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Chapter 1

Introduction

The continuous increase in processing power and storage capacities enable indi-
viduals, companies, and organizations to collect and store more and more data.
As a result, data analysis has become one of the main challenges nowadays.
Geometric data analysis is a type of data analysis that deals with geometric
data sets. Some data sets such as geographic data sets are geometric by them-
selves, and for some others the data elements can be viewed as points in a
geometric space. Similarity between the data elements is then often measured
by considering the distance between the points. Hence, geometric data analysis
is important in many areas.

Cluster analysis is a fundamental task in data analysis that involves partition-
ing a given data set into subsets called clusters, such that similar elements end
up in the same cluster (see Figure 1.1). Cluster analysis has many applications
in areas such as market research, information retrieval, bio informatics, and
pattern recognition. For example, market researchers use cluster analysis when
working with multivariate data from surveys and test panels, to partition the
general population of consumers into market segments.

The facility-location problem is a closely-related type of problem which is
concerned with finding an optimal placement of a number of facilities that
must serve a given collection of “demands”. In the basic version of the problem,
there is a cost associated with opening each facility and a cost associated with
serving a demand by a certain facility; the latter is usually proportional to
the demand’s distance from the serving facility (which is typically simply the
nearest facility). The goal is now to minimize the total cost of opening facilities
and serving all demands. The facility-location problem can be viewed as a
type of clustering problem, where the demands served by each facility form a
cluster.

In the competitive version of the facility-location problem, different entities
want to place facilities and each entity tries to maximize its market share (that
is, the number of demands served by its facilities). This model has also been
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Figure 1.1: Example of a geometric data set consisting of three clusters (left), and

the approximate political position of the candidates in the US presidential

election, 2016 (right).

studied in social choice and voting theory. In an election, the opinion of the
voters and the candidates can be represented by points in a Euclidean space
where each axis represents an aspect of their political views (see1 Figure 1.1).
Assuming voters vote for the candidate nearest to their opinion, it is then
interesting to see if there is a position that guarantees that a candidate would
win against any (single) opponent. Such a position is called a plurality point;
we will discuss it more extensively later in this chapter.

In this thesis, we consider several geometric variants of cluster analysis and
competitive facility-location problems that can be formulated as optimization
problems where we want to maximize profit or minimize a cost function.
There are different approaches for solving optimization problems. In the field
of machine learning, heuristic approaches are common. These approaches
typically do not give any guarantees on the quality of the computed solutions.
Another approach, which is common in theoretical computer science, is the
algorithmic approach where the performance of an algorithm is measured
based on its computational complexity and guaranteed accuracy. This is the
approach we take in this thesis.

1The idea of the chart is taken from the website http://www.politicalcompass.com/, the
position of the candidates and the voters are not accurate.

http://www.politicalcompass.com/
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1.1 Geometric Clustering

The clustering problem is to partition a given data set into clusters (that is,
subsets) according to some measure of optimality. Clustering problems can be
categorized based on their cluster model. These models include:

• Centroid-based models: In these models, clusters are represented by an
object (the cluster center), not necessarily a member of the data set, that
plays the role of the center of that cluster. The goal is then to find a set of
cluster centers that minimizes some cost function of the clusters.

• Connectivity-based (hierarchical) models: The idea of these models is to
form clusters in a hierarchical way, where the decision which clusters to
merge at each step depends on the distances between them. This results
in a hierarchical structure, often called a dendrogram, where the leaves
of the tree represent the objects in the data set and each internal node
represents the cluster formed by merging the clusters of its children.

• Distribution-based models: In this approach, statistical distributions are
used to model clusters. The underlying assumption is that those data
points are samples from some (unknown) distribution.

• Density-based models: In these models, higher density areas of the data
set are defined as clusters. Usually the objects in the sparse area are
considered as noise or border points.

We are interested in clustering problems where the data set is a set S of points in
Euclidean space, which are usually called geometric clustering problems. Many
geometric clustering problems fall into one of two categories: problems where
the maximum cost of a cluster is given and the goal is to find a clustering
consisting of a minimum number of clusters, and problems where the number
of clusters is given and the goal is to find a clustering of minimum total cost. In
this thesis, we consider basic problems of the latter type.

More formally, we focus on clustering problems of the following type. Let S

be a set of n points in R
d , and let k Ê 2 be a natural number. A k-clustering of S

is a partitioning C of S into at most k clusters. Let Φ(C ) denote the cost of C .
The goal is now to find a clustering C that minimizes Φ(C ). Many well-known
geometric clustering problems are of this type. A well known example is the
k-center problem. In the Euclidean k-center problem, Φ(C ) is the maximum cost
of any of the clusters C ∈ C , where the cost of C is the radius of its smallest
enclosing ball. Hence, in the Euclidean k-center problem we want to cover the
point set S by k congruent balls of minimum radius. The k-center problem,
including the important special case of the 2-center problem, has been studied
extensively (e.g. [5,23,38,49,50,65]). The k-means and k-medians problems
are two other clustering problems that fit in this framework. In the k-means
problem, Φ(C ) is the sum of the squares of the distance of each point to the
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mean of the points in its cluster. And in the k-medians problem, Φ(C ) is the
sum of the distances of each point to the median of the points in its cluster.

The minimum perimeter-sum problem is another clustering problem that fits
in this framework. This problem was already studied by Capoyleas, Rote, and
Woeginger [22] and Arkin, Khuller, and Mitchell [10] in the early 90s. Given a
set S of n points in the plane, we aim at finding a set of at most k closed curves
such that (1) each point is enclosed by a curve and (2) the total length of the
curves is minimized. Note that the shortest curve surrounding a given set of
points is always the convex hull of those points. Hence, we can think of this as
dividing the points into k clusters C and then Φ(C ) is defined as the sum of
perimeters of the convex hulls of the clusters. For this reason, we refer to this
variant as minimizing the sum of perimeters. Below this variant, which is one of
the problems we will focus on in this thesis, will be discussed in more detail.

An important special case of k-clustering problems (which we will also study
in this thesis) is when k = 2. When k = 2, a clustering problem in the aforemen-
tioned framework reduces to the problem of finding a bipartition (C1,C2) of a
point set S. Bipartition problems are not only interesting in their own right, but
also because bipartition algorithms can form the basis of hierarchical clustering
methods. There are many possible variants of the bipartition problem on planar
point sets, which differ in how the cost of a clustering is defined. A variant that
received a lot of attention is the 2-center problem [23,34,38,52,65], where as
stated earlier the cost of a partition (C1,C2) of the given point set S is defined
as the maximum of the radii of the smallest enclosing disks of C1 and C2. Other
cost functions that have been studied include the maximum diameter of the
two point sets [12] and the sum of the diameters [48]; see also the survey by
Agarwal and Sharir [6] for some more variants.

1.1.1 Minimizing the Sum of Perimeters

In Chapters 2 and 3, we study the problem of partitioning a planar point set
into clusters in order to minimize the sum of the perimeters of the clusters,
which was already mentioned briefly above. Next we discuss the previous work
on this problem. We start with the case k = 2 and then discuss the general case.
After discussing the previous work, we summarize our results on the problem.2

As mentioned, the minimum perimeter-sum problem asks for minimizing
the sum of the perimeters of the convex hulls of the clusters. (The perimeter of
CH(Ci ), the convex hull of cluster Ci , is the length of the boundary ∂ CH(Ci ).)
One can also define the size of the convex hull (which determined the cost of
the cluster) in a different way. For the cases k = 2, this class of cost functions

2Throughout the text, we assume that we are working in the real-RAM model, so that it is
possible to compare the costs of two different clusterings exactly (even though this might involve
comparing sums of square roots). Note that this is a standard assumption in computational
geometry.
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was already studied in 1991 by Mitchell and Wynters [59]. They studied
four problem variants: minimize the sum of the perimeters, the maximum
of the perimeters, the sum of the areas, or the maximum of the areas. In
three of the four variants the convex hulls CH(C1) and CH(C2) in an optimal
solution may intersect [59, full version]—only in the minimum perimeter-sum

problem the optimal bipartition is guaranteed to be a so-called line partition,
that is, a solution with disjoint convex hulls. For each of the four variants
they gave an O(n3) algorithm that uses O(n) storage and that computes an
optimal line partition; for all except the minimum area-maximum problem
they also gave an O(n2) algorithm that uses O(n2) storage. Note that (only)
for the minimum perimeter-sum problem the computed solution is an optimal
bipartition. Mitchell and Wynters mentioned the improvement of the space
requirement of the quadratic-time algorithm as an open problem, and they
stated the existence of a subquadratic algorithm for any of the four variants as
the most prominent open problem.

Rokne et al. [62] made progress on the first question, by presenting an
O(n2 logn) algorithm that uses only O(n) space for the line-partition version
of each of the four problems. Devillers and Katz [32] gave algorithms for the
min-max variant of the problem, both for area and perimeter, which run in
O((n +k) log2 n) time. Here k is a parameter that is only known to be in O(n2),
although Devillers and Katz suspected that k is subquadratic. They also gave
linear-time algorithms for these problems when the point set P is in convex
position and given in cyclic order. Segal [64] proved an Ω(n logn) lower bound
for the min-max problems. Very recently, and apparently unaware of some of
the earlier work on these problems, Bae et al. [13] presented an O(n2 logn)

time algorithm for the minimum-perimeter-sum problem and an O(n4 logn)

time algorithm for the minimum-area-sum problem (considering all partitions,
not only line partitions). Despite these efforts, the main question is still open:
is it possible to obtain a subquadratic algorithm for any of the four bipartition
problems based on convex-hull size?

We now turn our attention to the general case, k > 2. Many classical
clustering problems are NP-hard when k is given as part of the input, though
there are some notable exceptions. In 2012, Gibson et al. [43] devised a
polynomial time algorithm for finding k disks, each centered at a point in
S, such that the sum of the radii of the disks is minimized subject to the
constraint that their union must cover S. In their paper, they used a dynamic-
programming approach to get a running time of O(n881). In another work,
Behsaz and Salavatipour [19] studied the objective of minimizing the sum of
diameters subject to the constraint of having at most k clusters. They gave a
polynomial time approximation scheme for points in the plane.

In early 90s, Capoyleas, Rote, and Woeginger [22] presented an algorithm
for the minimum perimeter-sum problem that runs in time ρ(k)nO(k), where
ρ(k) is the number of nonisomorphic planar graphs on k nodes. This yields a
polynomial running time when k is fixed. Arkin et al. [11] studied the same
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problem and gave a similar algorithm. Arkin et al. [10] also conjectured the
problem to be NP-hard when k is part of the input, but neither an NP-hardness
proof nor a polynomial time algorithm has been found so far.

Our results. We improve the previous results for both the general case of the
minimum perimeter-sum problem and its bipartition version.

The bipartition case. We answer the question above, about the existence of a
subquadratic algorithm for the bipartition problems, affirmatively by presenting
a subquadratic algorithm for the minimum perimeter-sum bipartition problem
in the plane.

As mentioned, an optimal solution (C1,C2) to the minimum perimeter-sum
bipartition problem must be a line partition. A straightforward algorithm
would generate all Θ(n2) line partitions and compute the value per(C1)+per(C2)

for each of them. If the latter is done from scratch for each partition, the
resulting algorithm runs in O(n3 logn) time. The algorithms by Mitchell and
Wynters [59] and Rokne et al. [62] improve on this by using the fact that
the different line bipartitions can be generated in an ordered way, such that
subsequent line partitions differ in at most one point. Thus the convex hulls do
not have to be recomputed from scratch, but they can be obtained by updating
the convex hulls of the previous bipartition. To obtain a subquadratic algorithm
a fundamentally new approach is necessary: we need a strategy that generates
a subquadratic number of candidate partitions, instead of considering all line
partitions. We achieve this as follows.

We start by proving that an optimal bipartition (C1,C2) has the following
property: either there is a set of O(1) canonical orientations such that C1 can
be separated from C2 by a line with a canonical orientation, or the distance
between CH(C1) and CH(C2) is Ω(min(per(C1),per(C2)). There are only O(1)

bipartitions of the former type, and finding the best among them is relatively
easy. The bipartitions of the second type are much more challenging. We show
how to employ a compressed quadtree to generate a collection of O(n) canonical
5-gons—intersections of axis-parallel rectangles and canonical halfplanes—such
that the smaller of CH(C1) and CH(C2) (in a bipartition of the second type) is
contained in one of the 5-gons.

It then remains to find the best among the bipartitions of the second type.
Even though the number of such bipartitions is linear, we cannot afford to
compute their perimeters from scratch. We therefore design a data structure to
quickly compute per(S∩Q), where Q is a query canonical 5-gon. Brass et al. [21]
presented such a data structure for the case where Q is an axis-parallel rectangle.
Their structure uses O(n log2 n) space and has O(log5 n) query time; it can be
extended to handle canonical 5-gons as queries, at the cost of increasing the
space usage to O(n log3 n) and the query time to O(log7 n). Our data structure
improves upon this: it has O(log4 n) query time for canonical 5-gons (and
O(log3 n) for rectangles) while using the same amount of space. Using this data
structure to find the best bipartition of the second type we obtain our main
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result: an exact algorithm for the minimum perimeter-sum bipartition problem
that runs in O(n log4 n) time. As our model of computation we use the real RAM
(with the capability of taking square roots) so that we can compute the exact
perimeter of a convex polygon—this is necessary to compare the costs of two
competing clusterings. We furthermore make the (standard) assumption that
the model of computation allows us to compute a compressed quadtree of n

points in O(n logn) time; see footnote 3 in Section 2.1.2.

Besides our exact algorithm, we present a linear-time (1+ε)-approximation
algorithm. Its running time is O(n +T (1/ε2)) = O(n + 1/ε2 · log4(1/ε)), where
T (1/ε2) is the running time of an exact algorithm on an instance of size 1/ε2.

The general case. For the minimum perimeter-sum problem, we present an
algorithm that is polynomial in both n and k (Theorem 3.25). In particular,
this refutes the conjectured hardness by Arkin et al. [10].

Our algorithm for the minimum perimeter-sum problem shares some simi-
larities with the work of Gibson et al. [43], in which a dynamic-programming
approach was used to solve the minimum radius sum problem. One main
difference is that the running time complexity they obtain is O(n881), whereas
our approach works in O(n27) time. Their technique is to divide a given instance
(S,k) of the minimum radius sum problem into subproblems, where S is the
set of points to be clustered and k is a constraint on the number of clusters we
can use. The problem (S,k) is solvable if we have a solution to all subproblems.
However, the number of subproblems is exponential. To get a polynomial time
algorithm, they showed that a solution can be found after considering only a
polynomial number of subproblems.

We also use a dynamic-programming approach for our problem, although
we need new techniques. Observe that the number of candidate clusters for
the minimum radius sum problem is only O(n2) (as each disk is determined
by two points in S, one determining the center and the other determining the
radius). In contrast, our problem has an exponential number of candidate
clusters (dictated by all subsets of S). We define subproblems based on boxes,
which are rectangles that cover some portion of the plane and some number
of input points from S. Our key observation is that there is some separator of
each box (i.e., a vertical line segment or a horizontal line segment) that splits
the box into two strictly smaller boxes such that an optimal solution only has a
constant number of line segments that intersect this separator (in fact, we give
a bound of two on the number of such intersecting line segments).

A dynamic-programming approach then naturally follows: we simply guess
the position of such a separator (for which we argue there are O(n) choices),
and then guess which segments crossing this separator belong to an optimal
solution. We first obtain solutions for smaller boxes, and then glue together
solutions for smaller boxes to obtain solutions for larger boxes.
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1.1.2 A Generic Method for Finding Coresets for Clustering
Problems

After studying exact algorithms for the minimum perimeter-sum problem, we
turn our attention in Chapter 4 to approximate solutions for a rather general
class of cost functions, which we call regular costs functions.

Our results. Our main result is a general method to find an ε-coreset for
such clustering problems. Given a set of points S, a cost function Φ, the
number of clusters k, a value ε > 0, an ε-coreset is a set R ⊆ S such that
Φ(C ′

opt) Ê (1−ε) ·Φ(Copt), where C
′
opt is an optimal clustering for R and Copt is

an optimal clustering for S.

We find an ε-coreset of size O(k
(

f (k)/ε
)d

) for a set of points S in R
d , where

f (k) is a function that only depends on the number of clusters. The algorithm
runs in linear time for constant k, in the appropriate model of computation.
This is similar to the approach taken by Har-Peled and Mazumdar [47], who
solve the approximate k-means and k-median problem efficiently by generating
a coreset of size O((k/εd ) · logn).

Our method applies to a large class of clustering problems including the
k-center problem in any Lp -metric, variants of the k-center problem where we
want to minimize the sum (rather than maximum) of the cluster radii, and the
2-dimensional problem where we want to minimize the maximum or sum of
the perimeters of the clusters.

1.2 Competitive Facility Location

As mentioned earlier, facility-location problems are closely related to (centroid-
based) clustering problems. Voronoi games and plurality points are two related
competitive facility-location problems that we consider in this thesis.

Voronoi games. Voronoi games, as introduced by Ahn et al. [7], can be viewed
as competitive facility-location problems in which two players P and Q want
to place their facilities in order to maximize their market area. The Voronoi
game of Ahn et al. is played in a bounded region R ⊂R

2, and the facilities of the
players are modeled as points in this region. Each player gets the same number,
k, of facilities, which they have to place alternatingly. The market area of P

(and similarly of Q) is now given by the area of the region of all points q ∈ R

whose closest facility was placed by P , that is, it is the total area of the Voronoi
cells of P ’s facilities in the Voronoi diagram of the facilities of P and Q. Ahn et

al. proved that for k > 1 and when the region R is a circle or a segment, the
second player can win the game by a payoff of 1/2+ε, for some ε> 0, where
the first player can ensure ε is arbitrarily small.

The one-round Voronoi game introduced by Cheong et al. [26] is similar to
the Voronoi game of Ahn et al., except that the first player must first place all
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his k facilities, after which the second player places all her k facilities. They
considered the problem where R is a square, and they showed that when k is
large enough the first player can always win a fraction 1/2+α of the area of R

for some α> 0. Fekete and Meijer [40] considered the problem on a rectangle R

of aspect ratio ρ É 1. They showed that the first player wins more than half the
area of R, unless k Ê 3 and ρ >

p
2/n, or k = 2 and ρ >

p
3/2. They also showed

that if R is a polygon with holes, then computing the locations of the facilities
for the second player that maximize the area she wins, against a given set of
facilities of the first player is NP-hard.

One-round discrete Voronoi games. In this thesis, we are interested in discrete

(Euclidean) one-round Voronoi games, where the players do not compete for
area but for a discrete set of points. That is, instead of the region R one is given
a set V of n points in a geometric space, and a point v ∈V is won by the player
owning the facility closest to v . (Another discrete variant of Voronoi games
is played on graphs [66, 68] but we restrict our attention to the geometric
variant.) More formally, the problem we study is defined as follows.

Let V be a multiset of n points in R
d , which we call voters from now on,

and let k Ê 1 and ℓ Ê 1 be two integers. The one-round discrete Voronoi
game defined by the triple 〈V ,K ,ℓ〉 is a single-turn game played between two
players P and Q. First, player P places a set P of k points in R

d , then player
Q places a set Q of ℓ points in R

d . (These points may coincide with the
voters in V .) We call the set P the strategy of P and the set Q the strategy

of Q. Player P wins a voter v ∈V if dist(v,P ) É dist(v,Q), where dist(v,P ) and
dist(v,Q) denote the minimum distance between a voter v and the sets P and
Q, respectively. Note that this definition favors player P , since in case of a tie a
voter is won by P . We now define V [P <Q] := {v ∈V : dist(v,P ) É dist(v,Q)} to
be the multiset of voters won by player P when he uses strategy P and player
Q uses strategy Q. Player P wins the game 〈V ,K ,ℓ〉 if he wins at least half the
voters in V , that is, when

∣∣V [P <Q]
∣∣Ê n/2; otherwise Q wins the game. Here∣∣V [P <Q]

∣∣ denotes the size of the multiset V [P <Q] (counting multiplicities).
We now define Γk,ℓ(V ) as the maximum number of voters that can be won by
player P against an optimal opponent:

Γk,ℓ(V ) := max
P⊂Rd , |P |=k

min
Q⊂Rd , |Q|=ℓ

∣∣V [P <Q]
∣∣.

For a given multiset V of voters, we want to decide if3 Γk,ℓ(V ) Ê n/2. In other
words, we are interested in determining for a given game 〈V ,K ,ℓ〉 if P has
a winning strategy, which is a set of k points such that P wins the game no
matter where Q places her points.

An important special case, which has already been studied in spatial voting
theory for a long time, is when k = ℓ= 1 [57]. Here the coordinates of a point in

3One can also require that Γk,ℓ(V ) > n/2; with some small modifications, all the results in this
thesis can be applied to the case with strict inequality as well.
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V represent the preference of the voter on certain topics, and the point played
by Q represents a certain proposal. If the point played by P wins against all
possible points played by Q, then the P ’s proposal will win the vote against any
other proposal. Note that in the problem definition we gave above, voters at
equal distance from P and Q are won by P , and P has to win at least half the
voters. This is the definition typically used in papers of Voronoi games [14–17].
In voting theory other variants are studied as well, for instance where points at
equal distance to P and Q are not won by either of them, and P wins the game
if he wins more voters than Q; see the paper by McKelvey and Wendell [57]
who use the term majority points for the former variant and the term plurality

points for the latter variant. Next we discuss the latter variant in more detail.

Plurality points. In social choice and voting theory, the concept of plurality
point is defined as follows. Let V be a set of n voters and let C be a space
of possible choices. Each voter v ∈ V has a utility function indicating how
much v likes a certain choice, i.e. the utility function of v determines for any
two choices from C which one is preferred by v or whether both choices are
equally preferable. A (weak) plurality point is now defined as a choice p ∈C

such that no alternative p ′ ∈C is preferred by more voters.
When there are different issues on which the voters can decide, then the

space C becomes a multi-dimensional space. This has led to the study of
plurality points in the setting where C =R

d and each voter has an ideal choice
which is a point in R

d . To simplify the presentation, from now on we will not
distinguish the voters from their ideal choice and so we view each voter v ∈V

as being a point in R
d , the so-called spatial model in voting theory [57]. Thus

the utility of a point p ∈R
d for a voter v is inversely proportional to dist(v, p),

the distance from v to p under a given distance function, and v prefers a
point p over a point p ′ if dist(v, p) < dist(v, p ′). Now a point p ∈R

d is a plurality
point if for any point p ′ ∈ R

d we have |{v ∈ V : dist(v, p) < dist(v, p ′)}| Ê |{v ∈ V :

dist(v, p ′) < dist(v, p)}|.
Plurality points and related concepts were already studied in the 1970s in

voting theory [37,44,45,57,61,70]. McKelvey and Wendell [57] define three
different notions of plurality points—majority Condorcet, plurality Condorcet,
and majority core—and for each notion they define a weak and a strong variant.
Under certain assumptions on the utility functions, which are satisfied for the
L2 norm, the three notions are equivalent. Thus for the L2 norm we only have
two variants: weak plurality points (which should be at least as popular as any
alternative) and strong plurality points (which should be strictly more popular
than any alternative). We focus on weak plurality points, since they are more
challenging from an algorithmic point of view. From now on, whenever we
speak of plurality points we refer to weak plurality points.

Plurality points represent a stable choice with respect to the opinions of the
voters. One can also look at the concept from the viewpoint of competitive
facility location. Here one player wants to place a facility in the space C such
that she always wins at least as many clients (voters) as her competitor, no
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matter where the competitor places his facility. Competitive facility-location
problems have been studied widely in a discrete setting, where the clients and
the possible locations for the facilities are nodes in a network; see the survey
by Kress and Pesch [54]. We focus on the geometric setting.

Previous work on discrete Voronoi games and plurality points. Besides
algorithmic problems concerning the one-round discrete Voronoi game one can
also consider combinatorial problems. In particular, one can ask for bounds on
Γk,ℓ(V ) as a function of n, k, and ℓ. It is known that for any set V in R

2 and
k = ℓ= 1 we have ⌊n/3⌋ É Γ1,1(V ) É ⌈n/2⌉. This result is based on known bounds
for maximum Tukey depth, where the lower bound can be proven using Helly’s
theorem. It is also known [17] that there is a constant c such that k = cℓ points
suffice for P to win the game, that is, Γcℓ,ℓ(V ) Ê n/2 for any V .

In this thesis, we focus on the algorithmic problem of computing Γk,ℓ(V ) for
given V , k, and ℓ. Some existing algorithmic results are for the setting where
the players already placed all but one of their points, and one wants to compute
the best locations for the last point of P and of Q. Banik et al. [16] gave
algorithms that find the best location for P in O(n8) time and for Q in O(n2)

time. For the two-round variant of the problem, with k = ℓ = 2, polynomial
algorithms for finding the optimal strategies of both players are also known
[15].

Banik et al. [14] studied the problem of computing Γk,ℓ(V ) in R
1. They

considered the case of arbitrarily large k and ℓ, but where k = ℓ (and V is a set
instead of a multiset). For this case they showed that depending on the set V

either P or Q can win the game, and they presented an algorithm to compute
Γk,ℓ(V ) in time O(nk−λk ), where 0 < λk < 1 is a constant dependent only on k.
This raises the question: is the problem NP-hard when k is part of the input?

When the L2 norm defines the distance between voters and potential plural-
ity points, then plurality points can be defined in terms of Tukey depth [69].
The Tukey depth of a point p ∈ R

d with respect to a given set V of n points is
defined as the minimum number of points from V lying in any closed halfspace
containing p. A point of maximum Tukey depth is called a Tukey median. It is
known that for any set V , the depth of the Tukey median is at least ⌈n/(d +1)⌉
and at most ⌈n/2⌉. Wu et al. [72] showed that a point p ∈ R

d is a plurality
point in the L2 norm if and only if any open halfspace with p on its boundary
contains at most n/2 voters. This is equivalent to saying that the Tukey depth
of p is ⌈n/2⌉. They used this observation to present an algorithm that decides
in O(nd−1 logn) time if a plurality point exists for a given set V of n voters
in R

d . A slightly better result can be obtained using a randomized algorithm
by Chan [24], which computes a Tukey median (together with its depth) in
O(n logn +nd−1) time.

As is clear from the relation to Tukey depth, a plurality point in the L2 norm
does not always exist. In fact, the set V of voters must, in a certain sense, be
highly symmetric to admit a plurality point. For example, when the number of
voters is even, any line containing a plurality point p must contain the same
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number of voters on either side of p. This led Lin et al. [56] to study the
minimum-cost plurality problem. Here each voter is assigned a cost, and the
goal is to find a minimum-cost subset W ⊂V of voters such that if we ignore
the voters in W —that is, if we consider V \ W —then a plurality point exists.
Lin et al. gave an O(n5 logn) algorithm for the planar version of the problem;
whether the problem in R

3 can be solved in polynomial time was left as an
open problem.

In the voting-theory literature plurality points in the L1 norm have also
been considered [57, 70, 71]. One advantage of the L1 norm is that in R

2 a
plurality point always exists and can easily be found in O(n) time: any point
(px , py ) such that px and py are medians of the multisets of x-coordinates and
y-coordinates of the voters in V , respectively, is a plurality point. Unfortunately,
this is no longer true when d > 2 [57, 70]. We are not aware of any existing
algorithms for deciding whether a given set V in R

d admits a plurality point in
the L1 norm.

Our results. We improved the existing results for both plurality point and
discrete Voronoi game problems.

Plurality points. Currently the fastest algorithm for deciding whether a plurality
point exists runs in O(n logn +nd−1) randomized time and actually computes a
Tukey median. However, in the case of plurality points we are only interested
in the Tukey median if its depth is the maximum possible, namely ⌈n/2⌉. Wu et

al. [72] exploited this to obtain a deterministic algorithm, but their running
time is O(nd−1 logn). This raises the question: can we decide whether a plurality
point exists faster than by computing the depth of the Tukey median? We show
that this is indeed possible: we present a deterministic algorithm that decides
if a plurality point exists (and, if so, computes one) in O(n logn) time.4

We then turn our attention to the minimum-cost plurality problem. We solve
the open problem of Lin et al. [56] by presenting an algorithm that solves the
problem in O(n4) time. Note that this even improves on the O(n5 logn) running
time for the planar case. We also consider the following problem for unit-cost
voters in R

d : given a parameter k, find a minimum-cost set W of size at most k

such that V \ W admits a plurality point, if such a set exists. Our algorithm
for this case runs in O(k3n logn) time when d = 2 and in O(k5 logk +k3n logn)

expected time when d > 2.
Ignoring some voters in order to have a plurality point is undesirable when

almost all voters must be ignored. Instead of ignoring voters we can work
with plurality balls, as defined next. The idea is that if two points p and p ′ are
very similar, then voters do not care much whether p or p ′ is chosen. Thus we
define a ball b(p,r ) centered at p and of radius r to be a plurality ball if the

4 Here and in the other bounds stated in the introduction we assume the dimension d is a fixed
constant, to make it easier to compare our results to earlier work. In the theorems stated later in
Chapter 5, we also analyze the dependency on d .
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following holds: there is no point p ′ outside b(p,r ) that is preferred by more
voters than p. Note that a plurality point is a plurality ball of zero radius. We
show that in the plane, the minimum-radius plurality ball can be computed in
O(T (n)) time, where T (n) is the time needed to compute the ⌊n/2⌋-level in an
arrangement of n lines.

Recall that the different dimensions represent different issues on which
the voters can express their preferences. It is then natural to allow the voters
to give different weights to these issues. This leads us to introduce what we
call the personalized L1 norm. Here each voter v ∈ V has a preference vector

〈w1(v), . . . , wd (v)〉 of non-negative weights that specifies the relative importance
of the various issues. The distance of a point p ∈R

d to a voter v is now defined
as distw(v, p) :=

∑d
i=1

wi (v)·|xi (v)−xi (p)|, where xi (·) denotes the i -th coordinate

of a point. We present an algorithm that decides in O(nd−1) time whether a set
V of n voters admits a plurality point with respect to the personalized L1 norm.
For the special case when all preference vectors are identical—this case reduces
to the normal case of using the L1 norm—the running time improves to O(n).

Voronoi games. We present an algorithm that computes Γk,ℓ(V ) in R
1 in polyno-

mial time. Our algorithm works when V is a multiset, and it does not require k

and ℓ to be equal. Our algorithm computes Γk,ℓ(V ) and finds a strategy for P

that wins this many voters in time O(kn4). The algorithm can be extended to
the case when the voters are weighted, at a slight increase in running time.

The algorithm by Banik et al. [14] discretizes the problem, by defining a
finite set of potential locations for P to place his points. However, to ensure an
optimal strategy for P , the set of potential locations has exponential size. To
overcome this problem we need several new ideas. First of all, we essentially
partition the possible strategies into various classes such that for each class
we can anticipate the behavior of the optimal strategy for Q. To compute
the best strategy within a certain class we use dynamic programming, in a
non-standard (and, unfortunately, rather complicated) way. The subproblems
in our dynamic-program are for smaller points sets and smaller values of k and
ℓ (actually we will need several other parameters) where the goal of P will
be to push his rightmost point as far to the right as possible to win a certain
number of points. One complication in the dynamic program is that it is unclear
which small subproblems I ′ can be used to solve a given subproblem I . The
opposite direction—determining for I ′ which larger subproblems I may use
I ′ in their solution—is easier however, so we use a sweep approach: when
the solution to some I ′ has been determined, we update the solution to larger
subproblems I that can use I ′.

After establishing that we can compute Γk,ℓ(V ) in polynomial time in R
1,

we turn to the higher-dimensional problem. We show that deciding if P

has a winning strategy is Σ
P
2 -hard in R

2. We also show that for fixed k and
ℓ this problem can be solved in polynomial time. Our solution combines
algebraic methods [18] with a previously known result that one can construct
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a polynomial-size boolean formula for the majority function using a special
kind of sorting network, called the AKS sorting network [8]. The latter result
is essential to avoid the appearance of n in the exponent. As a byproduct of
the algebraic method, we show that the problem is contained in the complexity
class ∃∀R; see [33] for more information on this complexity class.

1.3 Publications and Outline of the Thesis

Chapter 2 describes the results for the bipartion case of the minimum perimeter-
sum problem and is based on the following publication

Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and
Ali D. Mehrabi. Minimum perimeter-sum partitions in the plane. In
Proceedings of the 33rd International Symposium on Computational

Geometry, pages 4:1–4:15, 2017

Chapter 3 describes the results for the generic case of the minimum perimeter-
sum problem and is based on (parts of)

Mikkel Abrahamsen, Anna Adamaszek, Karl Bringmann, Vincent
Cohen-Addad, Mehran Mehr, Eva Rotenberg, Alan Roytman, and
Mikkel Thorup. Fast fencing. In Proceedings of the 50th Annual ACM

Symposium on Theory of Computing, pages 564–573, 2018

Chapter 4 describes the results for finding coresets for clustering problems and
is based on

Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and
Ali D. Mehrabi. A generic method for finding coresets for clustering
problems. In Abstracts of European Workshop on Computational

Geometry, pages 249–252, 2017

This chapter also includes two lemmas from the following joint work

Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr,
and Ali D. Mehrabi. Range-clustering queries. In Proceedings of the

33rd International Symposium on Computational Geometry, pages
5:1–5:16, 2017

Chapter 5 describes the results for plurality points and is based on

Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster
algorithms for computing plurality points. ACM Transactions on

Algorithms, 14(3):36:1–36:23, 2018

Chapter 6 describes the results for the Voronoi game and is based on

Mark de Berg, Sándor Kisfaludi-Bak, and Mehran Mehr. On one-
round discrete voronoi games. Manuscript, 2018



Chapter 2

Minimizing the Sum of
Perimeters: The Bipartition
Case

In this chapter, we consider the bipartition version of the minimum perimeter-
sum problem. Here, a set P of points in the plane is given and the goal is to
find a bipartition (P1,P2) of the set P such that the sum of perimeters of the
convex hulls CH(P1) and CH(P2), i.e. per(CH(P1))+per(CH(P2)), is minimized.
We show that a subquadratic algorithm for this problem exists by presenting
an algorithm that solves this problem in O(n log4 n) time. Besides our exact
algorithm, we present a linear-time (1+ε)-approximation algorithm. Its running
time is O(n+T (1/ε2)) =O(n+1/ε2 · log4(1/ε)), where T (1/ε2) is the running time
of an exact algorithm on an instance of size 1/ε2.

2.1 The Exact Algorithm

In this section we present an exact algorithm for the minimum-perimeter-sum
partition problem. We first prove a separation property that an optimal solution
must satisfy, and then we show how to use this property to develop a fast
algorithm.

Let P be the set of n points in the plane for which we want to solve the
minimum-perimeter-sum partition problem. An optimal partition (P1,P2) of P

has the following two basic properties: P1 and P2 are non-empty, and the
convex hulls CH(P1) and CH(P2) are disjoint [59, full version]. In the remainder,
whenever we talk about a partition of P , we refer to a partition with these two
properties.
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Figure 2.1: The angles α and β.

2.1.1 Geometric Properties of an Optimal Partition

Consider a partition (P1,P2) of P . Define P1 := CH(P1) and P2 := CH(P2) to be
the convex hulls of P1 and P2, respectively, and let ℓ1 and ℓ2 be the two inner
common tangents of P1 and P2. The lines ℓ1 and ℓ2 define four wedges: one
containing P1, one containing P2, and two empty wedges. We call the opening
angle of the empty wedges the separation angle of P1 and P2. Furthermore, we
call the distance between P1 and P2 the separation distance of P1 and P2.

Theorem 2.1. Let P be a set of n points in the plane, and let (P1,P2) be a partition

of P that minimizes per(P1)+per(P2). Then the separation angle of P1 and P2 is

at least π/6 or the separation distance is at least csep ·min(per(P1),per(P2)), where

csep := 1/250.

The remainder of this section is devoted to proving Theorem 2.1. To this
end let (P1,P2) be a partition of P that minimizes per(P1)+per(P2). Let ℓ3 and
ℓ4 be the outer common tangents of P1 and P2. We define α to be the angle
between ℓ3 and ℓ4. More precisely, if ℓ3 and ℓ4 are parallel we define α := 0,
otherwise we define α as the opening angle of the wedge defined by ℓ3 and ℓ4

containing P1 and P2. We denote the separation angle of P1 and P2 by β; see
Fig. 2.1.

The idea of the proof is as follows. Suppose that the separation distance
and the separation angle β are both relatively small. Then the region A in
between P1 and P2 and bounded from the bottom by ℓ3 and from the top
by ℓ4 is relatively narrow. But then the left and right parts of ∂ A (which are
contained in ∂P1 and ∂P2) would be longer than the bottom and top parts of
∂ A (which are contained in ℓ3 and ℓ4), thus contradicting the assumption that
(P1,P2) is an optimal partition. To make this idea precise, we first prove that
if the separation angle β is small, then the angle α between ℓ3 and ℓ4 must
be large. Second, we show that there is a value f (α) such that the distance
between P1 and P2 is at least f (α) ·min(per(P1),per(P2)). Finally we argue that
this implies that if the separation angle is smaller than π/6, then (to avoid
the contradiction mentioned above) the separation distance must be relatively
large. Next we present our proof in detail.
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Let ci j be the intersection point between ℓi and ℓ j , where i < j . If ℓ3 and ℓ4

are parallel, we choose c34 as a point at infinity on ℓ3. Assume without loss of
generality that neither ℓ1 nor ℓ2 separate P1 from c34, and that ℓ3 is the outer
common tangent such that P1 and P2 are to the left of ℓ3 when traversing ℓ3

from c34 to an intersection point in ℓ3 ∩P1. Assume furthermore that c13 is
closer to c34 than c23.

For two lines, rays, or segments r1,r2, let ∠(r1,r2) be the angle we need
to rotate r1 in a counterclockwise direction until r1 and r2 are parallel. For
three points a,b,c, let ∠(a,b,c) :=∠(ba,bc). For i = 1,2 and j = 1,2,3,4, let si j

be a point in Pi ∩ℓ j . Let ∂P i denote the boundary of P i and per(P i ) the
perimeter of P i . Furthermore, let ∂P i (x, y) denote the portion of ∂P i from
x ∈ ∂P i counterclockwise to y ∈ ∂P i , and length(∂P i (x, y)) denote the length
of ∂P i (x, y).

Lemma 2.2. Let p0 and q be points and v be a unit vector. Let p(t ) := p0 +
t · v and d(t ) := |p(t )q| and assume that p(t ) 6= q for all t ∈ R. Then d ′(t ) =
cos(∠(q, p(t ), p(t )+v)) if the points q, p(t ), p(t )+v make a left-turn and d ′(t ) =
−cos(∠(q, p(t ), p(t )+v)) otherwise.1

Proof. We prove the lemma for an arbitrary value t = t0. By reparameterizing
p, we may assume that t0 = 0. Furthermore, by changing the coordinate system,
we can without loss of generality assume that p0 = (0,0) and q = (x,0) for some
value x > 0.

Let φ :=∠((x,0), (0,0),v). Assume that v has positive y-coordinate—the case
that v has negative y-coordinate can be handled analogously. We have proven
the lemma if we manage to show that d ′(0) = −cosφ. Note that since v has
positive y-coordinate, we have p(t ) = (t cosφ, t sinφ) for every t ∈R. Hence

d(t ) =
√(

t cosφ−x
)2 + t 2 sin2φ.

and

d ′(t ) =
t −x cosφ

√
t 2 −2t x cosφ+x2

.

Evaluating in t = 0, we get

d ′(0) = −
x cosφ

|x|
= −cosφ,

where the last equality follows since x > 0.

Lemma 2.3. We have α+3βÊπ.

1Note that ∠(q, p(t ), p(t )+v) =∠(q, p(t ), p(t )−v) by the definition of ∠(·, ·, ·) which is the reason
that there are two cases in the lemma.
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Proof. Since per(P1)+per(P2) is minimum, we know that

length(∂P1(s13, s14))+ length(∂P2(s24, s23)) É Ψ,

where Ψ := |s13s23|+ |s14s24|. Furthermore, we know that s11, s12 ∈ ∂P1(s13, s14)

and s21, s22 ∈ ∂P1(s24, s23). We thus have

length(∂P1(s13, s14))+ length(∂P2(s24, s23)) Ê Φ,

where Φ := |s13s11|+|s11s12|+|s12s14|+|s24s21|+|s21s22|+|s22s23|. Hence, we must
have

Φ É Ψ. (2.1)

Now assume that α+3β<π. We will show that this assumption, together with
inequality (2.1), leads to a contradiction, thus proving the lemma. To this end
we will argue that if (2.1) holds, then there exist points s′

i j
for i = 1,2 and

j = 1,2,3,4, where s′
i j

is a point on ℓ j , with the following proporties:

(i) Φ
′ ÉΨ

′, where Φ
′ and Ψ

′ are defined as Φ and Ψ when each point si j is
replaced by s′

i j
,

(ii) s′21 or s′22 coincides with c12, and

(iii) s′11 or s′12 coincides with c12.

Note that the point s′
i j

is not required to be contained in Pi . In particular, the

points s′13 and s′14 will in some cases be on the other side of c34 than the points
s13 and s14.

To finish the proof it then suffices to observe that properties (i)–(iii) together
contradict the triangle inequality.

To prove the existence of the points s′
i j

with the claimed properties, we

initially define s′
i j

:= si j , so that property (i) is satisfied. Then we will move

the points s′
i j

(where each s′
i j

moves on ℓ j ) such that property (i) is preserved

throughout the movements and properties (ii) and (iii) are satisfied at the end
of the movements.

We first show how to create a situation where (ii) holds, and (i) still holds
as well. Let γi j :=∠(ℓi ,ℓ j ). We consider two cases.

• Case (A): γ32 <π−β.

We observe that moving s′23 along ℓ3 away from s′13 increases Ψ′ more than
it increases Φ′, so property (i) is preserved by such a movement. Note that
∠(xs′23,ℓ2) Ê γ32 for any x ∈ s′22c12. However, by moving s′23 sufficiently far
away we can make ∠(xs′23,ℓ2) arbitrarily close to γ32. We therefore move
s′23 so far away that ∠(xs′23,ℓ2) < π−β for any point x ∈ s′22c12. We now
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δ

> δ/2

Figure 2.2: Illustration for Lemma 2.4. Φ is the total length of the four segments t1m,

t2m, b1m, b2m, and Ψ is the total length of the two fat segments.

consider what happens as we let a point x move at unit speed from s′22

towards c12. To be more precise, let T := |s′22c12|, let v be the unit vector
with direction from c23 to c12, and for any t ∈ [0,T ] define x(t ) := s′22 + t ·v.
Note that x(0) = s′22 and x(T ) = c12.

Let a(t ) := |x(t )s′23| and b(t ) := |x(t )s′21|. Lemma 2.2 gives that

a′(t ) =−cos(∠(x(t )s′23,ℓ2)) and b′(t ) = cos(∠(ℓ2, x(t )s′21)).

Since ∠(x(t )s′23,ℓ2) <π−β for any value t ∈ [0,T ], we get a′(t ) <−cos(π−
β). Furthermore, we have ∠(ℓ2, x(t )s′21) Êπ−β and hence b′(t ) É cos(π−β).
Therefore, a′(t )+b′(t ) < 0 for any t and we conclude that a(T )+b(T ) É
a(0)+b(0). This is the same as |s′21c12|+ |c12s′23| É |s′21s′22|+ |s′22s′23|, so we
now move s′22 to c12 and are ensured that (i) still holds.

• Case (B): γ32 Êπ−β.

Using our assumption α+ 3β < π we get γ32 > α+ 2β. Note that γ14 =
π−γ32 +α+β. Hence, γ14 <π−β. By first moving s′24 away from s′14 and
then s′21 towards c12, we can in a similar way as in Case (A) argue that
we can reach a situation where (i) still holds and s′21 coincides with c12.

We conclude that in both cases we can ensure (ii) without violating (i).

Since γ13 É γ14 and γ42 É γ32, we likewise have γ13 < π−β or γ42 < π−β.
Hence, by first moving s′13 or s′14 and since then s′11 or s′12, we can in a similar
way reach a situation where s′11 or s′12 coincides with c12 without violating (i),
thus ensuring (iii) and finishing the proof.

The following lemma is illustrated in Fig. 2.2.
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Lemma 2.4. Let x be a point and r1 and r2 be two rays starting at x such that

∠(r1,r2) = δ, and assume that δ É π. Let b1,b2 ∈ r1 and t1, t2 ∈ r2 be such that

b1 ∈ xb2 and t1 ∈ xt2, and let m be a point in the wedge bounded by r1 and r2.

Then

Φ−Ψ Ê
(1−cos(δ/2)) · sin(δ/2)

1+ sin(δ/2)
· (|b1m|+ |t1m|),

where Φ := |b1m|+ |t1m|+ |b2m|+ |t2m| and Ψ := |b1b2|+ |t1t2|.

Proof. First note that

|b1m|+ |b2m| Ê |b1b2| (2.2)

and

|t1m|+ |t2m| Ê |t1t2|. (2.3)

Let r3 be the angular bisector of r1 and r2. Assume without loss of generality
that m lies in the wedge defined by r1 and r3. Then ∠(m, t1, t2) Ê δ/2.

We now consider two cases.

• Case (A): |t1m| Ê sin(δ/2)
1+sin(δ/2)

· (|b1m|+ |t1m|).

Our first step is to prove that

|t1m|+ |t2m|− |t1t2| Ê (1−cos(δ/2)) · |t1m|. (2.4)

Let p be the orthogonal projection of m on r2. Note that |t2m| Ê |t2p|.
Consider first the case that p is on the same side of t1 as x. In this case
|t2p| Ê |t1t2| and therefore

|t1m|+ |t2m|− |t1t2| Ê |t1m| Ê (1−cos(δ/2)) · |t1m|,

which proves (2.4).

Assume now that p is on the same side of t1 as t2. In this case, we have
∠(m, t1, t2) É π/2 and thus |t1p| = cos(∠(m, t1, t2)) · |t1m| É cos(δ/2) · |t1m|.
Hence we have

|t1m|+ |t2m|− |t1t2| Ê |t1m|+ |t2p|− (|t1p|+ |t2p|)
Ê (1−cos(δ/2)) · |t1m|,

and we have proved (2.4).

We now have

Φ−Ψ = |b1m|+ |t1m|+ |b2m|+ |t2m|− |b1b2|− |t1t2|
Ê |b1m|+ |b2m|− |b1b2|+ (1−cos(δ/2)) · |t1m| by (2.4)

Ê (1−cos(δ/2)) · sin(δ/2)
1+sin(δ/2)

· (|b1m|+ |t1m|) by (2.2)

where the last step uses that we are in Case (A). Thus the lemma holds in
Case (A).
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• Case (B): |t1m| < sin(δ/2)
1+sin(δ/2)

· (|b1m|+ |t1m|).

The condition for this case can be rewritten as

|b1m| >
1

1+ sinδ/2
· (|b1m|+ |t1m|). (2.5)

To prove the lemma in this case we first argue that ∠(b2,b1,m) >π/2. To
this end, assume for a contradiction that ∠(b2,b1,m) Éπ/2. It is easy to
verify that for a given length of t1m (and assuming ∠(b2,b1,m) É π/2),
the fraction |b1m|/(|b1m| + |t1m|) is maximized when segment t1m is
perpendicular to r2, and m ∈ r3, and b1 = x. But then

|b1m|
|b1m|+ |t1m|

É
1

1+ sinδ/2
,

which would contradict (2.5). Thus we indeed have ∠(b2,b1,m) > π/2.
Hence, |b2m| Ê |b1b2|, and so |b1m|+ |b2m|− |b1b2| Ê |b1m|. We can now
derive

Φ−Ψ = |b1m|+ |t1m|+ |b2m|+ |t2m|− |b1b2|− |t1t2|
Ê |b1m|+ |t1m|+ |t2m|− |t1t2| by the above

Ê 1
1+sinδ/2

·
(
|b1m|+ |t1m|

)
by (2.3) and (2.5)

Ê
(

sin(δ/2) · (1−cos(δ/2))
)
· 1

1+sinδ/2
·
(
|b1m|+ |t1m|

)

Thus the lemma also holds in Case (B).

Let dist(P1,P2) := min(p,q)∈P1×P2
|pq| denote the separation distance be-

tween P1 and P2. Recall that α denotes the angle between the two common
outer tangents of P1 and P2; see Fig. 2.1.

Lemma 2.5. We have

dist(P1,P2) Ê f (α) ·per(P1), (2.6)

where f : [0,π] −→R is the increasing function

f (ϕ) :=
sin(ϕ/4)

1+ sin(ϕ/4)
·

sin(ϕ/2)

1+ sin(ϕ/2)
·

1−cos(ϕ/4)

2
.

Proof. The statement is trivial if α= 0 so assume α> 0. Let p ∈P1 and q ∈P2

be points so that |pq | = dist(P1,P2) and assume without loss of generality that
pq is a horizontal segment with p being its left endpoint. Let ℓvert

1 and ℓvert
2

be vertical lines containing p and q, respectively. Note that P1 is in the closed
half-plane to the left of ℓvert

1 and P2 is in the closed half-plane to the right of
ℓvert

2 . Recall that si j denotes a point on ∂P i ∩ℓ j .

Claim: There exist two convex polygons P
′
1 and P

′
2 satisfying the following

conditions:
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Figure 2.3: Illustration for the proof of Lemma 2.5.

1. P
′
1 and P

′
2 have the same outer common tangents as P1 and P2, namely

ℓ3 and ℓ4.

2. P
′
1 is to the left of ℓvert

1 and p ∈ ∂P
′
1; and P

′
2 is to right of ℓvert

2 and
q ∈ ∂P

′
2.

3. per(P ′
1) = per(P1).

4. per(P ′
1)+per(P ′

2) É per(CH(P ′
1 ∪P

′
2)).

5. There are points s′
i j

∈ P
′
i
∩ ℓ j for all i ∈ {1,2} and j ∈ {3,4} such that

∂P
′
1(s′13, p), ∂P

′
1(p, s′14), ∂P

′
2(s′24, q), and ∂P

′
2(q, s′23) each consist of a

single line segment.

6. Let s′
2 j

(λ) := s′
2 j

− (λ,0) and let ℓ′
j
(λ) be the line through s′

1 j
and s′

2 j
(λ) for

j ∈ {3,4}. Then ∠(ℓ′3(|pq |),ℓ′4(|pq |)) Êα/2.

Proof of the claim. Let P
′
1

:=P1 and P
′
2

:=P2, and let s′
i j

be a point in P
′
i
∩ℓ j

for all i ∈ {1,2} and j ∈ {3,4}. We show how to modify P
′
1 and P

′
2 until they

have all the required conditions. Of course, they already satisfy conditions
1–4. We first show how to obtain condition 5, namely that ∂P

′
1(s′13, p) and

∂P
′
1(p, s′14)—and similarly ∂P

′
2(s′24, q) and ∂P

′
1(q, s′23)—each consist of a single

line segment, as depicted in Fig. 2.3. To this end, let vi j be the intersection
point ℓvert

i
∩ℓ j for i ∈ {1,2} and j ∈ {3,4}. Let s′ ∈ s′14v14 be the point such that

length(∂P
′
1(p, s′14)) = |ps′|+ |s′s′14|. Such a point exists since

|ps′14| É length(∂P
′
1(p, s′14)) É |pv14|+ |v14s′14|.

We modify P
′
1 by replacing ∂P

′
1(p, s′14) by the segments ps′ and s′s′14. We can

now redefine s′14
:= s′ so that ∂P

′
1(p, s′14) = ps′14 is a line segment. We can modify
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P
′
1 in a similar way to ensure that ∂P

′
1(s′13, p) = s′13p, and we can modify P

′
2 to

ensure ∂P
′
2(s′24, q) = s′24q and ∂P

′
2(q, s′23) = qs′23. Note that these modifications

preserve conditions 1–4 and that condition 5 is now satisfied.
The only condition that (P ′

1,P ′
2) might not satisfy is condition 6. Let

s′
2 j

(λ) := s′
2 j

− (λ,0) and let ℓ j (λ) be the line through s′
2 j

(λ) and s′
1 j

for j ∈ {3,4}.

Clearly, if the slopes of ℓ3 and ℓ4 have different signs (as in Fig. 2.3), the angle
∠(ℓ3(λ),ℓ4(λ)) is increasing for λ ∈ [0, |pq |], and condition 6 is satisfied. How-
ever, if the slopes of ℓ3 and ℓ4 have the same sign, the angle might decrease.

Consider the case where both slopes are positive—the other case is analo-
gous. Changing P

′
2 by replacing ∂P

′
2(s′23, s′24) by the line segment s′23s′24 makes

the sum per(P ′
1)+per(P ′

2) and per(CH(P ′
1 ∪P

′
2)) decrease equally much and

hence condition 4 is preserved. This clearly has no influence on the other
conditions. We thus assume that P

′
2 is the triangle qs′23s′24. Consider what

happens if we move s′23 along the line ℓ3 away from c34 with unit speed. Then
|s′13s′23| grows with speed exactly 1 whereas |qs′23| grows with speed at most 1.
We therefore preserve condition 4, and the other conditions are likewise not
affected.

We now move s′23 sufficiently far away so that ∠(ℓ3,ℓ3(|pq |)) É α/4. Sim-
ilarly, we move s′24 sufficiently far away from c34 along ℓ4 to ensure that
∠(ℓ4,ℓ4(|pq |)) Éα/4. It then follows that ∠(ℓ3(|pq |),ℓ4(|pq|)) Ê∠(ℓ3,ℓ4)−α/2 =
α/2, and condition 6 is satisfied.

Note that condition 2 in the claim implies that dist(P ′
1,P ′

2) = dist(P1,P2) =
|pq |, and hence inequality (2.6) follows from condition 3 if we manage to
prove dist(P ′

1,P ′
2) Ê f (α) ·per(P ′

1). Therefore, with a slight abuse of notation,
we assume from now on that P1 and P2 satisfy the conditions in the claim,
where the points si j play the role as s′

i j
in conditions 5 and 6.

We now consider a copy of P2 that is translated horizontally to the left over
a distance λ; see Fig. 2.3. Let s24(λ), s23(λ), and q(λ) be the translated copies
of s24, s23, and q, respectively, and let ℓ j (λ) be the line through s1 j and s2 j (λ)

for j ∈ {3,4}. Furthermore, define

Φ(λ) := |s13p|+ |s14p|+ |s23(λ)q(λ)|+ |s24(λ)q(λ)|

and

Ψ(λ) := |s13s23(λ)|+ |s14s24(λ)|.

Note that Φ(λ) =Φ is constant. By conditions 4 and 5, we know that

Φ É Ψ(0). (2.7)

Note that q(|pq |) = p. We now apply Lemma 2.4 to get

Φ−Ψ(|pq |) Ê sin(δ/2) ·
1−cos(δ/2)

1+ sin(δ/2)
· (|s13p|+ |s14p|), (2.8)
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where δ :=∠(ℓ3(|pq |),ℓ4(|pq|)). By condition 6, we know that δÊα/2. The func-
tion δ 7−→ sin(δ/2)· 1−cos(δ/2)

1+sin(δ/2)
is increasing for δ ∈ [0,π] and hence inequality (2.8)

also holds for δ=α/2.
When λ increases from 0 to |pq| with unit speed, the value Ψ(λ) decreases

with speed at most 2, i.e., Ψ(λ) ÊΨ(0)−2λ. Using this and inequalities (2.7)
and (2.8), we get

2|pq | Ê Ψ(0)−Ψ(|pq |) Ê Φ−Φ+ sin(α/4) ·
1−cos(α/4)

1+ sin(α/4)
· (|s13p|+ |s14p|),

and we conclude that

|pq | Ê
1

2
· sin(α/4) ·

1−cos(α/4)

1+ sin(α/4)
· (|s13p|+ |s14p|). (2.9)

By the triangle inequality, |s13p|+ |s14p| Ê |s13s14|. Furthermore, for a given
length of s13s14, the fraction |s13s14|/(|s14c34|+|c34s13|) is minimized when s13s14

is perpendicular to the angular bisector of ℓ3 and ℓ4. (Recall that c34 is the
intersection point of the outer common tangents ℓ3 and ℓ4; see Fig. 2.3.) Hence

|s13s14| Ê sin(α/2) · (|s14c34|+ |c34s13|) . (2.10)

We now conclude

|s13p|+ |s14p| = sin(α/2)
1+sin(α/2)

·
(
|s13p|+|s14p|

sin(α/2)
+|s13p|+ |s14p|

)

Ê sin(α/2)
1+sin(α/2)

·
(
|s13s14|

sin(α/2)
+|s13p|+ |s14p|

)
triangle inequality

Ê sin(α/2)
1+sin(α/2)

·
(
|s14c34|+ |c34s13|+ |s13p|+ |s14p|

)
by (2.10)

Ê sin(α/2)
1+sin(α/2)

·per(P1),

where the last inequality follows because P1 is fully contained in the quadri-
lateral s14,c34, x13, p. The statement (2.6) in the lemma now follows from
(2.9).

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. If the separation angle of P1 and P2 is at least π/6, we
are done. Otherwise, Lemma 2.3 gives that α>π/2, and Lemma 2.5 gives that
dist(P1,P2) Ê f (π/2) ·per(P1) Ê (1/250) ·min(per(P1),per(P2)).

2.1.2 The Algorithm

Theorem 2.1 suggests to distinguish two cases when computing an optimal
partition: the case where the separation angle is large (namely at least π/6)
and the case where the separation distance is large (namely at least csep ·
min(per(P1),per(P2))). As we will see, the first case can be handled in O(n logn)

time and the second case in O(n log4 n) time, leading to the following theorem.
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Theorem 2.6. Let P be a set of n points in the plane. Then we can compute a

partition (P1,P2) of P that minimizes per(P1)+per(P2) in O(n log4 n) time using

O(n log3 n) space.

The Best Partition with Large Separation Angle

Define the orientation of a line ℓ, denoted by φ(ℓ), to be the counterclockwise
angle that ℓ makes with the positive y-axis. If the separation angle of P1 and P2

is at least π/6, then there must be a line ℓ separating P1 from P2 that does not
contain any point from P and such that φ(ℓ) = j ·π/7 for some j ∈ {0,1, . . . ,6}. For
each of these seven orientations we can compute the best partition in O(n logn)

time, as explained next.

Without loss of generality, consider separating lines ℓ with φ(ℓ) = 0, that
is, vertical separating lines. Let X be the set of all x-coordinates of the points
in P . For any x-value x ∈ X define P1(x) := {p ∈ P | px É x}, where px denotes
the x-coordinate of a point p, and define P2(x) := P \ P1(x). Our task is to
find the best partition of the form (P1(x),P2(x)) over all x ∈ X . To this end we
first compute the values per(P1(x)) for all x ∈ X in O(n logn) time in total, as
follows. We compute the lengths of the upper hulls of the point sets P1(x),
for all x ∈ X , using Graham’s scan [28], and we compute the lengths of the
lower hulls in a second scan. (Graham’s scan goes over the points from left
to right and maintains the upper (or lower) hull of the encountered points;
it is trivial to extend the algorithm so that it also maintains the length of the
hull.) By combining the lengths of the upper and lower hulls, we get the values
per(P1(x)).

Computing the values per(P2(x)) can be done similarly, after which we can
easily find the best partition of the form (P1(x),P2(x)) in O(n) time. Thus the
best partition with large separation angle can be found in O(n logn) time.

The Best Partition with Large Separation Distance

Next we show how to compute the best partition with large separation dis-
tance. We assume without loss of generality that per(P2) É per(P1). It will be
convenient to treat the case where P2 is a singleton separately.

Lemma 2.7. The point p ∈ P minimizing per(P \ {p}) can be computed using

O(n logn) time.

Proof. The point p we are looking for must be a vertex of CH(P ). First we
compute CH(P ) in O(n logn) time [28]. Let v0, v1, . . . , vm−1 denote the ver-
tices of CH(P ) in counterclockwise order. Let ∆i be the triangle with vertices
vi−1vi vi+1 (with indices taken modulo m) and let Pi denote the set of points
lying inside ∆i , excluding vi but including vi−1 and vi+1. Note that any point
p ∈ P is present in at most two sets Pi . Hence,

∑m
i=0

|Pi | =O(n). It is not hard to
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compute the sets Pi in O(n logn) time in total. After doing so, we compute all
convex hulls CH(Pi ) in O(n logn) time in total. Since

per(P \ {vi }) = per(P )−|vi−1vi |− |vi vi+1|+per(Pi )−|vi−1vi+1|,

we can now find the point p minimizing per(P \ {p}) in O(n) time.

It remains to compute the best partition (P1,P2) with per(P2) É per(P1) whose
separation distance is at least csep ·per(P2) and where P2 is not a singleton. Let
(P∗

1 ,P∗
2 ) denote this partition. Define the size of a square2 σ to be its edge

length. A square σ is a good square if (i) P∗
2 ⊂σ, and (ii) size(σ) É c∗ ·per(P∗

2 ),
where c∗ := 18. Our algorithm globally works as follows.

1. Compute a set S of O(n) squares such that S contains a good square.

2. For each square σ ∈ S, construct a set Hσ of O(1) halfplanes such that the
following holds: if σ ∈ S is a good square then there is a halfplane h ∈ Hσ

such that P∗
2 = P (σ∩h), where P (σ∩h) := P ∩ (σ∩h).

3. For each pair (σ,h) with σ ∈ S and h ∈ Hσ, compute per(P \ P (σ∩h))+
per(P (σ∩h)), and report the partition (P \P (σ∩h),P (σ∩h)) that gives the
smallest sum.

Step 1: Finding a good square. To find a set S that contains a good square,
we first construct a set Sbase of so-called base squares. The set S will then be
obtained by expanding the base squares appropriately.

We define a base square σ to be good if (i) σ contains at least one point from
P∗

2 , and (ii) c1 ·diam(P∗
2 ) É size(σ) É c2 ·diam(P∗

2 ), where c1 := 1/4 and c2 := 4

and diam(P∗
2 ) denotes the diameter of P∗

2 . Note that 2 ·diam(P∗
2 ) É per(P∗

2 ) É
4 ·diam(P∗

2 ). For a square σ, define σ to be the square with the same center as
σ and whose size is (1+2/c1) · size(σ).

Lemma 2.8. If σ is a good base square then σ is a good square.

Proof. The distance from any point in σ to the boundary of σ is at least

size(σ)− size(σ)

2
Ê diam(P∗

2 ).

Since σ contains a point from P∗
2 , it follows that P∗

2 ⊂ σ. Since size(σ) É
c2 ·diam(P∗

2 ), we have

size(σ) É (2/c1 +1) · c2 ·diam(P∗
2 ) = 36 ·diam(P∗

2 ) É c∗ ·per(P∗
2 ).

2Whenever we speak of squares, we always mean axis-parallel squares.
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To obtain S it thus suffices to construct a set Sbase that contains a good
base square. To this end we first build a compressed quadtree for P . For
completeness we briefly review the definition of compressed quadtrees; see
also Fig. 2.4 (left).

Assume without loss of generality that P lies in the interior of the unit square
U := [0,1]2. Define a canonical square to be any square that can be obtained by
subdividing U recursively into quadrants. A compressed quadtree [46] for P

is a hierarchical subdivision of U , defined as follows. In a generic step of the
recursive process we are given a canonical square σ and the set P (σ) := P ∩σ of
points inside σ. (Initially σ=U and P (σ) = P .)

• If |P (σ)| É 1 then the recursive process stops and σ is a square in the final
subdivision.

• Otherwise there are two cases. Consider the four quadrants of σ. The first
case is that at least two of these quadrants contain points from P (σ). (We
consider the quadrants to be closed on the left and bottom side, and open
on the right and top side, so a point is contained in a unique quadrant.)
In this case we partition σ into its four quadrants—we call this a quadtree

split—and recurse on each quadrant. The second case is that all points
from P (σ) lie inside the same quadrant. In this case we compute the
smallest canonical square, σ′, that contains P (σ) and we partition σ into
two regions: the square σ′ and the so-called donut region σ\σ′. We call
this a shrinking step. After a shrinking step we only recurse on the square
σ′, not on the donut region.

A compressed quadtree for a set of n points can be computed in O(n logn) time
in the appropriate model of computation3 [46]. The idea is now as follows.
Let p, p ′ ∈ P∗

2 be a pair of points defining diam(P∗
2 ). The compressed quadtree

hopefully allows us to zoom in until we have a square in the compressed
quadtree that contains p or p ′ and whose size is roughly equal to |pp ′|. Such
a square will be then a good base square. Unfortunately this does not always
work since p and p ′ can be separated too early. We therefore have to proceed
more carefully: we need to add five types of base squares to Sbase, as explained
next and illustrated in Fig. 2.4 (right).

(B1) Any square σ that is generated during the recursive construction—note
that this not only refers to squares in the final subdivision—is put into Sbase.

(B2) For each point p ∈ P we add a square σp to Sbase, as follows. Let σ be
the square of the final subdivision that contains p. Then σp is a smallest
square that contains p and that shares a corner with σ.

3In particular we need to be able to compute the smallest canonical square containing two given
points in O(1) time. See the book by Har-Peled [46] for a discussion.
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B1

B2

B3

B4.1

B4.2

B4.3

Figure 2.4: A compressed quadtree and some of the base squares generated from it. In

the right figure, only the points are shown that are relevant for the shown

base squares.

(B3) For each square σ that results from a shrinking step we add an extra
square σ′ to Sbase, where σ′ is the smallest square that contains σ and
that shares a corner with the parent square of σ.

(B4) For any two regions in the final subdivision that touch each other—we
also consider two regions to touch if they only share a vertex—we add
at most one square to Sbase, as follows. If one of the regions is an empty
square, we do not add anything for this pair. Otherwise we have three
cases.

(B4.1) If both regions are non-empty squares containing single points p

and p ′, respectively, then we add a smallest enclosing square for the
pair of points p, p ′ to Sbase.

(B4.2) If both regions are donut regions, say σ1 \σ′
1 and σ2 \σ′

2, then we
add a smallest enclosing square for the pair σ′

1,σ′
2 to Sbase.

(B4.3) If one region is a non-empty square containing a single point
p and the other is a donut region σ \σ′, then we add a smallest
enclosing square for the pair p,σ′ to Sbase.

Lemma 2.9. The set Sbase has size O(n) and contains a good base square. Fur-

thermore, Sbase can be computed in O(n logn) time.

Proof. A compressed quadtree has size O(n) so we have O(n) base squares
of type (B1) and (B3). Obviously there are O(n) base squares of type (B2).
Finally, the number of pairs of final regions that touch is O(n)—this follows
because we have a planar rectilinear subdivision of total complexity O(n)—and
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so the number of base squares of type (B4) is O(n) as well. The fact that we
can compute Sbase in O(n logn) time follows directly from the fact that we can
compute the compressed quadtree in O(n logn) time [46].

It remains to prove that Sbase contains a good base square. We call a square σ

too small when size(σ) < c1 ·diam(P∗
2 ) and too large when size(σ) > c2 ·diam(P∗

2 );
otherwise we say that σ has the correct size. Let p, p ′ ∈ P∗

2 be two points
with |pp ′| = diam(P∗

2 ), and consider a smallest square σp,p ′ , in the compressed
quadtree that contains both p and p ′. Note that σp,p ′ cannot be too small, since

c1 = 1/4 < 1/
p

2. If σp,p ′ has the correct size, then we are done since it is a good
base square of type (B1). So now suppose σp,p ′ is too large.

Let σ0,σ1, . . . ,σk be the sequence of squares in the recursive subdivision of
σp,p ′ that contain p; thus σ0 =σp,p ′ and σk is a square in the final subdivision.
Define σ′

0,σ′
1, . . . ,σ′

k ′ similarly, but now for p ′ instead of p. Suppose that none
of these squares has the correct size—otherwise we have a good base square of
type (B1). There are three cases.

• Case (i): σk and σ′
k ′ are too large.

We claim that σk touches σ′
k ′ . To see this, assume without loss of general-

ity that size(σk ) É size(σ′
k ′ ). If σk does not touch σ′

k ′ then |pp ′| Ê size(σk ),
which contradicts the assumption that σk is too large. Hence, σk indeed
touches σ′

k ′ . But then we have a base square of type (B4.1) for the pair
p, p ′ and since |pp ′| = diam(P∗

2 ) this is a good base square.

• Case (ii): σk and σ′
k ′ are too small.

In this case there are indices 0 < j É k and 0 < j ′ É k ′ such that σ j−1 and
σ′

j ′−1
are too large and σ j and σ′

j ′ are too small. Note that this implies

that both σ j and σ′
j ′ result from a shrinking step, because c1 < c2/2 and

so the quadrants of a too-large square cannot be too small. We claim
that σ j−1 touches σ′

j ′−1
. Indeed, similarly to Case (i), if σ j−1 and σ′

j ′−1

do not touch then |pp ′| > min(size(σ j−1),size(σ′
j ′−1

)), contradicting the

assumption that both σ j−1 and σ′
j ′−1

are too large. We now have two

subcases.

– The first subcase is that the donut region σ j−1 \σ j touches the donut
region σ′

j ′−1
\σ j ′ . Thus a smallest enclosing square for σ j and σ′

j ′ has

been put into Sbase as a base square of type (B4.2). Let σ∗ denote
this square. Since the segment pp ′ is contained in σ∗ we have

c1 ·diam(P∗
2 ) < diam(P∗

2 )/
p

2 = |pp ′|/
p

2 É size(σ∗).

Furthermore, since σ j and σ′
j ′ are too small we have

size(σ∗) É size(σ j )+size(σ′
j ′ )+|pp ′| É 3 ·diam(P∗

2 ) < c2 ·diam(P∗
2 ),
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(2.11)

and so σ∗ is a good base square.

– The second subcase is that σ j−1 \σ j does not touch σ′
j ′−1

\σ j ′ . This

can only happen if σ j−1 and σ′
j ′−1

just share a single corner, v .

Observe that σ j must lie in the quadrant of σ j−1 that has v as a
corner, otherwise |pp ′| Ê size(σ j−1)/2 and σ j−1 would not be too
large. Similarly, σ′

j ′ must lie in the quadrant of σ′
j ′−1

that has v as a

corner. Thus the base squares of type (B3) for σ j and σ′
j ′ both have

v as a corner. Take the largest of these two base squares, say σ j . For
this square σ∗ we have

c1 ·diam(P∗
2 ) < diam(P∗

2 )/2
p

2 = |pp ′|/2
p

2 É size(σ∗),

since |pp ′| is contained in a square of twice the size of σ∗. Further-
more, since σ j is too small and |pv | < |pp ′| we have

size(σ∗) É size(σ j )+|pv | É (c1+1)·diam(P∗
2 ) < c2·diam(P∗

2 ). (2.12)

Hence, σ∗ is a good base square.

• Case (iii): neither (i) nor (ii) applies.

In this case σk is too small and σ′
k ′ is too large (or vice versa). Thus

there must be an index 0 < j É k such that σ j−1 is too large and σ j is
too small. We can now follow a similar reasoning as in Case (ii): First
we argue that σ j must have resulted from a shrinking step and that
σ j−1 touches σ′

k ′ . Then we distinguish two subcases, namely where the
donut region σ j \σ j−1 touches σ′

k ′ and where it does not touch σ′
k ′ . The

arguments for the two subcases are similar to the subcases in Case (ii),
with the following modifications. In the first subcase we use base squares
of type (B4.3) and in (2.11) the term size(σ′

j ′ ) disappears; in the second

subcase we use a type (B3) base square for σ j and a type (B2) base
square for p ′, and when the base square for p ′ is larger than the base
square for σ j then (2.12) becomes size(σ∗) É 2 |p ′v | < c2 ·diam(P∗

2 ).

Step 2: Generating halfplanes. Consider a good square σ ∈ S. Let Qσ be a
set of 4 · c∗/csep +1 = 18001 points placed equidistantly around the boundary
of σ. Note that the distance between two neighbouring points in Qσ is less
than csep/c∗ · size(σ). For each pair q1, q2 of points in Qσ, add to Hσ the two
halfplanes defined by the line through q1 and q2.

Lemma 2.10. For any good square σ ∈ S, there is a halfplane h ∈ Hσ such that

P∗
2 = P (σ∩h).
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Proof. In the case where σ∩P∗
1 =;, two points in Qσ from the same edge of σ

define a half-plane h such that P∗
2 = P (σ∩h), so assume that σ contains one or

more points from P∗
1 .

We know that the separation distance between P∗
1 and P∗

2 is at least csep ·
per(P∗

2 ). Moreover, size(σ) É c∗ ·per(P∗
2 ). Hence, there is an empty open strip O

with a width of at least csep/c∗ ·size(σ) separating P∗
2 from P∗

1 . Since σ contains
a point from P∗

1 , we know that σ \ O consists of two pieces and that the part
of the boundary of σ inside O consists of two disjoint portions B1 and B2 each
of length at least csep/c∗ · size(σ). Hence the sets B1 ∩Qσ and B2 ∩Qσ contain
points q1 and q2, respectively, that define a half-plane h as desired.

Step 3: Evaluating candidate solutions. In this step we need to compute for
each pair (σ,h) with σ ∈ S and h ∈ Hσ, the value per(P \ P (σ∩h))+per(P (σ∩h)).
We do this by preprocessing P into a data structure that allows us to quickly
compute per(P \ P (σ∩h)) and per(P (σ∩h)) for a given pair (σ,h). Recall that
the bounding lines of the halfplanes h we must process have O(1) different
orientations. We construct a separate data structure for each orientation.

Consider a fixed orientation φ. We build a data structure Dφ for range
searching on P with ranges of the form σ∩h, where σ is a square and h is a
halfplane whose bounding line has orientation φ. Since the edges of each σ are
axis-parallel and the bounding lines of the halfplanes h have a fixed orientation,
we can use a standard three-level range tree [28] for this. Constructing this
tree takes O(n log2 n) time and the tree has O(n log2 n) nodes.

Each node ν of the third-level trees in Dφ is associated with a canonical

subset P (ν), which contains the points stored in the subtree rooted at ν. We
preprocess each canonical subset P (ν) as follows. First we compute the convex
hull CH(P (ν)). Let v1, . . . , vk denote the convex-hull vertices in counterclockwise
order. We store these vertices in order in an array, and for each vertex vi ,
we store length(∂P (v1, vi )), that is, the length of the part of ∂ CH(P (ν)) from
v1 to vi in counterclockwise order. Note that the convex hull CH(P (ν)) can be
computed in O(|P (ν)|) from the convex hulls at the two children of ν. Hence,
the convex hulls CH(P (ν)) (and the values length(∂P (v1, vi ))) can be computed
in

∑
ν∈Dφ

O(|P (ν)|) =O(n log3 n) time in total, in a bottom-up manner.

Now suppose we want to compute per(P (σ∩h)), where the orientation of the
bounding line of h is φ. We perform a range query in Dφ to find a set N (σ∩h)

of O(log3 n) nodes such that P (σ∩h) is equal to the union of the canonical
subsets of the nodes in N (σ∩h). Standard range-tree properties guarantee that
the convex hulls CH(P (ν)) and CH(P (µ)) of any two nodes ν,µ ∈ N (σ∩h) are
disjoint. Note that CH(P (σ∩h)) is equal to the convex hull of the set of convex
hulls CH(P (ν)) with ν ∈ N (σ∩h). Lemma 2.12 given below implies that we can
compute per(P (σ∩h)) in O(log4 n) time.

Observe that P \ P (σ∩h) can also be expressed as the union of O(log3 n)

canonical subsets with disjoint convex hulls, since R
2 \ (σ∩h) is the disjoint
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union of O(1) ranges of the right type. Hence, we can compute per(P \ P (σ∩h))

in O(log4 n) time. We thus obtain the following result, which finishes the proof
of Theorem 2.6.

Lemma 2.11. Step 3 can be performed in O(n log4 n) time and using O(n log3 n)

space.

Lemma 2.12. Let Q be a set of k pairwise disjoint convex polygons with m vertices

in total. Suppose each Q ∈Q is represented by an array storing its vertices in coun-

terclockwise order, and suppose for each vertex vi of Q the value length(∂Q(v1, vi ))

is known. Let Q :=
⋃

Q∈Q Q. Then we can compute the perimeter of CH(Q) in

O(k logm) time.

Proof. Any ordered pair (Qi ,Q j ) of disjoint convex polygons has two outer
common tangents: the left outer tangent, which is the one having Qi and Q j

on its right when directed from Qi to Q j , and the right outer tangent. The
bridge B(Qi ,Q j ) from Qi to Q j is the minimum-length segment qi q j contained
in the left outer tangent of Qi and Q j and connecting points in Qi and Q j . The
boundary ∂ CH(Q) consists of portions of boundaries ∂Q, where Q ∈Q, that are
connected by bridges.

The upper convex hull of a set of points S, denoted by UH(S), is the part
of ∂ CH(S) from the rightmost to the leftmost point in S in counterclockwise
direction. We compute a list L that represents UH(Q). L consists of the
polygons in Q having corners on UH(Q) in the order they are encountered as
we traverse UH(Q) from left to right. We denote the length of L as |L | and
the entries as L [1], . . . ,L [|L |], and do similarly for other lists. Consecutive
polygons L [i ],L [i +1] should always be different, but the same polygon Q ∈Q

can appear in L multiple times, since several portions of ∂Q can appear on
UH(Q) interrupted by portions of boundaries of other polygons.

The upper envelope of a set of points S, denoted ENV(S), is the subset
{(x, y) ∈ S | ∀(x, y ′) ∈ S : y ′ É y}. In order to compute L , we first compute ENV(Q).
Clearly, if a portion of the boundary of a polygon Q ∈ Q is on UH(Q), then
the same portion is also on ENV(Q). We thus have UH(Q) = UH(ENV(Q)). The
envelope ENV(Q) can be computed with a simple sweep-line algorithm, as
described next.

Define the x-range of a polygon Q ∈Q to be the interval

Ix (Q) := [xmin(Q), xmax(Q)],

where xmin(Q) and xmax(Q) denote the minimum and maximum x-coordinate
of Q, respectively. For an interval I ⊆ Ix (Q), define Q[I ] to be the intersection
of Q with the vertical slab I × (−∞,+∞). We call Q[I ] a vertical slice of Q. Our
representation of Q allows us to do the following using the algorithm described
by Kirkpatrick and Snoeyink [53]: given vertical slices Q[I ] and Q ′[I ′], compute
the bridge B(Q[I ],Q ′[I ′]).
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Q2

Q3

Q5

Q6
U [6]

U [2]

U [5]

U [4]

U [1]

U [3]

Q4

Figure 2.5: A collection of disjoint polygons Q (left) and the vertical slices in the

corresponding list U which appear on the upper envelope (right). Note that

polygon Q3 defines two slices that contribute to the upper envelope.

Consider the upper envelope ENV(Q). It consists of portions of the upper
boundaries of the polygons in Q. Each maximal boundary portion of some
polygon Q that shows up on ENV(Q) defines a vertical slice of Q, namely the
slice whose top boundary is exactly the envelope portion. We create a list U

that stores these vertical slices in left-to-right order; see Fig. 2.5. Consecutive
slices U [i ],U [i +1] are always from different polygons, but multiple slices from
the same polygon Q ∈ Q can appear in U , since several portions of ∂Q can
appear on ENV(Q) interrupted by portions of boundaries of other polygons.

As mentioned, we will compute ENV(Q) using a sweep-line algorithm. As the
sweep line ℓ moves from left to right, we maintain a data structure Σ containing
all the polygons intersecting ℓ from top to bottom. Let Σ

top be the topmost
polygon in Σ. In case Σ is empty, so is Σ

top. We implement Σ as a red-black
tree [27]. Note that since the polygons are disjoint, the vertical order of any
two polygons in Σ is invariant, and so Σ only needs to be updated when ℓ starts
or stops intersecting a polygon in Q. Thus, to find the sorted set of events we
simply find the leftmost point Li and the rightmost point Ri of each polygon
Qi ∈Q and sort these points from left to right.

An event e j ∈ E is now handled as follows.

• If e j = Li , we insert Qi to Σ. This requires O(logk) comparisons between
Qi and polygons currently stored in Σ, to find the position where Q should
be inserted. Each such comparison can be done in O(1) time since Qi is
above Q j if and only if Li Ri is above L j R j .

If Σtop changes from some polygon Qh to Qi , then we add the appropriate
vertical slice of Qh to U . (This slice ends at the current position of the
sweep line ℓ, and it starts at the most recent position of ℓ at which Qh

became Σ
top.)

• If e j = Ri then we delete Qi from Σ in O(logk) time. If Σtop was equal to
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Qi before the event, we add the appropriate vertical slice of Qi to U .

There are 2k events to handle, each taking O(logk) time, so the total time used
to compute U is O(k logk).

We now proceed to the algorithm computing the list L representing the
upper convex hull of the vertical slices in U . In the sequel, we think of U as
a list of polygons with disjoint x-ranges sorted from left to right. Let M be a
subsequence of U , and let bi be the bridge between M [i ] and M [i +1]. We say
that a triple M [i −1],M [i ],M [i +1] is a valid triple if either

(a) the right endpoint of bi−1 lies strictly to the left of the left endpoint of bi ,
or

(b) the right endpoint of bi−1 coincides with the left endpoint of bi , and bi−1

and bi make a right turn.

We need the following claim.

Claim: Suppose M satisfies the following conditions:

(i) All triples M [i −1],M [i ],M [i +1] in M are valid triples.

(ii) Every polygon U [i ] that is not in M lies completely below one bridge bi

between consecutive polygons in M . (Note that this condition implies
that the first element in M is U [1] and the last element is U [|U |].)

Then M correctly represents UH(U ).

Proof of the Claim. Observe that condition (i), together with the definition of
a valid triple, implies that the bridges between consecutive polygons in U

together with the relevant boundary pieces—namely, for each polygon in U

the piece of its upper boundary in between the bridges to the previous and the
next polygon in U —form a convex x-monotone chain. Hence, M represents
the upper hull of all polygons that appear in M . On the other hand, a polygon
that does not appear in M cannot contribute to UH(U ) by condition (ii). We
conclude that M correctly represents UH(U ).

We now describe the algorithm computing L , and we prove its correctness
by showing that it satisfies the conditions from the claim.

The algorithm is essentially the same as Andrew’s version of Graham’s
scan [28] for point sets, except that the standard right-turn check for points
is replaced by a valid-triple check for polygons. Thus it works as follows. We
handle the polygons from U to L one by one in order from U [1] to U [|U |].
To handle U [i ] we first append U [i ] to L . Next, we check if the last three
polygons in L define a valid triple. If not, we remove the middle of the three
polygons, and check if the new triple at the end of L is valid, remove the
middle polygon if the triple is invalid, and so on. This continues until either
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L[i+ 1]

L[i]

L[i− 1]

Figure 2.6: An invalid triple of polygons.

the last triple in the list is valid, or we have only two polygons left in L . We
then proceed to handle the next polygon, U [i +1].

We claim that the algorithm satisfies the following invariant: When we have
added U [1], . . . ,U [i ] to L , then L defines the upper convex hull CH(U [1, . . . , i ]).
It clearly follows from this invariant that when we have handled the last polygon
in U , then L correctly defines UH(U ).

We prove the invariant by induction. Assume therefore that it holds when
we have added the polygons U [1, . . . , i ] to L and consider what happens when
we add U [i +1] to L . By our invalid-triple removal procedure, after we have
handled U [i +1] all triples U [ j −1],U [ j ],U [ j +1] that remain in L must be
valid, either because the triple was already in the list before the addition of
U [i+1], or because it is a triple involving U [i+1] (in which case it was explicitly
checked). Thus condition (i) is satisfied. To establish condition (ii) we only
need to argue that every polygon that is removed from L is completely below
some bridge. This is true because the middle polygon of an invalid triple lies
below the bridge between the first and last polygon of the triple—see Fig. 2.6.
Hence, the resulting list L satisfies conditions (ii) as well. This completes the
proof of the correctness of the algorithm.

Since U has size O(k), we need to do O(k) checks for invalid triples. Each
such check involves the computation of two bridges, which takes O(logm) time.
Thus the whole procedure takes O(k logm) time. It is easy to compute the
length of UH(Q) within the same time bounds. Similarly, we can compute the
lower convex hull of Q and its length in O(k logm) time. This finishes the proof
of the lemma.

2.2 The Approximation Algorithm

Theorem 2.13. Let P be a set of n points in the plane and let (P∗
1 ,P∗

2 ) be a

partition of P minimizing per(P∗
1 )+per(P∗

2 ). Suppose we have an exact algorithm

for the minimum perimeter-sum problem running in T (k) time for instances with

k points. Then for any given ε> 0 we can compute a partition (P1,P2) of P such
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that per(P1)+per(P2) É (1+ε) ·
(
per(P∗

1 )+per(P∗
2 )

)
in O(n +T (1/ε2)) time.

Proof. Consider the axis-parallel bounding box B of P . Let w be the width
of B and let h be its height. Assume without loss of generality that w Ê h. Our
algorithm works in two steps.

• Step 1: Check if per(P∗
1 )+per(P∗

2 ) É w/16. If so, compute the exact solution.

We partition B vertically into four strips with width w/4, denoted B1, B2,
B3, and B4 from left to right. If B2 or B3 contains a point from P , we have
per(P∗

1 )+per(P∗
2 ) Ê w/2 > w/16 and we go to Step 2. If B2 and B3 are both

empty, we consider two cases.

– Case (i): h É w/8.

In this case we simply return the partition (P ∩B1,P ∩B4). To see
that this is optimal, we first note that any subset P ′ ⊂ P that contains
a point from B1 as well as a point from B4 has per(P ′) Ê 2 · (3w/4) =
3w/2. On the other hand, per(P ∩B1)+per(P ∩B4) É 2 · (w/2+2h) É
3w/2.

– Case (ii): h > w/8.

We partition B horizontally into four rows with height h/4, num-
bered R1, R2, R3, and R4 from bottom to top. If R2 or R3 contains a
point from P , we have per(P∗

1 )+per(P∗
2 ) Ê h/2 > w/16, and we go to

Step 2. If R2 and R3 are both empty, we overlay the vertical and the
horizontal partitioning of B to get a 4×4 grid of cells Ci j := Bi ∩R j

for i , j ∈ {1, . . . ,4}. We know that only the corner cells C11,C14,C41,C44

contain points from P . If three or four corner cells are non-empty,
per(P∗

1 )+per(P∗
2 ) Ê 6h/4 > w/16, and we go to Step 2. Hence, we

may without loss of generality assume that any point of P is in C11

or C44. We now return the partition (P ∩C11,P ∩C44), which is easily
seen to be optimal.

• Step 2: Handle the case where per(P∗
1 )+per(P∗

2 ) > w/16.

The idea is to compute a subset P̂ ⊂ P of size O(1/ε2) such that an exact
solution to the minimum perimeter-sum problem on P̂ can be used to
obtain a (1+ε)-approximation for the problem on P .

We subdivide B into O(1/ε2) rectangular cells of width and height at most
c := εw/(64π

p
2). For each cell C where P ∩C is non-empty we pick an

arbitrary point in P ∩C , and we let P̂ be the set of selected points. For
a point p ∈ P̂ , let C (p) be the cell containing p. Intuitively, each point
p ∈ P̂ represents all the points P ∩C (p). Let (P̂1, P̂2) be a partition of P̂

that minimizes per(P̂1)+per(P̂2). We assume we have an algorithm that
can compute such an optimal partition in T (|P̂ |) time. For i = 1,2, define

Pi :=
⋃

p∈P̂i

P ∩C (p).
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Figure 2.7: The crossed points are the points of P̂ . The left gray region is P̃1 and the

right gray region is P̃2. The left dashed polygon is the convex hull of P1 and

the right dashed polygon is the convex hull of P2.

Our approximation algorithm returns the partition (P1,P2). (Note that
the convex hulls of P1 and P2 are not necessarily disjoint.) It remains to
prove the approximation ratio.

First, note that per(P̂1)+per(P̂2) É per(P∗
1 )+per(P∗

2 ) since P̂ ⊆ P . For i = 1,2,
let P̃i consist of all points in the plane (not only points in P) within a
distance of at most c

p
2 from CH(P̂i ). In other words, P̃i is the Minkowksi

sum of CH(P̂i ) with a disk D of radius c
p

2 centered at the origin; see
Fig. 2.7. Note that if p ∈ P̂i , then q ∈ P̃i for any q ∈ P ∩C (p), since any two
points in C (p) are at most c

p
2 apart from each other. Therefore Pi ⊂ P̃i

and hence per(Pi ) É per(P̃i ). Note also that per(P̃i ) = per(P̂i )+ 2cπ
p

2.
These observations yield

per(P1)+per(P2) É per(P̃1)+per(P̃2)

= per(P̂1)+per(P̂2)+4cπ
p

2

É per(P∗
1 )+per(P∗

2 )+4cπ
p

2

= per(P∗
1 )+per(P∗

2 )+4π
p

2 ·
(
εw/(64π

p
2)

)

É per(P∗
1 )+per(P∗

2 )+εw/16

É (1+ε) · (per(P∗
1 )+per(P∗

2 )).

As all the steps can be done in linear time, the time complexity of the
algorithm is O(n +T (nε)) for some nε =O(1/ε2).
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2.3 Concluding Remarks

We presented the first sub-quadratic algorithm for the bipartition case. The
algorithm works in O(n log4 n) time. It would be interesting to see if improving
this result is possible. Finding a lower bound is another open problem. Exis-
tence of subquadratic algorithms for other variants studied by Mitchell and
Wynters [59] is still an open problem.

We also presented a linear-time (1+ε)-approximation algorithm for this case
with running time O(n +T (1/ε2)) =O(n +1/ε2 · log4(1/ε)), where T (1/ε2) is the
running time of an exact algorithm on an instance of size 1/ε2.



Chapter 3

Minimizing the Sum of
Perimeters: The General Case

In this chapter we consider the general case of the minimum perimeter-sum
problem where a set S of n points in the plane and a number k ∈ {1, . . . ,n} is
given, and we aim at finding a partition of the points in S to k clusters such that
the sum of the perimeters of the convex hulls of the clusters is minimized. We
disprove the conjecture made by Arkin et al. [10] that this problem is NP-hard
when k is part of the input by presenting an algorithm that solves this problem
in O(n27) time.

3.1 Problem Definition and Preliminaries

In the minimum perimeter-sum problem, we are given a set of n points S in
the plane and an integer k as an input instance I , which we denote by the pair
I := (S,k). Our main approach is to use dynamic programming to solve this
problem. Our subproblems are based on the notion of boxes (i.e., rectangles
in the plane), which contain some subset of the input points that we would
like to cluster optimally. Great care is needed in order to ensure that there are
only polynomially many subproblems we need to consider. To this end, we
prove some structural properties regarding an optimal solution that enable us
to reduce the complexity of the subproblems that we solve. We first describe
some relevant notation and preprocessing that we do to the input.

Given two points p, q,∈ R
2, with p 6= q, we use pq to denote the directed

edge from p to q. We call p the head of the edge and we call q its tail. A loop
o is defined by a single point p ∈ R

2 and is denoted by o := pp. An edge set is
defined to be a set of edges or a set containing a single loop. For a convex
polygon P , define ∂P to be the boundary of P and per(P ) to be the perimeter of
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P . We use E (P ) to denote the edge set defining ∂P oriented in counterclockwise
order. For the special case where P is a single point p ∈R

2, E (P ) := {pp}.
For a set of geometric objects O, define CH(O) to be the convex hull of O.

For a set S of points in the plane, with some abuse of notation, we define
∂S := ∂CH(S), per(S) := per(CH(S)), and E (S) := E (CH(S)). For the special case
where S is a single point p, define E ({p}) := {pp}. We denote by G (S) the set of
the O(n2) oriented segments defined by any ordered pair of points in S.

We define a k-clustering of S as a partition C := {S1, . . . ,Sk } of S into k subsets
or clusters S1, . . . ,Sk ⊆ S. Let Part(S) be the set of all possible clusterings of a set S.
Let Φ(C ) :=

∑k
i=1

per(Si ) be the cost of the clustering C . An optimal k-clustering

is a k-clustering C
OPT

k
(S) such that Φ(C OPT

k
(S)) ÉΦ(C ) for any k-clustering C .

(If there are multiple optimal clusterings, we let C
OPT

k
(S) denote an arbitrary

one.) In the following, whenever we talk about the edges of C
OPT

k
(S) we

refer to the edges induced by the convex hulls of the clusters in C
OPT

k
(S). Let

OPTk (S) :=Φ(C OPT

k
(S)).

A clustering C := {S1, . . . ,Sk } is called a disjoint clustering if the convex hulls
of any two clusters Si ,S j ∈C are disjoint, i.e., CH(Si )∩CH(S j ) =; for all i 6= j .

Observation 3.1. Given a set of points S in the plane, C
OPT

k
(S) is a disjoint

clustering.

We first ensure that no two points in S have the same x- or y-coordinate.
This is possible to do in O(n2) time by computing the slopes of segments
between all pairs of points in S. If one of the slopes is vertical or horizontal, we
apply a slight rotation to the coordinate system to eliminate all the horizontal
and vertical slopes without introducing new ones.

Let p1, . . . , pn be the points in S sorted by their x-coordinates x1 < ·· · < xn .
For each point pi we define two vertical lines, v−

i
and v+

i
such that v−

i
is

infinitessimally to the left of pi and v+
i

is infinitessimally to the right of pi .
We construct two vertical lines v−

i
and v+

i
with each x-coordinate xi , such

that v−
i

formally is to the left of pi and v+
i

formally is to the right of pi .
Thus, an edge p j pi for j < i intersects v−

i
at pi but does not intersect v+

i
,

whereas pi p j for i < j intersects v+
i

at pi but does not intersect v−
i

. The set of
all lines v−

i
, v+

i
for all i ∈ {1, . . . ,n} are the vertical main lines. Between any two

consecutive vertical main lines v+
i

, v−
i+1

, we define 19999 vertical help lines with
x-coordinates xi + xi+1−xi

20000
· j for j ∈ {1, . . . ,19999}. That is, these 19999 vertical

help lines induce 20000 intervals between xi and xi+1, each of which has the
same length given by xi+1−xi

20000
. In a similar way, we define two horizontal main

lines with the y-coordinate of each input point p, one formally below p and
the other formally above p. Let h−

1 ,h+
1 , . . . ,h−

n ,h+
n be the horizontal main lines

sorted by ascending y-coordinate. We also define 19999 equidistant horizontal
help lines between any two consecutive horizontal main lines. 1

1The value 20,000 is nothing special but just chosen sufficiently large to make things work in
the sequel.
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Boxes. Let B(S) be the set of all closed rectangles with edges contained in
main or help lines. Note that the size of B(S) is O(n4). We use SB as an
abbreviation for B ∩S where B ∈B(S). We denote by l (B) and r (B) the left and
right vertical edge of B and by b(B) and t (B) the bottom and top edge of B . We
denote by w(B) the width of B , i.e., the difference in the x-coordinates of r (B)

and l (B). Similarly, we denote by h(B) the height of B , i.e., the difference in
the y-coordinates of t (B) and b(B). We define the length of a box B ∈B(S) as
max{w(B),h(B)} and denote it by length(B). Consider an arbitrary k-clustering
C := {S1, . . . ,Sk }. For a box B ∈ B(S), consider for each Si ∈ C the part of the
boundary of CH(Si ) that is in B . The cost of C in B is denoted as ΦB (C ), and
we define it to be the total length of these parts for all the clusters S1, . . . ,Sk .

Consider a box B and a vertical line ℓ lying strictly between l (B) and r (B).
We say that the vertical line segment s := ℓ∩B is a vertical separator of B . A
vertical separator of a box B is good if it intersects at most two edges in C

OPT

k
(S).

We also analogously define a horizontal separator, along with the notion of
a good horizontal separator. We call a box elementary if there are no vertical
help or main lines that lie strictly in between l (B) and r (B), and no horizontal
help or main lines that lie strictly in between b(B) and t (B). In other words, an
elementary box is a cell of the grid induced by the main and help lines.

Finally, we define a vertical strip of a box B to be a rectangle T contained
in B where the bottom edge of T is contained in b(B) and the top edge of T is
contained in t (B) (i.e., the top and bottom edges of T lie on the boundary of
B) and whose left and right edges are contained in a main line or a help line.
Similarly, a horizontal strip of a box B is a rectangle H contained in B where
the left edge of H is contained in l (B) and the right edge of H is contained in
r (B) and whose top and bottom edges are contained in a main line or a help
line. For a vertical strip T of a box B , we denote by w(T ) the length of the
bottom (or top) edge of T , and for a horizontal strip H of a box B , we denote
by h(H) the length of the left (or right) edge of H .

We interpret vertical strips of a box B as the portion of B that lies between
two consecutive vertical help lines, or possibly between a vertical help line and
a vertical main line. We similarly interpret horizontal strips of a box to be the
portion of the box between two consecutive horizontal help lines, or possibly
between a horizontal help line and a horizontal main line. Note that, with this
interpretation, elementary boxes are precisely those that consist of one vertical
strip and one horizontal strip.

3.2 Structural Properties

The main structural property we aim to show is that in a subproblem for a box
B ∈B(S), there is a good vertical or horizontal separator contained in a main
or help line. In particular, in order to ensure subproblems of low complexity,
we aim to maintain the following invariant.
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Definition 3.2. A box B ∈B(S) satisfies the box invariant if each of its edges is
intersected by at most two edges of C

OPT

k
(S).

Hence, we make some observations and prove some lemmas that aid us in
this goal. The following observation exploits the general position assumption
that no two points in S have the same x- or y-coordinate.

Observation 3.3. Let B ,B1,B2 ∈ B(S) be boxes such that B = B1 ∪B2 and B1

and B2 have disjoint interiors. Let C be any clustering of S. Then ΦB (C ) =
ΦB1 (C )+ΦB2 (C ).

We also have the property that no point lies on the boundary of a box B .
Due to the way we have defined the main lines,

Observation 3.4. No box B ∈ B(S) contains a point from S on its boundary.

Furthermore, if the convex hull C of a cluster of C
OPT

k
(S) (or an edge e of such a

convex hull) intersects the boundary of a box B ∈B(S), then C (or the edge e) is

not fully contained in B .

The following lemma states that, for an optimal solution, the total cost of
the portion of its edges that lie in a box B cannot exceed the perimeter of the
box.

Lemma 3.5. Let B ∈B(S). Then ΦB (C OPT

k
(S)) É 2w(B)+2h(B).

Proof. Suppose for a contradiction that this is not the case. Let S1, . . . ,Sk be
the clusters of C

OPT

k
(S) whose convex hulls intersect B . Let P := B ∪

⋃k
i=1

CH(Si ).

Now, P has a perimeter strictly smaller than
∑k

i=1
per(Si ). However, the merged

cluster
⋃k

i=1
Si has a convex hull with a perimeter at most as large as the

boundary P , which is a contradiction.

The following lemma is a key ingredient in our algorithm, and it is the main
structural property we show in this section.

Lemma 3.6. If B ∈B(S) is an elementary box, then there are at most two edges of

C
OPT

k
(S) intersecting B (in particular, B satisfies the box invariant). Furthermore,

any non-elementary box B ∈B(S) satisfying the box invariant has a good vertical

or horizontal separator s contained in a main or help line such that s divides B

into two boxes Bl and Br , both of which satisfy the box invariant.

We prove the following sequence of lemmas, which we later show how to
combine to yield a proof of Lemma 3.6.

Lemma 3.7. Consider any box B ∈ B(S). Let X be an arbitrary partition of B

into vertical strips, and let Y be an arbitrary partition of B into horizontal strips.

Moreover, let A := {A1, . . . , Am}, Z = {Z1, . . . , Zq } be arbitrary nonempty subsets of

X ,Y , respectively. Then either there is a vertical separator of B contained in some

vertical strip Ai ∈ A or a horizontal separator of B contained in some horizontal

strip Z j ∈ Z that intersects at most 2
p

2 w(B)+h(B)∑
Ai ∈A w(Ai )+

∑
Z j ∈Z h(Z j )

edges of C
OPT

k
(S).
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B

δ

δ1

δ2

Figure 3.1: Contribution of an edge of length δ to the sum of integrals in the proof of

Lemma 3.7 is at most
p

2δ.

Proof. Define x1, x2 to be the values such that the edges l (B) and r (B) are
contained in the vertical lines x = x1 and x = x2, respectively. Similarly, define
y1, y2 to be the values such that the edges b(B) and t (B) are contained in the
horizontal lines y = y1 and y = y2, respectively. Define li and ri to be the
x-coordinates of the left and right edge, respectively, of the vertical strip Ai .
Similarly, define b j and t j to be the y-coordinates of the bottom and top edge,
respectively, of the horizontal strip Z j .

Suppose for a contradiction that all vertical separators that are contained in
some vertical strip Ai ∈ A and all horizontal separators that are contained in
some horizontal strip Z j ∈ Z intersect strictly more than 2

p
2 w(B)+h(B)∑

Ai ∈A w(Ai )+
∑

Z j ∈Z h(Z j )

edges of C
OPT

k
(S). Define the function f (x) to be the number of edges of C

OPT

k
(S)

that intersect the vertical separator with x-coordinate x (for each x1 É x É x2).
Similarly, define the function g (y) to be the number of edges of C

OPT

k
(S) that

have at least some portion in B and intersect the horizontal separator with
y-coordinate y (for each y1 É y É y2).

Consider an edge e (or portion of an edge) of C
OPT

k
(S) that lies in B , and

suppose it has length δ. We want to understand its contribution to the sum
of integrals

∫x2
x1

f (x)d x +
∫y2

y1
g (y)d y. In particular, we want to understand the

maximum contribution possible by such a line segment (i.e., edge). To this end,
consider the right triangle formed by the two endpoints of the line segment
(which is the hypotenuse) and the intersection of the vertical line passing
through the upper endpoint and the horizontal line passing through the lower
endpoint. Let δ1 denote the length of one leg and δ2 denote the length of the
other leg, and observe that δ1 +δ2 is precisely the contribution of edge e to the
sum of integrals. Hence, we wish to maximize δ1 +δ2 subject to the constraint
δ2 = δ2

1 +δ2
2, which yields δ1 = δ2 = δp

2
(obtained when the triangle is a right

isosceles triangle). This implies that an edge of length δ contributes at mostp
2δ to the sum of integrals (see Figure 3.1).

By Lemma 3.5, we know that ΦB (C OPT

k
(S)) É 2w(B)+ 2h(B). Hence, we
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obtain a contradiction as follows:

2w(B)+2h(B) ÊΦB (C OPT

k (S))

Ê

∫x2
x1

f (x)d x +
∫y2

y1
g (y)d y

p
2

Ê

∑m
i=1

∫ri

li
f (x)d x +

∑q

j=1

∫t j

b j
g (y)d y

p
2

>
(

2
w(B)+h(B)

∑
Ai∈A w(Ai )+

∑
Z j ∈Z h(Z j )

)(
∑

Ai∈A

w(Ai )+
∑

Z j ∈Z

h(Z j )

)

= 2w(B)+2h(B).

Here, the second inequality follows from the maximum amount that an edge
(or portion of an edge) of C

OPT

k
(S) can contribute to the sum of integrals, the

third inequality follows since we are integrating over a smaller domain, and the
last inequality follows from our assumption that each vertical separator that
belongs to some vertical strip intersects many edges (and similarly for such
horizontal separators).

We first consider boxes that have many small vertical strips and many small
horizontal strips (i.e., many main lines and help lines). We argue that such
boxes have either a good vertical separator or a good horizontal separator in
the following lemma.

Lemma 3.8. Let B be any box satisfying the box invariant and consider the vertical

strips induced by the vertical help and main lines going through B , along with

the horizontal strips induced by the horizontal help and main lines going through

B . Moreover, suppose that for every such vertical strip T we have w(T ) É 1
200

w(B)

and for all such horizontal strips H we have h(H) É 1
200

h(B). Then there exists a

good vertical separator of B that is contained in a vertical help or main line, or

there exists a good horizontal separator of B with similar properties.

Proof. Consider any box B with the given properties. We consider each portion
of B that lies between two consecutive vertical help lines (or between a vertical
help line and a vertical main line) to be a vertical strip of B . We similarly
consider the horizontal strips of B induced by the corresponding horizontal
help and main lines.

One of the vertical strips has a left edge that is precisely l (B), and another
one of the vertical strips has a right edge that is precisely r (B). Since we aim to
split the box B into two smaller boxes with our separator, we discard these two
vertical strips. Moreover, we also discard any vertical strip T that has an edge
of C

OPT

k
(S) intersecting the top edge of T or the bottom edge of T . Because B

satisfies the box invariant, there are at most four such edges of C
OPT

k
(S). Each

edge of C
OPT

k
(S) can result in discarding at most two vertical strips (in case
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the edge intersects the corner of a vertical strip, in which case two strips are
affected). Hence, in all, we discard at most 10 vertical strips. Similar reasoning
applies to horizontal strips, resulting in discarding at most 10 horizontal strips.
Note that the total width of vertical strips that are not discarded is at least
(1− 10

200
)w(B) = 19

20
w(B), and similarly the total height of horizontal strips that

are not discarded is at least 19
20

h(B).

By Lemma 3.7, either there exists a vertical separator of B contained in
some non-discarded vertical strip or a non-discarded horizontal separator of
B contained in some horizontal strip that intersects at most 2

p
2 w(B)+h(B)

19
20 (w(B)+h(B))

<

3 edges of C
OPT

k
(S). Suppose there is some non-discarded vertical strip T

containing a good vertical separator (as the other case is symmetric). Since
T was not discarded, its left edge is not l (B) and its right edge is not r (B).
Moreover, since there are no edges of C

OPT

k
(S) intersecting the top or bottom

edge of T , there can be no edge of C
OPT

k
(S) that intersects the left or right

edge of T without also intersecting the good vertical separator contained in T .
Hence, either of the left or right edge of T serves as a good vertical separator
of B .

We now argue that boxes that consist of many vertical strips (induced by
the corresponding vertical help or main lines) and are much wider than they
are tall have a good vertical separator. A similar result holds in the horizontal
direction.

Lemma 3.9. Let B be any box satisfying the box invariant and consider the

vertical strips induced by the vertical help (and main) lines going through B , along

with the horizontal strips induced by the horizontal help (and main lines) going

through B . Moreover, suppose that w(B) > 4h(B) and all vertical strips T have

w(T ) É 1
200

w(B). Then there exists a good vertical separator of B that is contained

in a vertical help or main line. Likewise, if h(B) > 4w(B) and all horizontal strips

H have h(H) É 1
200

h(B), then there exists a good horizontal separator of B with

similar properties.

Proof. Consider any such box B , and suppose w(B) > 4h(B), as the other case
is proved similarly. We consider each portion of B that lies between two
consecutive vertical help lines (or between a vertical help line and a vertical
main line) to be a vertical strip of B . Assume that all such vertical strips T satisfy
w(T ) É 1

200
w(B). We proceed in a manner similar to the proof of Lemma 3.8.

One of these vertical strips has a left edge that is precisely l (B), and another
one of these vertical strips has a right edge that is precisely r (B). Since we
aim to split the box B into two smaller boxes with our separator, we discard
these two vertical strips. Moreover, we also discard any vertical strip T that
has an edge of C

OPT

k
(S) intersecting the top edge of T or the bottom edge of

T . Because B satisfies the box invariant, there are at most four such edges of
C

OPT

k
(S) (since at most two such edges intersect t (B), and at most two such
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edges intersect b(B)). Each such edge of C
OPT

k
(S) can result in discarding at

most two vertical strips (in case the edge intersects the corner of a vertical strip,
in which case two strips are affected). Hence, in all, we discard at most 10

vertical strips. Note that the total width of vertical strips that are not discarded
is at least 19

20
w(B).

Now, suppose for a contradiction that all vertical separators in the remaining
vertical strips intersect at least three edges of C

OPT

k
(S). This implies that the

total length of such edges is at least 57
20

w(B). By Lemma 3.5, we know that

ΦB (C OPT

k
(S)) É 2w(B)+2h(B). Hence, we obtain a contradiction:

57

20
w(B) ÉΦB (C OPT

k (S)) É 2w(B)+2h(B) É 2w(B)+
w(B)

2
=

5

2
w(B).

Hence, there is some remaining vertical strip T that contains a good vertical
separator which implies as before that the left or right edge of T serves as a
good vertical separator.

We now consider the case regarding boxes that either have some wide
vertical strip and are not much taller than they are wide, or have some tall
horizontal strip and are not much wider than they are tall.

Lemma 3.10. Let B be any box and consider the vertical strips induced by the

vertical help (and main) lines going through B , along with the horizontal strips

induced by the horizontal help (and main lines) going through B . Moreover,

suppose that h(B) É 4w(B) and there exists some vertical strip T with w(T ) >
1

200
w(B). Then the left edge of T has at most two edges of C

OPT

k
(S) intersecting it,

and the same holds for the right edge of T . Similarly, if w(B) É 4h(B) and there

exists some horizontal strip H with w(H) > 1
200

h(B), then each of the bottom and

top edges of H has at most two edges of C
OPT

k
(S) intersecting them.

Proof. Consider any such box B , and suppose h(B) É 4w(B), as the other case
is proved similarly. We consider each portion of B that lies between two
consecutive vertical help lines (or between a vertical help line and a vertical
main line) to be a vertical strip of B . Assume that there exists some vertical
strip T with w(T ) > 1

200
w(B).

Now, consider the two points p1, p2 that give rise to the vertical strip T

induced by the corresponding vertical help and main lines, and let x1, x2 be
the x-coordinates of p1, p2 (respectively), with x1 < x2. Observe that h(B) É
4w(B) < 800w(T ) = 800

x2−x1

20000
= (x2−x1)

25
, where the inequalities follow from our

assumptions in the lemma and the first equality follows from the fact that we
divide the interval [x1, x2] into 20000 segments of equal length (induced by the
vertical help lines).

Suppose for a contradiction that the left or right edge of T has at least
three edges of C

OPT

k
(S) intersecting it. Let s denote this vertical edge, and let

u denote the x-coordinate of s. We must have that at least one of x1, x2 must
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Figure 3.2: The two cases in the proof of Lemma 3.10, θ1,2 É π
2 (left) and θ2,3 É π

2
(right).

be far away from u (note that x1 É u É x2). In particular, either x2 Ê u + x2−x1

2
or x1 É u − x2−x1

2
. We consider the former case as the latter is symmetric, so

suppose x2 Ê u + x2−x1

2
.

Let e1,e2,e3 denote three consecutive edges of C
OPT

k
(S) that intersect the

line segment s, sorted in decreasing order according to the height of the point
of intersection with s (e.g., e1 is above e2, which is above e3 at x = u). Note
that it cannot be the case that all three edges are contained in the boundary
of the convex hull of the same cluster, and hence the three edges lie on the
boundaries of two convex hulls (induced by two clusters of C

OPT

k
(S)). Without

loss of generality, assume that there exists an optimal cluster C such that CH(C )

contains both e1 and e2 (the case when e2 and e3 are on the same boundary is
symmetric). Moreover, let C ′ denote the cluster giving rise to the boundary on
which e3 lies.

We first consider the case when the slope of e1 is strictly more than that of
e2, and the slope of e2 is strictly more than that of e3. We imagine extending
the line segments e1,e2 to the left until they meet at some point r1,2 (they must
meet at some point), and denote by θ1,2 the angle in radians formed as a result
of this extension. We can do a similar process for edges e2,e3 to obtain the
angle θ2,3, and also for edges e1,e3 to obtain an angle θ1,3. Observe that θ1,3 Éπ,
implying that either θ1,2 É π

2
or θ2,3 É π

2
(see Figure 3.2).

Consider the scenario where θ1,2 É π
2
. We transform the solution as follows.

First, we split the cluster C into two clusters, where we take all points in C

with an x-coordinate of at most u to one cluster C1, and all points in C with an
x-coordinate of at least x2 to another cluster C2 (note that there are no points
with an x-coordinate in the open interval (u, x2)). Lastly, we merge the clusters
C1 and C ′ by taking the union C1∪C ′. We note that the total number of clusters,
after performing the split and merge, remains unchanged. Hence, we need only
argue that the cost after splitting and merging does not result in an increase in
cost.

To this end, observe that the points in C1 all lie inside the polygon P1
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obtained by considering the original cluster C , cutting it with the vertical
line x = u, and taking the left portion (i.e., all points in CH(C ) that have an
x-coordinate of at most u). By a similar argument, the points in C2 all lie
inside the polygon P2 obtained by considering the original cluster C , cutting
it with the vertical line x = x2, and taking the right portion (i.e., all points in
CH(C ) that have an x-coordinate of at least x2). Now, consider the polygon
Q obtained by merging the polygons P1 and CH(C ′) as follows: we consider a
vertical line segment at x = u going from edge e2 to edge e3 (note that both
edges intersect line s at x = u). Observe that Q contains the points in C1 ∪C ′

and P2 contains the points in C2, and hence per(C1∪C ′) is at most the perimeter
of Q and per(C2) is at most the perimeter of P2. Hence, we need only bound
the perimeter of Q and P2.

Observe that the combined perimeter of Q and P2 is at most per(C )+per(C ′),
plus the lengths of the vertical line segments at x = u and x = x2 going from
edge e1 to e2, plus twice the length of the vertical line segment at x = u

going from edge e2 to e3, minus the lengths of the portion of edges e1 and
e2 with x-coordinates in between x = u and x = x2. For ease of notation,
we denote by b1,2 the length of the vertical line segment at x = x2 (going
from e1 to e2), by ℓ1 the length of e1 in the interval [u, x2], and by ℓ2 the
length of e2 in the interval [u, x2]. First, the vertical line segments at x = u

(which, joined together, go from e1 to e3 at x = u) contribute at most 2h(B)

to the perimeter of Q. Now, we upper bound b1,2 by considering the triangle
formed by the following three points: r1,2, the intersection of e1 with the
vertical line x = x2, and the intersection of e2 with the vertical line x = x2.
Let β denote the angle formed at the intersection of e1 with x = x2, and γ

denote the angle formed at the intersection of e2 with x = x2. We have that
b1,2 = h(B)+ℓ1 cos(β)+ℓ2 cos(γ). Since θ1,2 É π

2
, we know that max{β,γ} Ê π

4
. This

implies b1,2 = h(B)+ℓ1 cos(β)+ℓ2 cos(γ) É h(B)+max{ℓ1 + ℓ2p
2

,
ℓ1p

2
+ℓ2}. Hence,

the new solution’s cost, given by the sum of the perimeters of Q and P2, is
at most per(C )+per(C ′)+3h(B)+max{ℓ1 + ℓ2p

2
,
ℓ1p

2
+ℓ2}−ℓ1 −ℓ2. We bound this

expression as follows:

3h(B)+max

{
ℓ1 +

ℓ2p
2

,
ℓ1p

2
+ℓ2

}
−ℓ1 −ℓ2

É 3h(B)−
(
1−

1
p

2

)
min{ℓ1,ℓ2} É 3h(B)−

(
1−

1
p

2

)
(x2 −u),

where the last inequality follows from the fact that both ℓ1 and ℓ2 are at least
x2−u. Hence, as long as 3h(B)−(1− 1p

2
)(x2−u) < 0, we have a contradiction. This

holds as h(B) < (x2−x1)
25

and x2 −u Ê x2−x1

2
, implying 3h(B)− (1− 1p

2
)(x2 −u) < 0.

In the case that θ1,2 > π
2
, then we know θ2,3 É π

2
. In this setting, we obtain a

new solution by merging the two clusters C and C ′ to get C ∪C ′, and argue that
this new solution is cheaper. Consider the polygon P obtained by removing
the portion of edges e2 and e3 in between x = u and x = x2, and then joining
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C and C ′ on the left by a vertical line segment going from the point at which
e2 intersects s to the point at which e3 intersects s (at x = u). Similarly, we
join C and C ′ on the right by a vertical line segment between the two points
at which edges e2 and e3 intersect at x = x2. Now, since P contains all points
in C ∪C ′, we have per(C ∪C ′) is at most the perimeter of P . Moreover, we
have that the perimeter of P is at most per(C )+per(C ′), plus the lengths of the
left and right vertical segments we added, minus ℓ2 and ℓ3. The left vertical
segment contributes at most h(B) to the perimeter (since the left vertical line
segment is contained in s). By a similar argument as earlier, the right vertical
segment is at most h(B)+max{ℓ2 + ℓ3p

2
,
ℓ2p

2
+ℓ3} (using the fact that θ2,3 É π

2
in

this case). Hence, using similar reasoning as before, the perimeter of P is at

most per(C )+per(C ′)+2h(B)+max
{
ℓ2 + ℓ3p

2
,
ℓ2p

2
+ℓ3

}
−ℓ2 −ℓ3. We bound this

expression as follows:

2h(B)+max

{
ℓ2 +

ℓ3p
2

,
ℓ2p

2
+ℓ3

}
−ℓ2 −ℓ3 É 2h(B)−

(
1−

1
p

2

)
min{ℓ2,ℓ3}

É 2h(B)−
(
1−

1
p

2

)
(x2 −u).

We again have that this quantity is strictly less than zero, a contradiction.
In the case when either the slope of e1 is at most the slope of e2, or the

slope of e2 is at most the slope of e3, the proof is simpler. In particular, in the
former case, we can more easily bound the vertical line segment we add along
the line x = x2 by h(B) (instead of some function of ℓ1,ℓ2). This holds since
the gap between edges e1 and e2 shrinks when going from x = u to x = x2. The
same holds in the latter case when the slope of e2 is at most the slope of e3.

Finally, as a type of base case, we argue that boxes that are not much taller
than they are wide and consist of one vertical strip have at most two edges of
C

OPT

k
(S) intersecting the whole box. Likewise, boxes that are not much wider

than they are tall and consist of one horizontal strip satisfy the same property.

Lemma 3.11. Let B be any box with h(B) É 4w(B) such that no vertical help or

main line has an x-coordinate strictly in between the x-coordinates induced by

l (B) and r (B). Then there are at most two edges of C
OPT

k
(S) intersecting box B .

Similarly, if B is any box with w(B) É 4h(B) such that no horizontal help or main

line has a y-coordinate strictly in between the y-coordinates induced by b(B) and

t (B), then there are at most two edges of C
OPT

k
(S) intersecting box B .

Proof. Consider any such box B with h(B) É 4w(B) (as the proof of the other
case is symmetric). We consider each portion of B that lies between two
consecutive vertical help lines (or between a vertical help line and a vertical
main line) to be a vertical strip of B . In particular, the assumption in the lemma
regarding vertical help and main lines implies that B consists of exactly one
vertical strip T (induced by l (B) and r (B)), and hence we have w(B) = w(T ).
The following proof uses similar ideas as in the proof of Lemma 3.10.
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Now, consider the two points p1, p2 that give rise to the vertical strip T , and
let x1, x2 be the x-coordinates of p1, p2 (respectively), with x1 < x2. Observe that
h(B) É 4w(B) = 4w(T ) = 4

x2−x1

20000
< x2−x1

200
, where the first inequality and the first

equality follow from our assumptions in the lemma, and the second equality
follows from the fact that we divide the interval [x1, x2] into 20000 segments of
equal length (induced by the vertical help lines).

Suppose for a contradiction that there are (at least) three edges of C
OPT

k
(S)

intersecting the interior of B . Let u1,u2 denote the x-coordinates induced by the
line segments l (B) and r (B), respectively. We must have either x2 Ê u1+u2

2
+ x2−x1

2
or x1 É u1+u2

2
− x2−x1

2
. Otherwise, we get a contradiction: x2−x1 < u1+u2

2
+ x2−x1

2
−

u1+u2

2
+ x2−x1

2
= x2 −x1. We consider the former case as the latter is symmetric,

so suppose x2 Ê u1+u2

2
+ x2−x1

2
. In the former case, we focus on the vertical line

x = u1, namely the line containing l (B) (in the latter case, we focus on the
vertical line x = u2, namely the line containing r (B)).

Let e1,e2,e3 denote three edges of C
OPT

k
(S) that intersect the interior of

box B . Each such edge must also intersect the vertical lines x = u1 and x = x2.
We consider three such edges that are consecutive, sorted in decreasing order
according to the height of the point of intersection with the line x = u1 (e.g., e1

is above e2, which is above e3 at x = u1). Note that it cannot be the case that
all three edges are contained in the boundary of the convex hull of the same
cluster, and hence the three edges lie on the boundaries of at least two convex
hulls (induced by at least two clusters of C

OPT

k
(S)). Without loss of generality,

assume that there exists an optimal cluster C such that CH(C ) contains both e1

and e2 (the case when e2 and e3 are on the same boundary is symmetric). We
also denote by C ′ the cluster giving rise to the boundary on which e3 lies.

For ease of notation, we denote by ℓ1,ℓ2,ℓ3 the lengths of e1,e2,e3 in the
interval [u1, x2], and by g1, g2, g3 the lengths of e1,e2,e3 in an arbitrary interval
of length x2−x1

20000
in [u1, x2]. We also denote by a1,2 the length of the vertical

line segment at x = u1 connecting e1 and e2, by a2,3 the segment at x = u1

connecting e2 and e3, and a1,3 = a1,2 +a2,3 (i.e., the length of the vertical line
segment at x = u1 going from e1 to e3). We define analogous lengths of vertical
line segments b1,2 and b2,3 at x = x2 between edges e1,e2 and edges e2,e3,
respectively. We note that ℓi Ê 1000gi for 1 É i É 3, since there are at least
1000 disjoint intervals of length x2−x1

20000
in the interval [u1, x2] (using the fact that

x2 Ê u1+u2

2
+ x2−x1

2
), and in each such interval the length of ei is precisely gi .

We first argue that ai , j É gi + g j +h(B) for all 1 É i < j É 3. For any two such
edges ei ,e j we argue this by considering the following three line segments. We
can go along ei from the intersection of edge ei with x = u1 to any intersection
point of ei with box B , and then to any intersection point of e j with box B , and
finally go along e j back to x = u1. The cost of connecting ei to e j along x = u1

is at most the lengths of the projection of these three line segments onto x = u1,
which sum to at most gi + g j +h(B).

Moreover, we show a tighter bound of ai , j É min{gi , g j }+h(B) for all 1 É
i < j É 3 satisfying the property that the slope of ei is strictly more than that
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Figure 3.3: The two cases in the proof of Lemma 3.11, θ1,2 É π
2 (left) and θ2,3 É π

2
(right).

of e j . If the slopes of ei ,e j are positive and negative, respectively, then the
intersections of ei ,e j with x = u1 must both lie in B , and hence the cost of
connecting them via the vertical line segment at x = u1 is ai , j É h(B). If the
slope of ei is negative, in which case the slope of e j is also negative, then the
intersection points of both edges with x = u1 must lie above b(B), and hence
we can obtain the bound via the following two line segments. We can go from
the intersection of edge ei with x = u1 to any point at which it intersects box
B , and then go to the intersection of b(B) with x = u1. The cost of connecting
ei to e j along x = u1 is at most the lengths of the projection of these two line
segments onto x = u1, which sum to at most gi +h(B) (note that gi = min{gi , g j },
since both slopes are negative and the slope of ei is strictly more than that of
e j ). A symmetric argument shows that, in the case that e j is positive (in which
case the slope of ei is also positive), we have ai , j É g j +h(B) (we symmetrically
have g j = min{gi , g j }).

We first consider the case when the slope of e1 is strictly more than that
of e2, and the slope of e2 is strictly more than that of e3. This implies a1,2 É
min{g1, g2, g3}+h(B) and a2,3 É min{g1, g2, g3}+h(B). In particular, we know
a1,2 É min{g1, g2}+h(B), and we also know a1,2 É a1,3 É min{g1, g3}+h(B), imply-
ing a1,2 É min{g1, g2, g3}+h(B). Symmetrically, we have a2,3 É min{g1, g2, g3}+
h(B).

Now, we imagine extending the line segments e1,e2 to the left until they
meet at some point r1,2 (they must meet at some point), and denote by θ1,2 the
angle in radians formed as a result of extension. We can do a similar process
for edges e2,e3 to obtain the angle θ2,3 (again, extending line segments e2 and
e3 to the left must result in an intersection), and also for edges e1,e3 to obtain
an angle θ1,3. Observe that θ1,3 Éπ, implying that either θ1,2 É π

2
or θ2,3 É π

2
(see

Figure 3.3).

Consider the scenario where θ1,2 É π
2
. We transform the solution as follows.
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First, we split the cluster C into two clusters, where we take all points in C with
an x-coordinate of at most u1 to one cluster C1, and all points in C with an
x-coordinate of at least x2 to another cluster C2 (note that there are no points
with an x-coordinate in the open interval (u1, x2)). Lastly, we merge the clusters
C1 and C ′ by taking the union C1∪C ′. We note that the total number of clusters,
after performing the split and merge, remains unchanged. Hence, we need only
argue that the cost after splitting and merging does not result in an increase in
cost.

To this end, observe that the points in C1 all lie inside the polygon P1

obtained by considering the original cluster C , cutting it with the vertical line
x = u1, and taking the left portion (i.e., all points in CH(C ) that have an x-
coordinate of at most u1). By a similar argument, the points in C2 all lie inside
the polygon P2 obtained by considering the original cluster C , cutting it with
the vertical line x = x2, and taking the right portion (i.e., all points in CH(C ) that
have an x-coordinate of at least x2). Now, consider the polygon Q obtained by
merging the polygons P1 and CH(C ′) via a vertical line segment at x = u1 going
from edge e2 to edge e3. Observe that Q contains the points in C1 ∪C ′ and P2

contains the points in C2, and hence per(C1 ∪C ′) is at most the perimeter of Q

and per(C2) is at most the perimeter of P2. Moreover, the combined perimeters
of Q and P2 is at most per(C )+per(C ′)+a1,2 +2a2,3 +b1,2 −ℓ1 −ℓ2.

Now, we upper bound b1,2 by considering the triangle formed by the fol-
lowing three points: r1,2, the intersection of e1 with the vertical line x = x2,
and the intersection of e2 with the vertical line x = x2. Let β denote the angle
formed at the intersection of e1 with x = x2, and γ denote the angle formed at
the intersection of e2 with x = x2. We have that b1,2 = a1,2 +ℓ1 cos(β)+ℓ2 cos(γ).
Since θ1,2 É π

2
, we know that max{β,γ} Ê π

4
. This implies b1,2 = a1,2 +ℓ1 cos(β)+

ℓ2 cos(γ) É a1,2 +max{ℓ1 + ℓ2p
2

,
ℓ1p

2
+ℓ2}. Hence, we obtain

a1,2 +2a2,3 +b1,2 −ℓ1 −ℓ2 É 2(a1,2 +a2,3)+max

{
ℓ1 +

ℓ2p
2

,
ℓ1p

2
+ℓ2

}
−ℓ1 −ℓ2

É 4(min{g1, g2}+h(B))−
(
1−

1
p

2

)
min{ℓ1,ℓ2}

É 4(min{g1, g2}+4w(B))−1000

(
1−

1
p

2

)
min{g1, g2}

< 0,

where the first inequality follows from substituting our upper bound on b1,2,
the second inequality follows from substituting for our upper bounds on a1,2

and a2,3 and simplifying, the third inequality follows by the assumption h(B) É
4w(B), along with ℓ1 Ê 1000g1 and ℓ2 Ê 1000g2, and the last inequality follows
from the observation that w(B) É min{g1, g2}. Hence, the perimeter sum of Q

and P2 is at most per(C )+per(C ′)+a1,2 +2a2,3 +b1,2 −ℓ1 −ℓ2 < per(C )+per(C ′),
a contradiction.
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In the case that θ1,2 > π
2
, then we know θ2,3 É π

2
. In this setting, we obtain a

new solution by merging the two clusters C and C ′ to get C ∪C ′, and argue that
this new solution is cheaper. Consider the polygon P obtained by removing the
portion of edges e2 and e3 in between x = u1 and x = x2, and then joining C

and C ′ on the left by a vertical line segment going from the point at which e2

intersects x = u1 to the point at which e3 intersects x = u1. Similarly, we join C

and C ′ on the right by a vertical line segment between the two points at which
edges e2 and e3 intersect at x = x2. Now, since P contains all points in C ∪C ′,
we have per(C ∪C ′) is at most the perimeter of P . Moreover, we have that the
perimeter of P is at most per(C )+per(C ′)+a2,3 +b2,3 −ℓ2 −ℓ3.

By a similar argument as earlier, we have b2,3 É a2,3 +max{ℓ2 + ℓ3p
2

,
ℓ2p

2
+ℓ3}

(using the fact that θ2,3 É π
2

in this case). Hence, using similar reasoning as
before, we obtain

a2,3 +b2,3 −ℓ2 −ℓ3 É 2a2,3 +max

{
ℓ2 +

ℓ3p
2

,
ℓ2p

2
+ℓ3

}
−ℓ2 −ℓ3

É 2(min{g2, g3}+h(B))−
(
1−

1
p

2

)
min{ℓ2,ℓ3}

É 2(min{g2, g3}+4w(B))−1000

(
1−

1
p

2

)
min{g2, g3} < 0,

where the first inequality follows from substituting for b2,3, the second inequal-
ity follows from substituting for a2,3 and simplifying, the third inequality follows
from the assumption h(B) É 4w(B), along with ℓ2 Ê 1000g2 and ℓ3 Ê 1000g3, and
the last inequality follows from w(B) É min{g2, g3}. Thus, the perimeter of P is
at most per(C )+per(C ′)+a2,3 +b2,3 −ℓ2 −ℓ3 < per(C )+per(C ′), a contradiction.

In the case that the slope of e2 is at most that of e3, then we also argue that
merging C and C ′ to get C ∪C ′ yields a cheaper solution. In particular, in this
case, we know that b2,3 É a2,3 (as we go from x = u1 to x = x2, the vertical gap
between the two edges shrinks since the slope of e2 is smaller than the slope of
e3). Moreover, we have a2,3 É g2 + g3 +h(B). By similar reasoning as before, we
obtain

a2,3 +b2,3 −ℓ2 −ℓ3 É 2a2,3 −ℓ2 −ℓ3 É 2(g2 + g3 +4w(B))−ℓ2 −ℓ3

É 12max{g2, g3}−1000g2 −1000g3 < 0,

which again yields a contradiction.

In the case that the slope of e1 is at most that of e2, but the slope of e2 is
strictly more than that of e3, we do a similar transformation as previously seen
by splitting C into two clusters C1 and C2, and then merging C1 with C ′ to obtain
the cluster C1∪C ′. As before, we need to argue a1,2+2a2,3+b1,2−ℓ1−ℓ2 < 0. Note
that b1,2 É a1,2, since the vertical gap between e1 and e2 shrinks when going
from x = u1 to x = x2. Moreover, we have a2,3 É min{g2, g3}+h(B) É g2 +h(B)
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and a1,2 É g1 + g2 +h(B). Hence, we have

a1,2 +2a2,3 +b1,2 −ℓ1 −ℓ2 É 2(a1,2 +a2,3)−ℓ1 −ℓ2 É 2(g1 +2g2 +2h(B))−ℓ1 −ℓ2

É 2(g1 +2g2 +8w(B))−1000g1 −1000g2

É 20g2 +2g1 −1000g1 −1000g2 < 0,

yielding a contradiction.

We are now ready to prove Lemma 3.6.

Proof of Lemma 3.6. Given any box B ∈ B(S), we consider each portion of B

that lies between two consecutive vertical help lines (or between a vertical help
line and a vertical main line) to be a vertical strip of B . Similarly, we consider
the horizontal strips induced by the horizontal help and main lines in B .

First, we consider the case when B is an elementary box. In this case, B is
composed of precisely one vertical strip and one horizontal strip. In particular,
we can apply Lemma 3.11 to get that at most two edges in C

OPT

k
(S) intersect

the elementary box B (clearly, we must have either h(B) É w(B) É 4w(B) or
w(B) É h(B) É 4h(B)).

Now, suppose B is a box satisfying the box invariant. If B is not an elemen-
tary box, then it has at least two vertical strips or at least two horizontal strips.
If all vertical strips T satisfy w(T ) É w(B)

200
and all horizontal strips H satisfy

h(H) É h(B)
200

, then we can apply Lemma 3.8 to get that there exists either a good
vertical separator of B or a good horizontal separator of B (and is contained in
a help or main line). Since the separator is good, at most two edges of C

OPT

k
(S)

intersect it, and hence the box invariant continues to be satisfied for each of
the two smaller boxes.

Hence, suppose there is some vertical strip T satisfying w(T ) > w(B)
200

or

there is some horizontal strip H satisfying h(H) > h(B)
200

. If the box B is much
wider than it is tall and has many small vertical strips (i.e., w(B) > 4h(B) and
w(T ) É w(B)

200
for all vertical strips T ), then we can apply Lemma 3.9. We get

that there is a good vertical separator (contained in a vertical help or main line)
that splits B into two smaller boxes such that the box invariant continues to
hold on each of the smaller boxes (since at most two edges of C

OPT

k
(S) intersect

the vertical separator). Likewise, if the box is much taller than it is wide and
has many small horizontal strips (i.e., h(B) > 4w(B) and h(H) É h(B)

200
for all

horizontal strips H), then we can again apply Lemma 3.9. We get that there is
a good horizontal separator (contained in a horizontal help or main line) that
splits B into two smaller boxes, each satisfying the box invariant.

The only other case to consider is when either the box is not much taller
than it is wide and there is some wide vertical strip T , or the box is not
much wider than it is tall and there is some tall horizontal strip H . That is,
either h(B) É 4w(B) and there is some vertical strip T satisfying w(T ) > w(B)

200
,

or w(B) É 4h(B) and there is some horizontal strip H satisfying w(H) > h(B)
200

.
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Suppose the former is the case, as the proof of the latter is symmetric. Then,
we can apply Lemma 3.10 to get that the left edge of T is intersected by at
most two edges of C

OPT

k
(S) and the right edge of T is intersected by at most

two edges of C
OPT

k
(S) (in the latter case, we know the bottom and top edges of

H satisfy a similar property).
If either the left edge of T or the right edge of T serves as a good vertical

separator of B (i.e., if either edge splits B into two strictly smaller boxes), we
are done since we already know such an edge of T is intersected by at most
two edges of C

OPT

k
(S). Hence, we need only consider the case when the box B

consists of one vertical strip (i.e., the left and right edges of T are l (B) and r (B),
respectively). Since h(B) É 4w(B), we can apply Lemma 3.11 to get that at most
two edges of C

OPT

k
(S) intersect the entire box B . Since box B is not elementary,

there is either a vertical help or main line that lies strictly in between l (B) and
r (B), or there is a horizontal help or main line that lies strictly in between b(B)

and t (B). Regardless, the separators induced by such lines are good.
Tying everything together, for boxes B that are not elementary and satisfy

the box invariant, we get that we can always find a good horizontal or vertical
separator (contained in a help or main line) that splits B into two boxes, both
of which also satisfy the box invariant.

Remark. We note that there is an unpublished solution [58] (i.e., polynomial
time algorithm) for the rectilinear version of the problem, where we must
enclose n points using k axis-parallel rectangles rather than convex hulls (as
in our setting). The solution to the axis-parallel version uses similar ideas. In
particular, it is possible to argue the existence of separators that do not cut
through any clusters of an optimal solution in this setting. This is not possible
for our problem. For the minimum perimeter-sum problem, it is possible that
any such vertical or horizontal separator cuts at least one cluster, and allowing
skew separators would result in subproblems of high complexity. In particular,
consider an example with n sufficiently large and assume k < n/3. We have
n−k+1 points spread evenly on a circle as the corners of a regular (n−k+1)-gon,
and k −1 points spread evenly on a surrounding circle with the same center.
The surrounding points are fairly close yet sufficiently far enough away that
the optimal solution is to cluster the inner n −k +1 points together, and open
a cluster for each of the k −1 points on the surrounding circle. Cutting away
the k −1 points on the outside (with not necessarily axis-aligned separators)
creates subproblems defined on polygonal regions with k −1 sides, resulting in
high complexity subproblems.

3.3 Coverings and Signatures

In the rest of this section, we assume we are given a set of points S in the
plane and a number k, and we want to solve the k-clustering problem for S.
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Figure 3.4: The cut number of the set of edges E := {e1, . . . ,e5} shown in this figure

is 2, i.e. ΘB ,s (E) = 2. Note that in this example the border set of E is E ,

i.e. MB (E) = E , and it is alternating.

Moreover, we assume the boxes we work with are in B(S), and the edges we
work with are in G (S). For brevity, we define C

∗ :=C
OPT

k
(S).

Let B be a box and E a set of edges and loops. E is called interior-disjoint if
the interior of any edge e ∈ E is not intersected by any other edge in E . Note
that we do not allow an endpoint of one edge to be in the interior of another
edge, but we do allow edges to share endpoints. All sets of edges (and loops)
we work with in this section are interior-disjoint. The border set of E on B is
denoted by MB (E) and is defined as the set of all edges in E intersecting both
the boundary and the interior of B . An intersection q of an edge pp ′ ∈MB (E)

and ∂B is called entering if pq does not intersect the interior of B , and is called
exiting if qp ′ does not intersect the interior of B .

Assuming E is interior-disjoint, all the intersections of the edges in its border
set and ∂B are distinct because by definition of the main and help lines, there
is no input point p ∈ S on ∂B . Therefore, we can define a cyclic order on these
intersections by sorting them in counterclockwise order. A border set is called
alternating if no two consecutive intersections in this cyclic order are both
entering or both exiting. Note that any two consecutive intersections define an
“interval” on ∂B . Let a, a′ be consecutive intersection points along ∂B (where
we order the intersections in counterclockwise order) such that a is an exiting
intersection and a′ is an entering intersection. We call the interval (a, a′) on ∂B

in counterclockwise order an exit-entry inteval.

For an edge s of ∂B the cut number of E on the edge s is denoted by ΘB ,s (E)

and is defined as the number of exit-entry intervals (if any) intersecting s

(see Figure 3.4). The border sequence of E on B is defined as the sequence
e1, . . . ,et of all edges in MB (E) sorted in counterclockwise order according to
their intersection with the boundary of B . Note that some edges might appear
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Figure 3.5: Example of an inner cycle E = {e1,e2,e3}, three convex chains E1 =
{e4,e5,e6,e7}, E2 = {e8}, E3 = {e9,e10}, and a border cycle E ′ = E1 ∪E2 ∪E3.

twice in this sequence. Moreover, this sequence is not unique as the first edge
in this sequence can be chosen arbitrarily.

Let B be a box. A nonempty set of edges E is called a convex chain on B

of size t (see Figure 3.5), where t := |E |, if there exists a sequence of distinct
points p1, . . . , pt+1 such that2

• p2, . . . , pt ∈ S ∩B and p1, pt+1 ∈ S \ B ,

• E = {p1p2, p2p3, . . . , pt pt+1},

•
⋃t

i=1
pi pi+1 is a simple open curve intersecting the interior of B , and

• for any i , where 1 É i < t , we have that pi pi+1pi+2 is a left turn.

We call this sequence the vertex sequence of the convex chain E . The edge p1p2

is called the starting edge and the edge pt pt+1 is called the ending edge of the
convex chain. Note that the starting and ending edges of a convex chain are
the same when t = 1.

Let B be a box. A cycle on B is defined to be a nonempty set E that is either
an inner cycle or a border cycle, as defined next. We call the set E an inner cycle
on B of size t , see Figure 3.5, if either t = 1 and E contains a single loop pp,
where p ∈ S ∩B , or if there exists a sequence of distinct points σ := (p1, . . . , pt )

such that

• p1, . . . , pt ∈ S ∩B ,

• E = {p1p2, p2p3, . . . , pt−1pt , pt p1}, and therefore t = |E |, and

• p1, . . . , pt are the vertices of a convex polygon given in counterclockwise
direction.

2Note that by definition there is no input point p ∈ S on ∂B
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An inner cycle consisting of a single loop is called a loop cycle on B . Moreover,
we call the set E a border cycle on B , see Figure 3.5, if there exists a partition
E = E1 ∪·· ·∪Ex , where 1 É x É 4, such that

• each Ei , where 1 É i É x, is a convex chain, and

• e1,e ′1, . . . ,ex ,e ′x is a border sequence of E , where ei and e ′
i

are the starting
and ending edges of the convex chain Ei .

Note that by the definition of main and help lines, no point in S can be on the
boundary of B . It is not hard to verify that the border set of a border cycle
is alternating. The coverage of a cycle E is denoted by RB (E) and is defined
either as the set {p} if E is a loop cycle {pp}, or the intersection of all half planes
defined by edges in E and the box B , i.e.,

RB (E) := B ∩
⋂

e∈E

HP(e),

where HP(e) is the half-plane defined by the line passing through e located on
the left of e. We say a point b ∈ B is covered by E if it is in the coverage of E .

For a given box B , an interior-disjoint set E of edges and loops is called a
(nonempty) disjoint covering or simply a (nonempty) covering on B of size t if
there exists a partition E = E1 ∪·· ·∪Et such that

• each Ei is a cycle,

• when 1 É i < j É t , the coverages of Ei and E j are disjoint, i.e., RB (Ei )∩
RB (E j ) =;,

• S ∩B ⊂RB (E1)∪·· ·∪RB (Et ).

It is not hard to verify that the border set of a covering is alternating. We
denote the size of E by κB (E). By definition, the empty set is a covering on B

of size zero if S ∩B =; and we call it the empty covering on B . The following
lemma shows that the size of a covering is well defined.

Lemma 3.12. For a nonempty covering E defined on an arbitrary box B , the

satisfying partition, i.e. the partition satisfying the conditions for a nonempty

covering on B , is unique.

Proof. Note that the coverages of each cycle the satisfying partition is a convex
polygon containing all parts of its edges in B . Therefore as all the coverages are
disjoint, no two inner cycles or convex chains that belong to different border
cycles intersect inside B . Moreover because of the condition on the border
sequence of a border cycle, different convex chains of a border cycle cannot
intersect in B . Hence, any other satisfying partition (if exists) consists of the
same convex chains and inner cycles. Additionally, any two convex chain that
are in the same border cycle in the satisfying partition must be in the same
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Figure 3.6: The signature of the clustering C := {{p1, . . . , p6}, {p7, p8}, {p9, p10, p11}} on B .

The edges of the covering C ⊓B are solid and the coverage of each cycle is

shown in dark grey.

border cycle in any other satisfying partition as otherwise the coverages of their
border cycles intersect. This shows that any other satisfying partition must
have the same inner cycles and border cycles which completes the proof.

It is not hard to verify that for an edge s of ∂B the cut number of E on an edge
s of B , i.e. ΘB ,s (E), is equal to the number of the coverages of E intersecting s.

We say a cluster C intersects a box B if its convex hull intersects B , and
we say it intersects the boundary ∂B of B if its convex hull intersects ∂B . The
signature of C on B or its boundary is denoted by C ⊓B and C ⊓∂B respectively
and is defined as the set of all edges of its convex hull intersecting B or the
boundary of it, i.e.,

C ⊓B := {e ∈ E (C ) | e ∩B 6= ;}, C ⊓∂B := {e ∈ E (C ) | e ∩∂B 6= ;}.

With some abuse of notation, the signature of a disjoint clustering C on B

or its boundary is denoted by C ⊓B and C ⊓∂B respectively and is defined as
the set of all edges of convex hulls of its clusters intersecting B or the boundary
of it, i.e.,

C ⊓B :=
⋃

C∈C

C ⊓B , C ⊓∂B :=
⋃

C∈C

C ⊓∂B.

Note that for any disjoint clustering C , C ⊓B is a covering on B (see Figure 3.6).

3.4 Subproblems

We consider subproblems of the following type. Given a box B , a set of edges
M and integer k ′, we want to extend the set M into a covering on B of size k ′
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such that the total cost of the extension (which is measured as the sum of the
lengths of the added edges) is minimized.

Let B be a box, M be an interior-disjoint set of edges with |M | É 8, let
k ′ ∈ {0, . . . ,k}, and type ∈ {SPECIAL, NORMAL} a boolean value. The tuple I :=
〈B , M ,k ′, type〉 is called a subproblem on B if it it is either a special subproblem
or a normal subproblem, as defined next. The subproblem I is called a normal

subproblem if

• type = NORMAL,

• M is equal to its own border set, i.e. M =MB (M), and

• the border set of M , i.e. M , is alternating.

A covering E on B is called a solution to a normal subproblem 〈B , M ,k ′, NORMAL〉
if MB (E) = M and κB (E) = k ′. The cost of a solution is denoted by ΦB (E) and is
defined as the sum of the lengths of e ∩B over all edges e ∈ E . A solution to I is
called optimal if there is no solution to I with smaller cost. We say a point b ∈ B

is covered by a solution E if either b is covered by E or type = SPECIAL. Note
that the coverage status of any point on the boundary of B is the same for all
solutions. The tuple I is called a special subproblem if

• type = SPECIAL,

• M =;, and

• k ′ = 1.

We define the empty covering (on B) to be the only solution to a special
subproblem 〈B ,;,1, SPECIAL〉.

The cut number of a subproblem I := 〈B , M ,k ′, type〉 on an edge s of B is
denoted by ΘB ,s (M , type) and is defined as

ΘB ,s (M , type) :=
{

1, type = SPECIAL,

ΘB ,s (M), otherwise.

A disjoint clustering C respects a subproblem I := 〈B , M ,k ′, type〉 if either

• type = SPECIAL and B is in the convex hull of a cluster in C , or

• type = NORMAL and C ⊓B is a solution to I .

Observation 3.13. Given a box B , the subproblem I := 〈B ,k ′,C ∗⊓∂B , type〉 is the

unique subproblem on B respected by C
∗, where k ′ is the number of clusters in C

∗

intersecting B and type = SPECIAL if B is contained in the convex hull of a cluster

in C
∗ and type = NORMAL otherwise. Moreover, C

∗⊓B is a solution to I .

Note that the original clustering problem is equivalent to the subprob-
lem I0 := 〈B0,;,k, NORMAL〉, where B0 is defined as the box with edges on
v−

1 , v+
n ,h−

1 ,h+
n .
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Observation 3.14. For any solution E to I0, there is a disjoint clustering C ∈
Part(S) such that C ⊓B0 = E . Likewise, for any disjoint clustering C ∈ Part(S), it

holds that C ⊓B0 is a solution to I0.

The following property shows that the optimal clustering C
∗ is also optimal

for subproblems.

Lemma 3.15. Let I := 〈B , M ,k ′, type〉 be a subproblem on a box B respected by

C
∗. Then, for any solution E to I , we have that ΦB (C ∗) ÉΦB (E).

Proof. Assume there exist a solution E to I such that ΦB (E) < ΦB (C ∗). It is
easy to verify that E ′ := ((C ∗⊓B0) \ (C ∗⊓B))∪E is a solution to I0 such that
ΦB0 (E ′) < ΦB0 (C ∗). As E ′ consists of k inner cycles on B0, the set E ′ is the
boundary of a clustering C

′ with cost less than C
∗, which is a contradiction.

3.5 Split and Merge

We say that a box B splits into Bl and Br if there is a separator s that separates
B to Bl and Br . Here, the box Bl is the upper box if s is horizontal and the left
box if s is vertical.

Consider two boxes B1 and B2 whose boundaries share an edge. We say
two subproblems 〈B1, M1,k ′

1, type1〉 and 〈B2, M2,k ′
2, type2〉 are compatible if their

edges match on their shared boundary, i.e.,

{e ∈ M1|e ∩∂B2 6= ;} = {e ∈ M2|e ∩∂B1 6= ;}.

Let B be a box that splits into Bl and Br by a separator s. We say a sub-
problem I := 〈B , M ,k ′, type〉 splits into two subproblems Il := 〈Bl , Ml ,k ′

l
, typel 〉 and

Ir := 〈Br , Mr ,k ′
r , typer 〉 if Il and Ir are compatible, ΘB ,s (Ml , typel ) =ΘB ,s (Mr , typer ),

k ′ = k ′
l
+k ′

r −ΘB ,s (Ml , typel ), and type = typel ∧ typer . Equivalently, we say that Il

and Ir merge to I .

Observation 3.16. Let B be a box that splits into boxes Bl and Br by a sep-

arator s, and C be a disjoint clustering. If C respects the three subproblems

I := 〈B , M ,k ′, type〉, Il := 〈Bl , Ml ,k ′
l
, typel 〉, and Ir := 〈Br , Mr ,k ′

r , typer 〉, then the

subproblem I splits into Il and Ir .

The following lemma provides sufficient conditions for a subproblem to
have a solution and helps us to find a solution for a subproblem satisfying those
conditions.

Lemma 3.17. Let I := 〈B , M ,k ′, type〉 be a subproblem that splits into subproblems

Il := 〈Bl , Ml ,k ′
l
, typel 〉 and Ir := 〈Br , Mr ,k ′

r , typer 〉. Suppose that El and Er are

solutions to Il and Ir , respectively. Then, E := El ∪Er is a covering on B and a

solution to I . Furthermore, ΦB (I ) =ΦBl
(El )+ΦBr (Er ).
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Proof. First assume that none of the subproblems is special. As Il and Ir are
compatible and ΘB ,s (El , typel ) = ΘB ,s (Er , typer ), each border cycle in El inter-
sected by s has a corresponding border cycle in Er . The set E is a cover-
ing on B because each pair of corresponding border cycles intersected by s

merges to a cycle on B , and all other cycles from El and Er are also cycles
in B . Moreover, as the number of the corresponding pairs of border cycles
is ΘB ,s (El , typel ), the number of cycles in E is κB (E) = k ′

l
+k ′

r −ΘB ,s (El , typel ).
By the definition of a solution, the covering E is a solution to a subproblem
〈B ,MB (E),k ′

l
+k ′

r −ΘB ,s (El , typel ), NORMAL〉. However, as E = El ∪Er , the border
set MB (E) is simply all the edges in Ml and Mr that intersect the boundary of
B . As I splits into Il and Ir , we have M =MB (E) and k ′ = k ′

l
+k ′

r −ΘB ,s (El , typel ).
Moreover, as the edges of E are simply all the edges of El and Er combined, the
cost of the covering E satisfies the condition mentioned in the statement of the
lemma.

It is easy to verify that in case one or both of the subproblems are special,
the claim still holds, which completes the proof of the lemma.

3.6 Elementary Subproblems

We call a subproblem elementary if it is defined on an elementary box. In
this section, we show that any elementary subproblem 〈B , M ,k ′, type〉 with at
most two edges, i.e., |M | É 2, has at most one solution. Moreover, if such a
subproblem has a solution we can recognize it and find its unique solution in
constant time.

An elementary box contains either one point from S or is empty. Therefore,
if an elementary box B is empty, all cycles on B are border cycles. If, on the
other hand, B ∩S = {p}, then the only inner cycle on B is the loop cycle {pp}.
Furthermore, as B is defined by two pairs of consecutive main lines, v−

i
, v+

i
and

h−
j

,h+
j
, and its width and height are infinitessimally small, any edge intersecting

B contains p. The only covering on B with an inner cycle is {pp}, and all other
coverings consists of border cycles only. Note that if {pp} is a solution to a
subproblem, there is no other solution, as in that case M =; and the loop cycle
{pp} is the only way p can possibly be covered.

Now, consider a solution to an elementary subproblem without any inner
cycles. As an elementary box B contains at most one point, the vertex sequence
of a convex chain on B has a size at most three, which means it has at most
two edges, and both edges must intersect the boundary of B . Therefore, for
a covering E on an elementary box B that does not have any inner cycles, we
have MB (E) = E .

The following observation summerizes the cases.

Observation 3.18. An elementary subproblem I := 〈B , M ,k ′, type〉 has a solution

if and only if either
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• I = 〈B ,;,1, NORMAL〉 and S ∩B = {p},

• I = 〈B ,;,0, NORMAL〉 and S ∩B =;,

• I = 〈B ,;,1, SPECIAL〉, or

• I = 〈B , M ,k ′, NORMAL〉, where M is a covering on B of size k ′.

Moreover, if a solution exists, it is unique and is equal to {pp} in the first case and

M otherwise.

Note that when |M | É 2, we can decide if a set of edges is a solution to an
elementary subproblem in constant time.

3.7 A Dynamic-Programming Algorithm

Definition 3.19. A subproblem I := 〈B , M ,k ′, type〉 is compact if for each edge
of B , at most two edges in M intersect it.

Observation 3.20. Let B be a box satisfying the box invariant and I be a sub-

problem on B such that C
∗ respects I . Then I is compact.

Algorithm 1: Algorithm for Minimizing the Sum of Perimeters

1 for b = 1, . . . , (20001n +1)2 do
2 for all boxes B consisting of b elementary boxes do
3 for all compact subproblems I := 〈B , M ,k ′, type〉 do
4 Table(I ) := Impossible
5 if b = 1

6 if M =; and k ′ = 1 and type = NORMAL and B ∩S = {p}

7 Table(I ) := {pp}

8 else if |M | É 2 and M is a solution to I

9 Table(I ) := M

10 else
11 for all compact subproblems Il and Ir that merge to I do
12 if Table(Il ) 6= Impossible and Table(Ir ) 6= Impossible
13 E := Table(Il )∪Table(Ir )

14 if Table(I ) = Impossible or ΦB (E) ÉΦB (Table(I ))

15 Table(I ) := E

Algorithm 1 solves the minimum perimeter sum problem. For a subproblem
I := 〈B , M ,k ′, type〉, the entry Table(I ) either stores a solution to I or the value
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“NotFound”, which means we have not found any solution to I , though it does
not mean a solution to I does not exist. After the execution of the algorithm,
Table(〈B0,;,k, NORMAL〉) contains the convex hull of an optimal k-clustering.
The algorithm iterates over all compact subproblems sorted ordered by the size
of the defining box (i.e., the number of elementary boxes contained in the box)
and stores a solution for some of them in Table.

• For an elementary subproblem I that has a solution, the algorithm stores
the unique solution in Table(I ) only if |M | É 2. The algorithm uses the
conditions stated in Observation 3.18 to find the unique solution to such
subproblems. In the proof of Lemma 3.21, we show that we do not need
to find a solution to elementary subproblem with |M | > 2.

• For a subproblem I defined on a non-elementary box, the algorithm
finds all possible splits of I to two compact subproblems Il and Ir . For
each such split, it combines the coverings (if such exist) in Table(Il ) and
Table(Ir ) to get a covering E . Then, it stores E in Table(I ) only if it is a
better solution to I than already stored in Table(I ). By Lemma 3.17, the
union of the two solutions to Il and Ir is a solution to I .

Lemma 3.21. Let I be a subproblem on a box B . Consider the value of Table(I )

as Algorithm 1 terminates. If B satisfies the box invariant and C
∗ respects I , the

entry Table(I ) contains a solution to I of cost ΦB (C ∗). In particular, Table(I0)

contains a solution to I0 := 〈B0,;,k, NORMAL〉 of cost ΦB0 (C ∗), and hence, the

algorithm solves the minimum perimeter-sum problem.

Proof. The proof is by induction on the number b of elementary boxes contained
in B . Consider first the case b = 1. If I is respected by C

∗, Lemma 3.6 yields that
B is intersected by at most two edges of the signature of C

∗. By Observation 3.4,
there are no points from S on the boundary of B , which shows |M | É 2 and
therefore I is compact and will be generated. Depending on the subproblem,
the algorithm stores either {pp} or M as a solution to I in Table(I ) only if M is
a solution to I . As by Observation 3.18 the solution to I is unique, it must be
C

∗⊓B . If |M | > 2, the algorithm stores “NotFound” in Table(I ) which completes
the proof, for the base case.

Suppose the claim holds for boxes consisting of up to b−1 elementary boxes
for some b Ê 2 and consider a subproblem I := 〈B , M ,k ′, type) where B consists of
b elementary boxes. Note that if Table(I ) 6= “NotFound”, Table(I ) must contain
a value Table(Il )∪Table(Ir ) for some subproblems Il and Ir that merge to I

and are defined on boxes consisting of less than b elementary boxes. By the
induction hypothesis, Table(Il ) and Table(Ir ) contain solutions to Il and Ir and
by Lemma 3.17, Table(I ) = Table(Il )∪Table(Ir ) is a solution to I .

If C
∗ respects I and B satisfies the box invariant, by Observation 3.20, I is

compact. By Lemma 3.6, B has a separator s contained in a main or help line
and s separates B into two boxes Bl and Br both satisfying the box invariant.
By Observation 3.13, there are unique subproblems Il and Ir , on Bl and Br ,
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such that C
∗ respects them. By Observation 3.16, subproblem I splits into Il

and Ir . As Bl and Br consists of less than b elementary boxes, by the induction
hypothesis, Table(Il ) =ΦBl

(C ∗) and Table(Ir ) =ΦBr (C ∗). By Lemma 3.17,

Φ(Table(I )) ÉΦBl
(C ∗)+ΦBr (C ∗) =ΦB (C ∗),

where the equality comes from Observation 3.3. Furthermore, by the above
mentioned argument, Table(I ) is a solution to I and by Lemma 3.15,

Φ(Table(I )) ÊΦB (C ∗),

which completes the proof.

3.8 Run-time Analysis

Data structures. We implement Table as a hash table where each subproblem
I is hashed to a number, so that we can update and insert values at a given
entry Table(I ) in time O(1).

We use a special representation for solutions (set of edges and loops) by
making a directed acyclic graph (DAG) to support constant time union operation
on solutions (sets). Each solution E to a subproblem 〈B , M ,k ′, type〉 is either
the set M , where |M | É 2, or a set containing a single loop for elementary
subproblems, or is the union of two solutions El and Er to two subproblems
defined on smaller boxes Bl and Br for non-elementary subproblems. For
elementary subproblems we simply make a node and store if the solution is a
loop or not, and if it is a loop we store the loop in the node. For non-elementary
subproblems we make a node and we store the (at most two) edges in the
solution that intersect the shared edge of Bl and Br but do not intersect ∂B .
We also store two pointers to El and Er in this node; these pointers form a
DAG where the number of nodes visible to each node (solution) is linear and
therefore it is possible to find the edges and loops of a solution in linear time
by simply adding up all the loops and edges inside the visible nodes to M .

For a box B and an edge s of B , we can compute the value of ΘB ,s (M , type) for
a subproblem I := 〈B , M ,k ′, type〉 in O(1) time as follows. For each subproblem,
we store the coverage status of the four corners of the defining box. It is easy
to compute those values for elementary subproblems and after merging two
solutions we can easily merge the coverage status of their corners as well.3 Let
ms be the number edges in M intersecting s. As we just work with compact
subproblems, 0 É ms É 2. Having the coverage status of the four corners of B ,

3To handle degenerate cases where an edge intersects a corner of a box, we can store two
coverage values for each corner. One for the coverage of the corner point and a bit more of the
boundary in counterclockwise direction and one for the coverage of the corner point and a bit
more of the boundary in clockwise direction.
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assuming s1 and s2 are the endpoints of s, the cut number is given by

ΘB ,s (M , type) =





2, ms = 2 and s1 and s2 are covered,

0, ms = 0 and s1 and s2 are not covered,

1, otherwise.

Observation 3.22. Given a box B , the number of compact subproblems I :=
〈B , M ,k ′, type〉 is at most

O

(
(n +1) ·

(
O(n2)

8

))
=O(n17).

Here, n +1 is a bound on the number k ′ and the factor
(O(n2)

8

)
is a bound on the

number of ways the edges of M can be selected for a compact subproblem. There is

also one special subproblem on box B that does not affect the upper bound O(n17).

Observation 3.23. Let B be a box that splits into Bl and Br . The number of ways

to split a compact subproblem I := 〈B , M ,k ′, type〉 to two compact subproblems

Il := 〈Bl , Ml ,k ′
l
, typel 〉 and Ir := 〈Br , Mr ,k ′

r , typer 〉 is at most

O

(
n ·

(
O(n2)

2

))
=O(n5).

Here n is the number of ways we can choose a value for k ′
l

and
(O(n2)

2

)
is the

number subsets of at most two edges intersecting ∂Bl ∩∂Br .

We now describe how Algorithm 1 at line 11 iterates through the O(n5)

pairs of subproblems (Il , Ir ) merging to I . At first, assume typel and typer have
the value NORMAL. The edge set M specifies all edges in Ml and Mr except
possibly some edges intersecting the edge s := ∂Ml ∩∂Mr and not other edges
of ∂Ml or ∂Mr . As Il and Ir are compact and compatible, Ml and Mr can have

at most two such edges. Consider now one of these
(O(n2)

2

)
choices of edges

crossing s. We iterate through each value k ′
l
∈ {0, . . . ,k ′}. For a given value of k ′

l
,

the subproblem Il is completely specified. If Il does not have any solution in
Table(Il ), we can proceed with another choice of Il . Otherwise, note that Ir is
also specified except for the value k ′

r . However, we can compute ΘBl ,s (E , typel ),
where E is the solution stored as Table(Il ), in constant time. In order for Il

and Ir to merge to I , we now define k ′
r := k ′−k ′

l
+ΘBl ,s (Ml , typel ). There are

four different choices for the values typel and typer that do not affect the upper
bound O(n5).

Theorem 3.24. Algorithm 1 solves the minimum perimeter sum problem in time

O(n27).
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Proof. Note that B0, the box with edges on v−
1 , v+

n ,h−
1 ,h+

n , satisfies the box
invariant. Since C

∗ respects I0 := 〈B0,;,k, NORMAL〉, Lemma 3.21 gives that as
the algorithm terminates, Table(I0) contains a solution E to I0 of cost ΦB0 (C ∗) =
Φ(C ∗). Moreover, Observation 3.14 states that there is a clustering C such that
C ⊓B0 = E , and hence, C is an optimal clustering. Furthermore, the clustering
C can easily be computed given E .

The algorithm uses the conditions specified in Observation 3.18 to verify
solutions to elementary subproblems I := 〈B , M ,k ′, type〉 satisfying |M | É 2, which
takes constant time and does not affect the asymptotic running time of the
algorithm.

There are O(n4) different boxes in B(S). By Observation 3.22, the number
of compact subproblems on a B is O(n17). For each separator s of B , by
Observation 3.23, the number of ways to split I to Il and Il is O(n5). As we
showed in the beginning of this section, merging two solutions can be done in
constant time. The cost of each solution can be stored as a single real number
and comparing could be assumed to take only O(1) time.The running time of
the algorithm thus is

O(n4) ·O(n17) ·O(n) ·O(n5) ·O(1) =O(n27),

where O(n4) is the number of different boxes B ∈B(S), the factor O(n17) is the
number of subproblems on B , O(n) is the number of separators of B , O(n5) is
the number of ways to split a subproblem into two subproblems for a given
separator s, and O(1) is the time needed to compare two solutions.

Theorem 3.25 (The minimum perimeter-sum problem). There is a polynomial

time algorithm that, given any set S of n points in the plane and an integer k,

finds a set of at most k closed curves such that each point in S is enclosed by a

curve and the total length of the curves is minimized.

3.9 Concluding Remarks

We presented the first polynomial time algorithm that solves the minimum
perimeter-sum problem in O(n27) time. One interesting question is if there
exists an algorithm that solves this problem faster or a lower bound on the time
complexity of such algorithm.

As mentioned in the introduction section, a polynomial time algorithm also
exists for the minimum radii-sum. However, the case for minimum diameter-
sum is still open. Another interesting problem therefore is closing the gap for
this closely related problem by providing a lower bound or an algorithm that
solves minimum diameter-sum in polynomial time.





Chapter 4

A Generic Method for Finding
Coresets for Clustering
Problems

In this chapter we consider clustering problems of the following type. Let S

be a set of n points in R
d , and let k Ê 2 be a natural number. A k-clustering

of S is a partitioning C of S into at most k clusters. Let Φ(C ) denote the cost

of C . The goal is now to find a clustering C that minimizes Φ(C ). We present
a general method to find an ε-coreset for a given clustering problem. Given
a set of points S, a cost function Φ, the number of clusters k, a value ε > 0,
an ε-coreset is a set R ⊆ S such that Φ(C ′

opt) Ê (1−ε) ·Φ(Copt), where C
′
opt is an

optimal clustering for R and Copt is an optimal clustering for S. We present

an algorithm that finds a coreset of size O(k
(

f (k)/ε
)d

) for a set of points S

in R
d , where f (k) is a function that only depends on the number of clusters.

The algorithm runs in linear time for constant k, assuming a certain model of
computing. As we mentioned in the introduction, our method applies to a large
class of clustering problems including the k-center problem in any Lp -metric,
variants of the k-center problem where we want to minimize the sum (rather
than maximum) of the cluster radii, and the 2-dimensional problem where we
want to minimize the maximum or sum of the perimeters of the clusters.

4.1 Regular Cost Functions

We start by defining the class of clustering problems to which our algorithm
applies.

Let S be a set of n points in R
d and let Part(S) be the set of all partitions

of S. Let Partk (S) be the set of all partitions into at most k subsets, that is,
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all k-clusterings of S. Let Φ : Part(S) 7→ RÊ0 be the cost function defining our
clustering problem, and define

OPTk (S) := min
C ∈Partk (S)

Φ(C )

to be the minimum cost of any k-clustering. An ε-coreset for this clustering
problem defined by Φ is a set R ⊆ S such that |R| is independent of n and
OPTk (R) Ê (1−ε) ·OPTk (S).

To define the class of clusterings to which our method applies, we need the
concept of r -packing [46]. Actually, we use a slightly weaker variant, which we
define as follows. Let |pq | denote the Euclidean distance between two points p

and q. A subset R ⊆ P of a point set P is called a weak r -packing for P , for some
r > 0, if for any point p ∈ P there exists a packing point q ∈ R such that |pq| É r .
(The difference with standard r -packings is that we do not require that |qq ′| > r

for any two points q, q ′ ∈ R.) The clustering problems to which our method
applies are the ones whose cost function is regular, as defined next.

Definition 4.1. A cost function Φ : Part(S) 7→ RÊ0 is called (c, f (k))-regular, if
there is constant c > 0 and function f : NÊ2 7→RÊ0 such that the following holds.

• For any clustering C ∈ Part(S), we have

Φ(C ) Ê c ·max
C∈C

diam(C ),

where diam(C ) = maxp,q∈C |pq| denotes the Euclidean diameter of the
cluster C . We call this the diameter-sensitivity property.

• For any weak r -packing R of S, and any k Ê 2, we have that

OPTk (R) É OPTk (S) É OPTk (R)+ r · f (k).

Example. We show k-center problems have regular cost functions. For a
cluster C , let radiusp (C ) denote the radius of the minimum enclosing ball of C in
the Lp -metric. In the L∞ metric, for instance, radiusp (C ) is half the edge length

of a minimum enclosing axis-aligned cube1 of C . Then the cost of a clustering C

for the k-center problem in the Lp -metric is Φ
max
p (C ) = maxC∈C radiusp (C ). One

easily verifies that the cost function for the rectilinear k-center problem is
(1/(2

p
d),1)-regular, and for the Euclidean k-center problem it is (1/2,1)-regular.

(In fact Φmax
p (C ) is regular for any p.)

1Throughout this chapter, when we speak of cubes (or squares, or rectangles, or boxes) we
always mean axis-aligned cubes (or squares, or rectangles, or boxes).
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4.2 The Algorithm

We start with a high-level overview of our approach. Let S be the given point
set for which we want to find a coreset. Our algorithm is shown in Algorithm 2.

Algorithm 2: FINDCORESET(S,k,ε)

1 compute a lower bound LB on OPTk (S).
2 r := ε · LB/ f (k)

3 compute a weak r -packing R on S.
4 return R

Note that R is the desired ε-coreset because Φ is (c, f (k))-regular for some
constant c > 0 and some function f : NÊ2 7→ RÊ0. The following lemma is
immediate.

Lemma 4.2. OPTk (R) Ê (1−ε) ·OPTk (S).

Next, we will show how to perform Steps 1 and 3: we will describe an algo-
rithm that allows us to compute a suitable lower bound LB and a corresponding
weak r -packing, such that the size of the r -packing depends only on ε and k

but not on |S|.
Our lower bound and weak packing computation are based on so-called

cube covers. A cube cover of S is a collection B of interior-disjoint cubes that
together cover all the points in S and such that each B ∈ B contains at least
one point from S (in its interior or on its boundary). Define the size of a
cube B , denoted by size(B), to be its edge length. The following lemma follows
immediately from the fact that the diameter of a cube B in R

d is
p

d · size(B).

Lemma 4.3. Let B be a cube cover of S such that size(B) É r /
p

d for all B ∈B.

Then any subset R ⊆ S containing a point from each cube B ∈B is a weak r -packing

for S.

Our next lemma shows we can find a lower bound on OPTk (S) from a
suitable cube cover.

Lemma 4.4. Suppose the cost function Φ is (c, f (k))-regular. Let B be a cube

cover of S such that |B| > k2d . Then OPTk (S) Ê c ·minB∈B size(B).

Proof. For two cubes B ,B ′ such that the maximum xi -coordinate of B is at most
the minimum xi -coordinate of B ′, we say that B is i -below B ′ and B ′ is i -above B .
We denote this relation by B ≺i B ′. Now consider an optimal k-clustering Copt

of S. By the pigeonhole principle, there is a cluster C ∈Copt containing points
from at least 2d +1 cubes. Let BC be the set of cubes that contain at least one
point in C .
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Clearly, if there are cubes B ,B ′,B ′′ ∈ BC such that B ′ ≺i B ≺i B ′′ for some
1 É i É d , then the cluster C contains two points at distance at least size(B)

from each other. Since Φ is (c, f (k))-regular this implies that Φ(Copt) Ê c ·size(B),
which proves the lemma.

Now suppose for a contradiction that such a triple B ′,B ,B ′′ does not exist.
Then we can define a characteristic vector Γ(B) = (Γ1, . . . ,Γd (B)) for each cube
B ∈BC , as follows:

Γi (B) =
{

1 if no cube B ′ ∈BC is i -below B

0 if no cube B ′′ ∈BC is i -above B

Since the number of distinct characteristic vectors is 2d < |BC |, there must
be two cubes B1,B2 ∈ BC with identical characteristic vectors. However, any
two interior-disjoint cubes can be separated by an axis-parallel hyperplane, so
there is at least one i ∈ {1, . . . ,d} such that B1 is i -below or i -above B2. But this
contradicts that Γ(B1) = Γ(B2).

Details of Steps 1 and 3. For simplicity, we continue the discussion for 2-
dimensional case. Generalizing the results to higher dimension is not hard.

Let G(α) denote the grid in R
2 whose cells have size α and for which the

origin O is a grid point. We call α, the width of grid G(α). We define cells to be
open on the right and top, and closed on the left and bottom, so a cell is of the
form [αi ,α(i +1))× [α j ,α( j +1)) for integers i , j . Notice that Lemmas 4.3 and
4.4 are still valid for such partially open cells instead of closed cells.

For any value α, id of a point p = (x, y) is defined as id(p,α) = (⌊x/α⌋,⌊y/α⌋).
Clearly, only points in the same cell of G(α), have similar id values. Using their
id, we can store and fetch a set of points inside a grid efficiently, by using
hashing.

For an integer s, we define a canonical grid with parameter s to be G(2s )

and denote it by Gs . Similarly, for a point p ∈R
2 we define ids (p) := id(p,2s ). A

canonical square is any cell of one of the grids Gs . W.l.o.g, we assume all the
points in a given set of points S reside in a single canonical square of some
canonical grid.

We define the separation level of two points p1, p2 ∈ R
2 to be the smallest

integer s, such that p1 and p2 reside in a single canonical square in Gs and
denote it by sdist(p1, p2). We can compute this number in constant time in a
computational model where computing lg x, 2x , and ⌊x⌋ takes constant time
(lg x = log2 x). See Section 2.2.2 of [46] for more details.

We define the canonical closest pair of a set of points S to be the pair of
points p1, p2 ∈ S with minimum separation level. We define the canonical closest

pair distance of S to be sdist(p1, p2) or equivalently the minimum integer s such
that at least two points in S are in the same cell of Gs .

Throughout this chapter, we use a data-structure H that stores a set of
points indexed on their id in an arbitrary grid G by using hashing. H can store



4.2 The Algorithm 73

just one point for each cell of G. We denote the number of points in H by |H |.
These are the operations supported by H (all times are expected):

1. Get the size, |H |, in O(1) time.

2. Test if a cell of G is empty in O(1) time.

3. Add a point to an empty cell of G in O(1) time.

4. Retrieve all the points in H in O(|H |) time.

We can also ‘Rebuild H for a new grid G ’ by retrieving all points from the current
data structure H, and inserting them one by one into a new structure H based
on the grid G. If we wish to insert a point p but we already inserted another
point with the same id, then p is discarded.

Computing canonical closest pair distance. Algorithm 3 is similar to the algorithm
for computing Euclidean closest pair distance described in Section 1.2 of [46].

Algorithm 3: CCLOSESTPAIR(S)

1 compute a random permutation p1, . . . , pn of S.
2 d0 :=∞, s :=∞, and set H to empty
3 for i := 1 to n do
4 if H [ids (pi )] is empty
5 di := di−1

6 else
7 di := sdist(pi , H [ids (pi )])

8 s := di −1, and rebuild H for Gs

9 H [ids (pi )] := pi

10 return dn

Let di be the canonical closest pair distance of p1, . . . , pi . To compute di

from di−1, consider the points p1, . . . , pi−1 in the grid Gs where s = di−1 − 1.
Obviously, no two points are in the same cell by definition of closest canonical
pair distance. Now, if the point pi is the only point in its cell (of Gs), it means
the separation level of pi to any other point in p1, . . . , pi−1 is at least di−1 and
therefore di = di−1. Otherwise, if pi and p j , where 1 É j < i , are in the same
cell of Gs , then di = sdist(pi , p j ).

Lemma 4.5. Algorithm CCLOSESTPAIR computes the canonical closest pair dis-

tance of a set of n points S in expected O(n) time.

Proof. As discussed above, after execution of the i -th iteration, the canonical
closest pair distance of p1, . . . , pi is stored in the variable di . This proves the
correctness of the algorithm.

For each point pi , we only need to rebuild H in time O(i ) if di < di−1;
otherwise we spend O(1) time for handling it. As the points are in random
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order, we have Pr[di < di−1] É 2/i for i Ê 3; therefore, the expected running time
is

O(n)+
n∑

i=3

Pr[di < di−1] ·O(i ) =O(n)

Step 1 of FINDCORESET. We start with the grid Gs where s = −∞ and add
points in S one by one to this grid. Whenever the number of non-empty cells
exceeds 16k, we increase the parameter s of the grid Gs so that the number of
non-empty cells of the new grid Gs is still greater that 4k but not greater than
16k. After adding all the points S to grid Gs we can use Lemma 4.4 to lower
bound OPTk (S).

Algorithm 4: LOWERBOUND(S,k)

1 compute a random permutation p1, . . . , pn of S.
2 s :=−∞, and set H to empty
3 for i := 1 to n do
4 if H [ids (pi )] is empty
5 H [ids (pi )] := pi

6 if |H | > 16k

7 s := CCLOSESTPAIR(H)

8 rebuild H for the new grid Gs

9 return c ·2s

Lemma 4.6. Given a set of points S and a value k Ê 2, the algorithm LOWERBOUND

computes a lower bound for OPTk (S) in expected O(n+k2 log(n/k)) time. Moreover,

after execution of this algorithm Gs contains at most 16k nonempty cells.

Proof. After execution of the algorithm, if s =−∞ the algorithm returns 0 which
is an obvious lower bound. Otherwise we show that |H | > 4k.

If s 6= −∞, it means the value of s has changed in line 7. Whenever the value
of s changes in line 7, each cell of Gs contains at most 4 points of H , because
the new value of s is canonical closest pair distance of p1, . . . , pi . Therefore,
after rebuilding H in line 8 the number of points in H decreases by a factor of
at most 4. Since before a rebuild operation, we have |H | > 16k, after rebuild we
have |H | > 4k and Lemma 4.4 and Definition 4.1 proves the correctness of the
lower bound returned by the algorithm.

Notice that |H | > 16k only after adding a point to an empty cell of Gs and
even at that time |H | = 16k +1 and after execution of lines 7 and 8, we have
|H | É 16k, because in the new grid Gs at least one of the canonical closest pair
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will be in the same cell and thus will be ignored by H . Therefore, the claim
that Gs contains at most 16k nonempty cells is correct.

To compute the running time of the algorithm, notice that the most time
consuming operations of the algorithm are lines 7 and 8, both of them run
in O(k) time. For each point pi the lines 7 and 8 can get executed only if pi

is alone in Gs , i.e. pi is the only point in its cell (of Gs) among the points
p1, . . . , pi ; otherwise we handle pi in constant time. We know that after adding
pi to H , we have |H | É 16k +1; therefore among p1, . . . , pi there can be at most
16k +1 points that are alone in their cell in Gs . As the points are in random
order, Pr[pi is alone] É (16k +1)/i , for i > 16k. Hence, the expected running
time is

O(n)+
n∑

i=16k

Pr[pi is alone] ·O(k) =O
(
n +k2 log

n

k

)

Step 3 of FINDCORESET. Algorithm 5 computes a weak r -packing in linear
time by selecting one point from each nonempty cell of the grid G(r /

p
2). The

correctness of the algorithm follows from Lemma 4.3.

Algorithm 5: WEAKPACKING(S,r )

1 α := r /
p

2, and set H to empty
2 for i := 1 to n do
3 if H [id(pi ,α)] is empty
4 H [id(pi ,α)] := pi

5 return H

Putting everything together. The running time of Algorithm FINDCORESET is
dominated by the running time of Algorithm LOWERBOUND, which is O(n +
k2 log(n/k)). Assuming k is constant, FINDCORESET runs in linear time.

By Lemma 4.6, there exists a cube cover of S using at most 16k cells of
the grid G(LB/c). Therefore, the grid G(r /

p
2) where r := ε · LB/ f (k) has at most

16k ·
((p

2 f (k)/(c ε)
)
+1

)2
nonempty cells and Algorithm WEAKPACKING cannot

return more than O(k
(

f (k)/ε
)2

) points in Step 3 of FINDCORESET.
As stated earlier, it is easy to generalize the algorithms and lemmas described

above to higher dimension. Therefore, we can state the following theorem,

Theorem 4.7. Let S be a set of n points in R
d and let Φ be a (c, f (k))-regular cost

function. Then, it is possible to find an ε-coreset R for k-clustering according to

Φ, of size O(k
(

f (k)/ε
)d

) in expected O(n +k2 log(n/k)) time, for values k Ê 2 and

ε> 0.
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Corollary 4.8. Let S be a set of n points in R
d . It is possible to find an ε-coreset R

for Euclidean (rectilinear) k-center, of size O(k/εd ) in expected O(n +k2 log(n/k))

time, for values k Ê 2 and ε> 0.

4.3 Concluding Remarks

We presented an algorithm to compute an ε-coreset of size O(k
(

f (k)/ε
)d

) in
linear time for clustering problems defined on a set of points in R

d . Our method
applies to a large class of clustering problems including the k-center problem
in any Lp -metric, variants of the k-center problem where we want to minimize
the sum (rather than maximum) of the cluster radii, and the 2-dimensional
problem where we want to minimize the maximum or sum of the perimeters of
the clusters.

As mentioned in the introduction, Har-Peled and Mazumdar [47] also have
a similar result for k-means and k-median problems. An interesting direction
for future research is to generalize our result for other cost functions.



Chapter 5

Computing Plurality Points

In this chapter, we study computational problems concerning plurality points.
For convenience, we first recall the definition of plurality point given in the
introduction. Let V ⊂ R

d be a set of n voters and let R
d be a space of possi-

ble choices. The utility of a point (choice) p ∈ R
d for a voter v is inversely

proportional to dist(v, p), the distance from v to p under a given distance
function, and v prefers a point p over a point p ′ if dist(v, p) < dist(v, p ′).
Now a point p ∈ R

d is a plurality point if for any point p ′ ∈ R
d we have

|{v ∈ V : dist(v, p) < dist(v, p ′)}| Ê |{v ∈ V : dist(v, p ′) < dist(v, p)}|. When the L2

norm as distance function, we present a deterministic algorithm that decides if
a plurality point exists (and, if so, computes one) in O(n logn) time1 which is
an improvement over the previously best running time, which was O(nd logn).

We also consider the minimum-cost plurality problem where each voter is
assigned a cost, and the goal is to find a minimum-cost subset W ⊂V of voters
such that if we ignore the voters in W —that is, if we consider V \W —then a
plurality point exists. We solve this problem by presenting an algorithm that
solves the problem in O(n4) time which solves the open problem proposed
by Lin et al. [56] about the existence of a polynomial-time algorithm that
solves this problem in R

3. This result even improves on the previous O(n5 logn)

running time for the planar case devised by Lin et al. [56].
We also consider the following problem for unit-cost voters in R

d : given
a parameter k, find a minimum-cost set W of size at most k such that V \ W

admits a plurality point, if such a set exists. Our algorithm for this case runs in
O(k3n logn) time when d = 2 and in O(k5 logk +k3n logn) expected time when
d > 2.

We also introduce a new concept called plurality balls, as defined next. We
define a ball b(p,r ) centered at p and of radius r to be a plurality ball if the

1 Here and in the other bounds stated in this page and the following page, we assume the
dimension d is a fixed constant, to make it easier to compare our results to earlier work. In the
theorems stated later in this chapter, we also analyze the dependency on d .
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following holds: there is no point p ′ outside b(p,r ) that is preferred by more
voters than p. Note that a plurality point is a plurality ball of zero radius. We
show that in the plane, the minimum-radius plurality ball can be computed in
O(T (n)) time, where T (n) is the time needed to compute the ⌊n/2⌋-level in an
arrangement of n lines.

We also introduce a new utility function we call the personalized L1 norm

where each voter v ∈V has a preference vector 〈w1(v), . . . , wd (v)〉 of non-negative
weights that specifies the relative importance of the various issues. The distance
of a point p ∈R

d to a voter v is now defined as distw(v, p) :=
∑d

i=1
wi (v) · |xi (v)−

xi (p)|, where xi (·) denotes the i -th coordinate of a point. We present an
algorithm that decides in O(nd−1) time whether a set V of n voters admits a
plurality point with respect to the personalized L1 norm. For the special case
when all preference vectors are identical—this case reduces to the normal case
of using the L1 norm—the running time improves to O(n).

5.1 Plurality Points in the L2 Norm

Let V be a set of n voters in R
d . In this section we show how to compute

a plurality point for V with respect to the L2 norm in O(n logn) time, if it
exists. We start by proving several properties of the plurality point in higher
dimensions, which generalize similar properties that Lin et al. [56] proved in
R

2. These properties imply that if a plurality point exists, it is unique (unless all
points are collinear). Our algorithm then consists of two steps: first it computes
a single candidate point p ∈R

d , and then it decides if p is a plurality point.

5.1.1 Properties of Plurality Points in the L2 Norm

As remarked in the introduction, plurality points can be characterized as fol-
lows.

Proposition 5.1 (Wu et al. [72]). A point p is a plurality point for a set V of n

voters in R
d with respect to the L2 norm if and only if every open halfspace with p

on its boundary contains at most n/2 voters.

Verifying the condition in Proposition 5.1 directly is not efficient. Hence,
we will prove alternative conditions for a point p to be a plurality point in R

d ,
which generalize the conditions Lin et al. [56] stated for the planar case. First,
we define some concepts introduced by Lin et al.

Let V be a set of n voters in R
d , and consider a point p ∈ R

d . Let L(p) be
the set of all lines passing through p and at least one voter v 6= p. The point p

partitions each line ℓ ∈ L(p) into two opposite rays, which we denote by ρ(ℓ)

and ρ(ℓ). (The point p itself is not part of these rays.) We say that a line ℓ ∈ L(p)

is balanced if |ρ(ℓ)∩V | = |ρ(ℓ)∩V |. When n is odd, then p turns out to be a
plurality point if and only if every line ℓ ∈ L(p) is balanced (which implies that
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Figure 5.1: A plurality point p with alternating property

we must have p ∈V ). When n is even the situation is more complicated. Let
R(p) be the set of all rays ρ(ℓ) and ρ(ℓ). Label each ray in R(p) with an integer,
which is the number of voters on the ray minus the number of voters from V

on the opposite ray. Thus, a line ℓ is balanced if and only if its rays ρ(ℓ) and
ρ(ℓ) have label zero. Let L∗(p) be the set of all unbalanced lines in L(p) and let
R∗(p) be the corresponding set of rays. We now define the so-called alternating
property, as introduced by Plott [61] and later by Lin et al. [56]. This property
is restricted to the 2-dimensional setting, where we can order the rays in R∗(p)

around p. In this setting, the point p is said to have the alternating property

if the following holds: the circular sequence of non-zero labels of the rays in
R∗(p), which we obtain when we visit the rays in R∗(p) in clockwise order
around p, alternates between labels +1 and −1 (see Figure 5.1). Note that if p

has the alternating property then the number of unbalanced lines must be odd.

Recall that for 0 É k É d a k-dimensional flat, or a k-flat for short, is the
affine hull of k +1 affinely independent points. For example, a line is a 1-flat
and a hyperplane is a (d −1)-flat. The number k is called the dimension of
the flat and is denoted by dim( f ). The following theorem gives necessary and
sufficient conditions for a point p to be a plurality point for a set V of voters.

Theorem 5.2. Let V be a set of n voters in R
d , with d Ê 1, and let p be an

arbitrary point.

a. If n is odd, p is a plurality point if and only if p ∈V and every line in L(p)

is balanced.

b. If n is even and p ∉V , then p is a plurality point if and only if every line in

L(p) is balanced.

c. If n is even and p ∈V , then p is a plurality point if and only if all unbalanced

lines in L(p) are contained in a single 2-dimensional flat f and p has the

alternating property for the set f ∩V .



80 Computing Plurality Points

For d = 1 the theorem is trivial, and for d = 2—the condition in case c then
simply states that p has the alternating property—the theorem was proved
by Lin et al. [56] and by Plott [61]. Our contribution is the extension to
higher dimensions. Before proving Theorem 5.2, we need the following lemma
regarding the robustness of plurality points to dimension reduction.

Lemma 5.3. Let p be a plurality point for a set V in R
d , with d Ê 1, and let f be

any lower-dimensional flat containing p. Then p is a plurality point for f ∩V .

Proof. We prove the statement by induction on d −dim( f ).

Base case: d −dim( f ) = 1, that is, f is a hyperplane.

Let f + and f − denote the open halfspaces bounded by f , and assume
without loss of generality that | f +∩V | Ê | f −∩V |. Suppose for a contra-
diction that p is not a plurality point for f ∩V . Then there must be a
(d −2)-flat g ⊂ f containing p such that, within the (d −1)-dimensional
space f , the number of voters lying strictly to one side of g is greater
than | f ∩V |/2. Let g+ ⊂ f denote the part of f lying to this side of
g . Now imagine rotating f around g by an infinitesimal amount. Let
f̂ denote the rotated hyperplane, and f̂ + be the open halfspace that
contains all voters in f +. Observe that we can choose the direction
of the rotation such that the voters in g+∩V end up in f̂ +. But then
| f̂ +∩V | Ê | f +∩V |+ |g+∩V | > | f +∩V |+ | f ∩V |/2 Ê n/2, which contradicts
the assumption that p is a plurality point.

Induction step: d −dim( f ) > 1.

Let h be a hyperplane that contains f . From the base case we know that
p must be a plurality point for h ∩V . Hence, we can apply our induction
hypothesis to the flat f in the (d −1)-dimensional space h to conclude
that p must be a plurality point for f ∩V .

Corollary 5.4. Let V be a set of voters in R
d , for d Ê 2, that are not collinear.

Then V has at most one plurality point.

Proof. Suppose for a contradiction that V has two distinct plurality points p1

and p2. Let f be a 2-flat containing p1 and p2, and a voter v not collinear with
p1 and p2. By Lemma 5.3, both p1 and p2 are plurality points for f ∩V . But
this contradicts the result by Wu et al. [72] that any set of voters in the plane
admits at most one plurality point.

Now we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Since the case d = 2 was already proved by Lin et al. [56],
and the case d = 1 is trivial, we assume d Ê 3.
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(a,⇐) and (b,⇐). Let p be a point such that all lines in L(p) are balanced.
Consider an arbitrary open halfspace h+ whose bounding hyperplane h

contains p, and let h− be the open halfspace opposite to h+. Since every
line in L(p) is balanced, there is a bijection from h+∩V to h−∩V . Hence,
|h+∩V | É n/2. Since this holds for any open halfspace h+, the point p is
a plurality point.

(b,⇒). Let p ∉V be a plurality point, and consider a line ℓ ∈ L(p). By Lemma 5.3
the point p is also a plurality point on ℓ. Since p ∉V , this implies that ℓ
is balanced.

(a,⇒). Assume n is odd, and let p be a plurality point. Suppose for a con-
tradiction there is an unbalanced line ℓ ∈ L(p). First observe that we
must have p ∈ V , otherwise p is not a plurality point on ℓ which con-
tradicts Lemma 5.3. Let h be a hyperplane containing ℓ that contains
no voters except those on ℓ, and assume without loss of generality that
|h+∩V | Ê |h−∩V |. Let ρ(ℓ) and ρ(ℓ) denote the opposite rays along ℓ

emanating from p. Since ℓ is unbalanced these rays do not contain the
same number of voters, so we can assume |ρ(ℓ)∩V | > |ρ(ℓ)∩V |. We
consider two cases.

The first case is that |h+∩V | = |h−∩V |. Since n is odd, this means that
|∩V | is odd, and so |(h∩V )\{p}| is even. But then |ρ(ℓ)∩V | Ê |ρ(ℓ)∩V |+2.
Now imagine rotating h infinitesimally around the (d −2)-flat through p

orthogonal to ℓ. For the resulting hyperplane ĥ we then have |ĥ+∩V | Ê
|ĥ−∩V | + 2. Since p is the only voter on ĥ this implies |ĥ+∩V | > n/2,
which contradicts that p is a plurality point.

The second case is that |h+∩V | > |h−∩V |. Now we can use a similar
argument: this time we only have |ρ(ℓ)∩V | Ê |ρ(ℓ)∩V |+1, but we also
have |h+∩V | > |h−∩V | and so we still have |ĥ+∩V | Ê |ĥ−∩V |+2, leading
to the desired contradiction.

(c,⇐). Assume n is even and let p be a point such that all unbalanced lines
in L(p) are contained in a single 2-dimensional flat f and p has the
alternating property for the set f ∩V . Since all the lines L(p) not contained
in f are balanced, this mean | f +∩V | = | f −∩V |, and so | f ∩V | is even.
Consider an arbitrary open halfspace h+ whose bounding hyperplane h

contains p, and let h− be the opposite open halfspace. If h contains
f then all unbalanced lines lie in h and so |h+ ∩V | = |h− ∩V |, which
implies |h+∩V | É n/2. If h does not contain f , we can argue as follows.
Let ℓ := h ∩ f . Since the theorem is true for d = 2 and as we have the
alternating property on f and | f ∩V | is even, we know that p is a plurality
point for f ∩V . Hence, the number of voters on f on either side of ℓ is
at most | f ∩V |/2. But then we have |h+∩V | É n/2, because all voters not
in f lie on balanced lines. We conclude that for any open halfspace h+

we have |h+∩V | É n/2, and so p is a plurality point.
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(c,⇒). Assume n is even and let p be a plurality point. We first argue that all
unbalanced lines must lie on a single 2-flat. Assume for a contradiction
that there are three unbalanced lines that do not lie on a common 2-flat.
Let g be the 3-flat spanned by these lines, and let L∗

g (p) ⊂ L∗(p) be the set
of all unbalanced lines contained in g . Let f1 ⊂ g be a 2-flat not containing
p and not parallel to any of the lines in L∗

g (p). Each of the lines in L∗
g (p)

intersects f1 in a single point, and these intersection points are not all
collinear. According to the Sylvester-Gallai Theorem [42] this implies
there is an ordinary line in f1, that is, a line containing exactly two of the
intersection points. Thus we have an ordinary 2-flat in g , that is, a flat f2

containing exactly two lines from L∗(p). This implies that f2 ∩V does not
have the alternating property, and since we know by the result of Lin et

al. that the theorem holds when d = 2 this implies that p is not a plurality
point in f2. However, this contradicts Lemma 5.3.

We just argued that all unbalanced lines must lie on a single 2-flat f . By
Lemma 5.3 the point p is a plurality point on f . Since the theorem holds
for d = 2, we can conclude that f ∩V has the alternating property.

5.1.2 Finding Plurality Points in the L2 Norm

We now turn our attention to finding a plurality point. Our algorithm needs a
subroutine for finding a median hyperplane for V , which is a hyperplane h such
that |h+∩V | < n/2 and |h−∩V | < n/2, where h+ and h− denote the two open
halfspaces bounded by h. The following lemma is easy to prove.

Lemma 5.5. Let v ∈ V be a voter that lies on a hyperplane h0 such that no

two voters strictly lie on opposite sides of h0 (that is, either h+
0 does not contain

voters, or h−
0 does not contain voters). Then we can find a median hyperplane h

containing v in O(dn) time.

Proof. Assume without loss of generality v is the origin and that h0 is the
hyperplane xd = 0. Define V0 := V ∩h0 and V1 := V \ V0. Note that all voters
in V1 lie to the same side of h0, say in h+

0 . If |V1| < n/2 then h0 is a median
hyperplane. Otherwise, let f0 be the (d −2)-flat xd = xd−1 = 0, and note that f0

contains v . We can now rotate a hyperplane h around f0 until it satisfies the
requirements. Next we make this precise.

Define n−
0 to be the number of voters in V0 that lie (within the (d − 1)-

dimensional space h0) strictly on the negative side of f0. Project all voters in
V1 onto the hyperplane h1 : xd = 1, using v as the center of projection. Let X

be the multi-set of all xd−1-coordinates of the projected voters. Compute an
element x∗ ∈ X such that

|{x ∈ X : x < x∗}| < n/2−n−
0 É |{x ∈ X : x É x∗}|.
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This can be done in O(dn) time using a standard rank-selection algorithm. Note
that there is at least one voter v1 ∈ V1 whose projection has xd−1-coordinate
equal to x∗. We claim that the hyperplane h containing f0 and v1 is a median
hyperplane. To see this, we first observe that

|h−∩V | = n−
0 +|{x ∈ X : x < x∗}| < n/2.

Second, since h contains v as well as the voters in V1 whose projection has
xd−1-coordinate x∗ we have

|h−∩V |+ |h ∩V | Ê n−
0 + (n/2−n−

0 )+1 = n/2+1.

Thus we have |h+∩V | < n/2, which proves the claim and, hence, the lemma.

Recall that for d Ê 2 the plurality point is unique, if it exists. The algorithm
below either reports a single candidate point p—we show later how to test if
the candidate is actually a plurality point or not—or it returns ; to indicate that
it already discovered that a plurality point does not exist. When called with
a set V of n collinear voters, the algorithm will return the set of all plurality
points; if n is even the set is a segment connecting the two median voters, if n

is odd the set is a degenerate segment consisting of the (in this case unique)
median voter. We call this segment the median segment.

FINDCANDIDATES(V )

1. If all voters in V are collinear, then return the median segment of V .

2. Otherwise, proceed as follow.

(a) Let v0 ∈V be a voter with minimum xd -coordinate. All voters in V

lie either on the plane h0 : xd = xd (v0) or in the halfspace above h0,
which we denote by h+

0 . Find a median hyperplane m0 containing
v0 using Lemma 5.5, and let cand0 := FINDCANDIDATES(m0 ∩V ).

(b) If cand0 consists of a single point or cand0 =; then return cand0.

(c) If cand0 is a (non-degenerate) segment then let v1 ∈ V be a voter
whose distance to m0 is maximized and h1 be the hyperplane parallel
to m0 containing v1. All voters in V lie either on h1 or in the
halfspace defined by h1 and containing m0, which we denote by h+

1 .
Find a median hyperplane m1 containing v1 using Lemma 5.5, and
let cand1 := FINDCANDIDATES(m1 ∩V ). Return cand0 ∩ cand1.

Lemma 5.6. Algorithm FINDCANDIDATES(V ) returns in O(dn) time a set cand
of candidate plurality points such that

i. if all voters in V are collinear then cand is the set of all plurality points

of V ;
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ii. if not all voters in V are collinear then cand contains at most one point, and

no other point can be a plurality point of V .

Proof. We first prove the correctness of the algorithm, and then consider the
time bound.

If all voters in V are collinear then the algorithm returns the correct result in
Step 1, so assume not all voters are collinear. Consider the median hyperplane
computed in Step 2a. Since |m+

0 ∩V | < n/2 and |m−
0 ∩V | < n/2, for any point

p ∉ m0 there is an open halfspace containing p and bounded by a hyperplane
parallel to m0 that contains more than n/2 voters. Hence, by Proposition 5.1
any plurality point for V must lie on m0. By Lemma 5.3, if a plurality point
exists for V it must also be a plurality point for m0 ∩V . By induction we
can assume that FINDCANDIDATES(m0 ∩V ) is correct. Hence, the result of the
algorithm is correct when cand0 consists of a single point or cand0 =;. Note
that when cand0 is a (non-degenerate) segment—this only happens when all
voters in m0∩V are collinear—we must have V 6= m0∩V , as otherwise V would
be collinear and we would be done after Step 1. Hence, v1 ∉ m0. By the same
reasoning as above the median hyperplane m1 must contain the plurality point
of V (if it exists). But then the plurality point must lie in cand0 ∩ cand1, and
since v1 ∉ m0 we know that cand0 ∩ cand1 is either a single point or it is empty.
This proves the correctness.

To prove the time bound, we note that we only have two recursive calls
when the first recursive call reports a non-degenerate candidate segment. This
only happens when all voters in m0∩V are collinear, which implies the recursive
call just needs to compute a median segment in O(dn) time—it does not make
further recursive calls. Thus we can imagine adding this time to the original
call, so that we never make more than one recursive call. Since the recursion
depth is at most d , and each call needs O(dn) time, the bound follows.

Our algorithm to find a plurality point first calls FINDCANDIDATES(V ). If
all points in V are collinear we are done—FINDCANDIDATES(V ) then reports
the correct answer. Otherwise we either get a single candidate point p, or
we already know that a plurality point does not exist. It remains to test if a
candidate point p is a plurality point or not.

Lemma 5.7. Given a set V of n voters in R
d and a candidate point p, we can test

in O(dn logn) time if p is a plurality point in the L2 norm.

Proof. First compute the set L(p) of lines containing p and at least one voter.
We can compute L(p), and for each line ℓ ∈ L(p) the number of voters on the
rays ρ(ℓ) and ρ(ℓ), in O(dn logn) time. (To this end, we take the line ℓv through
p and v for each voter v 6= p, and group these into subsets of identical lines.)
According to Theorem 5.2, we can now immediately decide if p is a plurality
point when n is odd, or when n is even and p ∉V . When n is even and p ∈V

we first check in O(dn) time if all unbalanced lines lie in a 2-flat f . If not,
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then p is not a plurality point. Otherwise we check the alternating property in
O(dn logn) time.

We obtain the following theorem.

Theorem 5.8. Let V be a set of n voters in R
d , where d Ê 2. Then we can find in

O(dn logn) time the plurality point for V in the L2 norm, if it exists, and this time

bound is optimal for d = 2.

Proof. The time bound and correctness of our algorithm follow from Lem-
mas 5.6 and 5.7. The optimality of the algorithm follows from an easy
reduction from SET EQUALITY, which takes Ω(n logn) time in the algebraic
decision-tree model [20]. To see this, consider an instance A,B of SET EQUAL-
ITY, where A = {a1, . . . , an} and B = {b1, . . . ,bn} are sets of n numbers. Define
V := {(ai ,1) : ai ∈ A}∪ {(0,0)}∪ {(−bi ,−1) : bi ∈ B}. Then A = B if and only if
V admits a plurality point (which must then be the point (0,0)), as follows
immediately from Theorem 5.2a.

5.2 Dealing With Point Sets That Do Not Admit a

Plurality Point

Most point sets do not admit a plurality point in the L2 norm. In this section
we consider two ways of dealing with this. First, we present an algorithm to
compute a minimum-cost subset W ⊂V such that V \W admits a plurality point,
which can be useful when besides a few “outliers” the set V admits a plurality
point. In general, however, the set W that needs to be removed can be quite
large. We therefor also present an algorithm for computing a minimum-radius
plurality ball in R

2.

5.2.1 The Minimum-Cost Plurality Problem

Let V be a set of n voters in R
d , where each voter v has a cost cost(v) > 0

associated to it. For a candidate plurality point p—here we consider all points
in R

d as candidates—we define Wp to be a minimum-cost subset of V such
that p is a plurality point for V \ Wp . We define the price of p to be the cost
of Wp . Our algorithm will report a pair (p,Wp ), where p is a cheapest candidate
plurality point. The algorithm has two main parts: one finds the cheapest
candidate that does not coincide with any voters, and the other finds the
cheapest candidate that coincides with a voter.

Let L(V ) be the set of lines passing through at least two voters in V , and
let P (V ) be the set of all intersection points of the lines in L(V ), excluding the
intersection points coinciding with a voter. To find the cheapest candidate p

that does not coincide with a voter, we only have to consider points in P (V ).
Indeed, if all points in V \Wp are collinear then we can pick p to coincide with
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a voter; otherwise we know by Theorem 5.2b that p must be an intersection
point of two lines in L(V \ Wp ), and so p ∈ P (V ). We will need the following
lemma for the planar case.

Lemma 5.9 (Lin et al. [56]). Let p be a candidate plurality point for a set V

in R
2. Then we can compute in O(n logn) time the price of p, together with the

subset Wp .

We also need the following lemma to compute all the intersections of each
line with other lines in sorted order.

Lemma 5.10. Given a set L of m lines in R
d , we can list all intersection points

of each line ℓ with the other lines in sorted order along ℓ in total time O(d 2m2).

Proof. Consider the set F of all 2-flats defined by any two axes xi and x j (1 É
i , j É d). We have O(d 2) of them in total. For any such 2-flat f ∈F , we project
all lines in L onto f and construct the arrangement in f in O(m2) time [36]
and then check which intersections on f correspond to actual intersections
in R

d . Finally, for each line ℓ we merge the O(d 2) lists of intersection points to
obtain a complete, sorted list of intersection points along ℓ. In total, this takes
O(d 2m2) time.

Any two intersecting lines ℓ1,ℓ2 ∈L , define a 2-flat; as this 2-flat cannot be
orthogonal to all the 2-flats in F , it will be projected as a plane onto at least
one of them. Therefore, we don’t miss any intersection and this proves the
correctness of the algorithm.

In the algorithm below, we use L(p,V ′) to denote the set of lines through a
point p and at least one voter in a set V ′ ⊆V .

MINCOSTPLURALITYPOINT(V )

1. Compute the set L(V ). If |L(V )| = 1, that is, all voters lie on a common
line ℓ, then compute a median p along ℓ as a plurality point and report
(p,;).

2. Compute a cheapest candidate p that does not coincide with a voter, as
follows. Compute the set P (V ). For each line ℓ ∈ L(V ), sort the intersection
points along ℓ. Using Lemma 5.10, this can be done in O(d 2n4) time
in total. Let C :=

∑
v∈V cost(v) be the total cost of all voters. For each

intersection point p ∈ P (V ), let γ(p) be the total cost of all voters v for
which there is no line in L(v,V \{v}) that contains p; we can compute γ(p)

in O(n4) time in total by determining the total cost of all voters that do

have a line in L(v,V \ {v}) that contains p, and then subtracting this cost
from C .

(a) Traverse each line ℓ ∈ L(V ), to visit the intersection points along ℓ

in order. During the traversal, maintain the number of voters on ℓ

on either side of the current intersection point p. Thus we know
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how many voters we have to remove to make ℓ balanced, and also
from which side we should remove them. If we have to remove k

voters, we have to remove the k cheapest voters on the relevant side.
The subset Wp (ℓ) that we have to remove to make ℓ balanced only
changes when p passes over a voter v on ℓ. When this happens we
can compute the new Wp (ℓ) in linear time. In this way the traversal
of ℓ takes O(n2) time in total, so over all ℓ ∈ L(V ) we spend O(n4)

time.

(b) For each intersection point p compute the price of p. This price
has two components: the price to make every line ℓ ∈ L(V ) that
contains p balanced, and the price to remove any voter v for which
the line ℓ(v, p) through v and p is not a line in L(V ). The first
component equals

∑
ℓ∋p cost(Wp (ℓ)). The second component equals

γ(p), which we precomputed.

3. Compute a cheapest candidate p that coincides with a voter v ∈ V . To
this end, compute for each voter v the price of setting p := v—below we
describe how to do this in O(dn3) time per voter—and take the cheapest
of all n possibilities.

Consider a candidate p coinciding with some v ∈V . By Theorem 5.2 all
unbalanced lines in L(p,V \ Wp ), if any, lie on a single 2-flat f . We will
compute pricep ( f ), the price to make p into a plurality point under the
condition that all unbalanced lines lie in f , over all 2-flats f spanned by
two lines from L(p,V \ {v}). Then we take the best of the results.

Fix a 2-flat f spanned by two lines ℓ1,ℓ2 ∈ L(p,V \ {v}). Let L f be the
subset of lines from L(p,V \ {v}) contained in f , and let L′

f
be the subset

of lines not contained in f .

(a) Compute pricep (L f ), the price of making p a plurality point on f ,
using Lemma 5.9. This takes O(n f logn f ) time, where n f := | f ∩V |.

(b) For each line ℓ ∈ L′
f
, compute pricep (ℓ), the price of making ℓ bal-

anced. (This can easily be done in O(n) time: we compute the small-
est number k of voters we have to remove on ℓ to make ℓ balanced,
and then find the k cheapest voters on the heavier of the two rays
along ℓ and emanating from p.) Let pricep (L′

f
) :=

∑
ℓ∈L′

f
pricep (ℓ).

(c) Set pricep ( f ) := pricep (L f )+pricep (L′
f

).

4. Let p be the cheaper of the two candidates found in Steps 2 and 3,
respectively. Compute the set Wp for this candidate—this takes O(n logn)

time—and report (p,Wp ).

The correctness of the algorithm follows from Theorem 5.2 and the discussion
above. As for the running time, we note that Steps 1, 2, and 4 all run in O(d 2n4)
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time. For Step 3, the time needed to compute the price of a single voter v

is
∑

f O(n f logn f +dn), which is bounded by O(dn3 +
∑

f n f logn f ). Because
every voter v ′ ∈V lies on at most n of the flats f (generated by the lines ℓ(v, v ′)
and ℓ(v, v ′′) through v, v ′ and v, v ′′, respectively) we have

∑
f n f =O(n2) and so∑

f n f logn f =O(n2 logn). Hence, the whole algorithm runs in O(d 2n4) time.

Theorem 5.11. Let V be a set of n voters in R
d , each with a positive cost, where

d Ê 2. Then we can compute in O(d 2n4) time a minimum-cost subset W ⊂V such

that V \W admits a plurality point in the L2 norm.

Our algorithm for finding a minimum-cost plurality point checks O(n4)

candidate points. The algorithm from the previous section for deciding if a
plurality point exists avoids this, resulting in a near-linear running time. An
obvious question is if a faster algorithm is also possible for the minimum-cost
plurality-point problem. While we do not have the answer to this question,
we can show that, even in the plane and when all voters have unit cost, it is
unlikely that the problem can be solved in truly subquadratic time. We do this
by a reduction from the problem THREE CONCURRENT LINES, which is to decide
if a set of n lines has three or more lines meeting in a single point. THREE

CONCURRENT LINES is 3SUM-hard [41] and has an Ω(n2) lower bound if only
sidedness tests are used [39].

Theorem 5.12. Suppose we have an algorithm solving the minimum-cost plurality-

point problem for any set of n unit-cost voters in the plane in time T (n). Then there

is a probabilistic algorithm solving THREE CONCURRENT LINES with probability 1

in O(n logn +T (n)) time.

Proof. Let L be a set of n lines for which we want to solve THREE CONCURRENT

LINES. We will generate a set V of 2n voters such that L contains three or more
concurrent lines if and only if there is a subset W ⊂V of size at most 2n−6 such
that V \W admits a plurality point. To this end we first compute in O(n logn)

time a large circle C that contains all vertices of the arrangement A (L) in its
interior. The circle C can be any circle containing the axis-parallel bounding
box of the vertices of A (L). (It is well known that the bounding box of the
vertices of a planar arrangement can be found in O(n logn) time; see Exercise
8.4 from [31].)

For each line ℓ ∈ L construct two small segments contained in ℓ, a segment
s1(ℓ) ⊂ ℓ around the first intersection point of ℓ and C and another segment
s2(ℓ) ⊂ ℓ around the second intersection point. Finally, we pick a voter uniformly
at random in each segment si (ℓ) with i ∈ {1,2} and ℓ ∈ L, thus creating a set V

of 2n voters. We pick the segments si (ℓ) sufficiently small so that the set V is
guaranteed to be in convex position. (Computing suitable lengths can be done
in linear time, after we have sorted the intersection points of the lines in L with
the circle C in clockwise order along C .)

If L has three or more lines meeting at a point p, then we can make p into
a plurality point by removing at most 2n −6 points on the lines not passing
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through p. To prove the other direction, note that to make any of the voters in
V into a plurality point we have to delete all but one of the remaining 2n −1

voters (since the voters are in convex position). Let L(V ) := {ℓ(v, v ′) : v, v ′ ∈V } be
the set of all lines through a pair v, v ′ of voters. To finish the proof we observe
that by picking the voters randomly on the segments si (ℓ), the following holds
with probability 1: the set L(V ) has no triple intersections except those already
present in L.

5.2.2 A Fixed-Parameter Algorithm for Unit-Cost Voters

The proof of Theorem 5.12 uses a problem instance where many voters must be
removed to obtain a plurality point. Below we show that a plurality point for
which only a few voters have to be removed can be found in near-linear time
for unit-cost voters. More precisely, we consider the case where we are given a
set V of unit-cost voters in R

d and a parameter k, and we want to compute a
smallest subset W ⊂V of size at most k (if it exists) such that V \ W admits a
plurality point.

Define a k-line to be a line ℓ such that for any hyperplane H containing
ℓ, both open halfspaces bounded by H contain at most n/2+k voters. For a
voter v , let L(v) be the set of lines containing v and at least one other voter,
and let Lk (v) be the set of all k-lines in L(v).

Lemma 5.13. Let p be a plurality point of V \ W , for some subset W of size at

most k. If v ∉W , then p lies on one of the lines in Lk (v).

Proof. Assume v ∉W . If ℓ(p, v), the line through p and v , is not a line in L(v),
then p does not coincide with a voter and ℓ(p, v) is unbalanced. But then p

cannot be a plurality point, by Theorem 5.2. Hence, ℓ(p, v) ∈ L(v). If ℓ(p, v) ∉
Lk (v) then there is an open halfspace bounded by a hyperplane containing p

with more than n/2+k voters. But since |W | É k, such a point p cannot be a
plurality point in V \W , which implies we must have ℓ(p, v) ∈ Lk (v).

The idea of our algorithm is now as follows. Consider a set P := {(v2i−1, v2i ) :

1 É i É k +1} of disjoint pairs of voters. Then there must be a pair (v2i−1, v2i ) ∈ P

such that neither v2i−1 nor v2i is in W . Hence, the point p we are looking for
must lie on one of the lines in Lk (v2i−1) and one of the lines in Lk (v2i ). So we
check all intersection points between these lines, for every pair in P . The key
to obtain an efficient algorithm is to generate P such that all sets Lk (vi ) are
small. There is one case that needs special attention, namely when there is a
line—this must then be the line through v2i−1 and v2i —that is present in both
Lk (v2i−1) and Lk (v2i ). This case is handled using the following lemma.

Lemma 5.14. Suppose there exists a plurality point on ℓ := ℓ(v, v ′) through two

voters v, v ′ ∈V of price at most k. Let H be an arbitrary hyperplane containing

ℓ but no other voter in V \ℓ. Let H+ be any of the two open halfspaces bounded
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by H , and let V + := H+∩V . Then either an intersection point of ℓ and a line

in
⋃

v ′′∈V + Lk (v ′′), or one of the medians of the voters located on ℓ is a cheapest

plurality point.

Proof. Let p be a cheapest plurality point and Wp the corresponding subset
of voters to be removed, where |Wp | É k. If there is a voter v ′′ ∈V + \ Wp then
p ∈ Lk (v ′′) by Lemma 5.13. Otherwise all voters in V + are in Wp . But then
any line through p and a voter in H−∩V is unbalanced, which implies that all
voters in H−∩V except at most one must be in Wp . If all voters in H−∩V are
in Wp , one of the medians of the voters located on ℓ is a cheapest plurality point.
Otherwise, the number of voters located on ℓ must be odd and the median is the
cheapest plurality point as any other point violates the alternating property.

We now present our algorithm. We first explain the algorithm for the planar
case, and then show how to extend it to higher dimensions. For technical
reasons we assume k É n/15; see the proof of Theorem 5.16 for more details.

FIXEDPARAMETERMINCOSTPLURALITYPOINT(V ,k)

1. Compute the set of convex layers of V . Let V1,V2, . . . be the sets of voters
in these layers, where V1 is the outermost layer, V2 the next layer, and so
on. Set P :=; and i := 1.

2. Visit the voters in Vi in clockwise order, starting at the lexicographically
smallest voter in Vi . Put the first and second visited voters, the third and
fourth visited voters, and so on as pairs into P until either P contains k+1

pairs or we run out of voters in Vi . In the former case we are done; in the
latter case we start collecting pairs from the next layer, by setting i := i +1

and repeating the process. This continues until we have collected k +1

pairs. Note that in the latter case, exactly one voter remains unpaired if
|Vi | is odd.

3. Set C := ;; the set C will contain candidates for the cheapest plurality
points. For each pair (v2i−1, v2i ) ∈ P , proceed as follows.

(a) Compute the sets Lk (v2i−1) and Lk (v2i ), and put all intersection
points between two lines in Lk (v2i−1)∪Lk (v2i ) as candidates into C .

(b) Let ℓ := ℓ(v2i−1, v2i ). If ℓ is present in both Lk (v2i−1) and Lk (v2i ),
and ℓ contains at least n/2−7k −1 voters, then proceed as follows.
(We assume that the same line ℓ has not already been handled
in this manner for a pair (v2 j−1, v2 j ) with j < i , otherwise we can
skip it now.) Assume without loss of generality that ℓ+, the open
halfplane above ℓ, contains at most as many voters as ℓ−. For each
voter v ∈ ℓ+∩V , compute Lk (v) and add the intersection points of
the lines in Lk (v) with ℓ to the candidate set C . In addition, put a
median voter along ℓ into C .
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Figure 5.2: Sketch of the proof for Lemma 5.15

4. For each candidate point p ∈C , compute a minimum-size subset Wp that
makes p into a plurality point, using Lemma 5.9. Return the cheapest
plurality point p∗ ∈C , provided |Wp∗ | É k; if |Wp | > k for all candidates,
then report that it is not possible to obtain a plurality point by removing
at most k voters.

The efficiency of our algorithm is based on the following lemma, which uses
the fact that we constructed P using the convex layers of V .

Lemma 5.15. Let v be a voter of some pair in P . Then |Lk (v)| =O(k).

Proof. Let Vi be the layer containing v , and let ℓ be a line tangent to CH(Vi )

at v , the convex hull of Vi . Assume without loss of generality that CH(Vi ) lies
above ℓ. Then ℓ−∩V ⊂V1∪·· ·∪Vi−1, and so |ℓ−∩V | É 3k. Moreover, the number
of voters from Vi that lie on ℓ but “before” v is at most 2k. (This is true because
when we start visiting the voters in Vi in Step 2, we never start in the middle
of a sequence of collinear voters.) Thus we can rotate ℓ slightly around v , so
that v is the only voter on ℓ and |ℓ−∩V | É 5k. Turn ℓ into a directed line in
such a way that ℓ− lies to the left of ℓ, and imagine rotating ℓ around v by
π radians in counterclockwise direction. Let ℓ(φ) be the line resulting from
rotating ℓ over an angle φ, and define F−(φ) and F+(φ) to be the number of
voters to the left and right of ℓ(φ), respectively (see Figure 5.2). The line ℓ(φ)

is a k-line if it passes through a voter, F−(φ) É n/2+k and F+(φ) É n/2+k. Note
that F−(0) É 5k and F+(0) Ê n −5k, and F−(π) Ê n −5k and F+(π) É 5k. Since
F−(φ) can only decrease (and, similarly, F+(φ) can only increase) when ℓ(φ)

passes through a voter that was to the left of ℓ(0), this implies that the number
of times at which ℓ(φ) is a k-line for v is O(k).
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We can now prove the following theorem.

Theorem 5.16. Let V be a set of n voters in the plane, and let k be a parameter

with k É n/15. Then we can compute in O(k3n logn) time a minimum-size subset

W ⊂ V such that V \ W admits a plurality point in the L2 norm or report that

there is no such subset W of size at most k.

Proof. To prove the time bound, we note that we can compute the convex
layers in O(n logn) time [25]. Step 2 runs in O(k) time. Computing the set
Lk (v) for a voter v can easily be done in O(n logn) time by using a sweeping
algorithm that rotates a line around v and keeps track of the number of points
on each of the halfspaces defined by that line. By Lemma 5.15, Step 3a takes
O(n logn +k2) time. To bound the running time of Step 3b, we observe that
there can be at most O(1) pairs (v2i−1, v2i ) to which this case applies. Indeed
ℓ(v2i−1, v2i ) should contain at least n/2−7k −1 voters, and since k É n/15 there
can only be O(1) such lines. Thus Step 3b needs O(kn) time, and so Step 3 needs
O(k2n +kn logn) time in total over all pairs in P , to generate O(k3) candidate
points. Checking each of the candidates takes O(n logn), which proves the time
bound.

The correctness of the algorithm follows from Lemmas 5.13 and 5.14, except
for one thing: in Step 3b we only handle a line ℓ := ℓ(v2i−1, v2i ) when it contains
at least n/2−7k −1 voters. This is allowed for the following reason. Note that
ℓ is tangent to a convex hull CH(Vi ) and on the side of ℓ that does not contain
CH(Vi ), say ℓ+, there are at most 3k voters. Now consider a plurality point p ∈ ℓ.
Then there can be at most 3k +1 voters in (V \WP )∩ℓ−, by Theorem 5.2. Since
|Wp | É k, we thus have |V ∩ℓ−| É 4k +1, which means that ℓ must contain at
least n −7k −1 voters.

Next we show how to generalize the algorithm to higher dimensions.
Let V be a set of voters in R

d , with d Ê 3. Let f be any lower-dimensional
flat in R

d . Let v f be the projection of voter v onto flat f and V f be the set of
voters obtained by projecting all the voters in V onto flat f . Assume no two
voters in V are projected to a single voter in V f . Let Lk (v f ) be the set of k-lines

of V f on f containing v f , and let L
f

k
(v) be all lines in L(v) whose projection is

in Lk (v f ). We need the following lemma about the conservation of plurality
point property under projection.

Lemma 5.17. Let V ∈ R
d be a set of voters, where d > 2, and let f be a lower-

dimensional flat in R
d . Then

i. Lk (v) ⊆ L
f

k
(v)

ii. If p is a plurality point for V , then p f is a plurality point for V f .

Proof. Consider a line ℓ ∈ L(v) and its projection ℓ f ∈ L(v f ) on f . If ℓ f ∉ Lk (v f ),
then there is a hyperplane H f in f such that the number of voters from V f on
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one of the relatively open halfspaces bounded by H f is greater than n/2+k.
Let H be a hyperplane such that the projection of H on f is H f . H contains ℓ

and the number of voters on an open halfspace bounded by H is more than
n/2+k which means ℓ ∉ Lk (v). This proves the first part of the lemma.

A point p is a plurality point for a set of voters V if and only if for any v ∈V ,
all lines ℓ ∈ L(v) containing p are in L0(v). For any line ℓ ∈ L(v), by a similar
argument to the previous part, ℓ f ∉ L0(v f ) implies ℓ ∉ L0(v). This proves the
second part of the lemma.

Using this lemma we can extend Theorem 5.16 to higher dimensions.

Theorem 5.18. Let V be a set of n voters in R
d where d > 2, and let k be

a parameter with k É n/15. Then we can compute in O(dk5 logk +dk3n logn)

expected time a minimum-size subset W ⊂V such that V \W admits a plurality

point in the L2 norm.

Proof. We extend the algorithm for R
2 to R

d . The algorithm has four steps. In
Steps 1 and 2 we find the set of pairs P and a set of lines passing through the
voters in these pairs. In Step 3 we find the set of candidate points using these
two sets. Finally in Step 4 we verify all the candidate points in order to find a
plurality point (if one exists).

We modify Steps 1 and 2 for R
d as follows. We consider a 2-flat f ⊂ R

d

and project all the voters in V onto flat f in order to get V f . We will need
certain non-degeneracy assumptions on the projections of the voters from V

and on the projections of lines through pairs of voters onto f . If we take f

to be a random 2-flat, then these assumptions are satisfied with probability 1.
During the remainder of the algorithm, we will test for non-degeneracy at the
appropriate places; see below for details. When we find that the flat f is not
suitable after all, we start from scratch with a new random 2-flat f . Since the
success probability is 1, we expect to succeed in 1 trial.

The first non-degeneracy assumption is that no two voters in V are mapped
to a single voter in V f . We can test this condition in O(dn logn) time. Now
(assuming f passed the test) we apply the (2-dimensional version of) the

algorithm on V f , giving us a set P f of k +1 pairs (v
f

2i−1
, v

f

2i
) and also the sets

Lk (v f ) for all v f that appear in some pair in P f .
Since the first non-degeneracy assumption is met, any voter v f ∈V f is the

projection of a unique voter v ∈ V . Therefore, we can uniquely identify the
set P of k +1 pairs (v2i−1, v2i ) in V that are projected to P f . However, a line

ℓ ∈ Lk (v f ) or ℓ(v2i−1, v2i ) might still be a projection of many lines in L
f

k
(v).

We need another non-degeneracy assumptions to get around this problem, as
explained next.

Having the pairs P , the lines ℓ(v2i−1, v2i ) for the pairs (v2i−1, v2i ) ∈ P , and

the lines in L
f

k
(v) for all v appearing in these pairs, we can perform Step 3 of

FIXEDPARAMETERMINCOSTPLURALITYPOINT, and find the set of all candidate

points C . The only difference is that instead of Lk (v) we work with L
f

k
(v).
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Therefore, the second non-degeneracy assumption is that the number of voters
on any line ℓ we work with in Step 3 of the algorithm, must be equal to the
number of voters on the projected line ℓ f . As the total number of lines to be
tested is O(k3), we can test this condition in O(dk3n) in total. (Again, we restart
the algorithm if the test fails.)

Now each line in L
f

k
(v) uniquely corresponds to a line in Lk (v f ), and∣∣∣L f

k
(v)

∣∣∣ =
∣∣Lk (v f )

∣∣; moreover, each line ℓ(v2i−1, v2i ) has a unique projection

ℓ(v
f

2i−1
, v

f

2i
). By Lemma 5.17, we have Lk (v) ⊆ L

f

k
(v). As each candidate point

in C corresponds to a candidate point on f , the number of candidates in C is
O(k3).

In Step 4, to verify a candidate point p ∈C , we find the set U = {u1, . . . ,u|U |}
of all unbalanced lines containing p. According to Theorem 5.2, in order to
have a plurality point, all unbalanced lines must be on a single 2-flat. We devise
our verification algorithm based on the following two observations.

1. If a 2-flat f contains more than k+1 lines in U , then f is the only possible
2-flat for unbalanced lines. Indeed, any other 2-flat B ′ has at most one
common unbalanced line with f , and to make at least k +1 remaining
unbalanced lines in f balanced, we would have to remove more than k

voters (which is not allowed).

2. For a 2-flat f , the number of lines in U that are not contained in f cannot
be more than k—otherwise we would have to remove more than k voters
(which is not allowed).

We define a set F of candidate 2-flats that together contain all unbalanced
lines. We consider two cases.

Case A: |U | É 2k +2. In this case we simply put all 2-flats defined by any two
lines in U in F .

Case B: |U | > 2k +2. In this case we check all 2-flats defined by any two lines
in {u1, . . . ,u2k+3}. If there is a 2-flat that contains more than k +1 lines
in U , we put one such flat f into F . By the first observation above, this
is sufficient. Otherwise, the second observation implies that we cannot
have a plurality point by removing only k voters.

Having the candidate 2-flats, we can compute the cost of the minimum-cost
plurality point on each candidate 2-flat f . To this end, we first compute the
price of p on f using Lemma 5.9. To get the real price of p, we add the cost of
balancing the unbalanced lines that are not on f .

To prove the time bound, we note that the main difference between this
algorithm and the algorithm for the 2D case is in Step 4. We can compute
the set U in O(dn logn) time. If F contains a single candidate, the complexity
of computing the price of p will be O(dn logn). Otherwise there are O(k2)
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candidate 2-flats. However, since each line appears in at most k 2-flats, the
time complexity of the algorithm for each candidate plurality point will be
O(dk2 logk). For O(k3) candidate plurality points, the total complexity of algo-
rithm is therefore O(dk5 logk +dk3n logn).

The correctness of Steps 1, 2, and 3 follows from Lemmas 5.13 and 5.14
and the correctness of the algorithm for the 2D case. The correctness of Step 4
follows from Lemma 5.9.

5.2.3 The Minimum-Radius Plurality-Ball Problem

Let V be a set of n voters in R
d . A closed ball b(p,r ) of radius r and centered at

a point p is a plurality ball if for any point q ∉ b(p,r ) the number of voters who
prefer p over q is at least the number of voters who prefer q over p. Note that
for any point p the ball b(p,r ) is a plurality ball if r is sufficiently large, and that
a plurality ball with r = 0 is a plurality point. Below we describe an algorithm
to compute a minimum-radius plurality ball for V . If all voters are collinear
then any point on the median segment of V is a plurality ball of radius 0, so in
the remainder we assume not all voters are collinear.

We define the core of a ball b(p,r ) as b(p,r /2). Note that for any point
q ∉ b(p,r ) the locus of points that are strictly closer to q than p is an open
halfspace that does not intersect the core b(p,r /2), because obviously the
bisector of p and q (that is, the hyperplane of all points equidistant to p and
q) does not intersect b(p,r /2). Hence, Proposition 5.1 can be generalized as
follows.

Proposition 5.19. A ball b(p,r ) is a plurality ball if and only if every open

halfspace that does not intersect the core b(p,r /2) contains at most n/2 voters.

To check this condition we use the concept of k-set and k-level and their
duality. A k-set of V , for some 0 É k É n −d , is defined as a subset V ′ ⊂V of size
k such that there is an open halfspace h+ with h+∩V =V ′ and with at least d

points from V on its boundary. Let V ∗ be the set of hyperplanes dual to the
voters in V . The k-level in the arrangement A (V ∗) is the set of points on the
hyperplanes in V ∗ that have exactly k hyperplanes strictly below them (see
Figure 5.3).

We call a k-dimensional feature of a d-dimensional arrangement (or some
other d-dimensional structure) a k-face. A (d −1)-face is also called a facet. We
associate each facet f of the k-level of A (V ∗) to a cone in the primal space,
as follows. Let V ∗( f ) be the set of hyperplanes strictly below f , and consider
the hyperplanes (in primal space) dual to the vertices of f . Then cone( f ) is the
closed cone defined by these hyperplanes that contains the k voters whose dual
hyperplanes are in V ∗( f ) plus, at its apex, the voter whose dual hyperplane
contains f ; see Figure 5.3. We call cone( f ) a k-cone. A k-cone contains exactly
k +1 voters including the voter at its apex, and the other n −k −1 voters all lie
in the opposite cone.
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Figure 5.3: A 3-set, {v6, v7, v8}, of V = {v1, . . . , v8} (left) and the 3-level in A (V ∗) (right)

Lemma 5.20. A ball b(p,r ) is a plurality ball if and only if its core b(p,r /2)

intersects all ⌊n/2⌋-cones of V .

Proof. Assume all ⌊n/2⌋-cones are intersected by b(p,r /2) and suppose for a
contradiction that p is not a plurality point. By Proposition 5.19 there must
be an open halfspace h+ not intersecting b(p,r /2) and containing more than
n/2 voters. But then there must be a ⌊n/2⌋-cone contained inside the halfspace,
which is a contradiction. On the other hand, if b(p,r /2) does not intersect some
⌊n/2⌋-cone cone( f ) then, since any two disjoint convex sets can be separated by
a hyperplane, there is an open halfspace h+ not intersecting b(p,r /2) containing
all the points in cone( f ). Therefore |h+∩V | Ê ⌊n/2⌋+1, and so b(p,r ) is not a
plurality ball.

Our algorithm is now easy: We compute all ⌊n/2⌋-cones of V by comput-
ing the ⌊n/2⌋-level in the dual arrangement A (V ∗). Then we compute the
minimum-radius ball b(p,r /2) intersecting all these cones, and report b(p,r ) as
the minimum-radius plurality ball. Since in R

2 a minimum-radius disk inter-
secting all the cones is computable in linear time [51] we obtain the following
result.

Theorem 5.21. Let V be a set of n voters in the plane. Then we can compute

the minimum-radius plurality ball for V in O(T (n)) time, where T (n) is the time

needed to compute the ⌊n/2⌋-level in an arrangement of n lines in the plane.

Computing the k-level in an arrangement of lines can be done in O(n logn+
m log1+ε n) time, where m is the complexity of the level. Our algorithm then
runs in O(n4/3 log1+ε n) time. In higher dimensions, this problem fits within
the generalized linear programming (GLP) framework [9]. However, as the
complexity of ⌊n/2⌋-cones in higher dimensions is high, violation test and basis
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computation will be costly; therefore, a GLP-based algorithm would not be very
efficient.

5.3 Plurality Points in the Personalized L1 Norm

Let V be a set of n voters in R
d , where each voter v ∈V has a preference vector

〈w1(v), . . . , wd (v)〉 of non-negative weights. Define distw(v, p) :=
∑d

i=1
wi (v) ·

|xi (v)−xi (p)|. In this section we study plurality points for this personalized L1

distance. As mentioned in the introduction, a plurality point in the L1 norm
always exists in R

2, but not in higher dimensions [70]. Interestingly, in the
personalized L1 norm the statement already fails in the plane: in Section 5.3.3
we give an example of a weighted point set V in R

2 that does not admit a
plurality point in the personalized L1 norm.

5.3.1 Properties of Plurality Points in the Personalized L1

Norm

Our goal is to formulate conditions that help us to find candidate plurality
points and to decide if a given candidate is actually a plurality point. For the L2

norm we used Theorem 5.2 and Lemma 5.3 for this. Here we need a different
approach. Recall that a candidate point p ∈ R

d is a plurality point if, for any
point q ∈R

d , the number of voters who prefer p is at least the number of voters
who prefer q. From now on we refer to the point q as a competitor.

For two points p and q, define V [p ≻ q] := {v ∈ V : distw(v, p) < distw(v, q)}.

We also define V [p ∼ q] := {v ∈V : distw(v, p) = distw(v, q)} and V [p < q] :=V [p ≻
q]∪V [p ∼ q]. Let p be a candidate plurality point. We call a point q a non-

degenerate competitor for p if V [p ∼ q] = ;, and we say that q is ε-close to p

if |pq | < ε, where |pq | denotes the Euclidean distance between p and q. The
following lemma implies that to test if a point p is a plurality point, we only
have to consider non-degenerate competitors that are ε-close to p.

Lemma 5.22. Let p be a candidate plurality point and let q be a competitor for p.

For any ε> 0 there is a non-degenerate competitor q ′ that is ε-close to p such that∣∣V [q ′ ≻ p]
∣∣Ê

∣∣V [q ≻ p]
∣∣+ 1

2
·
∣∣V [q ∼ p]

∣∣.

Proof. We prove the lemma in two steps: first we show there is an (ε/2)-close
competitor q ′′ with V [q ≻ p] ⊆ V [q ′′ ≻ p] and V [q < p] ⊆ V [q ′′ < p], and then
we show that this implies the lemma. We assume without loss of generality
that p lies at the origin.

For the first step, let ε′ > 0 be small enough so that q ′′ := (ε′·x1(q), . . . ,ε′·xd (q))

is (ε/2)-close to p. Let v be a voter who prefers q over p, and define bv :=
b(v,distw(v, p)) to be the ball (in the personalized L1 metric of v) centered at v

and with radius distw(v, p). Then p ∈ ∂bv and q ∈ int(bv ), where ∂bv and int(bv )

denote the boundary and interior of bv , respectively. Since bv is convex—this
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p

q

q
′′

ε
′′

q2q1

Figure 5.4: Sketch of the proof for Lemma 5.22

directly follows from the fact that balls in the standard L1 norm are convex—we
can conclude that q ′′ ∈ int(bv ). Hence, V [q ≻ p] ⊆ V [q ′′ ≻ p]. The proof that
V [q < p] ⊆V [q ′′ < p] is similar.

For the second step, define B := {bv : v ∈ V [p ∼ q ′′]}. Note that each ball
bv ∈ B has both p and q ′′ on its boundary. Without loss of generality, we
can assume x1(p) 6= x1(q). Take two points q1, q2 such that x1(q1) = x1(q ′′)−
ε′′, and x1(q2) = x1(q ′′)+ ε′′, and xi (q1) = xi (q2) = xi (q ′′) for all 2 É i É d (see
Figure 5.4). By taking ε′′ > 0 sufficiently small we can ensure that (i) q1

and q2 are ε-close to p, and (ii) if q ′′ ∈ int(bv ) for some ball bv ∈ B then
q1, q2 ∈ int(bv ), and if q ′′ ∈ ext(bv ) then q1, q2 ∈ ext(bv ) where ext(bv ) is the set
of points not on the boundary or interior of bv . Now consider a voter v with
q ′′ ∈ ∂bv . Since q ′′, q1, q2 are ε-close to p, we can assume x1(v) 6= x1(q ′′) and
that either x1(v) < x1(q1) < x1(q ′′) < x1(q2) or x1(q1) < x1(q ′′) < x1(q2) < x1(v).
This implies that either distw(v, q1) < distw(v, q ′′) and distw(v, q2) > distw(v, q ′′),
or distw(v, q2) < distw(v, q ′′) and distw(v, q1) > distw(v, q ′′). But then q1, q2 are
both non-degenerate, and each voter v ∈V [q ′′ ∼ p] is either in V [q1 ≻ p] or in
V [q2 ≻ p]. Assume without loss of generality that at least half of the voters
from V [q ′′ ∼ p] are in V [q1 ≻ p]. Then

∣∣V [q1 ≻ p]
∣∣ Ê

∣∣V [q ′′ ≻ p]
∣∣+

1

2
·
∣∣V [q ′′ ∼ p]

∣∣ Ê
∣∣V [q ≻ p]

∣∣+
1

2
·
∣∣V [q ∼ p]

∣∣,

where the last inequality holds because V [q ≻ p] ⊆ V [q ′′ ≻ p] and V [q < p] ⊆
V [q ′′ < p]. Hence, we can take q ′ := q1.

The following lemma helps us to narrow down our search for plurality points.
Recall that a multi-dimensional median for V is a point p ∈R

d such that, for all
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1 É i É d , we have
∣∣{v ∈V : xi (v) < xi (p)}

∣∣É n/2 and
∣∣{v ∈V : xi (v) > xi (p)}

∣∣É n/2.

Lemma 5.23. Let p be a plurality point for V in the personalized L1 norm. Then

p is a multi-dimensional median for V .

Proof. Suppose for a contradiction that p is not a multi-dimensional median.
Assume without loss of generality that p lies at the origin and that

∣∣{v ∈
V : x1(v) > 0}

∣∣ > n/2. Consider a competitor q := (ε,0, . . . ,0) for p, where ε is
small enough so that no voter v has an x1-coordinate in the range (0,ε). For
every voter v with x1(v) > 0, we then have |x1(v)− x1(q)| < |x1(v)− x1(p)| and
|xi (v)−xi (q)| = |xi (v)−xi (p)| for all 2 É i É d . Hence, every such voter prefers q

over p, contradicting the condition that p is a plurality point.

The set MV of all multi-dimensional medians for V is an axis-aligned hyper-
rectangle in R

d , that is, it can be written as MV = I1 ×·· ·× Id , where each Ii is a
closed interval that may degenerate into a single value. We call MV the median

box of V . Lemma 5.23 states that we only have to look at points in MV when
searching for plurality points. The next theorem implies that we only have to
check which vertices of MV are plurality points to fully classify the set of all
plurality points. Let F be the set of all k-dimensional faces of MV for 0 É k É d ,
where each face f ∈ F is considered relatively open. Note that |F | = 3d ′

, where
d ′ is the number of non-degenerate intervals defining MV .

Theorem 5.24. Let V be a set of voters in R
d and let f be a relatively open face

of the median box MV of V .

a. Either all points in f are plurality points in the personalized L1 norm, or

none of the points in f are.

b. The points in f are plurality points in the personalized L1 norm if and only

if all vertices of f are plurality points.

Proof. Part (a) follows immediately from part (b). Next we prove part (b).

(b,⇒). Suppose p ∈ f is a plurality point, and consider a vertex p ′ of f . We
need to prove that p ′ is also a plurality point. Let ε> 0 be small enough
so that for each 1 É i É d and every voter v ∈ V with xi (v) 6= xi (p) we
have |xi (v)− xi (p)| > ε; define ε′ similarly for p ′. Let b and b′ be the
Euclidean balls of radius min(ε,ε′) and centered at p and p ′, respectively.
Since p is a plurality point we know that |V [p ≻ q]| Ê |V [q ≻ p]| for all
q ∈ b. Now consider an arbitrary point q ′ ∈ b′, and define q := q ′+ (p −p ′).
Note that q ∈ b and that the relative position of q and p is the same as
the relative position of q ′ and p ′. In particular, xi (p)− xi (q) = xi (p ′)−
xi (q ′) for all 1 É i É d . As shown in Lemma 5.25, this implies that V [p ≻
q] ⊆ V [p ′ ≻ q ′] and V [q ′ ≻ p ′] ⊆ V [q ≻ p]. Hence, |V [p ′ ≻ q ′]| Ê |V [p ≻
q]| Ê |V [q ≻ p]| Ê |V [q ′ ≻ p ′]|. Since q ′ is an arbitrary point in b′, the
point p ′ must be a plurality point according to Lemma 5.22.
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(b,⇐). To prove this it suffices to show the following: if p is a point in the
relative interior of f that is not a plurality point, then there is a vertex p ′

of f that is not a plurality point. To this end let q be an ε-close competitor
(for a sufficiently small ε> 0) that beats p. We will argue that the vertex
p ′ on the opposite side of p as compared to q ′—this is defined more
precisely below—is not a plurality point.

Let MV = I1 ×·· ·× Id , where Ii = [mini ,maxi ] (possibly with mini = maxi ).
For each 1 É i É d , we pick xi (p ′) as follows. If xi (p) = mini or xi (p) = maxi

then we set xi (p ′) := xi (p). Otherwise we have mini < xi (p) < maxi ; then,
if xi (p) É xi (q) we set xi (p ′) := mini , and if xi (p) > xi (q) we set xi (p ′) :=
maxi . Now consider the competitor q ′ of p ′ defined by q ′ := q + (p ′−p),
so that q ′ has the same positive relative to p as q has relative to p.
We claim the following: for any voter v and any 1 É i É d we have
|xi (v)−xi (p ′)|−|xi (v)−xi (q ′)| = |xi (v)−xi (p)|−|xi (v)−xi (q)|. Since q beats
p, this claim implies that q ′ beats p ′, thus finishing the proof. Indeed,
if xi (p ′) = xi (p) we have xi (q ′) = xi (q) and the claim holds. Otherwise
assume without loss of generality that xi (p ′) < xi (p), and recall that q

is ε-close to p. By taking ε sufficiently small we can thus ensure that
mini = xi (p ′) < xi (q ′) < xi (p) < xi (q) < maxi . Since there are no voters v

with mini < xi (v) < maxi , this implies the claim.

The following lemma is used in the proof of Theorem 5.24.

Lemma 5.25. V [p ≻ q] ⊆V [p ′ ≻ q ′] and V [q ′ ≻ p ′] ⊆V [q ≻ p].

Proof. The claim follows if we can show that for any voter v

d∑

i=1

wi (v)·
(
|xi (v)−xi (p)|−|xi (v)−xi (q)|

)
Ê

d∑

i=1

wi (v)·
(
|xi (v)−xi (p ′)|−|xi (v)−xi (q ′)|

)
.

(Indeed, the sign of the left-hand side is negative if and only if v ∈V [p, q] and
positive if and only if v ∈ V [q, p], and similarly for the right-hand side and
V [p ′, q ′] and V [q ′, p ′].) Since all weights are non-negative this holds if for all
1 É i É d we have

|xi (v)−xi (p)|− |xi (v)−xi (q)| Ê |xi (v)−xi (p ′)|− |xi (v)−xi (q ′)|. (5.1)

To prove this we consider three cases.

Case 1: xi (p) = xi (p ′). Now xi (q) = xi (q ′) and Inequality (5.1) holds with
equality.

Case 2: xi (v) = xi (p ′). Now we have

|xi (v)−xi (p)|− |xi (v)−xi (q)| Ê −|xi (p)−xi (q)| (Triangle Inequality)
= −|xi (p ′)−xi (q ′)|
= |xi (v)−xi (p ′)|− |xi (p ′)−xi (q ′)|,
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and so Inequality (5.1) also holds in this case.

Case 3: xi (p) 6= xi (p ′) and xi (v) 6= xi (p ′). Now xi (p) lies in the interior of Ii , the
interval defining the i -th coordinate of MV . Our choice of ε guarantees that
either xi (v) < min(xi (p), xi (q)) or xi (v) > max(xi (p), xi (q)). Similarly, xi (v) <
min(xi (p ′), xi (q ′)) or xi (v) > max(xi (p ′), xi (q ′)). (Note that xi (p) is an endpoint
of Ii , and so we can also have xi (v) = xi (p ′), but this was covered in Case 2.)
Moreover, xi (v) < min(xi (p), xi (p ′)) or xi (v) > max(xi (p), xi (p ′)). Hence,

xi (v) < min
(
xi (p), xi (p ′), xi (q), xi (q ′)

)
or xi (v) > max

(
xi (p), xi (p ′), xi (q), xi (q ′)

)
,

which proves Inequality (5.1) (as in Case 1 with equality) and, hence, the
lemma.

5.3.2 Finding All the Plurality Points in the Personalized L1

Norm

Our algorithm for finding the set of all plurality points is quite simple: we
compute the median box MV in O(dn) time, then we check for each vertex of
MV if it is a plurality point (as described in the proof of the theorem below),
and finally we report the set of all plurality points using Theorem 5.24. The
following theorem summarizes the result.

Theorem 5.26. Let V be a set of n voters in R
d , where d Ê 2. Then we can

compute in O(Cd nd−1) time the set of all plurality points for V in the personalized

L1 norm. When all voters have the same preferences the time bound reduces to

O(Cd +d2d n). Here Cd is a constant depending on the dimension d .

Proof. Let C ′
d

be a constant (depending on the dimension d) such that the

arrangement defined by a set of n hyperplanes in R
d can be computed in

O(C ′
d

nd ) time. (The fact that an arrangement in R
d can be constructed in this

time bound is well known [35,36], but the constant C ′
d

has not been explicitly

specified.) We will prove the theorem with Cd :=C ′
d−1

2d 2
.

Below we show that we can test if a given vertex p of MV is a plurality point
in O(C ′

d−1
(2d n)d−1) time (and in O(C ′

d−1
2d(d−1) +dn) time if all voters have the

same preferences), from which the theorem readily follows.
Assume without loss of generality that p lies at the origin. We need to

check if for any competitor q we have |V [p ≻ q]| Ê |V [q ≻ p]|. By Lemma 5.22
we only have to consider non-degenerate competitors. Such a competitor q

beats p if |V [q ≻ p]| > n/2. Because p is at the origin, a voter v is in V [q ≻ p] if
∑d

i=1
wi (v) ·

(
|xi (v)− xi (q)|− |xi (v)|

)
< 0. When q is an ε-close competitor for p

we have |xi (q)| < ε, and then |xi (v)− xi (q)| − |xi (v)| ∈ {−xi (q), xi (q)}. Hence,
whether or not v ∈ V [q ≻ p] depends on the position of q relative to the
hyperplane h :=

∑d
i=1

wi (v)αi xi = 0, where αi =+1 if xi (q) > xi (v) and αi =−1

if xi (q) < xi (v). Each voter v ∈ V thus generates a set of 2d hyperplanes. Let
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H be the total set of hyperplanes generated, that is, H :=
{∑d

i=1
wi (v)αi xi =

0 : v ∈ V and (α1, . . . ,αd ) ∈ {−1,+1}d
}

. The discussion above implies that if two

competitors q, q ′ have the same position relative to every hyperplane in H , then
V [q ≻ p] =V [q ′ ≻ p]. Hence, we can proceed as follows.

We first compute the set H in O(2d n) time. Next we compute the ar-
rangement A (H) defined by the hyperplanes in H . Since all hyperplanes pass
through the origin, A (H) is effectively a (d −1)-dimensional arrangement, so
it has complexity O(2d (2d n)d−1) and it can be constructed in O(C ′

d−1
(2d n)d−1)

time [35,36]. Note that for any cell C of A (H), we have V [q ≻ p] =V [q ′ ≻ p]

for any two competitors q, q ′ in C . With a slight abuse of notation we denote
this set by V [C ≻ p]. The sets V [C ≻ p] and V [C ′ ≻ p] for neighboring cells C ,C ′

differ by at most one voter (corresponding to the hyperplane that separates the
cells).2 Hence, we can compute for each cell C of A (H) the size of V [C ≻ p]

in O(2d (2d n)d−1) time in total, by performing a depth-first search on the dual
graph of A (H) and updating the size as we step from one cell to the next.
When we find a cell C with |V [C ≻ p]| > n/2 we report that p is not a plurality
point, otherwise we report that p is a plurality point.

When all preferences are equal—after appropriate scaling this reduces to the
case where we simply use the standard L1 norm—then all voters v ∈V define
the same set of 2d hyperplanes, and so |H | = 2d . Hence, when all preferences
are equal the algorithm for testing runs in O(C ′

d−1
2d(d−1) +dn) time.

5.3.3 A Plurality Point Does Not Always Exist in the Person-
alized L1 Norm

In this section we give an example showing that a plurality point doesn’t always
exist for the personalized L1 norm in R

2.
We define the set V of voters as follows (see Figure 5.5). First we add (1,−1)

and (−1,1) to V , with preference vector 〈1,1〉; these points will define opposite
corners of the median box MV . Then we add 6 points, as follows:

• 3 points in the (+,−) quadrant of voter (1,−1), with preference vector
〈2,1〉;

• 3 points in the (−,+) quadrant of voter (−1,1), with preference vector
〈1,2〉.

Now consider any point p = (x1(p), x2(p)) inside (or on the border of) the
median box. It is evident that the competitor q = (x1(p)+ ε, x2(p)+ ε) (for a
sufficiently small ε > 0) falsifies that p is a plurality point as all the 6 lately

2Actually this is not quite true, as several voters could generate the same hyperplane. In this case
the difference between V [C ≻ p] and V [C ′ ≻ p] can be more than one voter. Thus the time needed
to step from C to C ′ is linear in the number of voters who generate the separating hyperplane of C

and C ′. It is easy to see that this does not influence the final time bound.
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preference vector 〈2, 1〉

preference vector 〈1, 2〉

x

y

preference vector 〈1, 1〉

preference vector 〈1, 1〉
median box

Figure 5.5: An example where there are no plurality points in the general case

added points belong to V [q ≻ p]. Therefore there will be no plurality point in
this setting.

5.4 Concluding Remarks

We presented efficient algorithms for a number of problems concerning plurality
points. It would be interesting to generalize these to the setting where the
voters have weights—not to be confused with the weights defining the personal
preferences—and a point is a plurality point if there is no other point that is
preferred by a set of voters of higher total weight. This would also allow us to
deal with multi-sets of voters, something which our current algorithms cannot
do. Another direction for future research is to extend our fixed-parameter
algorithm for the minimum-cost problem and the algorithm for plurality balls
to the personalized L1 norm.





Chapter 6

The Voronoi Game

In this chapter we consider discrete (Euclidean) one-round Voronoi games, de-
fined as follows. Let V be a multiset of n points in R

d , which we call voters

from now on, and let k Ê 1 and ℓÊ 1 be two integers. The one-round discrete
Voronoi game defined by the triple 〈V ,k,ℓ〉 is a single-turn game played be-
tween two players P and Q. First, player P places a set P of k points in R

d ,
then player Q places a set Q of ℓ points in R

d . (These points may coincide with
the voters in V .) We call the set P the strategy of P and the set Q the strategy

of Q. Player P wins a voter v ∈V if dist(v,P ) É dist(v,Q), where dist(v,P ) and
dist(v,Q) denote the minimum distance between a voter v and the sets P and
Q, respectively. Note that this definition favors player P , since in case of a tie a
voter is won by P . We now define V [P <Q] := {v ∈V : dist(v,P ) É dist(v,Q)} to
be the multiset of voters won by player P when he uses strategy P and player
Q uses strategy Q. Player P wins the game 〈V ,k,ℓ〉 if he wins at least half the
voters in V , that is, when

∣∣V [P <Q]
∣∣Ê n/2; otherwise Q wins the game. Here∣∣V [P <Q]

∣∣ denotes the size of the multiset V [P <Q] (counting multiplicities).
We now define Γk,ℓ(V ) as the maximum number of voters that can be won by
player P against an optimal opponent:

Γk,ℓ(V ) := max
P⊂Rd , |P |=k

min
Q⊂Rd , |Q|=ℓ

∣∣V [P <Q]
∣∣.

For a given multiset V of voters, we want to decide if1 Γk,ℓ(V ) Ê n/2. In other
words, we are interested in determining for a given game 〈V ,k,ℓ〉 if P has
a winning strategy, which is a set of k points such that P wins the game no
matter where Q places her points.

We present an algorithm that computes Γk,ℓ(V ) in R
1 in polynomial time

which is an improvement over the previous algorithm by Banik et al. [14] that
works only for the case where k = ℓ and runs in exponential time when k is part

1One can also require that Γk,ℓ(V ) > n/2; with some small modifications, all the results in this
chapter can be applied to the case with strict inequality as well.
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of the input. Our algorithm works when V is a multiset, and it does not require
k and ℓ to be equal. Our algorithm computes Γk,ℓ(V ) and finds a strategy for
P that wins this many voters in time O(kn4). The algorithm can be extended
to the case when the voters are weighted, at a slight increase in running time.

After establishing that we can compute Γk,ℓ(V ) in polynomial time in R
1,

we turn to the higher-dimensional problem. We show that deciding if P has
a winning strategy is Σ

P
2 -hard in R

2. We also show that for fixed k and ℓ this
problem can be solved in polynomial time. We also show that the problem is
contained in the complexity class ∃∀R; see [33] for more information on this
complexity class.

6.1 A Polynomial-Time Algorithm for d = 1

In this section we present a polynomial-time algorithm for the 1-dimensional
discrete Voronoi game. Our algorithm will employ dynamic programming, and
it will be convenient to use n, k, and ℓ as variables in the dynamic program.
From now on, we therefore use n∗ for the size of the original multiset V , and
k∗ and ℓ∗ for the initial number of points that can be played by P and Q,
respectively.

6.1.1 Notation and Basic Properties

We denote the given multiset of voters by V := {v1, . . . , vn∗ }, where we assume
the voters are numbered from left to right. We also always number the points in
the strategies P := {p1, . . . , pk∗ } and Q := {q1, . . . , qk∗ } from left to right. For brevity
we make no distinction between a point and its value (that is, its x-coordinate),
so that we can for example write p1 < q1 to indicate that the leftmost point of P

is located to the left of the leftmost point of player Q.
For a given game 〈V ,k,ℓ〉, we say that a strategy P of player P realizes

a gain γ if
∣∣V [P < Q]

∣∣ Ê γ for any strategy Q of player Q. Furthermore, we
say that a strategy P is optimal if it realizes Γk,ℓ(V ), the maximum possible
gain for P , and we say a strategy Q is optimal against a given strategy P if∣∣V [P <Q]

∣∣É
∣∣V [P <Q ′]

∣∣ for any strategy Q ′.

Trivial, reasonable, and canonical strategies for P . For 0 É n É n∗, define
Vn := {v1, . . . , vn} to be the leftmost n points in V . Suppose we want to compute
Γk,ℓ(Vn) for some 1 É k É n and 0 É ℓ É n. The trivial strategy of player P is
to place his points at the k points of Vn with the highest multiplicities—here
we consider the multiset Vn as a set of distinct points, each with a multiplicity
corresponding to the number of times it occurs in Vn—with ties broken arbi-
trarily. Let ‖Vn‖ denote the number of distinct points in Vn . Then the trivial
strategy is optimal when k Ê ‖Vn‖ and also when ℓÊ 2k: in the former case P

wins all voters with the trivial strategy, and in the latter case Q can always win
all voters not coinciding with a point in P (namely by surrounding each point
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pi ∈ P by two points sufficiently close to pi ) so the trivial strategy is optimal
for P . Hence, from now on we consider subproblems with k < ‖Vn‖ and ℓ< 2k.

We can without loss of generality restrict our attention to strategies for P

that place at most one point in each half-open interval of the form (vi , vi+1] with
vi 6= vi+1, where 0 É i É n, v0 :=−∞, and vn∗+1 :=∞. Indeed, placing more than
two points inside an interval (vi , vi+1] is clearly not useful, and if two points
are placed in some interval (vi , vi+1] then we can always move the leftmost
point onto vi . (If vi is already occupied by a point in P , then we can just put
the point on any unoccupied voter; under our assumption that k < ‖Vn‖ an
unoccupied voter always exists.) We will call a strategy for P satisfying the
property above reasonable.

Observation 6.1 (Banik et al. [14]). Assuming k < ‖Vn‖ there exist an optimal

strategy for P that is reasonable and has p1 ∈ V (that is, p1 coincides with a

voter).

We can define an ordering on strategies of the same size by sorting them
in lexicographical order. More precisely, we say that a strategy P = {p1, . . . , pk }

is greater than a strategy P ′ = {p ′
1, . . . , p ′

k
}, denoted by P ≻ P ′, if 〈p1, . . . , pk〉 >lex

〈p ′
1, . . . , p ′

k
〉, where >lex denotes the lexicographical order. Using this ordering,

the largest reasonable strategy P that is optimal—namely, that realizes Γk,ℓ(Vn)—
is called the canonical strategy of P .

α-gains, β-gains, and gain sequences. Consider a strategy P := {p1, . . . , pk }. It
will be convenient to add two extra points to P , namely p0 :=−∞ and pk+1 :=∞;
this clearly does not influence the outcome of the game. The strategy P thus
induces k +1 open intervals of the form (pi , pi+1) where player Q may place
her points. It is easy to see that there exists an optimal strategy for Q with the
following property: Q contains at most two point in each interval (pi , pi+1) with
1 É i É k −1, and at most one point in (p0, p1) and at one one point in (pk , pk+1).
From now on we restrict our attention to strategies for Q with this property.

Now suppose that x and y are consecutive points (with x < y) in some
strategy P , where x could be −∞ and y could be ∞. As just argued, Q either
places zero, one, or two points inside (x, y). When Q places zero points, then she
obviously does not win any of the voters in Vn ∩ (x, y). The maximum number
of voters Q can win from Vn ∩ (x, y) by placing a single point is the maximum
number of voters in (x, y) that can be covered by an open interval of length
(y −x)/2; see Banik et al. [14]. We call this value the α-gain of Q in (x, y) and
denote it by gainα(Vn , x, y). By placing two points inside (x, y), one immediately
to the right of x and one immediately to the left of y , player Q will win all voters
Vn ∩ (x, y). Thus the extra number of voters won by the second point in (x, y) as
compared to just placing a single point is equal to |Vn∩(x, y)|−gainα(Vn , x, y). We
call this quantity the β-gain of Q in (x, y) and denote it by gainβ(Vn , x, y). Note
that for intervals (x,∞) we have gainα(x,∞) = |Vn ∩ (x,∞)| and gainβ(x,∞) = 0;
a similar statement holds for (−∞, y).
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The following observation follows from the fact that gainα(Vn , x, y) equals
the maximum number of voters in (x, y) that can be covered by an open interval
of length (y −x)/2.

Observation 6.2 (Banik et al. [14]). For any x, y we have gainα(Vn , x, y) Ê
gainβ(Vn , x, y).

If we let a := gainα(Vn , x, y) and b := gainβ(Vn , x, y), then player Q wins
either 0, a, or a +b points depending on whether she plays 0, 1, or 2 points
inside then interval. It will therefore be convenient to introduce the notation
⊕ j for j ∈ {0,1,2}, which is defined as

a ⊕0 b := 0, a ⊕1 b := a, a ⊕2 b := a +b.

We assume the precedence of these operators are higher than addition.
Let P := {p0, p1, . . . , pk , pk+1} be a given strategy for P , where by convention

p0 =−∞ and pk+1 =∞. Consider {gainα(Vn , pi , pi+1) : 0 É i É k}∪{gainβ(Vn , pi , pi+1) :

0 É i É k}, the multiset of all α-gains and β-gains defined by the intervals (pi , pi+
1). Sort this sequence in non-increasing order, using the following tie-breaking
rules if two gains are equal:

• if one of the gains is for an interval (pi , pi+1)—that is, the gain is either
gainα(Vn , pi , pi+1) or gainβ(Vn , pi , pi+1)—and the other gain is for an in-
terval (p j , p j+1) with j > i , then the gain for (pi , pi+1) precedes the gain
for (p j , p j+1).

• if both gains are for the same interval (pi , pi+1) then the α-gain precedes
the β-gain.

We call the resulting sorted sequence the gain sequence induced by P on Vn .
We denote this sequence by Σgain(Vn ,P ) or, when P and Vn are clear from the
context, sometimes simply by Σgain.

The canonical strategy of Q and sequence representations. Given the mul-
tiset Vn , a strategy P and value ℓ, player Q can compute an optimal strategy
as follows. First she computes the gain sequence Σgain(Vn ,P ) and chooses the
first ℓ gains in Σgain(Vn ,P ). Then for each 0 É i É k she proceeds as follows.
When gainα(Vn , pi , pi+1) and gainβ(Vn , pi , pi+1) are both chosen, she places two
points in (pi , pi+1) that win all voters in (pi , pi+1); when only gainα(Vn , pi , pi+1)

is chosen, she places one point in (pi , pi+1) that win gainα(Vn , pi , pi+1) voters.
(By Observation 6.2 and the tie-breaking rules, when gainβ(Vn , pi , pi+1) is cho-
sen it is always the case that gainα(Vn , pi , pi+1) is also chosen.) The resulting
optimal strategy Q is called the canonical strategy of Q with ℓ points against P

on Vn .
From now one we restrict the strategies of player Q to canonical strategies.

In an optimal strategy, player Q places at most two points in any interval
induced by a strategy P = {p0, . . . , pk+1}, and when we know that Q places a
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single point (and similarly when she places two points) then we also know
where to place the point(s). Hence, we can represent an optimal strategy Q,
for given Vn and P , by a sequence M(V ,P,Q) := 〈m0, . . . ,mk〉 where mi ∈ {0,1,2}

indicates how many points Q plays in the interval (pi , pi+1). We call M(V ,P,Q)

the sequence representation of the strategy Q against P on Vn . We denote the
sequence representation of the canonical strategy of Q with ℓ points against P

on Vn by M(V ,P,ℓ). We have the following observation.

Observation 6.3. The canonical strategy of Q with ℓ points against P is the

optimal strategy Q with ℓ points against P whose sequence representation is

maximal in the lexicographical order.

6.1.2 The Subproblems for a Dynamic-Programming Solu-
tion

For clarity, in the rest of Section 6.1 we assume the multiset of voters V does not
have repetitive entries, i.e we have a set of voters not a multiset. While all the
results are easily extendible to multisets, dealing with them adds unnecessary
complexity to the text.

Our goal is to develop a dynamic-programming algorithm to compute Γk∗,ℓ∗ (V ).
Before we can define the subproblems on which the dynamic program is based,
we need to introduce the concept of thresholds, which is a crucial ingredient in
the subproblems.

Strict and loose thresholds. Consider an arbitrary gain sequence Σgain(Vn ,P ) =
〈τ1, . . . ,τ2k+2〉. Recall that each τi is the α-gain or β-gain of some interval (pi , pi+1),
and that these gains are sorted in non-increasing order. We call any integer
value τ ∈ [τℓ+1,τℓ] an ℓ-threshold for Q induced by P on Vn , or simply a thresh-

old if ℓ is clear from the context. We implicitly assume τ0 := n so that talking
about 0-threshold is also meaningful. Note that when τℓ Ê τ > τℓ+1 then the
canonical strategy for Q chooses all gains larger than τ and no gains smaller
or equal to τ. Hence, we call τ a strict threshold if τℓ Ê τ> τℓ+1. On the other
hand, when τ= τℓ+1 then gains of value τ may or may not be chosen by the
canonical strategy of Q. (Note that in this case for gains of value τ to be picked,
we would actually need τℓ = τ= τℓ+1.) In this case we call τ a loose threshold.

The idea will be to guess the threshold τ in an optimal solution and then
use the fact that fixing the threshold τ helps us to limit the strategies for P

and anticipate the behavior of Q. Let Popt be the canonical strategy realizing
Γk∗,ℓ∗ (V ). We call any ℓ∗-threshold of Popt an optimal threshold. We devise an
algorithm that gets a value τ as input and computes Γk∗,ℓ∗ (V ) correctly if τ is an
optimal threshold, and computes a value not greater than Γk∗,ℓ∗ (V ), otherwise.

Clearly we only need to consider values of τ that are at most n∗. In fact,
since each α-gain or β-gain in a given gain sequence corresponds to a unique
subset of voters, the ℓ∗-th largest gain can be at most n∗/ℓ∗, so we only need
to consider τ-values up to ⌊n∗/ℓ∗⌋. Observe that when there exists an optimal
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strategy that induces an ℓ∗-threshold equal to zero, then Q can win all voters
not explicitly covered by P . In this case the trivial strategy is optimal for P .
Our global algorithm is now as follows.

1. For all thresholds τ ∈ {1, . . . ,⌊n∗/ℓ∗⌋}, compute an upper bound on the
number of voters P can win a strategy that has an ℓ∗-threshold τ. For the
run where τ is an optimal threshold, the algorithm will return Γk∗,ℓ∗ (V ).

2. Compute the number of voters P wins in the game 〈V ,k∗,ℓ∗〉 by the
trivial strategy.

3. Report the best of all solutions found.

The subproblems for a fixed threshold τ. From now on we consider a
fixed threshold value τ ∈ {1, . . . ,⌊n∗/ℓ∗⌋}. The subproblems in our dynamic-
programming algorithm for the game 〈V ,k∗,ℓ∗〉 have several parameters.

• A parameter n ∈ {0, . . . ,n∗}, specifying that the subproblem is on the voter
set Vn .

• Parameters k,ℓ ∈ {0, . . . ,n}, specifying that P can use k +1 points and Q

can use ℓ points.

• A parameter γ ∈ {0, . . . ,n}, specifying the number of voters P must win.

• A parameter δ ∈ {strict, loose}, specifying the strictness of the fixed ℓ-
threshold τ.

Intuitively, the subproblem specified by a tuple 〈n,k,ℓ,γ,δ〉 asks for a strategy P

where P wins at least γ voters from Vn and such that P that induces an ℓ-
threshold of strictness δ, against an opponent Q using ℓ points. Player P may
use k +1 points and his objective will be to push his last point, pk+1 as far to
the right as possible. The value of the solution to such a subproblem, which
we denote by Xmax(n,k,ℓ,γ,δ), will indicate how far to the right we can push
pk+1. Ultimately we will be interested in solutions where P can push pk∗+1 all
the way to +∞, which means he can actually win γ voters by placing only k∗

points.
To formally define Xmax(n,k,ℓ,γ,δ), we need one final piece of notation.

Let x ∈R∪ {−∞} be a real value, let n ∈ {1, . . . ,n∗}, and let a,b be integers. For
convenience, define vn∗+1 :=∞. Now we define the (a,b)-span of x to vn+1,
denoted by span(x,n, a,b), as

span(x,n, a,b) :=




the maximum real value y ∈ (vn , vn+1] such that
gainα(V , x, y) = a and gainβ(V , x, y) = b

if x 6= −∞ and y exists

−∞ otherwise

Definition 6.4. For parameters n ∈ {0, . . . ,n∗}, and k,ℓ ∈ {0, . . . ,n}, and γ ∈
{0, . . . ,n} and δ ∈ {strict, loose}, we define the value Xmax(n,k,ℓ,γ,δ) and what it
means when a strategy P realizes this value, as follows.
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• For k = 0, we call it an elementary subproblem, and define Xmax(n,k,ℓ,γ,δ) =
vn+1 if

1. {vn+1} wins at least γ voters from Vn , and
2. {vn+1} induces an ℓ-threshold τ with strictness δ on Vn .

and we define Xmax(n,k,ℓ,γ,δ) =−∞ otherwise. In the former case we
say that P := {vn+1} realizes Xmax(n,k,ℓ,γ,δ).

• For k > 0, we call it a non-elementary subproblem, and Xmax(n,k,ℓ,γ,δ) is
defined to be equal to the maximum real value y ∈ (vn , vn+1] such that
there exists a strategy P := P ′∪ {y} with P ′ = {p1, . . . , pk }, integer values
n′, a,b with 0 É n′ < n and 0 É a,b É n, an integer j ∈ {0,1,2}, and a
δ′ ∈ {strict, loose} satisfying the following conditions:

1. P wins at least γ voters from Vn ,
2. P induces an ℓ-threshold τ with strictness δ on Vn ,
3. span(pk ,n, a,b) = y ,
4. P ′ realizes Xmax(n′,k −1,ℓ− j ,γ−n +n′+a ⊕ j b,δ′),
5. Let M(Vn′ ,P ′,ℓ− j ) := 〈m′

0, . . . ,m′
k
〉 and M(Vn ,P,ℓ) := 〈m0, . . . ,mk+1〉.

Then m′
i
= mi for all 0 É i < k.

When a set P satisfying the conditions exists, we say that P realizes

Xmax(n,k,ℓ,γ,δ). We define Xmax(n,k,ℓ,γ,δ) =−∞ if no such P exists.

By induction we can show that if the parameters n,k,ℓ are not in a certain
range, namely if one of the conditions ℓ< 2(k +1) or k É ‖Vn‖ is violated, then
Xmax(n,k,ℓ,γ,δ) =−∞. The next lemma shows we can compute Γk∗,ℓ∗ (V ) from
the solutions to our subproblems.

Lemma 6.5. Let V = {v1, . . . , vn∗ } be a set of n∗ voters in R
1. Let 0 É k∗ É n∗ and

1 É ℓ∗ É n∗ be two integers such that ℓ∗ < 2k∗ and k∗ < ‖V ‖, and let τ be a fixed

threshold. Then

Γk∗,ℓ∗ (V ) Ê the maximum value of γ with 0 É γ É n∗ for which there exist a

δ ∈ {loose,strict} such that Xmax(n∗,k∗,ℓ∗,γ,δ) =∞.

(6.1)

Moreover, for an optimal threshold τopt > 0, the inequality changes to equality.

Proof. It is clear that Γk∗,ℓ∗ (V ) is at least equal to the right-hand side in (6.1).
Indeed, Xmax(n∗,k∗,ℓ∗,γ,δ) =∞ implies by definition that there is a strategy P ′

of k∗ points such that P ′∪ {∞} wins at least γ voters against an opponent Q

with ℓ∗ points, and then P ′ must win γ voters as well. Next we prove the
opposite direction for an optimal threshold τopt.
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Let Popt be the canonical strategy realizing Γk∗,ℓ∗ (V ). By definition, τopt is an
ℓ∗-threshold induced by Popt on V . Let Qopt be the canonical strategy of Q with
ℓ∗ points against Popt on V and let M(V ,Popt,ℓ

∗) = 〈m0, . . . ,mk∗〉 be its sequence
representation. Define Pk := {p1, . . . , pk , pk+1} and Qk :=Qopt∩[−∞, pk+1], and let
nk be the largest index such that vnk

< pk+1. Let ℓk = |Qk |, and γk = |Vnk
[Pk <

Qk ]|, that is, γk is the number of voters from Vnk
won by Pk against Qk . Note

that τopt is an ℓk -threshold of Pk on Vnk
. let δk ∈ {strict, loose} indicate whether

our fixed threshold τopt is a strict or loose threshold induced by Pk and ℓk on
Vnk

, where pk∗+1 :=∞.

We will need the following claim.

Claim. Qk is the canonical strategy of Q with ℓk points against Pk

on Vnk
, and for all 0 É k É k∗ we have M(Vnk

,Pk ,Qk ) = 〈m0, . . . ,mk ,0〉.

Proof of claim. The second part of the claim is obvious by definition
of sequence representation and Qk .

The first part of the claim can be shown by contradiction. Sup-
pose Q ′

k
is the canonical strategy of Q with ℓk points against Pk on

Vnk
, where Q ′

k
6= Qk . Let M(Vnk

,Pk ,Q ′
k

) = 〈m′
0, . . . ,m′

k
,0〉. Consider

the strategy Q with sequence representation 〈m′
0, . . . ,m′

k
,mk+1, . . . ,mk∗〉

of size ℓ∗ against Popt. We have two cases.

• Qk is not an optimal strategy against Pk . This means Q wins
more voters than Qopt against Popt, because winning a voter
by Q is only dependent on the number of points Q places in
the interval (pi , pi+1) of that voter. But this contradicts the fact
that Qopt is an optimal strategy against Popt.

• Qk is an optimal strategy against Pk , but Qk is smaller in the
lexicographical order than Q ′

k
. This mean Q is a strategy of

equal gain as Qopt whose sequence representation is lexico-
graphically larger. But this contradicts the fact that Qopt is a
canonical strategy against Popt.

⊳

Let Ik denote the subproblem given by 〈nk ,k,ℓk ,γk ,δk〉 for τ= τopt. Below we
will show by induction on k that for any 0 É k É k∗ we have

Xmax(Ik ) = pk+1 and Xmax(Ik ) is realized by Pk , (6.2)

where we use Xmax(Ik ) as a shorthand for Xmax(nk ,k,ℓk ,γk ,δk ). Note that (6.2)
finishes the proof of the lemma. Indeed, pk∗+1 =∞ by definition, and nk∗ = n∗

which implies Vnk∗ =V . Hence, γk∗ = Γk∗,ℓ∗ (V ) and ℓk∗ = ℓ∗, and so there is a
δ ∈ {loose,strict} such that Xmax(n∗,k∗,ℓ∗,Γk∗,ℓ∗ (V ),δk∗ ) =∞, thus finishing the
proof. It remains to prove (6.2).
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Base case: k = 0. By definition n0 is such that vn0 < p1 and vn0+1 Ê p1. More-
over, p1 ∈ V by Observation 6.1. Hence, we have vn0+1 = p1, which
establishes (6.2).

Induction step: k > 0. We first prove that y := pk+1 satisfies all five conditions
from Definition 6.4 for a := gainα(V , pk , pk+1) and b := gainβ(V , pk , pk+1),
and for j := mk and δ′ := δk . This implies that Xmax(Ik ) Ê pk+1. After
that we argue there is no larger value of y satisfying all conditions, thus
finishing the proof.

1. Pk wins at least γk voters from Vnk
.

Pk wins γk voters against Qk by definition. Moreover, by the Claim
above, Qk is an optimal strategy for Q against Pk on Vnk

. Hence, Pk

can win γk voters from Vnk
.

2. Pk induces an ℓ-threshold τopt with strictness δk on Vnk
.

This is true by definition.

3. span(pk ,nk , a,b) = pk+1.

Obviously span(pk ,nk , a,b) Ê pk+1. Now let y := span(pk ,nk , a,b) and
assume for a contradiction that y > pk+1. We will argue that this
implies that P := {p1, . . . , pk , y, pk+2, . . . , pk∗ } realizes Γk∗,ℓ∗ (V ). This
gives the desired contradiction since P is then an optimal strategy
that is lexicographically greater than the canonical strategy Popt.

Since the only difference between P and Popt is that pk+1 is moved to
the right to the position y , the intervals (pi , pi+1) only change for i =
k and for i = k +1. Thus the possible gains for Q in all intervals stay
the same, except possibly in (pk , pk+1) and (pk+1, pk+2). Since a =
gainα(V , pk , pk+1) and b = gainβ(V , pk , pk+1) and y = span(pk ,nk , a,b)

by definition, the gains in (pk , pk+1) are the same as the gains in
(pk , y). Finally, since (y, pk+2) ⊂ (pk+1, pk+2), it is clear that Q cannot
win more voters in (y, pk+2) against P than she can win in (pk+1, pk+2)

against Popt by playing a single point inside these intervals. Similarly,
she cannot win more voters by playing two points in (y, pk+2), as
compared to playing two points in (pk+1, pk+2). Hence, P wins at
least the same number of voters as Popt and so P realizes Γk∗,ℓ∗ (V ).

4. Pk−1 realizes Xmax(nk−1,k −1,ℓk − j ,γk −nk +nk−1 +a ⊕ j b,δk−1) for
j = mk .

By the induction hypothesis and since ℓk−1 = ℓk − j by definition,
Pk−1 realizes Xmax(nk−1,k −1,ℓk − j ,γk−1,δk−1). By the above Claim,
Qk−1 is optimal against Pk−1 on Vnk−1

and Qk is optimal against
Pk on Vnk

. Hence, γk−1 = γk −nk +nk−1 + a ⊕ j b, which proves the
condition.
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5. Let M(Vnk−1
,Pk−1,ℓk−1) := 〈m′

0, . . . ,m′
k
〉 and M(Vnk

,Pk ,ℓk ) := 〈m0, . . . ,mk+1〉.
Then m′

i
= mi for all 0 É i < k.

This is true by the above Claim.

We still need to show that pk+1 is the maximum value in (vn , vn+1] sat-
isfying the above mentioned conditions. This is obvious for k = k∗. For
k < k∗, with a similar reasoning to the proof of the third condition, we
can show that pk+1 is the maximum value in (vn , vn+1] satisfying the
conditions, as otherwise Popt cannot be the canonical strategy realiz-
ing Γk∗,ℓ∗ (V ). Namely, we assume y ∈ (vn , vn+1] with y > pk+1 is the
solution to Ik realized by P ′

k
:= {p ′

1, . . . , p ′
k

, y}, and then we argue that
P := {p ′

1, . . . , p ′
k

, y, pk+2, . . . , pk∗ } is an optimal solution, thus obtaining a
contradiction since P is lexicographically larger than Popt. It remains to
prove that P is optimal.

We show that any other strategy Q against P on V cannot win more
voters than Qopt wins against Popt, which shows P realizes Γk∗,ℓ∗ (V ) and
is therefore optimal. Let Q ′

k
be the canonical strategy of Q with ℓk points

against P ′
k

on Vnk
. As P ′

k
wins at least γk voters and by definition of

γk , Pk wins exactly γk voters, the number of voters Q ′
k

wins against P ′
k

cannot be more than the number of voters Qk , which is part of Qopt, wins
against Pk .

Let a := gainα(V , pk+1, pk+2), and b := gainβ(V , pk+1, pk+2). Any strategy Q

against P must select its gains from the gain sequence Σgain(V ,P ). But,
all the gains in Σgain(V ,P ) are either the same gains chosen by Q ′

k
or Qopt

of a value at least τopt, or they have a value of at most τopt because of
the threshold τopt. The only exceptions are the gains in interval (y, pk+2)

where by moving pk+1 to the right a does not increase, but b might
increase. But, even in that case when b increases and its value gets bigger
than τopt and it is chosen by Q, it means a is chosen by both Qopt and Q.
Hence, any extra voters won by Q through selecting the gain b are stolen
from a which means the number of voters won by Q does not increase.

Remark. Usually in dynamic programming, subproblems have a clean non-
recursive definition—the recursion only comes in when a recursive formula
is given to compute the value of an optimal solution. Our approach is more
complicated: we first present a recursive but “non-constructive” subproblem
definition and later give a different recursive formula to compute the solutions
to the subproblems.
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6.1.3 Computing Solutions to Subproblems

The solution to an elementary subproblem follows fairly easily from the defini-
tions, and can be computed in constant time.

Lemma 6.6. Assuming the voter set V is given in sorted order, we can find the

solution to an elementary subproblem in constant time.

Proof. Consider an elementary subproblem I = 〈n,0,ℓ,γ,δ〉. If ℓ = 0 then
Xmax(I ) = vn+1 if and only if the following two conditions hold: (i) γ É n

and (ii) τ> n or (τ= n and δ= loose). If ℓ= 1 then Xmax(I ) = vn+1 if and only if
(i) γ= 0 and (ii) τ< n or (τ= n and δ= strict). Otherwise Xmax(I ) =−∞.

By definition, in order to obtain a strategy P realizing the solution to a
non-elementary subproblem I = 〈n,k,ℓ,γ,δ〉 of size k, we need a solution to
a smaller subproblem I ′ = 〈n′,k − 1,ℓ′,γ′,δ′〉 of size k − 1 and add one point
y ∈ (vn , vn+1] to the strategy P ′ = {p1, . . . , pk } realizing I ′. Thus by adding y , we
extend the solution to I ′ to get a solution to I . To find the “right” subproblem I ′,
we guess some values for n′, a, b, j ∈ {0,1,2}, and δ′ ∈ {strict, loose}; these values
are enough to specify I ′. We note that there are just a polynomial number of
cases and therefore a polynomial number of values for the value y ∈ (vn , vn+1]

which we want to maximize. Namely, there are O(n) choices for the values
n′, a, and b, three choices for j , and two choices for δ′. This makes O(n3)

different cases to be considered for each subproblem I , in total. However, not
all those subproblems can be extended to I . In the following definition, we list
the triples (δ′, j ,δ) that provide all the valid combinations that guarantee the
extendibility of I ′ to I .

Let a and b be the α-gain and β-gain of the interval (pk , y) in a strategy
P = {p1, . . . , pk , y} with threshold τ. We define the following sets of triples
depending on the relationship between a, b and τ:

∆(τ, a,b) :=




{(loose,2, loose), (strict,2,strict)} if a > τ∧b > τ

{(loose,1, loose), (strict,1, loose), (strict,2,strict)} if a > τ∧b = τ

{(loose,1, loose), (strict,1,strict)} if a > τ∧b < τ

{(loose,0, loose), (strict,0, loose), (strict,1, loose), (strict,2,strict)} if a = τ∧b = τ

{(loose,0, loose), (strict,0, loose), (strict,1,strict)} if a = τ∧b < τ

{(loose,0, loose), (strict,0,strict)} if a < τ∧b < τ.

Lemma 6.7. Let P ′ = {p1, . . . , pk } and P := P ′∪ {y}, be two reasonable strategies

on Vn′ and Vn , where n′ = argmax1ÉiÉn∗ vi < pk , n = argmax1ÉiÉn∗ vi < y, and

y ∈ (vn , vn+1]. Let a = gainα(Vn , pk , y) and b = gainβ(Vn , pk , y), and assume τ> 0

is an (ℓ− j )-threshold of strictness δ′ for Q induced by P ′ on Vn′ , where j ∈ {0,1,2}.

Then, there exists a triple (δ′, j ,δ) ∈∆(τ, a,b) if and only if
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1. P induces an ℓ-threshold τ with strictness δ on Vn ,

2. Let M(Vn′ ,P ′,ℓ− j ) := 〈m′
0, . . . ,m′

k
〉 and M(Vn ,P,ℓ) := 〈m0, . . . ,mk+1〉. Then

m′
i
= mi for all 0 É i < k.

Moreover, this triple is unique if it exists.

Proof. We prove the lemma for the case τ= a = b. The proof for the other cases
is similar.

Let Q ′ and Q be canonical strategies associated with M(Vn′ ,P ′,ℓ− j ) and
M(Vn ,P,ℓ), respectively, and let Σgain(Vn′ ,P ′) = 〈τ′1, . . . ,τ′

2k+2
〉. We note that

Σgain(Vn ,P ) can be constructed by inserting a and b after the last τ value in
Σgain(Vn′ ,P ′). There are six cases,

• δ′ = loose and j = 0.

In this case (loose,0, loose) is the only corresponding triple in ∆(τ, a,b). As
δ′ = loose, we have τ′

ℓ− j+1
= τ, and therefore a and b are not selected by

Q. Therefore Q ′ =Q and the strictness status also does not change. Hence
both conditions are satisfied and δ= loose.

• δ′ = strict and j = 0.

In this case (strict,0, loose) is the only corresponding triple in ∆(τ, a,b). As
δ′ = strict, we have τ′

ℓ− j+1
< τ, and therefore a and b are not selected by

Q; however, the strictness of the ℓ-threshold τ for P is different. Hence
both conditions are satisfied and δ= loose.

• δ′ = loose and j = 1.

As δ′ = loose, we have τ′
ℓ− j+1

= τ, and therefore a and b are not selected by

Q. However, the gain τ′
ℓ− j+1

is selected by Q which violates the condition

2. We also note that there is no corresponding triple in ∆(τ, a,b) for this
case.

• δ′ = strict and j = 1.

In this case (strict,1, loose) is the only corresponding triple in ∆(τ, a,b).
As δ′ = strict, we have τ′

ℓ− j+1
< τ, and therefore a is selected by Q and b

is not selected, and the strictness of the ℓ-threshold τ for P is different.
Hence both conditions are satisfied and δ= loose.

• δ′ = strict and j = 2.

In this case (strict,2,strict) is the only corresponding triple in ∆(τ, a,b). As
δ′ = strict, we have τ′

ℓ− j+1
< τ, and therefore both a and b are selected by

Q, and the strictness of the ℓ-threshold τ for P is the same. Hence both
conditions are satisfied and δ= strict.
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• δ′ = loose and j = 2.

As δ′ = loose, we have τ′
ℓ− j+1

= τ, and therefore just a be selected by Q

and b is not selected. However, the gain τ′
ℓ− j+1

is selected by Q which

violates the condition 2. We also note that there is no corresponding
triple in ∆(τ, a,b) for this case.

Lemma 6.8. For a non-elementary subproblem I = 〈n,k,ℓ,γ,δ〉, we have

Xmax(n,k,ℓ,γ,δ) = max
0Én′<n

max
0ÉaÉn

max
0ÉbÉn

max
(δ′, j ,δ)∈∆(τ,a,b)

span(Xmax(n′,k −1,ℓ− j ,γ−n +n′+a ⊕ j b,δ′),n, a,b).

Proof. As stated earlier, when one of the conditions ℓ< 2(k +1) or k É ‖Vn‖ is
violated, the left hand side evaluates to −∞. When this happens, then the
corresponding condition for each subproblem Xmax(n′,k −1,ℓ− j ,γ−n +n′+
a ⊕ j b,δ′) is also violated, i.e. (ℓ− j ) < 2((k −1)+1) or (k −1) É ‖Vn′‖. Hence,
each of these subproblems and the right hand side evaluates to −∞, too. When
ℓ< 2(k +1) or k É ‖Vn‖ are both satisfied, we prove the lemma as follows.

Let y be the solution to I and let this solution be realized by the strategy
P := P ′ ∪ {y} for some P ′ = {p1, . . . , pk }. By definition, P ′ realizes Xmax(n′,k −
1,ℓ− j ,γ−n +n′ + a ⊕ j b,δ′) for some δ′ ∈ {loose,strict} and j ∈ {0,1,2} where
a = gainα(Vn , pk , y), b = gainβ(Vn , pk , y), and n′ = argmaxi vi < pk . By the sec-
ond and fifth conditions of a subproblem and Lemma 6.7, we have (δ′, j ,δ) ∈
∆(τ, a,b), which shows

Xmax(n,k,ℓ,γ,δ) É max
0Én′<n

max
0ÉaÉn

max
0ÉbÉa

max
(δ′, j ,δ)∈∆(τ,a,b)

span(Xmax(n′,k −1,ℓ− j ,γ−n +n′+a ⊕ j b,δ′),n, a,b).

Inversely, consider a value y = span(y ′,n, a,b) >−∞, where y ′ = Xmax(n′,k −
1,ℓ− j ,γ−n′ +n′′ + a ⊕ j b,δ′) is realized by P ′ = {p1, . . . , pk } for some values
n′,a,b,δ′, and j such that (δ′, j ,δ) ∈∆(τ, a,b). Let P := P ′∪ {y}. It is not hard to
verify that the conditions for y to be a solution to I realized by P are satisfied
by these values. Indeed, we have:

1. P wins at least γ voters from Vn .

By the second and the fifth conditions and the fact that τ> 0, we have
Mk = j which shows P can win at least γ voters.

2. P induces an ℓ-threshold τ with strictness δ on Vn .

This condition is satisfied by the condition 1 of Lemma 6.7 and uniqueness
of δ.
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3. span(pk ,n, a,b) = y .

This condition is satisfied by the assumption.

4. P ′ realizes Xmax(n′,k −1,ℓ− j ,γ−n +n′+a ⊕ j b,δ′).

This condition is satisfied by the assumption.

5. Let M(Vn′ ,P ′,ℓ− j ) = 〈m′
0, . . . ,m′

k
〉 and M(Vn ,P,ℓ) = 〈m0, . . . ,mk+1〉. Then

m′
i
= mi for all 0 É i < k.

This condition is satisfied by the condition 2 of Lemma 6.7.

As all the conditions are satisfied, we have

Xmax(n,k,ℓ,γ,δ) Ê max
0Én′<n

max
0ÉaÉn

max
0ÉbÉa

max
(δ′, j ,δ)∈∆(τ,a,b)

span(Xmax(n′,k −1,ℓ− j ,γ−n +n′+a ⊕ j b,δ′),n, a,b),

which completes the proof.

If we can compute the span function efficiently, we can compute all the
solutions by dynamic programming and solve the problem. However, a solution
based on a trivial dynamic-programming algorithm will be of running time com-
plexity ⌊n∗/ℓ∗⌋ · O(k∗ℓ∗(n∗)2) · O((n∗)3 f (n∗)) =O(k∗(n∗)6 f (n∗)) where ⌊n∗/ℓ∗⌋
is the total number of choices for the threshold, O(k∗ℓ∗(n∗)2) is the number of
subproblems for each threshold, and O((n∗)3 f (n∗)) is the time needed to solve
each subproblem where f (n) is the time needed to compute the span(x,n, a,b)

function. This algorithm is quite slow. More importantly it is not easy to
compute the span function. In the following, we introduce some new concepts
to compute the span function and also get a better running time.

6.1.4 Computing the span Function Using Gain Maps

Before we give the algorithm we introduce the gain map, which we need to
compute the span function. Consider an arbitrary strategy P of P on V , and
recall that such a strategy induces open intervals of the form (pi , pi+1) where
Q can place her points. We can represent any possible interval (x, y) that may
arise in this manner as a point (x, y) in the plane. Thus the locus of all possible
intervals is the region R := {(x, y) : x < y}. We will define two subdivisions of this
region, the A-map and the B-map, and the gain map will then be the overlay of
the A-map and the B-map.

The A-map is the subdivision of R into regions At and B t , for 0 É t É n∗,
defined as follows:

At := {(x, y) : gainα(V , x, y) = t }, and

B t := {(x, y) : gainα(V , x, y)+gainβ(V , x, y) = t }.
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Figure 6.1: a) A-map of V = {1,4,6,13,17,23} with the corresponding α-gain for each

region. b) B-map of V with the corresponding β-gain for each region.

In other words, At is the locus of all intervals (x, y) such that, if (x, y) is an
interval induced by P , then Q can win t voters (but no more than t) from
V ∩ (x, y) by placing a single point in (x, y). To construct the A-map, let AÊt

denote the locus of all intervals (x, y) such that gainα(V , x, y) Ê t . Note that
At = AÊt \ AÊt+1. For 1 É i É n∗− t +1, let V t

i
:= {vi , . . . , vi+t−1} and define

AÊt
i := {(x, y) :V t

i ⊂ (x, y) and

Q can win all voters in V t
i

by placing a single point in (x, y)}.

Then we have AÊt
i

= {(x, y) : x < vi and y > vi+t−1 and y > x+2(vi+t−1−vi )}. Here
the conditions x < vi and y > vi+t−1 are needed to guarantee that V t

i
⊂ (x, y).

The condition y > x + 2(vi+t−1 − vi ) implies that V t
i

can be covered with an
interval of length (y −x)/2, which is necessary and sufficient for Q to be able
to win all these voters. Note that each region AÊt

i
is the intersection of three

halfplanes, bounded by a vertical, a horizontal and a diagonal line, respectively.
Since Q can win at least t voters in inside (x, y) with a single point if she can

win at least t consecutive voters with a single point, we have AÊt =
⋃n∗−t+1

i=1
AÊt

i
.

Thus AÊt is a polygonal region, bounded from below and from the right by a
a polyline consisting of horizontal, vertical, and diagonal segments, and the
regions At are sandwiched between such polylines; see Figure 6.1a. We call
the polylines that form the boundary between consecutive regions At boundary

polylines.
The B-map can be constructed in a similar, but easier manner. Indeed, B t

is the locus of all intervals such that Q can win t voters (but no more) from
V ∩ (x, y), and this is the case if and only if |V ∩ (x, y)| = t . Hence, B t is the
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union of the rectangular regions [vi , vi+1)× (vi+t , vi+t+1] (intersected with R),
for 0 É i É n∗− t , where v0 :=−∞ and vn∗+1 :=∞, as shown in Figure 6.1b.

As mentioned, by overlaying the A- and B-map, we get the gain map. For
any given region on this map, the intervals corresponding to points inside this
region have equal α-gain and equal β-gain.

Lemma 6.9. The complexity of the gain-map is O((n∗)2).

Proof. The boundary polylines in the A-map are x y-monotone and comprised
of vertical, horizontal, and diagonal lines. The B-map is essentially a grid of
size O((n∗)2) defined by the lines x = vi and y = vi , for 1 É i É n∗. Since each of
these lines intersects any x y-monotone polyline at most once—in a point or in
a vertical segment—the complexity of the gain map is also O((n∗)2).

Using the gain map, we can compute the values span(x0,n, a,b) for a given
x0 ∈ R and for all triples n, a,b satisfying 1 É n É n∗, and 0 É a É n∗ and 0 É
b É n∗, as follows. First, we compute the intersection points of the vertical
line x = x0 with (the edges of) the gain map, sorted by increasing y-coordinates.
(If this line intersects the gain map in a vertical segment, we take the topmost
endpoint of the segment.) Let (x0, y1), . . . , (x0, yz ) denote this sorted sequence of
intersection points, where z É 2n∗ denotes the number of intersections. Let ai

and bi denote the α-gain and β-gain of the interval corresponding to the point
(x0, yi ), and let az+1 and bz+1 denote the α-gain and β-gain of the unbounded
region intersected by the line x = x0. Define ni = argmaxn vn < yi . Then we
have

span(x0,n, a,b) =





yi if a = ai and b = bi , and n = ni , for some 1 É i É z

+∞ if a = az+1 and b = bz+1 and n = n∗

−∞ for all other triples n, a,b

(6.3)

Our algorithm presented below moves a sweep line from left to right over
the gain map. During the sweep we maintain the intersections of the sweep
line with the gain map. It will be convenient to maintain the intersections with
the A-map and the B-map separately. We will do so using two sequences, A(x0)

and B(x0).

• The sequence A(x0) is the sequence of all diagonal or horizontal edges in
the A-map that are intersected by the line x = x0, ordered from bottom
to top along the line. (More precisely, the sequence contains (at most)
one edge for any boundary polyline. When the sweep line reaches the
endpoint of such an edge, the edge will be removed and it will be replaced
by the next non-vertical edge of that boundary polyline, if it exists.)
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• The sequence B(x0) is the sequence of the y-coordinates of the horizontal
segments in the B-map intersected by the line x = x0, ordered from bottom
to top along the line.

The number of intersections of the A-map, and also of the B-map, with the
line x = x0 is equal to n∗ −n0 + 1, where n0 = argminn vn > x0. Hence, the
sequences A(x0) and B(x0) have length n∗−n0 +1 É n∗+1.

If we have the sequences A(x0) and B(x0) available then, using Equa-
tion (6.3), we can easily find all triples n, a,b such that span(x0,n, a,b) 6= −∞
(and the corresponding y-values) by iterating over the two sequences. We
summarize the results of this section in the following observation.

Observation 6.10. If we know the sequences A(x0) and B(x0) then we can com-

pute all the values span(x0,n, a,b), with 1 É n É n∗ and 0 É a,b É n, that are not

equal to −∞ in O(n∗) time in total.

This observation, together with Lemma 6.8 forms the basis of our dynamic-
programming algorithm.

6.1.5 The Sweep-Line Based Dynamic-Programming Algorithm

Usually in a dynamic-programming algorithm, the value of a subproblem is
computed by looking up the values of certain smaller subproblems. In our case
it is hard to determine which smaller subproblems we need, so we take the
opposite approach: whenever we have computed the value of a subproblem we
determine which other subproblems can use this value, and we update their
solutions if necessary. To this end we will use a sweep-line approach, moving a
vertical line from left to right over the gain map. We will maintain a table X ,
indexed by subproblems, such that when the sweep line is at position x0, then
X [I ] holds the best solution known so far for subproblem I , where the effect
of all the subproblems with solution smaller than x0 have been taken into
account. When our sweep reaches a subproblem I ′, then we check which later
subproblems I can use I ′ in their solution, and we update the solutions to these
subproblems.

Recall the algorithm works with a fixed threshold value τ ∈ {1, . . . ,⌊n∗/ℓ∗⌋}

and that its goal is to compute the values Xmax(n∗,k∗,ℓ∗,γ,δ) for all 0 É γÉ n∗

and δ ∈ {strict, loose}. Our algorithm maintains the following data structures.

• A[0..n∗] is an array that stores the sequence A(x0), where x0 is the current
position of the sweep line and A[i ] contains the i -th element in the
sequence. When the i -th element does not exist then A[i ] = NIL.

• Similarly, B [0..n∗] is an array that stores the sequence B(x0).

• X : This is a table with an entry for each subproblem I = 〈n,k,ℓ,γ,δ〉
with 0 É n É n∗, and 0 É k É k∗ and 0 É ℓ É ℓ∗, and 0 É γ É n∗ and
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δ ∈ {strict, loose}. When the sweep line is at position x0, then X [I ] holds
the best solution known so far for subproblem I , where the effect of all the
subproblems with solution smaller than x0 have been taken into account.
More precisely, in the right-hand side of the equation in Lemma 6.8 we
have taken the maximum value over all subproblems I ′ = 〈n′,k −1,ℓ−
j ,γ−n+n′+a⊕ j b,δ′〉 with Xmax(I ′) < x0. In the beginning of the algorithm
the entries for elementary subproblems are computed using Lemma 6.6
and all other entries have value −∞.

• E: This is the event queue, which will contain four types of events, as
explained below.

The event queue E is a min-priority queue on the x-value of the events. There
are four types of events, as listed next, and when events have the same x-value
then the first event type (in the list below) has higher priority, that is, will be
handled first. When two events of the same type have equal x-value then their
order is arbitrary. Note that events with the same x-value are not degenerate
cases—this is inherent to the structure of the algorithms, as many events take
place at x-coordinates corresponding to voters.

A-map events, denoted by e A(a, s, s′): At an A-map event, the edge s of the
A-map ends—thus the x-value of an A-map event is the x-coordinate of
the right endpoint of s—and the array A must be updated by replacing it
with the edge s′. Here s′ is the next non-vertical edge along the boundary
polyline that s is part of, where s′ = NIL if s is the last non-vertical edge
of the boundary polyline. The value a indicates that the edge s is on the
boundary polyline between Aa and Aa+1. In other words s (and s′, if it
exist) are the a-th intersection point, 0 É a < n∗, with the A-map along
the current sweep line, and so we must update the entry A[a] by setting
A[a] ← s′.

B-map events, denoted by eB (vn): At a B-map event, a horizontal edge of the
B-map ends. This happens when the sweep line reaches a voter vn—that
is, when x0 = xn—and so the x-value of this event is vn . The bottom-
most intersection of he sweep line with the B-map now disappears (see
Figure 6.1b), and so we must update B by shifting all other intersection
points one position down in B and setting B [n∗−n] ← NIL.

Subproblem events, denoted by eX (n′,k ′,ℓ′,γ′,δ′): At a subproblem event the
solution to the subproblem given by I ′ = 〈n′,k ′,ℓ′,γ′,δ′〉 is known and the
x-value of this event is equal to Xmax(I ′). Handling the subproblem event
for I ′ entails deciding which later subproblems I can use I ′ in their solu-
tion and how they can use it, using the sets ∆(τ, a,b), and updating the
solutions to these subproblems.

In the beginning of the algorithm all the events associated with elemen-
tary subproblems are known. The events associated with non-elementary
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subproblems are added to the event queue when handling an update
event eE (vn), as discussed next.

Update events, denoted by eE (vn): At the update event happening at x-value vn ,
all subproblem events of size n are added to the event queue E . These
are simply the subproblems 〈n,k,ℓ,γ,δ〉 for all k,ℓ,γ ∈ {0, . . . ,n} and δ ∈
{strict, loose}. The reason we could not add them at the start of the algo-
rithm was that the x-value of such a subproblem I was now known yet.
However, when we reach vn then Xmax(I ) is determined, so we can add
the event to E with Xmax(I ) as its x-value.

The pseudocode below summarizes the algorithm.

Algorithm 6: COMPUTESOLUTIONS(τ,V ,k∗,ℓ∗)

1 for i ← 0 to n∗−1 do
2 A[i ] ← (vi , vi+1)− (vi+1, vi+1); B [i ] ← vi+1 ⊲ *[r]define v0 := v1 −1

3 A[n∗] ← NIL; B [n∗] ← NIL

4 Initialize X by the solutions to elementary subproblems
5 Initialize E by all map events, update events, and elementary

subproblem events
6 while E is not empty do
7 e ← extractMin(E); x0 ← x-value of e

8 switch e do
9 case e A(a, s, s′) do

10 A[a] ← s′

11 case eE (vn) do
12 B [n∗−n] ← NIL

13 for i ← 0 to n∗−n −1 do
14 B [i ] ← vn+i+1

15 case eX (n′,k ′,ℓ′,γ′,δ′) do
16 for all span(x0,n, a,b) = y where y 6= −∞ do
17 for all (δ′, j ,δ) ∈∆(τ, a,b) do

18 I ←〈n,k ′+1,ℓ′+ j ,γ′+n −n′−gain j (a,b),δ〉
19 X (I ) ← max(X (I ), y)

20 case eE (vn) do
21 Add all the events for subproblems of size n to E , as

explained above

Lemma 6.11. Algorithm 6 correctly computes the solutions for subproblems

〈n,k,ℓ,γ,δ〉 for the given value τ, for all n,k,ℓ,γ,δ with 0 É n É n∗, and 0 É



124 The Voronoi Game

k,ℓ,γÉ n, and δ ∈ {strict, loose}, and ℓ< 2(k +1). The running time of the algo-

rithm is O(k∗ℓ∗(n∗)3).

Proof. We handle the A-map and B-map events before a subproblem event so
that A and B data structures are up-to-date when we want to compute the span

function on handling a subproblem event. We also handle a subproblem event
before an update event so that when we want to add a new subproblem event
to the event queue on handling an update event, its entry in table X has the
correct value. The correctness of the algorithm now follows from the discussion
and lemmas above.

The running time is dominated by the handling of the subproblem events.
By Observation 6.10, the algorithm handles each subproblem in O(n∗) time,
plus O(logn∗) for operations on the event queue, and there are O(k∗ℓ∗(n∗)2)

subproblems. Hence, the total running time is O(k∗ℓ∗(n∗)3).

By Lemmas 6.5 and 6.11, the algorithm described at the beginning of Sec-
tion 6.1.2 computes Γk∗,ℓ∗ (V ) correctly. Since this algorithm calls the algorithm
COMPUTESOLUTIONS ⌊n∗/ℓ∗⌋ times in Step 1, we obtain the following theorem.

Theorem 6.12. There exists an algorithm that computes Γk∗,ℓ∗ (V ), and thus

solves the one-dimensional case of the one-round discrete Voronoi game, in

time O(k∗(n∗)4).

Remark. We can also solve the one-dimensional case of the one-round discrete
Voronoi game when voters are weighted, i.e. each voter v ∈V has an associated
weight ω(v) and the players try to maximize the total weight of the voters
they win. In this case, the α-gain and β-gain of an interval is defined as the
total weight of voters the second player can win in that interval by placing one
point and two points, respectively. The number of possible thresholds is not an
integer in range [0,n∗], but sum of any sequence of consecutive voters define a
threshold, which makes a total of O((n∗)2) different thresholds. The gain map
also become more complex and in the algorithm we need to spend O((n∗)2)

time (instead of O(n∗)) to handle each subproblem event, which results in an
algorithm with running time O(k∗ℓ∗(n∗)5).

6.2 Σ
P
2 -Hardness for d Ê 2

In this section we prove that the one-round discrete Voronoi game is Σ
P
2 -hard

in R
2, which implies hardness for d > 2 as well. To prove this, it suffices to show

that deciding if Q has a winning strategy against every possible strategy of P

is Π
P
2 -hard. Our proof will use a reduction from a special case of the quantified

Boolean formula problem (QBF), as defined next. Let S := {s1, . . . , sns } and T :=
{t1, . . . , tnt } be two sets of variables, and let S̄ := {s̄1, . . . , s̄ns } and T̄ := {t̄1, . . . , t̄nt }



6.2 Σ
P
2 -Hardness for d Ê 2 125

(a) (b) (c)

s1

t1

c2

c1

t1 t2

s1

c1

Figure 6.2: a) Bar graph of the boolean expression ∀s1 ∃t1, t2 : c1 ∧ c2, where c1 := s̄1 ∨
t1∨ t2 and c2 := s1∨ t1∨ t̄2. b) Representation of variables in the transformed

graph. c) Representation of a clause in the transformed graph.

denote their negated counterparts. We consider Boolean formulas B of the
form

B := ∀s1, . . . , sns∃t1, . . . , tnt : c1 ∧·· ·∧cnc

where each clause ci in C := {c1, . . . ,cnc } is a disjunctive combination of at most
three literals from S ∪ S̄ ∪T ∪ T̄ . Deciding if a formula of this form is true is a
Π

P
2 -complete problem [67].

Consider the undirected graph GB := (N , A) representing B , where N :=
S∪T ∪C is the set of nodes of GB and A := {(ci , s j ) : s j ∈ ci ∨ s̄ j ∈ ci }∪ {(ci , t j ) : t j ∈
ci ∨ t̄ j ∈ ci } is the set of edges of GB . Lichtenstein [55] showed how to transform
an instance of QBF to an equivalent one whose corresponding graph is planar
(and without increasing the size of the instance too much). We can use the same
technique here. Hence, we may start our reduction from an Boolean formula B

such that GB is planar. We call the resulting problem PLANAR ∀∃3-CNF.
In the following, we transform an instance of PLANAR ∀∃3-CNF to an instance

〈V ,k,ℓ〉 of the Voronoi game problem in the plane such that B is true if and
only if Q has a winning strategy.

The first (and standard) step in our reduction is to construct a specific
embedding of the planar graph GB . More precisely, we use a bar graph, where
each node is represented by a horizontal segment and each edge is represented
by a vertical segment; see Figure 6.2a. Rosenstiehl and Tarjan [63] showed
that such a representation always exists. Before we describe the specific
variable, clause, and edge gadgets that we use, it is useful to make the following
observation about when Q wins a certain voter vi ∈ V , when the strategy P

of P is fixed. Define Di , the disk of vi with respect to the given set P , as the
disk with center vi and radius dist(vi ,P ), that is, Di is the largest disk centered
at vi that has no point from P in its interior. The key to our reduction is the
following simple observation.
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Observation 6.13. Player Q wins a voter vi ∈ V against P if and only if she

places a point q in the interior of Di .

Next we describe how to transform the bar graph GB into a voter set V .
Because of the above observation, it will be convenient to imagine that each
voter is surrounded by a disk, and talk about placing disks. Thus, whenever we
say we place a disk somewhere, in our construction we actually place a voter
at the center of the disk. Later we will then put more voters that will force a
certain strategy of P so that these disks become meaningful. The nodes of GB

are replaced by the following gadgets:

Clause gadgets. Each node ci ∈C is transformed to a single disk as shown in
Figure 6.2c. Recall that each such node is a horizontal segment, which
has three incoming edges from its constituent literals. The position of the
voter for ci is (roughly) the point where the middle edge arrives at the
segment.

Variable gadgets. Each node ti of degree deg(ti ) in graph GB is transformed
to a ring of an even number of disks numbered in counterclockwise
order starting from any arbitrary disk, which we call a closed necklace,
containing at least 2deg(ti ) disks as shown in Figure 6.2b.

Each node si of degree deg(si ) in graph GB is transformed to a ring of
disks with one disk missing numbered in counterclockwise order starting
from the disk after the missing disk, which we call an open necklace,
as shown in Figure 6.2b. An open necklace has odd size and at least
2deg(si )+1 disks. We can assume the distance between the two disks
in the place where the necklace is open is exactly 1. Let D1 and D2 be
the two disks at distance 1, and let z1 ∈ ∂D1 and z2 ∈ ∂D2 be the closest
pair of points on the boundaries of these two disks. (Thus dist(z1, z2) = 1.)
Then we place a cluster of w voters at z1 and we place another cluster of
w voters at z2, where w is a suitable number specified later and a cluster

of voters is simply a number of coinciding voters.

Edge gadgets. Each edge {ci , s j } or {ci , t j } is replaced by a chain of disks of
even length that in one end intersects a pair of consecutive disks in a
necklace corresponding to the node s j or t j , respectively, such that the
first disk has an odd position and the next disk in clockwise order has an
even position, and in the other end intersects the disk associated with the
clause ci

Similarly, each edge {ci , s̄ j } or {ci , t̄ j } is replaced by a chain of disks of
even length that in one end intersects a pair of consecutive disks in a
necklace corresponding to the node s j or t j , respectively, such that the
first disk has an even position and the next disk in clockwise order has an
odd position, and in the other end intersects the disk associated with the
clause ci .
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W voters

v1 v2 v3 v4 v5

D1 D2 D3 D4 D5

∈ P ∈ P ∈ P ∈ P ∈ P

q1 q2

(b)

w + 1 voters

⌈w/2⌉+ 1 voters ⌊w/2⌋+ 1 voters

(a)

Figure 6.3: a) When all the heavy-weight clusters of W voters are chosen by P , the best

strategy fo Q to win the remaining single voters is to put his points in every

other intersection of the disks of the voters. b) An example of a balancing

gadget.

In our transformation of GB to an instance of the Voronoi game, we will use
that V can be a multiset, where we will use multiplicities 1, w , w +1, ⌊w/2⌋+1,
⌈w/2⌉+1, and W for the voters, for suitably chosen values w and W . We call a
cluster of i voters an i -cluster. We denote the multisets containing clusters of
1,w , and W voters by V1, Vw , and VW , respectively. The values w and W will
be chosen such that they satisfy

w = |V1|+1,

W = |Vw |+ |V1|+1.

We have already described the placement of voters in V1 by describing the
placement of the disks in defining the gadgets. In our construction, for each
voter v ∈ V1, we consider an imaginary disk z(v,r ) which is centered in the
position of the voter v and has a radius r , which is a real number in range
10 É r É 20. Each disk has a W -cluster inside it near its boundary which is
denoted by W (v). Two disks z1(v1,r1) and z2(v2,r2) either do not intersect or
their interior have a non-empty intersection (see Figure 6.3a). Similarly when
three disks intersect, their interior have a non-empty intersection. We also
described the placement of voters in Vw when we defined the variable gadgets
for the variables si .

We call this construction the transformed graph. Now we add n′ := |VW |−
|V1| + 1 gadgets, which we call balancing gadgets, each comprised of three
clusters of sizes ⌊w/2⌋+1, ⌈w/2⌉+1, and w +1 far away from the graph of disks
and from each other as shown in Figure 6.3b. Let V ′ be the multiset of all these
voters.

We define V :=V1 ∪Vw ∪VW ∪V ′, k := ‖VW ‖+n′+ns , ℓ := (|V1|−nc −ns )/2+
ns +2n′, where ‖VW ‖ denotes the number of distinct points in VW .

Lemma 6.14. Q has a winning strategy in 〈V ,k,ℓ〉 if and only if B is true.
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Proof. First we show that in an optimal strategy, P places his points on the
most valuable positions, i.e. ‖VW ‖ of his points on W -clusters, n′ of his points
on (w+1)-clusters, and the remaining ns points on w-clusters where exactly one
w-cluster is selected from each open necklace. Note that with such a strategy
for P , the number of remaining voters for Q is ns w + (w +2)n′+|V1|.

For a contradiction, assume P does not select some of the W -clusters. In
that case P can either move some of his points from balancing gadgets in
which he has two or more points or some of his points from the transformed
graph which are not exactly on a W -cluster to the uncovered W -clusters and
get a better gain; because each extra point in a balancing gadget has a gain of
at most 2w +3 <W and all the voters of the transformed graph in V1 and Vw

together has a gain of at most |Vw |+|V1| <W . Therefore, all the W -clusters will
be covered by P . Moreover, P must also select all the (w +1) clusters; because
by doing this, all the points of Q have a gain of at most 2w +2 which is less
that the gain of an unguarded balancing gadget, i.e. 2w +3.

It is obvious that P does not place more than one point in each balancing
gadget as the gain of each extra point in a balancing gadget is at most ⌈w/2⌉+1,
but the guaranteed gain of a point on a w-cluster is w . Now, we just need
to show that P places all his remaining ns points on w-clusters. This is also
easy to see as if more that ns w-clusters are uncovered, Q can easily win
(ns +1)w + (w +2)n′ voters which is more than the total number of remaining
voters ns w + (w +2)n′+|V1| for Q in the case where at most ns w-clusters are
uncovered by P .

It is also easy to see that in an optimal strategy, P selects exactly one
w-cluster in each open necklace. As otherwise, at least one pair of w-clusters
remains unselected and Q can gain 2w voters using just one point, while if
exactly one cluster from each pair of w-clusters is selected by P , the maximum
possible gain of each point of Q is at most w +1 voters.

Now, assuming P plays an optimal strategy, the gain of each point of Q is
at most

• w + 1 voters for a total of ns points if he puts his point close to an
uncovered w-cluster,

• ⌈w/2⌉+1 or ⌊w/2⌋+1 voters for a total of 2n′ points if he puts his points
in balancing clusters, and

• 2 or 3 voters if he puts his points in the intersection of disks in the
transformed graph.

This shows that in her optimal strategy Q places all her 2n′ points in the
balancing clusters to win all the remaining voters there, and the remaining
(|V1|−nc −ns )/2+ns points of Q will be placed on the transformed graph.

To win the remaining voters of a necklace efficiently, Q has two choices.
She can either put her points in odd intersections or in even intersections of the
necklace as shown in Figure 6.4a. In both cases the number points he spent is
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(a) (b)

Disk #1

¬t

Disk #1

t ¬s s

w voters
∈ P

Figure 6.4: a) The two different ways of winning all voters for Q. b) P can force Q’s

game.

equal to half the number of disks in the necklace. To win the remaining voters
of an open necklace, Q has just one choice. We note that the w-cluster selected
by P effectively changes the open necklace to a closed necklace with one more
disk (see Figure 6.4b). Depending on the w-cluster chosen by P , player Q

must put her points in odd or even intersections as shown in Figure 6.4b. In
either case Q spends (m +1)/2 points, where m is the number of disks in the
open necklace. To win all the remaining voters in a chain of m disks, Q should
place some points in every other intersection of the chain in odd positions
and he spends m/2 points. Alternatively, she can place her m/2 points in even
positions and also win the point in the clause on the one end of the chain only
if the other end of the chain has already been covered by one of his points in
the (open) necklace.

The placement of points by Q in odd intersections of a necklace corresponds
to a true value for the associated t j , and placement in even intersections
corresponds to a false value for t j . Similarly, selection of the starting w-cluster
of an open necklace by P corresponds to a true value for the associated s j ,
and selection of the ending w-cluster corresponds to a false value for s j . When
Q has a choice to put his points in even intersections of a chain and win the
voter of the associated clause at the end of the chain, it corresponds to a true
value for the associated literal of the (open) necklace at the other end of the
chain which gives the clause a true value. Intuitively, it is clear that given an
optimal strategy P , Q should use all his points to win the remaining voters and
he can win the voter associated with each clause if and only if she can satisfy
that clause.

More formally, given an optimal strategy P of P , we set s j to false if the
starting w-cluster in clockwise order in the open necklace of the gadget for s j

is selected in P and set it to true otherwise; we call this set of values ŝ(P ). By
using the discussion in the two previous paragraphs, we can easily verify that if
there exists an assignment t̂ for the variables t j ( j = 1, . . . ,nt ) such that 〈ŝ(P ), t̂〉
satisfies c1∧·· ·∧cnc , then Q can win all the ns w+(w+2)n′+|V1| remaining voters.
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Conversely, it is not hard to see that if Q can win all the ns w + (w +2)n′+|V1|
remaining voters, then there exists an assignment t̂ for t j s such that B is true.

Considering the fact that the number of remaining voters is exactly one
more than the number of voters directly won by P , i.e.

(
ns w + (w +2)n′+|V1|

)
−

(
‖VW ‖+ns w + (w +1)n′)= 1,

Q has a winning strategy in 〈V ,k,ℓ〉 if and only if B is true.

Lemma 6.14 is not enough to show that the Voronoi game is Σ
P
2 -hard. We

need to show that the reduction can be done in polynomial time and therefore
the resulting Voronoi game has polynomial size.

We can easily generate balancing gadgets. Therefore we focus on drawing
the transformed graph. As stated earlier, in order to define the exact position of
clusters in the transformed graph we use a method devised by Rosenstiehl and
Tarjan in [63] to draw a planar graph on a grid of size O(n)×O(n) where each
node is represented by a horizontal line segment and each edge is represented
by a vertical line segment (see Figure 6.2a). As the graph GB is planar, we can
draw it using this method. An (open) necklace associated with a variable t j or
s j can be easily drawn as shown in Figure 6.2b. With a big enough cell-size for
the grid, say 1000, we can adjust the disk sizes to get the desired properties for
the intersections and also for the distance 1 between two ending disks in an
open necklace. As a node associated with a clause has a degree of at most three,
it can be drawn as in Figure 6.2c, and similarly with a big enough cell-size for
the grid, we can adjust the size of the disks to get an even number of disks
for each chain. The W -clusters can be placed at a distance of at most 0.1 at
a rational point near the border of each disk, and placing w-clusters is also
trivial.

As the total number of nodes in GB is O(ns +nt +nc ), we need a grid of size
O(ns +nt +nc ) · O(ns +nt +nc ), and in worst case we have a constant number
of disks on each edge of this grid. Therefore, the number of disk of |V1| is
upperbounded by the size of the grid, i.e. |V1| ∈O((ns +nt +nc )2), which means
|V | ∈O(|V1|W +ns w+|V1|+(2w+3)n′) =O((ns+nt +nc )5). The following theorem
is the result of this discussion.

Theorem 6.15. The Voronoi game problem is Σ
P
2 -hard for d > 1.

We note that the final construction is rectilinear and therefore this reduction
also works for all the Lp norms as disks in the final construction can be replaced
by Lp -disks and all the required properties still hold. Moreover, as this reduction
is done for the two-dimensional case, this hardness result is also true for the
L∞ norm, because in R

2, the disks of the L∞ norm are similar to those in the L1

norm, just rotated by π/4.
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6.3 ∃∀R Containment and the Algorithm for d Ê 2

We now consider the one-round discrete Voronoi game in the Lp -norm, for
some arbitrary p. Then a strategy P = {p1, . . . , pk } can win a voter v ∈V against
a strategy Q = {q1, . . . , qℓ} if and only if the following Boolean expression is
satisfied:

win(v) :=
∨

i∈[k]

∧

j∈[ℓ]

(
(distp (pi , v))p É (distp (q j , v))p

)
,

where distp is the Lp -distance. This expression is of complexity kℓ and de-
gree p. The strategy P is winning if and only if majority of the expressions
win(v1), . . . ,win(vn) are true. Having a majority function Majority that evaluates
to true if at least half of its parameters evaluates to true, player P has a winning
strategy if and only if

∃x1(p1), . . . , xd (p1), . . . , x1(pk ), . . . , xd (pk )

∀x1(q1), . . . , xd (q1), . . . , x1(qℓ), . . . , xd (qℓ) : Majority(win(v1), . . . ,win(vn))

is true, where xi (·) denotes the i -th coordinate of a point.

Ajtai et al. [8] show that it is possible to construct a sorting network, often
called the AKS sorting network, composed of comparison units configured
in c · logn levels, where c is a constant and each level contains exactly ⌊n/2⌋
comparison units. Each comparison unit takes two numbers as input and
outputs its input numbers in sorted order. Each output of a comparison unit
(except those on the last level) feeds into exactly one input of a comparison unit
in the next level, and the input numbers are fed to the inputs of the comparison
units in the first level. The outputs of the comparison units in the last level, we
call them the outputs of the network, output the input numbers in sorted order.

It is known that using AKS sorting networks we can construct a Boolean
formula of size O(nc ) that tests if the majority of its n inputs is true as follows.
Assuming the boolean value false is smaller than the boolean value true value,
we make an AKS sorting network that sorts n boolean values. This is possible
using comparison units that get p and q as input, and output p ∧q and p ∨q.
It is not hard to verify that the ⌈n/2⌉-th output of the network is equal to the
value of the majority function on the input boolean values. By construction, we
can write the Boolean formula representing the value of this output as logical

and (∧) and logical or (∨) combination of the input boolean values, and the
size of the resulting formula is O(nc ).

Thus we can write Majority(win(v1), . . . ,win(vn)) as a Boolean combination
of O(nc kℓ) polynomial inequalities of degree p, where each quantified block
has kd and ℓd variables respectively. Basu et al. [18] gave an efficient algorithm
for deciding the truth of quantified formulas. For our formula this gives an

algorithm with O((nc kℓ)(kd+1)(ℓd+1)pkℓd 2
) running time to decide if P has a
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winning strategy for a given instance 〈V ,k,ℓ〉 of the Voronoi game problem.
Note that this is polynomial when k, ℓ and d are constants.

For the L∞ norm, we can define F (v) as follows

F (v) :=
∨

i∈[k]

∧

j∈[ℓ]

∨

s′∈[d ]

∧

s∈[d ]

|xs (pi )−xs (v)| É |xs′ (q j )−xs′ (v)|,

By comparing the squared values instead of the absolute values, we have a for-
mula which demonstrates that even with the L∞ norm, the problem is contained

in ∃∀R and there exists an algorithm of complexity O((nc kℓd 2)(kd+1)(ℓd+1)2kℓd 2
)

to solve it.

Theorem 6.16. The one-round discrete Voronoi game 〈V ,k,ℓ〉 in R
d with the Lp

norm is contained in ∃∀R. Moreover, for fixed k, ℓ, d there exists an algorithm

that solves it in polynomial time.

De Berg et al. [29] introduced the notion of personalized preferences. More
precisely, given a natural number p, assuming each axis defines an aspect of the
subject voters are voting for, the voter vi gives different weights to different axes,
and vi has a weighted Lp distance (

∑
j∈[d ] wi j (x j (p)−x j (vi ))p )1/p from any point

p ∈ R
d . For the weighted L∞ distance, vi is at distance max j∈[d ](wi j |x j (p)−

x j (vi )|) from any point p ∈ R
d . This approach also works when voters have

personalized preferences.

6.4 Concluding Remarks

We presented the first polynomial-time algorithm for the one-round discrete
Voronoi game in R

1. The algorithm is quite intricate, and it would be interesting
to see if a simpler (and possibly also faster) algorithm is possible. Finding a
lower bound for the 1-dimensional case is another open problem.

We also showed that the problem is Σ
P
2 -hard in R

2. Fekete and Meijer [40]
conjectured that finding an optimal strategy for the multi-round continuous
version of the Voronoi game is PSPACE-complete. We conjecture that in the
multi-round version of the discrete version, finding an optimal strategy is
PSPACE-hard as well. Note that using the algebraic method presented in this
chapter, it is easy to show that this problem is contained in PSPACE. While the
algebraic method we used is considered a standard technique, it is, as far as
we know, the first time this method is combined with polynomial-size boolean
formulas for the majority function. We think it should be possible to apply this
combination to other problems as well.



Chapter 7

Conclusions and Future Work

Chapters 2 and 3 are about the minimum perimeter-sum problem. In Chapter 2,
we presented the first sub-quadratic algorithm for the bipartition case. The
algorithm works in O(n log4 n) time. It would be interesting to see if improving
this result is possible. Finding a lower bound is another open problem. We
also presented a linear-time (1+ε)-approximation algorithm for this case with
running time O(n+T (1/ε2)) =O(n+1/ε2 ·log4(1/ε)), where T (1/ε2) is the running
time of an exact algorithm on an instance of size 1/ε2. In Chapter 3, we
presented the first polynomial-time algorithm to compute an optimal clustering
(for the sum-of-perimeters as cost function) where the number of clusters is part
of the input. This refutes the conjectured hardness by Arkin et al. [10]. Even
though our algorithm runs in polynomial time, it is quite slow: the running
time is O(n27). One interesting question is if there exist an algorithm that solves
this problem much faster. A (conditional) lower bound on the time complexity
of such algorithm would also be interesting. A polynomial time algorithm
already exists for the minimum radii-sum. However, the case for minimum
diameter-sum is still open.

In Chapter 4, an algorithm was presented to compute an ε-coreset of size

O(k
(

f (k)/ε
)d

) in linear time for clustering problems defined on a set of points
in R

d . Our method applies to a large class of clustering problems including the
k-center problem in any Lp -metric, variants of the k-center problem where we
want to minimize the sum (rather than maximum) of the cluster radii, and the
2-dimensional problem where we want to minimize the maximum or sum of
the perimeters of the clusters. As mentioned in the introduction, Har-Peled and
Mazumdar [47] also have a similar result for k-means and k-median problems.
One interesting future work is to generalize our result for other cost functions.

Chapters 5 and 6 are about competitive facility-location problems. We
studied plurality points in Chapter 5 and we provided the first O(n logn) time
algorithm to verify if the first player can win the game. We also presented an
exponential algorithm that solves the problem when the distance is measured in
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the L1 norm and some generalized form of the L1 norm we introduced which we
call it the personalized L1 norm. We also considered the problem when player
P does not have a winning strategy. In this case, we considered two different
approaches to enable player P win the game, that is either by removing some
the voters or by restricting the location of player Q to be in certain fixed radius
r from the location of player P . First, we provided an algorithm that computes
the minimum number of voters that needs to be ignored so that player P has a
winning strategy that works in O(n4) time. We provide a faster algorithm for
this problem when the number of voters that needs to be removed is small that
works in O(k3n logn) time when d = 2 and in O(k5 logk +k3n logn) expected
time when d > 2.

In Chapter 6, we presented the first polynomial-time algorithm for the one-
round discrete Voronoi game in R

1 that works in time O(kn4). The algorithm is
quite intricate, and it would be interesting to see if a simpler (and possibly also
faster) algorithm is possible. Finding a lower bound for the 1-dimensional case
is another open problem.

We showed that for fixed k and ℓ this problem can be solved in polynomial
time in higher dimensions. We also showed that the problem is Σ

P
2 -hard in R

2.
Fekete and Meijer [40] conjectured that finding an optimal strategy for the
multi-round continuous version of the Voronoi game is PSPACE-complete. We
conjecture that in the multi-round version of the discrete version, finding an
optimal strategy is PSPACE-hard as well. Note that using the algebraic method
presented in this chapter, it is easy to show that this problem is contained
in PSPACE. While the algebraic method we used is considered a standard
technique, it is, as far as we know, the first time this method is combined with
polynomial-size boolean formulas for the majority function. We think it should
be possible to apply this combination to other problems as well.
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Summary

Faster Algorithms for Geometric Clustering and

Competitive Facility-Location Problems

In this thesis we study algorithmic problems related to clustering and
competitive facility location of point sets in 2- and higher-dimensional space.

In the geometric clustering problems we consider, we want to partition a
given set of points in the plane into a number of clusters, so that a certain
cost function is minimized. This cost function could be the sum of radii of the
clusters or some other geometric measure.

One of the contributions of the thesis, which is described in Chapter 4, is
an algorithm to compute an approximately optimal clustering that works for a
large class of cost functions, which we call regular functions. Next we focus on
a specific cost function, namely the sum of the perimeters of the clusters. We
present the first sub-quadratic algorithm to compute an optimal clustering for
this cost function, for the case where the number of clusters is two, described
in Chapter 2. We also present an efficient approximation algorithm that is
specifically optimized for this cost function and this number of clusters. Our
final contribution on geometric clustering problems is the first polynomial-time
algorithm to compute an optimal clustering (for the sum-of-perimeters as cost
function) where the number of clusters is part of the input, which is described
in Cahpter 3.

In the competitive facility-location problems we consider, we are given a
set of voters, each represented by a point in a Euclidean space, two numbers
k and ℓ, and two players P and Q who want to select k resp. ℓ locations in
this Euclidean space in order to win as many voters as possible. More precisely,
the game the two players play is as follows. First player P chooses k locations,
then player Q chooses ℓ locations. Player Q wins a voter if he owns the closest
location to the voter, and otherwise player P wins the voter. Player P wins the
game if he can win at least the same number of voters as player Q. We want to
develop an algorithm to verify if player P has a winning strategy for the given
point set.

In Chapter 6, we present the first polynomial-time algorithm for the one-
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dimensional case of this problem. It was already known that this problem is
NP-hard in higher dimensions when k and ℓ are part of the input. We narrow
down the complexity class of the problem in higher dimensions by showing
that it is Σ

P
2 -hard and is contained in ∃∀R. The latter result also provides an

explicit algorithm to solve the problem in polynomial time when k and ℓ are
fixed. As a second contribution about competitive facility-location problems,
we study the special case when players have exactly one point, that is where
k = ℓ= 1, with slightly modified tie-breaking rules, in Chapter 5. For this special
case, we provide the first O(n logn) time algorithm to verify if the first player
can win the game. We also present an exponential algorithm that solves the
problem when the distance is measured in the L1 norm.

For the special case, where k = ℓ= 1, we also consider the problem when
player P does not have a winning strategy. In this case, we consider two differ-
ent approaches to enable player P win the game, that is either by removing
some the voters or by restricting the location of player Q to be in certain fixed
radius r from the location of player P . First, we provide an algorithm that
computes the minimum number of voters that needs to be ignored so that
player P has a winning strategy that works in O(n4) time. We provide a faster
algorithm for this problem when the number of voters that needs to be removed
is small. Then, we present an algorithm that solves the problem with restricted
locations for player Q efficiently.
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