weight edge on a shortest path between u and
v. Given the scheme A(H) with H = R(0, 1, k), we have

min
0≤j<k

(d[pj(u), u] + d[pj(u), v], d[pj(v), v] + d[pj(v), u]) ≤ 2δ(u, v) + wuv.

Proof. Let i < k be such that u ∈ Si but u /∈ Si+1. Note that such a unique i < k
must exist since S0 = V and Sk = ∅. Now consider a shortest path Puv between u
and v. If the entire path Puv is present in ESi+1 ∪E(u), then (the length of) this path
will be computed exactly by the scheme A(H) when we run Dijkstra’s algorithm from
u in the graph (V, ESi+1 ∪E(u)). Otherwise let i+ 1 ≤ j < k be such that Puv 6⊆ ESj

but Puv ⊆ ESj+1 . Such a j must exist because ESk
= E. Since the path Puv 6⊆ ESj

,
there are one or more edges in Puv that are not present in ESj

. See Figure 3.2.
Traversing the path Puv in the direction from u to v, let (x, y) be the first such

edge. Since (x, y) /∈ ESj
, so as a corollary to Lemma 2.2, we have δ(u, pj(u)) ≤ δ(u, y)



APPROXIMATE SHORTEST PATHS 11

u vx y

pj(u) pj(v)

jj

j + 1j + 1

Fig. 3.2. analyzing the scheme A for (2, w)-APASP

and δ(v, pj(v)) ≤ δ(v, x). Since the shortest path Puv is of the form u x→ y  v,
adding the above two inequalities, we get

δ(u, pj(u)) + δ(v, pj(v)) ≤ δ(u, y) + δ(x, v) = δ(u, v) + w(x, y)

Without loss of generality assume that δ(u, pj(u)) ≤ δ(v, pj(v)). Then we have

2δ(u, pj(u)) ≤ δ(u, v) + w(x, y). (3.2)

Note that during the construction of scheme A(H), we execute Dijkstra’s algorithm
from pj(u) in the graph (V, ESj+1 ∪ E(pj(u))). Now recall from the definition of j
that Puv ⊆ ESj+1 . Moreover, since ESj

⊆ ESj+1 , it follows from Lemma 2.2 that the
shortest path from pj(u) to u is also present in the graph (V, ESj+1 ∪E(pj(u))). Using
these observations and applying the triangle inequality, the approximate distance
d[pj(u), v] between pj(u) and v as computed by Dijkstra’s algorithm in the graph
(V, ESj+1 ∪ E(pj(u))) can be bounded from above as follows.

d[pj(u), v] ≤ δ(pj(u), u) + δ(u, v). (3.3)

Also note that d[pj(u), u] = δ(pj(u), u). Now using Inequalities (3.2) and (3.3), we
can bound d[pj(u), u] + d[pj(u), v] as follows.

d[pj(u), u] + d[pj(u), v] ≤ δ(pj(u), u) + δ(pj(u), u) + δ(u, v)

= 2δ(u, pj(u)) + δ(u, v)

≤ δ(u, v) + w(x, y) + δ(u, v) {using Inequality (3.2)}
= 2δ(u, v) + w(x, y).

So if wuv is the weight of the heaviest edge on the shortest path between u and v,
then the distance d[pj(u), u] + d[pj(u), v] is bounded by 2δ(u, v) + wuv.

Algorithm 2 solves (2,w)-APASP by constructing A(H) on the hierarchy H =
R(0, 1, log n) and refining the table d[·, ·] as suggested by Theorem 3.2.

The following theorem can be concluded from Lemma 3.1 and Algorithm 2.

Theorem 3.3. A given undirected weighted graph on n vertices can be pre-
processed in expected O(n2 log n) time to build an n × n table which stores all-pairs
(2,w)-approximate distances.



12 S. BASWANA AND T. KAVITHA

Algorithm 2: Algorithm for (2,w)-APASP problem in G.

H ← R(0, 1, k) with k = log n;
Let d be the n× n table constructed using the scheme A(H);
foreach u, v ∈ V do

d[u, v]← min0≤i<k{d[pi(u), u] + d[pi(u), v], d[pi(v), v] + d[pi(v), u]}

3.1.1. Comparison of (2,w)-APASP algorithm with the 3-APASP algo-
rithm of [7]. Cohen and Zwick [7] designed an O(n2 log n) time algorithm to compute
all-pairs stretch 3 distances. At a superficial level, this algorithm of Cohen and Zwick
[7] bears some similarity with our algorithm for (2,w)-APASP. In particular, the al-
gorithm of Cohen and Zwick [7] also constructs a k = log n level hierarchy of subsets
of vertices. However, there is a subtle difference in the design of the two algorithms.
The reader may soon realize that this subtle difference makes the two algorithms in-
comparable in some sense. Both the algorithms are based on the following intuitive
principle. To estimate the distance between any two vertices u and v, the distance
information stored at other vertices in the graph can prove to be helpful. However
the way this principle gets exploited is quite different in the two algorithms. Consider
the task of computing approximate distances from a vertex u. Our algorithm employs
only a few vertices, namely {pj(u), j ≥ 0}, but makes use of the distance information
stored at them completely. In particular, it uses the distance from pi(u) to u as well
as the distance from pi(u) to v to approximate δ(u, v). However, the algorithm of
Cohen and Zwick [7] employs a significantly large number of vertices, but makes use
of the distance information stored at them in a partial manner only as can be seen
from the following summary of their algorithm.

The algorithm of Cohen and Zwick [7] first computes distances from vertices of
set Sk−1, then distances from vertices of Sk−2, and so on. This order is very crucial in
the algorithm of Cohen and Zwick [7]. Let u ∈ Si. To compute approximate distances
from u to all other vertices, the algorithm of Cohen and Zwick [7] does the following.

Let δ̂(w, v) be the estimated distance already computed by each w ∈ Si+1. From u a

new edge (u, w) of weight δ̂(u, w) is added to each w ∈ Si+1 in a sub-graph which is
similar to ESi+1 , and distances from u are then computed in this subgraph by running
Dijkstra’s algorithm. In this way, for approximating the distance from u ∈ Si to any
vertex v ∈ V , this algorithm does not employ the estimated distances from vertices
of Si+1 to v.

We would like to mention an additional point about the 3-APASP algorithm of
Cohen and Zwick [7]. If u ∈ Si, then the approximate distance δ̂(u, v) between u and
v that the algorithm computes satisfies the following inequality.

δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + 2w(Ei)

where Ei is a set of at most i edges appearing on the shortest path between u and v.
In this manner, the two algorithms are incomparable, and neither of them is

superior to the other in an absolute sense. However, a simple observation is that
it is possible to design an O(n2 log n) algorithm that achieves the best of both the
algorithms.

4. All-pairs stretch 3 distances in quadratic time and sub-quadratic
space. In this section we present an O(n3/2) size data structure that answers any
distance query with stretch 3. This data structure is parametrized such that its



APPROXIMATE SHORTEST PATHS 13

expected preprocessing time is O(min(m
√

n, kn2+ 1
2k )) and query time is O(k) for any

1 ≤ k ≤ log n.
The foundation of our data structure is again the scheme A(H). Recall from the

previous section that the scheme A(H) for the hierarchy H = R(0, 1, k) implicitly
stores (2,w)-approximate distances in a table that occupies Θ(n2) space. In order
to improve the space requirement, the base set S0 of the hierarchy has to be quite
small in size (see Lemma 3.1). But how can such a scheme be used for retrieving
approximate distance between any two vertices not belonging to S0 ? Here we employ
another important property (Theorem 4.1) of the scheme A(H), which implies that
even a small sized set S0 would suffice to keep all-pairs 3-approximate distances.

Theorem 4.1. Consider the scheme A(H) built for the hierarchy H = {S0, ..., Sk}
where S0 is a proper subset of V and Sk = ∅. If u and v are any two vertices in the
graph such that δ(u, v) ≥ δ(u, S0), then there exists some 0 ≤ j < k such that

d[pj(u), u] + d[pj(u), v] ≤ 3δ(u, v).

Proof. Consider the set of vertices {pj(u)|0 ≤ j < k}. It follows from the
construction of Sj ’s that δ(u, pj(u)) ≤ δ(u, pj+1(u)). Since δ(u, S0) ≤ δ(u, v) and
δ(u, Sk) =∞, there must be some unique j < k, such that

δ(u, pj(u)) ≤ δ(u, v) < δ(u, pj+1(u)). (4.1)

u v

pj(u)

0

j
j + 1

Fig. 4.1. Analyzing the scheme A for 3-approximate distance oracle

See Figure 4.1. Recall that during the construction of A(H) we compute distances
from the vertex pj(u) to all the vertices in the graph (V, ESj+1 ∪ E(pj(u))). Since
δ(u, pj(u)) < δ(u, pj+1(u)), it follows from Lemma 2.2 that the shortest path between
pj(u) and u is preserved in the graph (V, ESj+1). It follows from the definition of j
and Lemma 2.2 that the shortest path between u and v is also preserved in the graph
(V, ESj+1 ∪E(pj(u))). Using these observations and applying the triangle inequality,
the distance d[pj(u), v] between pj(u) and v in the graph (V, ESj+1 ∪ E(pj(u))) is
bounded from above by δ(pj(u), u)+ δ(u, v). Combining this inequality with Inequal-
ity (4.1), and noting that d[pj(u), u] = δ(u, pj(u)), we conclude that

d[pj(u), u] + d[pj(u), v] ≤ 3δ(u, v).



14 S. BASWANA AND T. KAVITHA

It follows from Theorem 4.1 that using the scheme A(H) even with a small size
base set S0, we can retrieve 3-approximate distances from any vertex u to all those
vertices v for which δ(u, v) ≥ δ(u, S0). Let us call the complement set which is the
set of all those vertices whose distance from u is less than δ(u, S0) as ball(u, V, S0).
This is defined formally as follows.

Definition 4.2. [18] For a vertex u in a graph G = (V, E), and subsets X, Y
of vertices, the set ball(u, X, Y ) of vertices is defined as : ball(u, X, Y ) = {x ∈
X | δ(u, x) < δ(u, Y )}.

In order to complete our data structure, it would suffice if we compute for each
vertex u the distances to all the vertices of ball(u, V, S0) and keep these vertices and
their distances from u in a hash table, say B(u). Let D be the data structure thus
formed. There are two issues regarding this data structure which need to be addressed
now. Firstly, in order to achieve sub-quadratic size of D, we will need a sub-linear
bound on the size of ball(u, V, S0). Secondly, we need an efficient mechanism to
compute ball(u, V, S0) for all u ∈ V . For the sub-quadratic bound on the size, a simple
random sampling idea works: if we select each vertex independently with probability
q to form the base set S0, then it follows from Lemma 2.4 that the expected size of
ball(u, V, S0) will be O(1/q). Also note that the expected size of S0 will be O(nq).
Thus the expected space taken by the data structure will be O(n2q + n/q) which is
minimized at O(n3/2) for q = 1/

√
n. We will rebuild the data structure if the space

of the data structure exceeds twice the expected value. It follows from Markov’s
Inequality that the expected number of times we need to rebuild the data structure
is O(1). This leads to the O(n3/2) size data structure. Combining all these ideas,
Algorithms 3 and 4 describe respectively the preprocessing of the data structure D
and the way any distance query is answered by it. The reader may notice that similar
to the (2,w)-APASP algorithm of previous section, the new algorithm is also using
the scheme A(H), but for a different hierarchy H = R(1

2 , 1, k).

Algorithm 3: D : a data structure for all-pairs 3-approximate distances

H ← R(1
2 , 1, k);

Construct the scheme A(H);
foreach u ∈ V \ S0 do

compute vertices of ball(u, V, S0) and their distances from u;
construct a hash table B(u) storing ball(u, V, S0).

Algorithm 4: Reporting approximate distance between u and v using D
if v ∈ B(u) then

report the exact distance δ(u, v)

else
report min0≤i<k{d[pi(u), u] + d[pi(u), v]} using A(H).

It follows from Lemma 3.1 that the expected time for constructing the scheme
A(H) is O(min(m

√
n, kn2+ 1

2k )). The expected time for computing ball(u, V, S0) for
all u is O(m

√
n) as shown in [18]. Thus the expected preprocessing time for the data

structure D is O(min(m
√

n, kn2+ 1
2k ) + m

√
n). The query answering time is O(k).

We remark that for the hierarchy H = {S0, ∅}, the data structure D becomes the



APPROXIMATE SHORTEST PATHS 15

3-approximate distance oracle of Thorup and Zwick [18] with expected O(m
√

n) pre-
processing time. In other words, the 3-approximate distance oracle of Thorup and
Zwick is just one special case of the generic data structure D described above. We
further improve the preprocessing time of D. To achieve this goal, in the follow-
ing section, we describe a modified Dijkstra’s algorithm that allows us to construct
ball(u, V, S0), ∀u ∈ V in expected O(min(m

√
n, n2)) time (see Lemma 5.6). This leads

to an upper bound of O(min(m
√

n, kn2+ 1
2k )) on the preprocessing time of D. We can

thus state the following theorem.
Theorem 4.3. Any undirected graph on n vertices and m edges can be prepro-

cessed in expected O(min(m
√

n, kn2+ 1
2k )) time to build a data structure that occupies

O(n3/2) space and answers any distance query with stretch 3 in O(k) time.
Note that by choosing different values of the parameter k, the data structure D

offers a trade off between query answering time and preprocessing time. For k = log n,
we state the following corollary answering the open question of Thorup and Zwick [18].

Corollary 4.4. Any undirected graph on n vertices and m edges can be prepro-
cessed in expected O(min(m

√
n, n2 log n)) time to build a data structure of O(n3/2)

size which can answer any distance query with stretch 3 in O(log n) time.

5. Efficient computation of balls. In this section we shall describe a faster
algorithm for computing ball(v, X, Y ) for all vertices v ∈ V and any given sets X, Y ⊆
V . The reader may observe that an O(mn) time algorithm is obvious for this task.
However, Thorup and Zwick [18] presented an improved algorithm for this task which
achieves sub-cubic running time when the sets X and Y are formed by a suitable
random sampling. Our algorithm, which we describe below, can be viewed as a
careful refinement of the algorithm of Thorup and Zwick [18]. The starting point is a
novel construct called cluster which was introduced by Thorup and Zwick [18].

Definition 5.1. For any two subsets X, Y ⊆ V and a vertex x ∈ X, a cluster
C(x, X, Y ) around x is the set {v ∈ V | δ(v, x) < δ(v, Y )}.

It is easy to see that v ∈ C(x, X, Y ) if and only if x ∈ ball(v, X, Y ). In other words,
balls and clusters are inverses of each other. So computing the clusters C(x, X, Y ) for
all x ∈ X would suffice to compute ball(v, X, Y ) for all v ∈ V . However, computing
clusters turns out to be an easier task due to its shortest-paths tree like structure as
mentioned in the following simple lemma.

Lemma 5.2. [18] For any two subsets X, Y ⊆ V and x ∈ X, if a vertex v ∈ V is
present in C(x, X, Y ), then every vertex u lying on the shortest path between x and v
is also present in C(x, X, Y ).

Proof. The proof is by contradiction. Given that v belongs to C(x, X, Y ), let u
be a vertex lying on a shortest path between v and x. The vertex u would not belong
to C(x, X, Y ) if and only if there is some vertex w ∈ Y such that δ(u, w) ≤ δ(u, x).
On the other hand, using triangle inequality it follows that δ(v, w) ≤ δ(v, u)+δ(u, w).
Therefore, δ(u, w) ≤ δ(u, x) would imply that δ(v, w) ≤ δ(v, x). In other words, for
the vertex v, the vertex w ∈ Y is not farther than the vertex x. Hence v does not
belong to C(x, X, Y ) (a contradiction !).

Lemma 5.2 implies that C(x, X, Y ) appears as a truncated subtree in the shortest
path tree rooted at x. As a result C(x, X, Y ) can be computed using a variant of
Dijkstra’s algorithm as shown by Thorup and Zwick [18]. In order to achieve improved
running time, the algorithm in [18] ensures that only those edges are processed whose
at least one endpoint belongs to the set C(x, X, Y ). This clever restriction ensures



16 S. BASWANA AND T. KAVITHA

a sub-cubic bound on the total time of construction of all clusters (and hence balls)
at any level in the approximate distance oracle of Thorup and Zwick [18]. However,
it is not good enough to guarantee a quadratic time. Here we present an algorithm
which can be viewed as a modified Dijkstra’s algorithm to compute C(x, X, Y ) and
it processes relatively fewer edges of the graph. In particular, this new algorithm will
process an edge (u, v) ∈ E(u) only if

1. u belongs to C(x, X, Y ) and
2. δ(x, u) + w(u, v) < δ(v, Y ), that is, the path x u→ v is a witness for v to

be a member of C(x, X, Y ).
(note that there may be more than one witness for the fact that v is in
C(x, X, Y ).)

In order to avoid processing of those edges that do not satisfy the two conditions
mentioned above, our algorithm uses some simple and clever ideas. Before starting
the computation of clusters using our modified Dijkstra’s algorithm, we build an
additional data structure at each vertex u ∈ V as follows. For each neighbor v of a
vertex u, let ∆u(v) be defined as ∆u(v) = δ(v, Y )−w(u, v). For each vertex u ∈ V ,
we build a binary heap H(u) storing all its neighbors according to their ∆u values.
Note that H(u) will be a max-heap with the root storing the neighbor of u with the
highest ∆u value. A binary heap can be built in time of the order of the number of
its elements [9]. Therefore, this task will take a total of O(m) time. We would like to
state the following observation on binary heaps that holds due to the binary tree like
structure implicit in it. We shall use it during the analysis of our modified Dijkstra’s
algorithm.

Observation 5.1. Given a binary max-heap and an element x, we can compute
all the elements present in it which are greater than x in O(nx) time where nx is the
number of elements in the heap with values greater than x.

We now state a simple observation about shortest paths in a graph with positive
edge weights. We shall use this observation to prove correctness of our algorithm.

Observation 5.2. Let y, z ∈ V be any two vertices such that δ(x, y) < δ(x, z).
If y and z appear on a shortest path from x to some vertex v, then y must appear
before z on this path.

5.1. A modified Dijkstra’s algorithm for computing clusters. Now we
present a new algorithm, namely Modified Dijkstra(x, Y ), that computes all the ver-
tices of a cluster C(x, X, Y ). In a manner similar to the original Dijkstra’s algorithm,
the modified Dijkstra’s algorithm begins with a priority queue on labels L[v], v ∈ V
that are initialized to ∞ for all v ∈ V before the execution of Modified Dijkstra(x, Y )
for each x ∈ X .

Algorithm 5: Modified Dijkstra(x, Y ), where x ∈ X \ Y

L[x]←− 0;
while min(L) 6=∞ do

u←− extract min(L);
Compute all the vertices v from Heap H(u) for whom ∆u(v) > L[u], and
store them in a list A(u);
foreach v ∈ A(u) do
L[v]← min{L[v], L[u] + w(u, v)}

We shall now prove a number of key points regarding Modified Dijkstra(x, Y )



APPROXIMATE SHORTEST PATHS 17

algorithm. These points will prove that this algorithm indeed computes cluster
C(x, X, Y ), and in addition, they will prove to be very crucial for analyzing its run-
ning time. Suppose the set C(x, X, Y ) contains j vertices. Without loss of generality,
assume that there are no two vertices at the same distance from x in the graph.
Consider the sequence 〈x(= v1), v2, · · · vj〉 of vertices of C(x, X, Y ) arranged in the
increasing order of their distances from x. Let Πi

xz be the set of paths from x to
z, each of length < δ(z, Y ) such that all the intermediate vertices belong to the set
{v1, · · · , vi}. Let d(x, z, i) denote the length of the shortest path from the set Πi

xz.

Proposition 5.3. Consider ith iteration of the while loop executed in Modi-
fied Dijkstra(x, Y ). The following assertions hold true.

Pi(1). During ith iteration, vi is extracted from the queue on L, and L[vi] = δ(x, vi).
Pi(2). Only those edges (vi, v) ∈ E are processed that satisfy the following inequality:

δ(x, vi) + w(vi, v) < δ(v, Y )
Pi(3). At the end of ith iteration, for each v ∈ V , we have L[v] = d(x, v, i).

Proof. We provide a proof by induction on i. The initialization of L ensures that
the base case holds trivially. Let the assertions hold true for the (i− 1)th iteration as
well. Now consider the ith iteration.

We shall first prove Pi(1). It follows from the induction hypothesis that L[vi] =
d(x, vi, i − 1). Let πxvi

be the shortest path from x to vi in the given graph. It
follows from Lemma 5.2 that all the intermediate vertices of this path belong to
the set {v1, · · · , vi−1}. So d(x, vi, i − 1) = δ(x, vi). Using the induction hypothesis,
the vertices v1, · · · , vi−1 have already been extracted from the priority queue (on L)
of vertices. Also note that for each ℓ > i, the label L[vℓ] is greater than δ(x, vi).
This can be explained as follows. First it follows from the induction hypothesis that
L[vℓ] = d(x, vℓ, i− 1) which is at least δ(x, vℓ) by definition. Now recall than δ(x, vℓ)
is greater than δ(x, vi) using the assumption that we made at the beginning without
loss of generality. So L[vi] = δ(x, vi) is the smallest label in the priority queue at the
beginning of the ith iteration of the while loop of Modified Dijkstra(x, Y ). Hence
the vertex vi gets extracted from the priority queue during the ith iteration and
L(vi) = δ(x, vi). So Pi(1) holds.

To prove assertion Pi(2), let us analyse the computation performed in the ith
iteration after vi is extracted from the priority queue. We compute the list A(vi) of
all those neighbors v of vi for whom ∆vi

(v) > L[vi]. From the definition of ∆vi
(v),

and the validity of Pi(1), it can be seen that Pi(2) holds.

In order to show that Pi(3) holds at the end of the ith iteration, we shall prove
that L[v] = d(x, v, i) for every vertex v. Consider the set Πi

xv. It follows from the
definition that Πi

xv ⊇ Πi−1
xv . There are the following two cases : Πi

xv ⊃ Πi−1
xv or

Πi
xv = Πi−1

xv . To prove L[v] = d(x, v, i), we shall analyze these two cases separately.
Note that Πi

xv ⊃ Πi−1
xv if and only if there are one or more paths from x to v of length

< δ(v, Y ) which pass through vi with intermediate vertices from set {v1, · · · , vi−1}.
Let πi

xv be the shortest such path. It follows from Observation 5.2 that vertex vi must
appear as the last intermediate vertex on this path. Hence πi

xv will be of the form
x  vi → v. Therefore, Πi

xv ⊃ Πi−1
xv iff (vi, v) is an edge and δ(x, vi) + w(vi, v) <

δ(v, Y ). In this case, d(x, v, i) = min(d(x, v, i−1), δ(x, vi)+w(vi, v)), and the reader
may verify that the ith iteration updates L[v] to d(x, v, i). Conversely Πi

xv = Πi−1
xv

iff either v is not a neighbor of vi or δ(x, vi) + w(vi, v) ≥ δ(v, Y ). If either of the
two conditions holds, then the ith iteration does not update L[v]. But Πi

xv = Πi−1
xv

implies d(x, v, i) = d(x, v, i − 1). So in this case the induction hypothesis Pi−1 itself
ensures that L[v] = d(x, v, i− 1) = d(x, v, i).



18 S. BASWANA AND T. KAVITHA

Based on Proposition 5.3, we can conclude the following theorem.
Theorem 5.4. The algorithm Modified Dijkstra(x, Y ) extracts exactly the ver-

tices of the set C(x, X, Y ) and assigns them their correct distances from x. During
this computation, it processes an edge (u, v) if and only if x ∈ ball(u, X, Y ) and the

path x
πxu
 u→ v is shorter than δ(v, Y ), where πxu is the x-u shortest path.

5.2. Analyzing the running time of Modified Dijkstra(x, Y ). The time
complexity of Modified Dijkstra(x, Y ) is governed by the computation performed in
various iterations of its while loop. As mentioned in Theorem 5.4, each execution of
this loop extracts a vertex from the priority queue which belongs to C(x, X, Y ) only.
For each u ∈ C(x, X, Y ) extracted, the following computational tasks are executed:
computation of the list A(u), followed by updating L[v] for each v ∈ A(u). The
latter operation is actually a decrease key operation on v. Now recall that H(u) is a
binary max-heap. Therefore, it follows from Observation 5.1 that it takes O(|A(u)|)
time to compute A(u) from H(u). Hence in order to assess the time complexity,
we can conclude that Modified Dijkstra(x, Y ) algorithm performs only the following
computational tasks. For each u ∈ C(x, X, Y ), one extract min operation, and
|A(u)| decrease key operations on the priority queue storing labels L[v], v ∈ V . If
we use a Fibonacci heap to implement this priority queue, it takes O(log n) time for
each extract min operation and O(1) time for each decrease key operation. Let us
assign the cost of processing an edge (u, v) to the vertex v. Theorem 5.4 states that

if (u, v) is processed, then the path x
πxu
 u→ v is shorter than δ(v, Y ). This implies

that x ∈ ball(v, X, Y ) as well as (u, v) ∈ EY (v). Thus a vertex v will be charged
O(|EY (v)|+ log n) amount of computation cost during Modified Dijkstra(x, Y ) if x ∈
ball(v, X, Y ), and nil otherwise.

Theorem 5.5. Given a graph G = (V, E), and sets X, Y of vertices, we can
compute ball(v, X, Y ) for all v ∈ V by running Modified Dijkstra(x, Y ) on each x ∈
X \Y . During this computation, each vertex v ∈ V will be charged O(|EY (v)|+log n)
computation cost once by every vertex in ball(v, X, Y ).

The following lemma is an application of Theorem 5.5, with X = V and Y as a
random sample of V .

Lemma 5.6. Let S contain each vertex of the set V independently with probability
q = 1/

√
n. Then we can compute ball(v, V, S), ∀v ∈ V \S in expected O(min(n2, m

√
n))

time.
Proof. We compute ball(v, V, S), ∀v ∈ V \S by executing Modified Dijkstra(x, S)

on each x ∈ V . Note that we also get the distance from v to every x ∈ ball(v, V, S)
from this computation. Let us refer to Theorem 5.5 for analyzing the total computa-
tion cost (time) incurred in this task. It follows from Theorem 5.5 that O(|ES(v)| +
log n) computation cost will be charged to v by each vertex in ball(v, V, S). So the
expected cost charged to v is O(E[(|ES(v)| + log n) · |ball(v, V, S)|]). Observe that
|ES(v)| ≤ deg(v) and E[|ball(v, V, S)|] = 1/q =

√
n using Lemma 2.4. Hence the cost

charged to v is bounded by O(deg(v)
√

n) (ignoring the additive
√

n log n term).
We shall now provide a tighter analysis showing that expected cost charged to

any vertex is bounded by O(n), irrespective of the large degree that the vertex v
may have. First note that all the neighbors of v corresponding to the edges of ES(v)
are present in ball(v, V, S). So |ES(v)| ≤ |ball(v, V, S)| always holds. Hence the
expected cost charged to v is bounded from above by E[|ball(v, V, S)|2]. To calculate
E[|ball(v, V, S)|2], consider the sequence v1, v2, v3, . . . , vn−1 of vertices of the given
graph arranged in non-decreasing order of their distances from v. It can be observed
that |ball(v, V, S)| = i if none of v1, · · · , vi is selected in S, but vi+1 is selected in



APPROXIMATE SHORTEST PATHS 19

S. The probability associated with this event is (1 − q)iq. Hence we can bound
E[|ball(v, V, S)|2] as follows:

E[|ball(v, V, S)|2] =

i=n−1
∑

i=1

i2(1− q)iq ≤ q

i=∞
∑

i=1

i2(1− q)i

= q
(1 + (1− q))(1 − q)

(1− (1 − q))3







using
∑

i≥1

i2xi =
(1 + x)x

(1− x)3







≤ q
2

q3
=

2

q2
= 2n {since q = 1/

√
n}

Hence the expected cost charged to vertex v is O(min(n, deg(v)
√

n)). So the expected
cost incurred in the computation of ball(v, V, S), ∀v ∈ V \ S is O(min(n2, m

√
n)).

6. A (2k− 1)-approximate distance oracle in expected O(n2) time. In
this section we describe the construction of a (2k − 1)-approximate distance ora-
cle for k > 2 which achieves expected O(min(kmn1/k, n2)) preprocessing time and
O(k) query time. It is essentially the same as the oracle construction of Thorup and
Zwick [18] except that we use a faster preprocessing algorithm for building the data
structure, and a slightly more involved analysis of the query answering algorithm.

We first provide a brief overview of the (2k − 1)-approximate distance oracle of
Thorup and Zwick [18]. Its construction employs the hierarchy R(0, 1, k) of subsets
of vertices. The oracle keeps a hash table B(v) for every vertex v ∈ V . The hash
table B(v) stores all the vertices of the set ∪i≤kball(v, Si−1, Si) and their distances
from v. Recall that in the hierarchy R(0, 1, k), the subset Si is formed by selecting
each vertex of the set Si−1 independently with probability n−1/k. So it follows from
Lemma 2.4 that the expected size of ball(v, Si−1, Si) is at most O(n1/k). Hence, the
hash table B(v) occupies expected O(kn1/k) space, and so the expected size of the
approximate distance oracle is O(kn1+1/k).

It can be observed that the main task involved in the preprocessing of the (2k−1)-
approximate distance oracle is to compute, for each vertex v, distances to vertices of
k ball centered around it, that is, ball(v, Si−1, Si) for 1 ≤ i ≤ k. Recall that for
any i ≤ k, computing ball(v, Si−1, Si) for all v ∈ V turns out to be equivalent to
computing clusters C(w, Si−1, Si) for all w ∈ Si−1. In the previous section, we de-
signed a Modified Dijkstra algorithm which computes these clusters efficiently. As
a careful reader might have noticed, the key idea underlying Modified Dijkstra algo-
rithm is that it processes only those edges whose both the endpoints are present in
C(w, Si−1, Si) which is actually a truncated shortest path tree rooted at w provided
Si 6= ∅. This feature and the randomization underlying the hierarchy R(0, 1, k) will
help Modified Dijkstra algorithm achieve improved preprocessing time for comput-
ing distances from each v ∈ V to vertices belonging to its inner k − 1 balls, that is,
∪i<kball(v, Si−1, Si). However, it does not provide any improvement in the prepro-
cessing time for the kth balls. This is because a cluster C(w, Sk−1, Sk) for w ∈ Sk−1

corresponds to a full shortest path tree rooted at w since Sk = ∅. Therefore, com-
puting the kth ball around each vertex amounts to computing a full shortest path
tree from each w ∈ Sk−1, and there is no way to accomplish this task in less than
expected O(mn1/k) time since E[|Sk−1|] = O(n1/k). This preprocessing time could
be Θ(n2+1/k) for dense graphs. To overcome this hurdle, we first compute a subgraph
which is sparse and still preserves approximate distances pairwise. Then we execute
Dijkstra’s algorithm from each w ∈ Sk−1 in this subgraph to compute approximate



20 S. BASWANA AND T. KAVITHA

distance to each v ∈ V . As a result, each vertex v ∈ V will store only approximate
distances to vertices of its kth ball. This is contrary to the approximate distance
oracle of Thorup and Zwick [18]. However, interestingly, the same query algorithm
of Thorup and Zwick [18], but with a more careful analysis, still guarantees (2k − 1)
stretch for each query.

6.1. Preprocessing algorithm. The new preprocessing algorithm employs a
sparse subgraph whose edge set also contains a 3-spanner. A 3-spanner of a weighted
graph is a subgraph such that the distance between any two vertices u, v ∈ V in the
subgraph is at most 3δ(u, v). We use the following result concerning 3-spanners.

Theorem 6.1. [5] An undirected weighted graph on n vertices and m edges can be
processed in expected O(m) time to compute its 3-spanner which has O(min(m, n3/2))
edges.

Algorithm 6: Faster construction of a (2k − 1)-approximate distance oracle

Let S0, . . . , Sk be the respective k + 1 subsets of the hierarchy R(0, 1, k);
foreach i ∈ [1, k − 1] and v ∈ V do compute pi(v) and δ(v, pi(v));
foreach i ∈ [1, k − 1] and w ∈ Si−1\Si /* computing inner k − 1 balls */

do
run Modified Dijkstra(w, Si−1, Si) to compute C(w, Si−1, Si)

Compute a 3-spanner (V, ES) of the given graph G;
foreach x ∈ Sk−1 /* computing kth ball */

do
Run Dijkstra’s algorithm from x in the subgraph (V, ESk−1

∪E(x) ∪ ES)

Consider the approximate distance oracle computed by the preprocessing Algo-
rithm 6. For the hash table B(v) associated with v in this oracle, we shall use d[v, x]
to denote the (approximate/exact) distance between v and x. The following lemma
holds directly from Algorithm 6.

Lemma 6.2. If w ∈ B(v), then

d[v, w] =

{

δ(v, w) if w ∈ Si for some i < k − 1

δ̂(v, w) if w ∈ Sk−1

where δ̂(v, w) is the distance between v and w in the graph (V, ESk−1
∪ E(w) ∪ ES).

Let us analyse the time complexity of the new preprocessing algorithm. First
consider the task involving the computation of shortest-path trees from each x ∈ Sk−1

in the subgraph (V, ESk−1
∪ E(x) ∪ ES). Note that a vertex v ∈ V belongs to Sk−1

with probability n−(1−1/k), so it follows from Lemma 2.3 that expected size of ESk−1

is O(n2−1/k). Using Theorem 6.1, it follows that the 3-spanner ES will have O(n3/2)
edges and can be computed in expected O(m) time. Hence the expected number
of edges in the subgraph (V, ESk−1

∪ E(x) ∪ ES) will be O(min(m, n2−1/k)). The

expected size of Sk−1 will be O(n1/k), and it has negative correlation with |ESk−1
|.

Therefore, it can be shown using elementary probability that it will take expected
O(min(mn1/k, n2)) time to compute distances between each vertex v and each vertex
of Sk−1. In the following lemma we provide a tighter bound on the expected time
required to compute ball(v, Si−1, Si), ∀v ∈ V for a given i < k. The proof of this



APPROXIMATE SHORTEST PATHS 21

lemma is a generalization of Lemma 5.6 with a few more technical details, therefore,
to maintain continuity of the flow at this point, its proof is deferred to the end of this
section.

Lemma 6.3. For a given i < k, it takes expected O(min(n
k+i+1

k , mn1/k)) time to
compute ball(v, Si−1, Si), ∀v ∈ V .

It follows from Lemma 6.3 and the preceding discussion that the expected prepro-
cessing time of the approximate distance oracle is O(min(n2, kmn1/k)). As discussed
earlier, the expected size of the oracle is O(kn1+1/k). We rebuild the oracle if its size
exceeds twice this bound, and using Markov’s inequality, the probability of this event
will be at most 1/2. So the expected number of times the oracle has to be rebuilt till
we get an oracle of size O(kn1+1/k) will be O(1). Thus an O(n1+1/k) size approximate
distance oracle can be built in expected O(min(n2, kmn1/k)) time. The only issue
that needs to be addressed is the analysis of the query algorithm.

6.2. Reporting approximate distance with stretch at most (2k − 1). We
present below the query answering algorithm of Thorup and Zwick [18]. The analysis

Algorithm 7: Q(u, v) : Reporting approximate distance between u and v

i← 1;
while pi−1(u) /∈ B(v) do

swap(u, v);
i← i + 1;

return d[u, pi−1(u)] + d[v, pi−1(u)];

of the above query answering algorithm is slightly different due to the slight dissim-
ilarity in the construction of the new approximate distance oracle. First, we provide
the underlying intuition of the query answering procedure before we formally analyse
it.

Let u and v be any two vertices whose approximate distance is to be reported. In
order to explain the query answering procedure, we introduce the following notation.

For a pair of vertices u and v, a vertex w is said to be t-near to u if δ(u, w) ≤
tδ(u, v). It follows from the simple triangle inequality that if a vertex is t-near to u
then it is (t + 1)-near to v also.

The entire query answering process is to search for a vertex which is t-near to
u for some t < k, and whose distance to both u and v is known. This search is
performed iteratively as follows : the ith iteration begins with a vertex w ∈ Si−1

which is (i − 1)-near to u (and hence i-near to v) and its distance from u is known.
It is determined whether or not its distance to v is known. We do so by checking
whether or not w ∈ B(v). Note that w /∈ B(v) if and only if w /∈ ball(v, Si−1, Si).
Using Definition 4.2, therefore, it follows that w /∈ B(v) if and only if, for the vertex
v, the vertex pi(v) is equidistant or nearer than the vertex w. But this would imply
that pi(v) is also i-near to v, and note that its distance from v is known. Therefore,
if the distance δ(v, w) is not known, we continue in the next iteration with vertex
w = pi(v), and swap the roles of u and v. In this way we proceed gradually, searching
over the sets S0, . . . , Sk−1. We are bound to find such a vertex within at most k
iterations since the (approximate) distance from Sk−1 is known to all the vertices.

Based on the discussion above and the query answering algorithm Q(u, v), the
following lemma holds.



22 S. BASWANA AND T. KAVITHA

Lemma 6.4. [18] At the beginning of the ith iteration of the while loop, δ(u, pi−1(u))
≤ (i− 1)δ(u, v).

The following theorem provides a guarantee of 2k − 1 on the worst case stretch
for any distance query.

Theorem 6.5. The algorithm Q(u, v) reports in O(k) time a (2k−1)-approximate
distance between u and v, for any k > 2.

Proof. The query answering algorithm performs iterations of the while loop until
the condition of the loop fails. As mentioned above, there will be at most (k − 1)
successful iterations before the condition of the loop fails. Let the condition fail at
the beginning of the ith iteration. So the following inequality follows from Lemma 6.4
when we exit the while loop:

δ(u, pi−1(u)) ≤ (i− 1)δ(u, v). (6.1)

We analyze the distance reported by the oracle on the basis of the final value of i.
Case 1 : i < k.
In this case, using Lemma 6.2, the reported distance is δ(u, pi−1(u)) + δ(v, pi−1(u)),
which using the triangle inequality is at most 2δ(u, pi−1(u)) + δ(u, v). Using Inequal-
ity (6.1), this distance is at most (2i− 1)δ(u, v).
Case 2 : i = k.
Note that each vertex u stores its exact distance to pi(u) for each i < k. So, it fol-

lows from Lemma 6.2 that the distance reported will be δ(u, pk−1(u))+ δ̂(v, pk−1(u)).
Let us analyze the following two sub-cases as shown in Figure 6.1. The analysis will
exploit the equality δ̂(u, pk−1(u)) = δ(u, pk−1(u)) which is implied by Lemma 2.2.

u u

pk−1(u)pk−1(u)

v v

ball(u, V, Sk−1) ball(u, V, Sk−1)

(i) (ii)

Fig. 6.1. The two sub-cases depending upon whether v ∈ ball(u, V, Sk−1).

In sub-case (i), the vertex v belongs to ball(u, V, Sk−1). Hence δ(u, v) < δ(u, pk−1(u)).

So it follows from Lemma 2.2 that δ̂(v, u) = δ(v, u). So using the triangle inequality,

δ̂(v, pk−1(u)) ≤ δ̂(v, u) + δ̂(u, pk−1(u)) ≤ δ(v, u) + δ(u, pk−1(u)).

Inequality (6.1) implies that δ(u, pk−1(u)) is at most (k−1)δ(u, v), hence the distance
reported by the oracle in this sub-case is at most (2k − 1)δ(u, v).

In sub-case (ii), the vertex v does not belong to ball(u, V, Sk−1). (This is the main
point where our analysis differs from that of Thorup and Zwick [18].) It follows that

δ(u, pk−1(u)) ≤ δ(u, v). Since (V, ES) is a 3-spanner, δ̂(v, u) ≤ 3δ(v, u). Combining
these two inequalities and using the triangle inequality, it follows that

δ̂(v, pk−1(u)) ≤ δ̂(v, u) + δ̂(u, pk−1(u)) ≤ 3δ(v, u) + δ(u, pk−1(u)) ≤ 4δ(v, u).

Hence, in this sub-case, the distance reported by the oracle will be at most 5δ(u, v).
For every k > 2, this stretch, which is 5, is always bounded by (2k − 1).



APPROXIMATE SHORTEST PATHS 23

We can conclude with the following theorem now.

Theorem 6.6. An undirected weighted graph on n vertices and m edges can be
preprocessed in expected O(min(n2, kmn1/k)) time to compute a (2k−1)-approximate
distance oracle of size O(kn1+1/k), for any integer k > 2.

6.3. Proof of Lemma 6.3. The proof will employ a couple of observations con-
cerning ball(v, X, Y ) when the sets X and Y are formed by suitable random sampling.
These observations are formalized in the two lemmas which we prove first. Here, we
introduce an additional notation Sv

u defined for any two vertices u, v as follows.
Sv

u : the set of vertices in the graph that lie within distance δ(u, v) from v.

The first lemma gives a bound on Pr[u ∈ ball(v, X, Y )] in terms of Pr[u ∈ X ] and
Pr[u ∈ ball(v, V, Y )].

Lemma 6.7. Let X be formed by selecting each vertex from V independently with
probability q, and let Y be formed by selecting each vertex of X independently with
probability q′. For any u, v ∈ V ,

Pr[u ∈ ball(v, X, Y )] ≤ Pr[u ∈ X ] ·Pr[u ∈ ball(v, V, Y )]

Proof. It follows from Definition 4.2 that vertex u belongs to ball(v, X, Y ) if and
only if u ∈ X and none of the vertices of set Sv

u is present in Y . Now whether or not
a vertex belongs to sets X or Y is independent of any other vertices. Because of this
independence incorporated in selecting vertices to form sets X and Y , we can observe
that

Pr[u ∈ ball(v, X, Y )] = Pr[u /∈ Y ∧ u ∈ X ] ·
∏

w∈Sv
u\{u}

Pr[w /∈ Y ]

= Pr[u ∈ X ] ·Pr[u /∈ Y |u ∈ X ] ·
∏

w∈Sv
u\{u}

Pr[w /∈ Y ]

Now note that Pr[u /∈ Y |u ∈ X ] = (1− q′) ≤ (1 − qq′) = Pr[u /∈ Y ]. Hence

Pr[u ∈ ball(v, X, Y )] ≤ Pr[u ∈ X ] ·Pr[u /∈ Y ] ·
∏

w∈Sv
u\{u}

Pr[w /∈ Y ]

= Pr[u ∈ X ] ·
∏

w∈Sv
u

Pr[w /∈ Y ]

= Pr[u ∈ X ] ·Pr[u ∈ ball(v, V, Y )]

Now we prove the following lemma that essentially states that conditioned on the
event u ∈ ball(v, V, Y ), the probability that some vertex u′ also belongs to ball(v, V, Y )
is independent of whether or not u was present in X .

Lemma 6.8. Let X be a set formed by selecting each vertex of the given graph
independently with some probability, and let Y be formed by selecting each vertex from
X independently with some probability. For any u, u′, v ∈ V ,

Pr[u′ ∈ ball(v, V, Y )|u ∈ ball(v, X, Y )] = Pr[u′ ∈ ball(v, V, Y )|u ∈ ball(v, V, Y )]



24 S. BASWANA AND T. KAVITHA

Proof. First note that u ∈ ball(v, X, Y ) if and only if u ∈ X and u ∈ ball(v, V, Y ).
So if u′ ∈ Sv

u, then Pr[u′ ∈ ball(v, V, Y )|u ∈ ball(v, X, Y )] as well as Pr[u′ ∈
ball(v, V, Y )|u ∈ ball(v, V, Y )] are 1. Let us now analyze the case when u′ /∈ Sv

u.
First note that u ∈ ball(v, X, Y ) implies that none of the vertices of the set Sv

u is
selected in Y . So conditioned on the event “u ∈ ball(v, X, Y )”, the vertex u′ will
belong to ball(v, V, Y ) iff none of the vertices from Sv

u′ \ Sv
u is present in set Y . The

latter event is independent of u ∈ X since a vertex from set V \ {u} is selected in Y
independent of whether or not u ∈ X . Hence,

Pr[u′ ∈ ball(v, V, Y )|u ∈ ball(v, X, Y )] =
∏

w∈Sv
u′

\Sv
u

Pr[w /∈ Y ]

= Pr[u′ ∈ ball(v, V, Y )|u ∈ ball(v, V, Y )]

Based on Lemma 6.8, the following corollary can be stated.

Corollary 6.9. Let X be formed by selecting each vertex from V independently
with some probability, and let Y be formed by selecting each vertex of X independently
with some probability. For any vertices u, v ∈ V ,

E[|ball(v, V, Y )| | u ∈ ball(v, X, Y )] = E[|ball(v, V, Y )| | u ∈ ball(v, V, Y )].

We are now ready to prove Lemma 6.3. We compute ball(v, Si−1, Si), ∀v ∈ V
by executing Modified Dijkstra(x, Si) on each x ∈ Si−1 \ Si. Theorem 5.5 implies
that it suffices to show the following. The expected computation cost charged to
a vertex v during the executions of Modified Dijkstra(x, Si) for all x ∈ Si−1 \ Si is

bounded by O(min(n
i+1

k , deg(v)n1/k)). Let Wv denote the random variable for the
computation cost charged to v. A vertex will charge ESi

(v) to vertex v iff it belongs
to ball(v, Si−1, Si) and 0 otherwise. So the expected cost charged to v is

E[Wv] = E[|ESi
(v)| · |ball(v, Si−1, Si)|]. (6.2)

Since |ESi
(v)| ≤ deg(v), we see that E[Wv] is bounded by deg(v)E[|ball(v, Si−1, Si)|].

It follows from Lemma 2.4 that E[|ball(v, Si−1, Si)|] = n1/k. Hence the expected cost
charged to v is bounded by O(deg(v)n1/k). Now we shall show that it is bounded by

O(n
i+1

k ) as well.

Note that all the neighbors of v corresponding to the edges ESi
(v) are present

in ball(v, V, Si), hence |ESi
(v)| ≤ |ball(v, V, Si)| always. Using this bound and Equa-

tion (6.2), we bound E[Wv] as follows.

E[Wv] ≤ E[|ball(v, V, Si)| · |ball(v, Si−1, Si)|]
=

∑

∀v′∈V

E[|ball(v, V, Si)| | v′ ∈ ball(v, Si−1, Si)] Pr[v′ ∈ ball(v, Si−1, Si]

≤
∑

∀v′∈V

E[|ball(v, V, Si)| | v′ ∈ ball(v, Si−1, Si)]n
−i+1

k Pr[v′ ∈ ball(v, V, Si)]

= n
−i+1

k

∑

∀v′∈V

E[|ball(v, V, Si)| | v′ ∈ ball(v, V, Si)]Pr[v′ ∈ ball(v, V, Si)]

= n
−i+1

k E[|ball(v, V, Si)|2]



APPROXIMATE SHORTEST PATHS 25

The first equality follows from linearity of expectation. The second inequality above
follows from Lemma 6.7 and the third inequality uses Corollary 6.9. Using arguments
similar to those used in Lemma 5.6, it follows that E[|ball(v, V, Si)|2] = 1/q2 with

q = n
−i
k . So E[Wv] ≤ n

i+1
k as well.

7. All Pairs Approximate Shortest Paths with Stretch < 3. In this sec-
tion we present a new hierarchical scheme for the APASP problem, based on which
we present algorithms to compute all-pairs distance estimates whose stretch is less
than 3. This scheme is obtained by a suitable augmentation of the scheme A, and
will be denoted by Â.

7.1. An augmented hierarchical scheme Â for APASP. Recall that for the
case of (2,w)-APASP and the 3-approximate distance oracle, the scheme A is applied
on the randomized hierarchy R(α, β, k) of subsets of vertices with suitable values of
α and β. In order to design efficient algorithms for stretch less than 3, we shall use
Â on a similar randomized hierarchy R̂(0, β, k). This hierarchy of subsets of vertices
is obtained by a small modification of the hierarchy R(0, β, k). The following lemma
due to Thorup and Zwick [17] plays an important role here.

Lemma 7.1. [17] Given a weighted graph G = (V, E) and 0 < q < 1, we can
compute a set S ⊂ V of size O(nq log n) in expected time O(m/q log n) such that
|C(x, V, S)| = O(1/q) for each x ∈ V .

We now define R̂(0, β, k) as follows.
Definition 7.2. Let S0, . . . , Sk be the respective k+1 vertex sets of the hierarchy

R(0, β, k). Let S ⊂ V be a set of size O(n1−β) such that |C(x, V, S)| = O(nβ log n)
for each x ∈ V . (We can use Lemma 7.1 to construct it.)

For each i ∈ [0, k]: Si ←− Si ∪ S
The hierarchy of augmented sets {Si} defines R̂(0, β, k).

The augmented scheme Â when applied on the hierarchy R̂(0, β, k) will compute
an n × n table d storing approximate distances. Our algorithms for 2-APASP and
7/3-APASP will refine this table further. The table d is initialized as the adjacency
matrix of the given graph. That is,

∀x, y ∈ V d[x, y]←−
{

w(x, y) if (x, y) ∈ E
∞ otherwise

The construction of this scheme is described in Algorithm 8.
The edge set ESi+1 ∪d[s, ] refers to edges in the set ESi+1 along with edges (s, x)

(of weight d[s, x]) to each x ∈ V . The reason for introducing such additional weighted
edges from s is that, if s is already aware of a certain distance estimate d[s, x] to
vertex x, then we would like to use this estimate to refine the distance estimates from
s to other vertices y.

The augmented scheme Â performs two tasks of distance computation (shown
shaded in Algorithm 8) in addition to the tasks performed by the scheme A. The first
task is the computation of ball(u, V, Sk) wherein we compute distances from u to all
vertices in ball(u, V, Sk). In the second task, we compute approximate distances from
pi(u) to even those vertices y that may lie outside ball(u, V, Sk) but have at least one
neighbor in ball(u, V, Sk). We can thus state the following observation which plays a
crucial role in our algorithms for 2-APASP and 7/3-APASP described in the following
subsections.



26 S. BASWANA AND T. KAVITHA

Algorithm 8: Augmented scheme Â for a hierarchy R̂(0, β, k)

foreach i ∈ [0, k] and u ∈ V do
compute pi(u); d[u, pi(u)]←− δ(u, pi(u));

foreach u ∈ V \ Sk do
compute ball(u, V, Sk);
foreach x ∈ ball(u, V, Sk) and 0 ≤ i ≤ k do

foreach neighbor y of x do

d[pi(u), y]←− min

{

d[pi(u), y]
d[u, pi(u)] + d[u, x] + w(x, y)

foreach i ∈ [0, k − 1] and s ∈ Si do
run Dijkstra’s algorithm from s in the subgraph (V, ESi+1 ∪ d[s, ]) and
update d[s, ] accordingly.

Observation 7.1. Let y be a vertex and Puy be a shortest path from u to y.
If y or a neighbor of y lying on the path Puy belongs to ball(u, V, Sk), then for any
0 ≤ i ≤ k, it follows from Algorithm 8 that d[pi(u), y] ≤ δ(u, pi(u)) + δ(u, y).

Theorem 7.3. Given a weighted graph G = (V, E), let d be the approximate
distance matrix computed by the augmented scheme Â for hierarchy R̂(0, β, k). Let
u and v be any two vertices. If δ(u, pk(u)) + δ(v, pk(v)) > δ(u, v), then the following
assertion holds:

min
0≤i<k

{d[u, pi(u)] + d[pi(u), v], d[v, pi(v)] + d[pi(v), u]} ≤ 2δ(u, v).

Proof. Let i < k be such that δ(u, pi(u))+δ(v, pi(v)) ≤ δ(u, v) but δ(u, pi+1(u))+
δ(v, pi+1(v)) > δ(u, v). Such a unique i must exist since δ(u, p0(u)) = δ(v, p0(v)) = 0
and it is given that δ(u, pk(u)) + δ(v, pk(v)) > δ(u, v). Without loss of general-
ity assume that δ(u, pi(u)) ≤ δ(v, pi(v)). Since d[u, pi(u)] is set to δ(u, pi(u)), so
2d[u, pi(u)] ≤ δ(u, v) holds. Now consider the shortest path Puv between u and v in
the original graph. Let y be the first vertex on this path in the direction from u to v
such that δ(u, y) ≥ δ(u, pi+1(u)). Since i + 1 ≤ k, the vertex y fulfills the conditions
of Lemma 7.1, hence

d[pi(u), y] ≤ δ(u, pi(u)) + δ(u, y). (7.1)

Also note that δ(v, y) < δ(v, pi+1(v)). This is because δ(u, y) ≥ δ(u, pi+1(u)) and
δ(u, pi+1(u))+ δ(v, pi+1(v)) > δ(u, v). So it follows from Lemma 2.2 that the subpath
Pyv is present in ESi+1 . Therefore, at the end of Algorithm 8, when we execute
Dijkstra’s algorithm from pi(u) in the subgraph (V, ESi+1 ∪d[pi(u)]), the approximate
distance d[pi(u), v] that is computed is at most

d[pi(u), v] ≤ d[pi(u), y] + δ(y, v)

≤ δ(u, pi(u)) + δ(u, y) + δ(y, v) {using Equation (7.1)}
= δ(u, pi(u)) + δ(u, v).

Since we assumed, without loss of generality, in the beginning that 2d[u, pi(u)] ≤
δ(u, v), it follows that

d[u, pi(u)] + d[pi(u), v] ≤ 2d[u, pi(u)] + δ(u, v) ≤ 2δ(u, v).



APPROXIMATE SHORTEST PATHS 27

We now analyze the time complexity for constructing the augmented scheme Â
for R̂(0, β, k). The task of computing the set S ⊂ V such that cluster C(x, V, S) at
each x ∈ V has O(nβ log n) vertices can be accomplished in expected O(mnβ) time
as shown by Thorup and Zwick [17]. The construction of ball(u, V, Sk) for all v will
be performed in expected O(mnβ) time (apply Lemma 5.6 with q = n−β). The re-
maining computational task of the shaded portion of Algorithm 8 will be performed
in O(

∑

x∈V |C(x, V, Sk)|deg(x)) time, which is Õ(mnβ). The last step of Algorithm 8
involves the execution of Dijkstra’s algorithm from vertices of the hierarchy and will
take expected O(n2 log n) time using Lemma 3.1. Combined together, the total ex-
pected time complexity of Â for R̂(0, β, k) is Õ(mnβ + n2).

Lemma 7.4. The preprocessing time of the scheme Â built for R̂(0, β, k) is
Õ(mnβ + n2).

In our algorithm for 7/3-APASP, we shall use one more observation regarding
the augmented scheme. Recall that we approximate the distance from pi(u) to those
vertices y that have a neighbor in ball(u, V, Sk). In a similar fashion it is possible to
approximate the distance from pk(x), where x belongs to ball(u, V, Sk), to neighbors
of u. For this we have to replace the innermost for loop of the shaded portion of
Algorithm 8 by the following for loop:

for each neighbor y of u do

d[pk(x), y]←− min(d[pk(x), y], d[pk(x), x] + d[u, x] + w(u, y))

This additional task can be accomplished in expected O(|ball(u, V, Sk)|deg(u)) time
per vertex u, which amounts to a total expected O(mnβ) time only. Thus this task
does not increase the asymptotic time complexity of Algorithm 8. We can now state
the following important observation which follows from this additional task.

Observation 7.2. For each vertex w belonging to ball(z, V, Sk) and any neighbor
y of z, the augmented scheme Â ensures that d[pk(w), y] is bounded by δ(pk(w), w) +
δ(w, z) + w(z, y).

7.2. Algorithm for all-pairs 2-approximate shortest paths. Theorem 7.3
immediately leads to Algorithm 9 for computing all-pairs stretch 2 distances.

Algorithm 9: An algorithm for 2-approximate distances.

Compute the scheme Â(H) for H = R̂(0, 1
2 , k) with k = log n;

Sk+1 ←− ∅;
foreach s ∈ Sk do

run Dijkstra’s algorithm from s in the graph (V, E)

foreach u, v ∈ V do
if v 6∈ ball(u, V, Sk) and u 6∈ ball(v, V, Sk) then

d[u, v]← min0≤i≤k{d[u, pi(u)] + d[pi(u), v], d[v, pi(v)] + d[pi(v), u]}

Lemma 7.5. The table d computed by Algorithm 9 satisfies: d[u, v] ≤ 2δ(u, v),
for all (u, v) ∈ V × V .

Proof. Let u and v be any two vertices in the graph G = (V, E). The augmented
scheme computes ball(x, V, Sk) at each vertex x ∈ V . So if v ∈ ball(u, V, Sk) or
u ∈ ball(v, V, Sk), the exact u-v distance is stored in d[u, v]. Otherwise there are two



28 S. BASWANA AND T. KAVITHA

cases.
Case 1: δ(u, pk(u)) + δ(v, pk(v)) > δ(u, v).

It follows from Theorem 7.3 that

min
0≤i<k

{d[u, pi(u)] + d[pi(u), v], d[v, pi(v)] + d[pi(v), u]} ≤ 2δ(u, v).

Hence d[u, v] is at most 2δ(u, v).
Case 2 : δ(u, pk(u)) + δ(v, pk(v)) ≤ δ(u, v).

Let us assume, without loss of generality, that δ(u, pk(u)) ≤ δ(v, pk(v)). Since
d[u, pk(u)] is set to δ(u, pk(u)) by the scheme Â, it follows that 2d[u, pk(u)] ≤ δ(u, v)
holds for Case 2. Note that we perform Dijkstra’s algorithm in the original graph
from every vertex of set Sk. Hence d[pk(u), v] = δ(pk(u), v), and applying the triangle
inequality it follows that d[pk(u), v] ≤ δ(u, pk(u)) + δ(u, v). This inequality and the
inequality 2d[u, pk(u)] ≤ δ(u, v) lead to

d[u, pk(u)] + d[pk(u), v] ≤ 2d[u, pk(u)] + δ(u, v) ≤ 2δ(u, v).

The algorithm employs the augmented scheme Â for hierarchy R̂(0, 1
2 , k) with

k = log n. This will take Õ(m
√

n + n2) time using Lemma 7.4. It is easy to observe
that all the remaining tasks of the algorithm will take expected O(m

√
n + n2 log n)

time. Hence the overall time complexity of the algorithm is Õ(m
√

n + n2). We have
thus proved the following theorem.

Theorem 7.6. A given undirected weighted graph on n vertices can be prepro-
cessed in expected Õ(m

√
n + n2) time to build an n × n table that stores all-pairs

2-approximate distances.

7.3. Algorithm for all-pairs 7/3-approximate shortest paths. Algorithm
10 computes all-pairs 7/3-approximate shortest paths for a given weighted undirected
graph G = (V, E). Its running time is Õ(m2/3n + n2) which improves the Õ(n7/3)
time algorithm by Cohen and Zwick [7].

The algorithm can be viewed as an extension of the 2-APASP algorithm of the
previous section with the objective of achieving a better running time at the expense
of a slightly larger stretch.

Algorithm 10: The algorithm for all-pairs 7/3-stretch distances

Let β, γ be two positive numbers to be fixed later on;
Compute the scheme Â for R̂(0, β, k) with k = log n;
Let Sk+1 be formed by selecting each v ∈ Sk with prob. n−γ , and Sk+2 ← ∅;
foreach i ∈ {k, k + 1} and s ∈ Si do

run Dijkstra’s algorithm with source s in the subgraph (V, ESi+1 ∪ d[s, ])

foreach u ∈ V do
foreach s ∈ Sk that is present in ball(u, V, Sk+1) and v ∈ V do

d[u, v]← min(d[s, v] + d[s, u], d[u, v])

foreach u, v ∈ V do
d[u, v]← min0≤i≤k+1{d[u, pi(u)]+d[pi(u), v], d[v, pi(v)]+d[pi(v), u], d[u, v]}

foreach u, v ∈ V do d[u, v]← min(d[u, v], d[v, u])



APPROXIMATE SHORTEST PATHS 29

Running Time Analysis. The computation of scheme Â(R̂(0, β, k)) takes Õ(mnβ+
n2) (from Theorem 7.4). The first for loop would have expected O(mn1−γ−β +n2+γ)
running time. The second for loop would have expected O(n2+γ) running time. The
third for loop takes expected O(n2 log n) time. In order to minimize the sum of all
these quantities, we set

mnβ = mn1−γ−β = n2+γ

This gives n3βm = n3. Hence the expected time complexity of Algorithm 10 is
Õ(m2/3n + n2).

7.3.1. Bounding the stretch. Consider any two vertices u, v ∈ V . The reader
may easily notice that apart from having a different value of β, Algorithm 10 has
essentially all the ingredients of the algorithm for 2-APASP. In particular, the first
and the third for loops do essentially the same computational tasks except that the
hierarchy of vertices is a little different - one more layer of vertices Sk+1 has been
added to it. Due to this similarity, it is easy to observe that Algorithm 10 computes
a 2-approximate distance between u and v if either of the following conditions hold :

• δ(u, pk(u)) + δ(v, pk(v)) > δ(u, v), that is, if ball(u, V, Sk) and ball(v, V, Sk)
intersect.
• δ(u, pk+1(u)+δ(v, pk+1(v)) ≤ δ(u, v), that is, if ball(u, V, Sk+1) and ball(v, V, Sk+1)

do not intersect.
So the only nontrivial case that needs to be addressed is when ball(u, V, Sk) and
ball(v, V, Sk) do not intersect but ball(u, V, Sk+1) and ball(v, V, Sk+1) do intersect.
This case has been described in Figure 7.1.

u v

ball(u, V, Sk)
ball(v, V, Sk)

ball(u, V, Sk+1)
ball(v, V, Sk+1)

∈ Sk

∈ V \Sk

x y

Fig. 7.1. analyzing the nontrivial case for 7/3-APASP algorithm

Let y be the first vertex on u-v path from the side of u that belongs to ball(v, V, Sk+1),
and let x be its predecessor. Furthermore assume that neither x belongs to ball(y, V, Sk+1)
nor y belongs to ball(x, V, Sk+1). Otherwise the entire shortest path between u and
v is present in the edge set ESk+1

and all these edges are present in the graph on
which we run Dijkstra’s algorithm from vertices of Sk. This yields: d[pk(u), v] ≤
δ(u, v) + δ(u, pk(u)) and d[pk(v), u] ≤ δ(u, v) + δ(v, pk(v)). Hence d[u, v] ≤ δ(u, v) +
2 min{δ(u, pk(u)), δ(v, pk(v))}, which is bounded by 2δ(u, v) because ball(u, V, Sk) and
ball(v, V, Sk) do not intersect.

Let us assume without loss of generality that δ(u, x) ≤ δ(v, y). We now state one
simple lemma that will be very useful in our analysis.

Lemma 7.7. If u /∈ ball(x, V, Sk) but pk(x) ∈ ball(u, V, Sk+1), then d[u, v] ≤
2δ(u, v).



30 S. BASWANA AND T. KAVITHA

Proof. It follows from Observation 7.1 that after computing the augmented scheme
Â, d[pk(x), y] ≤ δ(pk(x), x) + w(x, y). Also observe that the entire shortest path
between y and v is present in ESk+1

. Therefore, at the end of the first for loop of
Algorithm 10, the following bound holds for d[pk(x), v]:

d[pk(x), v] ≤ δ(pk(x), x) + δ(x, v) (7.2)

It is given that pk(x) ∈ ball(u, V, Sk+1). So it follows from Lemma 2.2 that the entire
shortest path from pk(x) to u is also present in the subgraph ESk+1

. Therefore, at the
end of the first for loop, d[pk(x), u] is equal to δ(pk(x), u). Furthermore, using the
triangle inequality, it follows that δ(pk(x), u) is bounded by δ(pk(x), x)+δ(u, x). This
bound and Inequality 7.2 help pk(x) refine the estimate on d[u, v] quite effectively
during the second for loop of Algorithm 10 as follows.

d[u, v] ≤ d[pk(x), u] + d[pk(x), v] (7.3)

≤ 2δ(pk(x), x) + δ(u, x) + δ(x, v) (7.4)

= 2δ(pk(x), x) + δ(u, v). (7.5)

Since it is given that u /∈ ball(x, V, Sk), so δ(x, pk(x)) ≤ δ(u, x). Moreover, δ(x, pk(x)) ≤
δ(x, y) since y /∈ ball(x, V, Sk+1). Hence 2δ(pk(x), x) is bounded by δ(u, x) + δ(x, y)
which is bounded by δ(u, v). Hence it follows from Equation (7.5) that d[u, v] is
bounded by 2δ(u, v).

Theorem 7.8. The table d returned by Algorithm 10 satisfies : d[u, v] ≤ 7/3δ(u, v).

Proof. We split the proof into two cases.
Case 1 : u /∈ ball(x, V, Sk).

If pk(x) belongs to ball(u, V, Sk+1), it follows from Lemma 7.7 that d[u, v] is bounded
by 2δ(u, v). So let us consider the case when pk(x) does not belong to ball(u, V, Sk+1).
Since as a part of the algorithm, we execute Dijkstra’s algorithm from pk+1(u) in the
entire graph, at the end of the third for loop, we have the following bound on d[u, v].

d[u, v] ≤ δ(u, v) + 2δ(pk+1(u), u)

We shall now bound this value by 7/3δ(u, v) as follows. Since pk(x) /∈ ball(u, V, Sk+1),
we have δ(u, pk+1(u)) ≤ δ(u, x) + δ(x, pk(x)). Thus we have

δ(u, v) + 2δ(pk+1(u), u) ≤ δ(u, v) + 2δ(u, x) + 2δ(x, pk(x))

≤ δ(u, v) + δ(u, x) + δ(v, y) + δ(x, y) + δ(x, pk(x))

= 2δ(u, v) + δ(x, pk(x)).

In the above inequalities we bounded one occurrence of δ(u, x) by δ(v, y) which was
our assumption and we bounded one occurrence of δ(x, pk(x)) by δ(x, y) which holds
because y /∈ ball(x, V, Sk+1). Now note that δ(x, pk(x)) is bounded by δ(u, x) (and
hence by δ(v, y) also) since u /∈ ball(x, V, Sk). Combining these inequalities together,
it follows that δ(x, pk(x)) ≤ δ(u, v)/3. Thus d[u, v] is at most 7/3δ(u, v).

Case 2 : u ∈ ball(x, V, Sk).
Applying Observation 7.2 and using the fact that u  x → y is a shortest path, we
can note that d[pk(u), y] ≤ δ(pk(u), u)+δ(u, y). Moreover all the edges of the shortest
path between y and v are present in ESk+1

since y ∈ ball(v, V, Sk+1). Therefore, in



APPROXIMATE SHORTEST PATHS 31

the first for loop of Algorithm 10, when Dijkstra’s algorithm is performed from pk(u)
on the graph with ESk+1

edges, the approximate distance d[pk(u), v] computed is at
most

d[pk(u), v] ≤ δ(pk(u), u)) + δ(u, v).

This leads to the following upper bound on d[u, v] at the end of the third for loop.

d[u, v] ≤ δ(u, v) + 2δ(u, pk(u)). (7.6)

Analogously if v also belongs to ball(y, V, Sk), then d[v, u] is bounded by δ(u, v) +
2δ(v, pk(v)) as well. Since ball(u, V, Sk) and ball(v, V, Sk) do not intersect, the mini-
mum of 2δ(v, pk(v)) and 2δ(u, pk(u)) will be δ(u, v). Hence min(d[u, v], d[v, u]) at the
end of the algorithm will be bounded by 2δ(u, v) in this case.

So let us consider the case when v does not belong to ball(y, V, Sk). In this case if
pk(y) belongs to ball(v, V, Sk+1), we again get d[v, u] ≤ 2δ(u, v) because of Lemma 7.7.
So the only situation left is when pk(y) does not belong to ball(v, V, Sk+1). Now
observe that the inequality d[u, v] ≤ δ(u, v)+2δ(v, pk+1(v)) holds due to the execution
of Dijkstra’s algorithm from pk+1(v) in the given graph during the first for loop of
the algorithm. This inequality and the fact that pk(y) /∈ ball(v, V, Sk+1) leads to the
following Inequality.

d[v, u] ≤ δ(u, v) + 2δ(y, pk(y)) + 2δ(v, y) (7.7)

The right hand side of Inequality (7.7) is further bounded by δ(u, v) + 4δ(v, y) since
v /∈ ball(y, V, Sk). Hence

d[v, u] ≤ δ(u, v) + 4δ(v, y). (7.8)

Combining Inequalities (7.6) and (7.8), it follows that just before the fourth loop of
the algorithm,

2d[u, v] + d[v, u] ≤ 2(δ(u, v) + 2δ(u, pk(u))) + (δ(u, v) + 4δ(v, y))

= 3δ(u, v) + 4(δ(u, pk(u)) + δ(v, y))

≤ 3δ(u, v) + 4(δ(u, y) + δ(v, y)) {since y /∈ ball(u, V, Sk+1)}
= 3δ(u, v) + 4δ(u, v) = 7δ(u, v)

Hence min(d[u, v], d[v, u]) is bounded by 7/3δ(u, v). Since the fourth loop of the
algorithm sets d[u, v] to min(d[u, v], d[v, u]), it follows that d[u, v] ≤ 7/3δ(u, v) holds
at the end of the algorithm.

8. Conclusion. In this paper, we presented faster algorithms for all-pairs ap-
proximate shortest paths in weighted undirected graphs. One of the main result
presented in this paper is the generic scheme A for approximate shortest paths. In
addition to achieve faster algorithms for all-pairs approximate shortest paths with
stretch 2, (2,w), 7

3 . It also plays crucial role in designing a new algorithm for stretch 3
which has the best features of the previous two algorithms [18] and [7] simultaneously.
These two algorithms happened to be two degenerate cases of the new algorithm. An-
other important result is an O(n2) time algorithm to construct (2k− 1)-approximate
distance oracles, thus answering the open question of Thorup and Zwick [18] for all
k > 1. Achieving the upper bound of O(n2) on the preprocessing time for approxi-
mate distance oracles is a significant result since it matches the worst case input size



32 S. BASWANA AND T. KAVITHA

- m = Θ(n2). However, it would be interesting to break this quadratic barrier for
all graphs with m = o(n2). Recently some progress has been made in this direction
for unweighted graphs at the expense of small additive error [2]. It would be quite
interesting to know if similar results can be achieved for weighted graphs as well.

Acknowledgments. The authors are grateful to Sandeep Sen and anonymous
referee for their valuable suggestions and comments. The first author is very thankful
to Max-Planck Institute for computer science, Saarbruecken, Germany for providing
an excellent and inspirational research atmosphere. It was during his stay there that
the major part of this research work was done.

REFERENCES

[1] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of
diameter and shortest paths(without matrix multiplication). SIAM Journal on Computing,
28:1167–1181, 1999.

[2] Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay. Distance oracles for
unweighted graphs: Breaking the quadratic barrier with constant additive error. In Pro-
ceedings of 35th International Colloquium on Automata, Languages, and Programming,
volume 5125 of LNCS, pages 609–621. Springer, 2008.

[3] Surender Baswana, Vishrut Goyal, and Sandeep Sen. All-pairs nearly 2-approximate shortest
paths in O(n2polylogn) time. In Proceedings of 22nd Annual Symposium on Theoretical
Aspect of Computer Science, volume 3404 of LNCS, pages 666–679. Springer, 2005.

[4] Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted graphs in
expected O(n2) time. ACM Transactions on Algorithms, 2:557–577, 2006.

[5] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for com-
puting sparse spanners in weighted graphs. Random Structures and Algorithms, 30:532–
563, 2007.

[6] Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. In Pro-
ceedings of 39th Annual ACM Symposium on Theory of Computing, pages 590–598, 2007.

[7] Edith Cohen and Uri Zwick. All-pairs small stretch paths. Journal of Algorithms, 38:335–353,
2001.

[8] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9:251–280, 1990.

[9] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In Introduction to Algorithms.
The MIT Press, 1990.

[10] Dorit Dor, Shay Halperin, and Uri Zwick. All pairs almost shortest paths. Siam Journal on
Computing, 29:1740–1759, 2000.

[11] Michael Elkin. Computing almost shortest paths. ACM Transactions on Algorithms, 1:282–323,
2005.

[12] Paul Erdős. Extremal problems in graph theory. In Theory of Graphs and its Applica-
tions (Proc. Sympos. Smolenice,1963), pages 29–36, Publ. House Czechoslovak Acad. Sci.,
Prague, 1964.

[13] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical
Computer Science, 312:47–74, 2004.

[14] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic construction of approximate dis-
tance oracles and spanners. In Proceedings of 32nd International Colloquium on Automata,
Languagaes and Programming, volume 3580 of LNCS, pages 261–272. Springer, 2005.

[15] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.
Journal of Computer and System Sciences, 51:400–403, 1995.

[16] A. Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pages
605–615, 1999.

[17] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of 13th ACM Sym-
posium on Parallel Algorithms and Architecture, pages 1–10, 2001.

[18] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of Association of Com-
puting Machinery, 52:1–24, 2005.

[19] Raphael Yuster. Efficient algorithms on sets of permutations, dominance, and real-weighted
apsp. In Proceedings of 20th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 950–957, 2009.



APPROXIMATE SHORTEST PATHS 33

[20] Uri Zwick. Exact and approximate distances in graphs - a survey. In Proceedings of the 9th
Annual European Symposium on Algorithms, volume 2161 of LNCS, pages 33–48. Springer,
2001.

[21] Uri Zwick. All-pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of Association of Computing Machinery, 49:289–317, 2002.




