
Faster and More Dynamic Maximum Flow by

Incremental Breadth-First Search

Andrew V. Goldberg1⋆, Sagi Hed2∗, Haim Kaplan2∗, Pushmeet Kohli3, Robert
E. Tarjan4∗, and Renato F. Werneck1∗

1 Amazon.com Inc.
{andgold,werneck}@amazon.com

2 School of Computer Science, Tel Aviv University
{sagihed,haimk}@cs.tau.ac.il

3 Microsoft Research
pkohli@microsoft.com

4 Department of Computer Science, Princeton University and Intertrust Technologies
ret@cs.princeton.edu

Abstract. We introduce the Excesses Incremental Breadth-First Search

(Excesses IBFS) algorithm for maximum flow problems. We show that
Excesses IBFS has the best overall practical performance on real-world
instances, while maintaining the same polynomial running time guaran-
tee of O(mn

2) as IBFS, which it generalizes. Some applications, such
as video object segmentation, require solving a series of maximum flow
problems, each only slightly different than the previous. Excesses IBFS
naturally extends to this dynamic setting and is competitive in practice
with other dynamic methods.

1 Introduction

The maximum flow problem and its dual, the minimum s–t cut problem, are fun-
damental optimization problems with applications in a wide range of areas such
as network optimization, computer vision, and signal processing. We present a
new robust algorithm for the maximum flow problem that is particularly suitable
for dynamic applications. We prove a strongly polynomial running time bound
for our algorithm and compare its performance to previous algorithms.

Experimental work has been done on Dinic’s blocking flow algorithm [4,16],
the Push-Relabel (PR) algorithm [5, 12, 13], and Hochbaum’s Pseudoflow algo-
rithm (HPF) [3, 9, 18]. All three have a strongly polynomial worst-case time
bound. In contrast, the algorithm of Boykov and Kolmogorov (BK) [2] is purely
practical: it has no strongly polynomial time bound, but is probably the most
widely used algorithm in computer vision. The Incremental Breadth-First Search
(IBFS) algorithm [14] shares some features with both BK and PR. It is competi-
tive with BK in practice [14] and has the same strongly polynomial time bounds
as PR:O(mn2) without sophisticated data structures andO(mn log(n2/m)) with
dynamic trees, where m is the number of arcs and n is the number of vertices.

⋆ Work partly done while the author was at Microsoft Research Silicon Valley.

The maximum flow problem has also been studied in a dynamic setting, where
one solves a series of maximum flow instances, each obtained from the previous
one by relatively few changes in the input. The naive approach is to solve each
problem independently, but one can do better. Kohli and Torr [1,19,20] extend
the BK algorithm to the dynamic setting for better performance.

Despite improvements over the years, there is still much room for obtaining
faster running times in practice. A natural question is whether we can come up
with a robust algorithm that is fast for all applications, both static and dynamic,
and has a worst-case strongly polynomial time bound.

In this paper, we present the Excesses IBFS (EIBFS) algorithm, which gen-
eralizes IBFS. We show that EIBFS is the best overall algorithm in practice
on real-world data. On most instances it is the fastest compared to all other
algorithms (often by orders of magnitude); when it loses, it is by small factors.
Unlike IBFS, Excesses IBFS naturally extends to the dynamic setting, where it
is competitive in practice with the dynamic extension of BK [19].

Section 2 describes the EIBFS algorithm, proves its correctness, and shows
that it has the same worst-case time bounds as IBFS: O(mn log(n2/m)) with
dynamic trees and O(mn2) without. Section 3 describes improvements that can
be implemented in both IBFS and EIBFS. Section 4 has an extensive experi-
mental comparison of all the key players in solving maximum flow in practice.
Our benchmark is a superset of previous benchmarks and as comprehensive as
we could make it.

IBFS offered a faster, theoretically justified alternative to solving maximum
flow. Excesses IBFS offers an even faster, still theoretically justified and dynamic
alternative to all existing methods.

Definitions and notation. The input to the maximum flow problem is a
directed graph G = (V,E), a source s ∈ V , a sink t ∈ V (with s 6= t), and a
capacity function u : E ⇒ [1, . . . , U].

We assume that every arc a has a reverse arc aR of capacity 0. A (feasible)
flow f is an anti-symmetric function (i.e. f(a) = −f(aR)) on E∪ER that satisfies
capacity constraints on all arcs and conservation constraints at all vertices except
s and t. The capacity constraint for an arc (v, w) is that f(v, w) ≤ u(v, w). The
conservation constraint for v is

∑
(u,v)∈E f(u, v) =

∑
(v,w)∈E f(v, w). The flow

value is the total flow into the sink: |f | =
∑

(v,t)∈E f(v, t). A cut is a partitioning
of vertices S ∪ T = V with s ∈ S and t ∈ T . The capacity of a cut is defined as
u(S, T) =

∑
(v,w)∈E|v∈S,w∈T u(v, w). The max-flow/min-cut theorem [10] states

that the maximum flow value is equal to the minimum capacity of a cut.
The residual capacity of an arc a ∈ E∪ER is defined by uf (a) = u(a)−f(a).

The residual graph Gf = (V,Ef) is the graph induced by the arcs in E ∪ ER

with strictly positive residual capacity. A valid distance labeling from s is an
integral function ds on V that given a flow f satisfies ds(s) = 0 and ds(w) ≤
ds(v) + 1 for every arc (v, w) ∈ Ef . A valid distance labeling to t, dt, is defined
symmetrically. We say that an arc (v, w) is admissible w.r.t. ds if (v, w) ∈ Ef and
ds(v) = ds(w)− 1, and admissible w.r.t. dt if (v, w) ∈ Ef and dt(w) = dt(v)− 1.

2 Excesses IBFS

Unlike IBFS and BK, which always maintain a feasible flow, Excesses IBFS is a
generalization of IBFS that maintains a pseudoflow, a flow that observes capacity
but not conservation constraints. For a vertex v, let ef (v) =

∑
w|(w,v)∈E f(w, v)−

∑
w|(v,w)∈E f(v, w). We say v is an excess if ef (v) > 0 and a deficit if ef (v) < 0.

We define s and t to have infinite excess and deficit, respectively.
Pseudoflows often allow to efficiently restart an algorithm after solving a

problem to solve related problems. For example, for the global minimum cut
problem [17] and the parametric flow problem [11], one gets the same running
time bound for a sequence of flow computations as that for a single computation.

EIBFS maintains a pair of vertex-disjoint forests S and T in the admissible
subgraph. Each excess is a root of a tree in S, and a root in S must be an excess.
Similarly, each deficit is a root of a tree in T , and a root in T must be a deficit.
For a non-root vertex v in S or T , we let p(v) be the parent of v in its respective
forest. We call a vertex which is not in S nor in T a free vertex.

The algorithm maintains distance labels ds(v) and dt(v) for every vertex v.
The forest arcs in S and T are admissible with respect to ds and dt, respectively.
Initially, every root r in S or in T has ds(r) = 0 or dt(r) = 0, respectively. New
excesses and deficits that form as the algorithm runs may have arbitrary distance
labels, so the roots of the forests do not necessarily have zero distance label.
Similar forests have been introduced before in an algorithm for finding a global
minimum cut [17]. We also maintainDs = maxv∈S ds(v) andDt = maxv∈T dt(v).

Initially, S contains only s, T contains only t, ds(s) = dt(t) = 0, Ds = Dt = 0
and p(v) is null for every vertex v. The algorithm proceeds in phases. Every
phase is either a forward phase (where we grow the S forest) or a reverse phase
(where we grow the T forest). Every phase executes growth steps, which may be
interrupted by augmentation steps (when an augmenting path is found) followed
by alternating adoption and augmentation steps.

We describe a forward phase; reverse phases are symmetric. The goal of a
forward phase is to grow S by one level. If S has vertices at level Ds + 1 at the
end of the phase, we increment Ds; otherwise we terminate.

We execute growth steps as in IBFS. When the phase starts we make all
vertices v in S with ds(v) = Ds active. We then pick an active vertex v and scan
v by examining residual arcs (v, w). If w is in S, we do nothing. If w is free, we
add w to S, set p(w) = v, and set ds(w) = Ds + 1. If w is in T , we perform an
augmentation step as described below. We remember (v, w) as the outgoing arc
that triggered the augmentation step. If v is still active after the augmentation
step, we resume the scan of v from (v, w) to avoid re-scanning the preceding
arcs. If (v, w) is still residual and connects the forests, we do more augmentation
steps using it. After all arcs out of v have been scanned, v becomes inactive.
When all vertices are inactive, the phase ends.

Augmentation steps differ from those of IBFS. When we find a connecting
arc (v, w) with v in S and w in T we increase the flow on (v, w) by any feasible
amount without violating the capacity constraint of (v, w) (we will discuss the
best strategy for choosing the amount later). As a result of adding flow, an

excess may be created in T and a deficit may be created in S. We now alternate
between augmentation steps and adoption steps as we describe below. Once all
excesses have been drained or removed from T and all deficits have been drained
or removed from S we continue to perform growth steps.

We describe how we handle excesses created in T . We handle deficits in S
symmetrically. We call a vertex v ∈ T an orphan if its parent arc (v, p(v)) is
not admissible (possibly saturated) and ef (v) ≥ 0. We execute an augmenta-
tion step by picking an excess v ∈ T and pushing flow out of v as described
below, possibly creating orphans and more excesses in T . If the augmentation
step created orphans, we run adoption steps to repair them. After orphans are
repaired we execute another augmentation step from another excess. We stop
when all excesses are drained or removed from T . The excesses can be picked in
any arbitrary order; highest level order seems to work well in practice.

We push flow out of an excess v ∈ T as follows. We traverse the tree path
from v to the root r of its tree in T . For every arc (x, y) along this path, in turn,
we increase the flow by min{uf (x, y), ef (x)}. It follows that we either drain the
entire amount of excess from x or saturate the arc (x, y), making x an orphan in
T . Root r remains a deficit if we did not drain enough excess into it. Otherwise
it has ef (r) ≥ 0 and becomes an orphan; it can no longer serve as a root in T .

An adoption step repairs an orphan v in T by either setting a new parent,
p(v) in T or removing v from T . There are different methods to performing
adoption steps. The simplest one is round robin adoption described below. More
advanced methods are described in Section 3. In either method, if v is removed
from T and v still has excess, then v is added to S as a new root with distance
label ds(v) = Ds + 1 in a forward phase or ds(v) = Ds in a reverse phase.

The original IBFS algorithm can be seen as a restricted version of EIBFS with
a specific strategy for choosing the amount of flow to push on a connecting arc
(v, w) between S and T . This strategy is to always take the bottleneck residual
capacity along the tree path from s to v, the arc (v, w), and the tree path from w
to t. Such an augmentation step will never create additional excesses or deficits
in its tree. As a result, the S and T forests will simply be BFS trees rooted in s
and t, respectively.

Round-robin adoption. We describe adoption steps in T . The adoption steps
in S are symmetric. For efficiency, we maintain for every vertex a current arc,
which ensures that each arc incident to a vertex v is scanned at most once
following each increase in dt(v). When a free vertex is added to T or when the
distance label of a vertex changes, we set the current arc to the first arc in its
adjacency list. We maintain the invariant that the arcs preceding the current arc
on the adjacency list of each vertex are not admissible.

The round robin method is based on the relabel operation of the push-relabel
algorithm [15]. An adoption step on a vertex v works as follows. We first scan v’s
adjacency list starting from the current arc and stop when we find an admissible
outgoing arc or reach the end of the list. If we find an admissible arc (v, u) we

set the current arc of v to (v, u) and set p(v) = u. If we do not find such an arc,
we apply the orphan relabel operation to v.

The orphan relabel operation scans v’s adjacency list to find a new parent u
for v. Vertex u qualifies to be a new parent of v if (1) u is a vertex of minimum
dt(u) such that (v, u) is residual and (2) dt(u) < Dt in a forward phase and
dt(u) ≤ Dt in a reverse phase. If no vertex u qualifies as a new parent of v then
we make v a free vertex if ef (v) = 0 or add it to S as a new root if ef (v) > 0.

If there is a vertex u that qualifies to be a parent of v then we choose u to
be the first such vertex along v’s adjacency list. We set the current arc of v to
(v, u), set p(v) = u and set dt(v) = dt(u)+1. Every vertex w with p(w) = v now
becomes an orphan and needs to be repaired by adoption steps as well.

If v is active and we execute the orphan relabel operation on v, then we make
v inactive (v is no longer in T or no longer with distance label dt(v) = Dt).

Pushing flow on connecting arcs. When a growth step finds an arc (v, w)
with v ∈ S and w ∈ T , we must decide how to increase the flow on (v, w). As
we show later, the rule below ensures a strongly polynomial time bound.

Let rv be the root of v’s tree in S and let rw be the root of w’s tree in T .
Let bv be the bottleneck capacity along the path from v to rv and let bw be the
bottleneck capacity along the path from w to rw. Consider the following cases:

1. If rv = s and rw = t, we push uf (v, w).
2. If rv = s and rw 6= t, we push min{bv, uf (v, w)}, thus creating no deficits in

S (except v temporarily).
3. If rv 6= s and rw = t, we push min{uf (v, w), bw}, thus creating no excesses

in T (except w temporarily).
4. If rv 6= s and rw 6= t we push min{ef (rv), bv, uf (v, w), bw,−ef (rw)}, thus

creating no deficits or excesses in S or T (except v or w temporarily).

Correctness and running time. Correctness for EIBFS relies on the following
lemma, which is the counterpart of Lemma 1 of IBFS [14]. See the full version
of this extended abstract for a complete proof of correctness.

Lemma 1. During a forward phase, if (u, v) is residual: (1) if u ∈ S, ds(u) ≤
Ds, and v /∈ S, then u is an active vertex; (2) if v ∈ T and u 6∈ T , then
dt(v) = Dt; (3) after the increase of Ds, if u ∈ S and v 6∈ S, then ds(u) = Ds.

Next we show that the worst-case time complexity of EIBFS is O(mn2),
which can be improved to O(mn log(n2/m)) using dynamic trees and existing
techniques. We first consider the invariants maintained by the algorithm. These
are the counterparts of the invariants in Lemma 2 of IBFS [14].

Lemma 2. The following invariants hold:

1. If (v, w) is residual with v, w ∈ S, then ds(w) ≤ ds(v)+1. If (v, w) is residual
with v, w ∈ T , then dt(v) ≤ dt(w) + 1.

2. For every vertex u in S, u’s current arc precedes the first admissible arc to
u or is equal to it. For every vertex u in T , u’s current arc precedes the first
admissible arc from u or is equal to it.

3. After an adoption step on u: if u is in S and ef (u) ≤ 0 then (p(u), u) is
admissible; if u is in T and ef (u) ≥ 0 then (u, p(u)) is admissible.

4. For every vertex v, ds(v) and dt(v) never decrease.

Proof. The proof, by induction on the growth, augmentation and adoption steps,
is the same as that of Lemma 2 for IBFS [14]. Although augmentation steps differ
a little, the same arguments hold for EIBFS. The only addition is the case of
removing an excess from T or a deficit from S during an adoption step.

We consider a vertex v with ef (v) > 0 removed from T during an adoption
step; the case of a deficit removed from S is symmetric. Since we reset the current
arc of v, (2) holds. Since ef (v) > 0, (3) does not apply. We assign v the highest
possible label in S (either Ds+1 for a forward phase or Ds for a reverse phase),
so (4) holds. We are left to show that invariant (1) is maintained.

We assume there is a residual arc (u, v) with u in S, otherwise (1) holds
vacuously. If u was in S at the beginning of the current phase (v was not)
then by Lemma 1 u was on the last level of S and thus ds(u) = Ds at that
time. By induction assumption of (4) we get that now ds(u) ≥ Ds and thus
ds(v) ≤ ds(u) + 1. If u was not in S at that time, then by definition of the
algorithm it could only have been added to S with a label Ds +1. By induction
assumption of (4) we get that now ds(u) ≥ Ds+1 and thus ds(v) ≤ ds(u)+1. ⊓⊔

Adoption steps on a vertex charge their work to increases in the vertex’s
distance label. Lemma 3 is the counterpart of Lemma 5 in IBFS [14] and shows
why this charging is possible. The proof is the same as in Lemma 5 [14]. Lemma 4
and 5 allow us to bound the maximum label assigned during the algorithm.

Lemma 3. After an orphan relabel on v in S, ds(v) increases. After an orphan
relabel on v in T , dt(v) increases.

Lemma 4. For every vertex v in S with ef (v) > 0 we have ds(v) ≤ n. For every
vertex v in T with ef (v) < 0 we have dt(v) ≤ n.

Proof. We prove the lemma for a vertex v in S. The proof for T is symmetric.
We put new excesses in S only when we remove an excess from T during an
adoption step that follows an augmentation step. Let (x, y) be the connecting
arc between S and T that initiated this augmentation step.

Since we created excesses in T and by the definition of the flow increase on
(x, y) we get that s is the root of x’s tree. By applying Lemma 2 (1) to the path
from s to v we get that at the time we initiated the augmentation step we had
ds(x) ≤ n − 1. By definition of the algorithm we get that at the same time we
had ds(x) ≥ Ds. It follows that Ds ≤ ds(x) ≤ n − 1 and therefore Ds + 1 ≤ n.
Since we assign ds(v) = Ds + 1 the lemma follows. ⊓⊔

Lemma 5. For every vertex v in S we have ds(v) < 2n. For every vertex v in
T we have dt(v) < 2n.

Proof. We prove the lemma for a vertex v in S. The proof for T is symmetric.
Let vertex r in S, ef (r) > 0 be the root of v’s tree. By applying Lemma 2 (1)
to the path from r to v we get that ds(v) ≤ ds(r) + n− 1. By Lemma 4 we get
that ds(r) ≤ n. It follows that ds(v) ≤ 2n− 1. ⊓⊔

By Lemma 5 the maximum ds or dt label is O(n). The following theorem
follows using the same arguments as in the proof of Lemma 6 for IBFS [14].

Theorem 1. Excesses IBFS runs in O(n2m) time.

Dynamic setting. We now consider the dynamic setting: after computing a
maximum flow in the network, the capacities of some arcs change and we must
recompute a maximum flow as fast as possible. IBFS does not seem to provide
a robust method for recomputing a maximum flow other than starting the S
and T trees from scratch. EIBFS, however, naturally lends itself to this setting.
We first restore the invariants that were violated by changing the capacities,
then run EIBFS normally continuing with the residual flow and forests from the
previous computation.

Consider the network after changing some capacities. There are several types
of violations to flow feasibility or to the invariants of the EIBFS that may follow:

1. An arc (v, w) such that now f(v, w) > u(v, w).
2. A new residual arc (v, w) such that v is in S and w is in T .
3. A new residual arc (v, w) such that v and w are in S and ds(w) > ds(v)+ 1,

or the symmetric case for T .
4. A new residual arc (v, w) such that v and w are in S, ds(w) = ds(v)+1, and

(v, w) precedes the current arc of v, or the symmetric case for T .
5. A new residual arc (v, w) such that v is in S, ds(v) ≤ Ds and w not in S, or

the symmetric case for T .

Violation (4) can be fixed by reassigning the current arc of v. Violation (1)
can be fixed by pushing flow on (w, v); (2), (3) and (5) can be fixed by saturating
(v, w). In both cases the end result is the creation of new excesses or deficits in
S and T . Excesses in S and deficits in T become new roots and need no further
handling. Deficits in S and excesses in T are treated by alternating augmentation
and adoption steps as when we find a connecting arc between S and T .

We found that in practice it pays off to reset the forests every O(m) work.
After a reset, the S and T forests are composed only of excesses or deficits,
respectively, as roots with distance label 0. Note that this scans the nodes array
once. This is similar in concept to Push-Relabel’s global update operation [5].

3 Improvements to IBFS and Excesses IBFS

Forward or reverse phases. IBFS or EIBFS can use different strategies to al-
ternate between forward and reverse phases. The original version of IBFS strictly
alternated between them, producing trees with roughly the same height. As ob-
served in [14], IBFS often spends the majority of its time on adoption steps. If

arc capacities are distributed independently uniformly at random, balancing by
height also tends to balance the amount of adoption work. In practice, however,
this strategy is often far from optimal. A more robust alternative is to main-
tain an operation count that is indicative of the total amount of adoption work
in each forest. We run a reverse phase when this counter is higher for S than
for T , and a forward phase otherwise. Counting the number of distinct orphans
examined (which is fairly oblivious to the choice of adoption method) in every
adoption process works well in practice.

Alternative adoption strategies. The round-robin adoption strategy tends
to be quite fast, but in pathological cases it may process the same vertex a
large number of times. We thus propose a three-pass adoption strategy, which
looks at each arc adjacent to an orphan at most three times during the entire
adoption process of one augmentation step. This is more robust, and cannot be
outperformed by the round-robin method by more than a constant factor.

This strategy associates a bucket (linked list) with each distance label. We
denote by B(v) the distance label associated with the bucket containing v. The
method works in two rounds: the first incurs at most one pass of the adjacency
list for every orphan; the second round incurs at most two more.

We describe the adoption in T (S is symmetric). The first round examines
every orphan v in T in ascending order of distance labels. We scan v’s adjacency
list starting from the current arc and stop as soon as we find a residual arc (v, u)
with dt(u) = dt(v)− 1. If such a vertex u is found, we set p(v) = u and set the
current arc of v to (v, u). If no such u is found, we remove v from T (v becomes a
free vertex), put v in bucket dt(v)+ 1, and make the children of v in T orphans.

The second round iterates over the buckets in ascending order of distance
labels. We examine every orphan v in the bucket. If this is the second pass of
v, then we perform an orphan relabel operation as in Section 2. If v finds a
potential parent u in T (note that u is not an orphan) we move it to the bucket
dt(u) + 1. If vertex v did not find a potential parent, it remains free, but it may
be reattached to T later in the round.

If this is the third pass of v, we scan v’s adjacency list, performing two
operations. The first operation is to find a parent u in T for which dt(u) =
B(v)− 1 and (v, u) is residual. At the time of the third pass we are guaranteed
to find such a parent. At the end of the scan we set the current arc of v to be
(v, u), set p(v) = u and set dt(v) = B(v). The second operation applies to every
neighbor w with (w, v) residual and w either free or in a bucket B(w) > B(v)+1.
We put w in the bucket B(v) + 1 and remove it from any other bucket.

In practice, we use a hybrid method, which works as follows for every adop-
tion process of one augmentation step. It starts with the round-robin method
while keeping count of the average number of times each orphan is examined.
If this average exceeds 3, it processes all remaining orphans using the three-
pass method. We found that this method combines the best of both worlds and
outperforms the round-robin and the three-pass methods in practice.

4 Experimental Results

In our experiments we use the implementation of BK version 3.0.1 from http:

//www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html. That implemen-
tation allows for dynamic capacities on the arcs from the source and to the
sink. We added the option for dynamic capacities on all arcs. The dynamic
version of BK was formulated by Kohli and Torr [19]. We also compare to
UBK, an altered version of BK that maintains a consecutive arc structure:
the arcs reside in an array grouped by the vertex they originate from (same
as in [14]). We denote our implementation of Excesses IBFS with all the opti-
mizations of Section 3 by EIBFS, and use IBFS to denote the implementation
from [14]. The implementations of EIBFS and IBFS maintain a consecutive arc
structure. We use the implementation of Hochbaum’s pseudoflow (HPF) ver-
sion 2.3 from http://riot.ieor.berkeley.edu/Applications/Pseudoflow/

maxflow.html. We run the highest label FIFO variant of HPF, as recommended
by the download page. We run also an implementation of Two-Level Push-
Relabel (P2R) [12]. Our implementation of EIBFS and benchmark data are
available at http://www.cs.tau.ac.il/~sagihed/ibfs/.

We run our experiments on a 64-bit Windows 8 machine with 8GB of RAM
and an Intel i5-3230M 2.6GHz processor (two physical cores, 256KB L1 cache).
We used the MinGW g++ compiler with -O3 optimization settings. We compile
with 64-bit or 32-bit pointers depending on problem size. We report system times
of the maximum flow computation obtained with ftime. On the rare occasions in
which running times are too small to measure, we round them up to a millisecond.
We report absolute times (in seconds) for EIBFS and relative (to EIBFS) times
for all algorithms. Factors greater than 1 mean EIBFS was faster.

Batra and Verma [22] noted that initialization times may be significant.
Therefore our reported times include any initialization time past the initial read-
ing of arcs. In all implementations, this reading consists of only two operations:
writing arcs consecutively to memory and advancing the count of vertex degrees.

Table 1 reports results for static problems. We consider representative in-
stances from a wide variety of families (see the full version of this extended
abstract for a complete set of results). Multi-view reconstruction, 3D segmen-
tation, stereo images, surface fitting and the first video segmentation family
are provided by University of Western Ontario (http://vision.csd.uwo.ca/
maxflow-data). Families of deconvolution, decision tree field (DTF), super reso-
lution, texture restoration, automatic labeling environment (ALE) and synthetic
segmentation are provided by http://ttic.uchicago.edu/~dbatra/research/
mfcomp/ [22]. Another synthetic family is from the DIMACS maximum flow
challenge (http://dimacs.rutgers.edu/Challenges/). We run also on fam-
ilies of image and video segmentation with GMM models, multi-label image
segmentation [1], lazy-brush image painting [21], road newtwork partitioning
(PUNCH) [6], and graph bisection [7, 8]. For stereo, ALE, PUNCH, and bisec-
tion, we report times summed over similar instances. Capacities are integral for
all problems.

Table 1. Performance on real-world and synthetic static inputs.

instance eibfs relative times

family name
n

1024

m

n
time[s] eibfs ibfs bk ubk hpf p2r

stereo BVZ-tsukuba 108 4.0 0.249 1.00 0.94 1.02 1.09 3.50 7.49
KZ2-venus 294 5.7 1.643 1.00 0.92 1.27 1.37 3.23 7.02

multi-view camel-med 9450 4.0 7.125 1.00 1.95 2.67 2.75 1.52 4.44
gargoyle-med 8640 4.0 8.516 1.00 1.62 11.73 9.35 0.93 2.35

3D adhead6c100(64bit) 12288 6.0 11.250 1.00 1.08 2.38 1.95 1.71 1.95
segmentation babyface6c100 4943 6.0 3.336 1.00 1.10 2.22 2.10 3.86 6.22

bone6c100 7616 6.0 2.180 1.00 1.84 1.87 1.54 1.67 2.36
bone sx26c100(64bit) 3808 26.0 4.171 1.00 1.68 2.90 1.90 1.09 1.25
bone sx6c100 3808 6.0 1.492 1.00 1.27 2.73 2.28 1.79 1.82
bone sxyz26c10 960 26.0 0.742 1.00 1.98 2.04 1.24 0.71 1.53
liver6c100 4064 6.0 3.391 1.00 1.16 2.78 2.43 2.15 2.79

surface fitting bunny-med 6163 6.0 0.687 1.00 1.07 1.36 1.15 3.77 22.28

video1 car 32bins 77 9.7 0.015 1.00 1.01 9.41 2.92 1.99 5.61
(single frame) person 16bins 107 9.9 0.015 1.00 1.10 154.74 19.74 1.21 5.41

videoSegA 168 8.0 0.051 1.00 1.03 1.46 1.52 5.58 13.62
videoSegB 225 8.0 0.015 1.00 1.01 0.70 1.10 1.58 3.31
videoSegC 234 8.0 0.042 1.00 1.26 1.44 1.48 1.67 3.03

deconvolution graph3x3 1 21.9 0.001 1.00 2.00 1.94 2.00 1.00 1.00

graph5x5 1 67.7 0.004 1.00 1.00 7.50 5.19 0.65 0.25

DTF printed graph1 19 56.7 0.069 1.00 1.09 7.83 4.34 0.77 1.31
printed graph16 11 55.2 0.034 1.00 1.00 5.69 3.07 0.80 1.17

lazy-brush lbrush-bird 2316 4.0 3.070 1.00 3.11 1.28 1.04 1.97 3.81
lbrush-doctor 2317 4.0 1.140 1.00 18.00 1.47 1.15 1.10 9.45
lbrush-mangagirl 579 4.0 0.273 1.00 4.89 1.23 0.94 1.43 8.38
lbrush-elephant 2314 4.0 2.930 1.00 4.95 1.10 1.05 1.13 4.62

texture texture graph 42 15.1 0.010 1.00 1.14 0.57 1.28 0.86 1.72

resolution superres graph 42 15.1 0.007 1.00 1.00 0.19 1.19 0.99 1.98

segmentation butterfly 453 8.0 0.084 1.00 1.11 1.52 1.59 5.96 8.22
comp 236 8.0 0.078 1.00 1.40 2.20 2.21 4.01 3.89
ferro 230 8.0 0.056 1.00 1.27 2.11 2.28 6.17 16.57
flamingo2 468 8.0 0.106 1.00 1.06 1.38 1.35 3.94 5.08

PUNCH punch-eu22p 1825 2.8 29.219 1.00 1.78 3.26 2.65 0.50 1.60
punch-eu22u 1825 2.8 10.517 1.00 2.84 2.37 1.96 0.89 3.62
punch-us22p 1596 2.8 47.189 1.00 1.96 2.98 2.38 0.32 0.76
punch-us22u 1596 2.8 10.859 1.00 6.22 2.40 2.02 0.85 2.48

bisection alue7065 32 3.2 0.110 1.00 2.00 1.29 1.42 1.58 4.83
cal 1761 2.5 7.156 1.00 8.45 1.63 1.45 1.64 8.91
horse 46 6.0 0.313 1.00 1.00 0.55 0.55 1.94 3.19
rgg18 254 11.8 5.282 1.00 1.48 0.65 0.46 1.75 2.78

ALE graph 2007 000033 168 27.3 0.915 1.00 1.02 175.23 11.32 27.29 24.03
graph 2007 001288 161 29.0 0.904 1.00 1.02 186.73 6.77 69.02 19.55

segmentation 0.000099502487562 1 39 4.0 0.044 1.00 0.78 0.99 0.92 0.78 1.56
(synthetic) 0.002148473323752 1 39 45.0 0.059 1.00 1.06 9.34 6.49 3.22 1.58

0.004631311287980 1 39 94.5 0.112 1.00 1.03 9.56 5.62 2.11 1.47
0.021520481611665 1 39 432.4 0.584 1.00 1.12 9.52 4.51 0.69 0.69

0.100000000000000 1 39 2001.6 3.278 1.00 0.93 9.65 3.93 0.61 0.75

DIMACS ac.n1024 1 1019.0 0.034 1.00 1.07 37.76 4.71 0.91 0.63

(synthetic) ac.n4096 4 4091.0 1.337 1.00 1.18 42.97 7.41 0.42 0.50
rmf-long.n4 264 5.8 11.490 1.00 1.73 7.87 5.18 0.04 0.02

rmf-wide.n4 120 5.8 2.696 1.00 1.21 19.63 13.34 0.17 0.30
wash-line.n16384-64 64 127.7 1.034 1.00 2.68 4.98 3.32 0.51 0.45

wash-line.n8192-45 32 89.8 0.218 1.00 3.15 7.51 4.54 0.39 0.53
wash-rlg-long.n2048 128 6.0 1.621 1.00 6.97 16.42 12.74 0.07 0.07

wash-rlg-wide.n2048 128 5.9 1.037 1.00 1.27 213.70 156.68 0.19 0.32

Table 2. Performance on real-world dynamic input.

instance dynamic eibfs relative times

family name
n

1024

m

n
iters time[s] eibfs bk ubk nibfs

bisection alue7065 32 3.2 9.0 0.074 1.00 0.47 0.50 0.62
cal 1760 2.5 8.0 5.846 1.00 1.26 1.03 0.86

horse 46 6.0 9.0 0.072 1.00 0.78 0.65 0.95
rgg18 254 11.8 9.0 1.753 1.00 0.52 0.48 1.34

video1 car 32bins.inc 77 9.7 4320.0 2.691 1.00 2.27 1.10 7.17
person 16bins.inc 107 9.9 28380.0 21.502 1.00 11.78 2.92 9.17
videoSegA.inc 168 8.0 49.0 0.867 1.00 1.96 1.91 1.41
videoSegB.inc 225 8.0 49.0 0.236 1.00 0.61 0.49 1.41

video2 gir.inc 405 8.0 4.0 0.078 1.00 2.00 1.64 1.36
highway.inc 75 8.0 40.0 0.177 1.00 1.90 1.91 1.31
office.inc 84 8.0 46.0 0.279 1.00 1.78 1.46 0.92

pedestrians.inc 84 8.0 50.0 0.083 1.00 1.13 1.35 1.73

multi-label cowInc00 405 8.0 16.0 0.001 1.00 1.50 1.00 29.60
gardenInc00 20 7.9 28.0 0.001 1.00 1.00 1.00 4.60

On real-world problems, EIBFS is the fastest overall algorithm, sometimes
by orders of magnitude. It often improves the performance of IBFS but some-
times slows it down by marginal factors. EIBFS is the overall fastest the stereo,
multi-view, 3D segmentation, surface fitting, and video frame families, losing
occasionally to other algorithms only by small factors. On DTF problems HPF
is the fastest, outperforming EIBFS by 20% on average. On lazy-brush prob-
lems EIBFS is fastest and improves IBFS considerably. BK is the fastest on
texture restoration and super resolution problems, since most of the running
time is taken up by initialization (as seen by comparing BK to UBK). On image
segmentation problems EIBFS is fastest. On PUNCH problems HPF is fastest,
outperforming EIBFS by 25% on average. On bisection problems EIBFS and
BK/UBK are competitive. On ALE problems EIBFS is faster by orders of mag-
nitude compared to all other algorithms except IBFS. On synthetic problems,
EIBFS is faster than IBFS but can still lose by orders of magnitude to HPF
and P2R (especially on DIMACS instances). We note that some have very large
vertex degrees, with most of the time used for initialization of the arc structure.

Table 2 considers dynamic problems. Dynamic video segmentation aligns
maximum flow problems from consecutive video frames as one dynamic maxi-
mum flow set. Dynamic multi-label image segmentation aligns maximum flow
problems from consecutive alpha expansion iterations over the same label. Dy-
namic bisection aligns maximum flow problems from nearby branches of a branch-
and-bound tree. The table shows that, for dynamic applications, EIBFS is com-
petitive with UBK, which in turn tends to be faster than BK. We also include
NIBFS, a more naive implementation of IBFS for the dynamic setting. After
every set of incremental changes, it only fixes violations on arcs where the flow
is greater than the capacity; it then resets the S and T forests as in the periodic
update of dynamic EIBFS. The results show that EIBFS is much more robust:
it can outperform NIBFS by large factors but the converse is false.

References

1. K. Alahari, P. Kohli, and P. H. S. Torr. Dynamic hybrid algorithms for MAP
inference in discrete mrfs. IEEE PAMI, 32(10):1846–1857, 2010.

2. Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/Max-
Flow Algorithms for Energy Minimization in Vision. IEEE PAMI, 26(9):1124–1137,
2004.

3. B. Chandran and D. Hochbaum. A computational Study of the Pseudoflow and
Push-Relabel Algorithms for the Maximum flow Problem. Operations Research,
57:358–376, 2009.

4. B. V. Cherkassky. A Fast Algorithm for Computing Maximum Flow in a Network.
In A. V. Karzanov, editor, Collected Papers, Vol. 3: Combinatorial Methods for

Flow Problems, pages 90–96. The Institute for Systems Studies, Moscow, 1979. In
Russian. English translation appears in AMS Trans., Vol. 158, pp. 23–30, 1994.

5. B. V. Cherkassky and A. V. Goldberg. On Implementing Push-Relabel Method
for the Maximum Flow Problem. Algorithmica, 19:390–410, 1997.

6. D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck. Graph partitioning
with natural cuts. In 25th IEEE IPDPS, pages 1135–1146, 2011.

7. D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck. Exact combina-
torial branch-and-bound for graph bisection. In ALENEX, pages 30–44, 2012.

8. D. Delling and R. F. Werneck. Better bounds for graph bisection. In ESA, pages
407–418, 2012.

9. B. Fishbain, D. S. Hochbaum, and S. Mueller. Competitive analysis of minimum-
cut maximum flow algorithms in vision problems. CoRR, abs/1007.4531, 2010.

10. L. R. Ford, Jr. and D. R. Fulkerson. Maximal Flow Through a Network. Canadian
Journal of Math., 8:399–404, 1956.

11. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A Fast Parametric Maximum Flow
Algorithm and Applications. SIAM J. Comput., 18:30–55, 1989.

12. A. Goldberg. Two Level Push-Relabel Algorithm for the Maximum Flow Problem.
In Proc. 5th Alg. Aspects in Info. Management. Springer Verlag, New York, 2009.

13. A. V. Goldberg. The partial augment-relabel algorithm for the maximum flow
problem. In Algorithms - ESA 2008, 16th Annual European Symposium, Karlsruhe,

Germany, September 15-17, 2008. Proceedings, pages 466–477, 2008.
14. A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and R. F. Werneck. Maximum

flows by incremental breadth-first search. In ESA, pages 457–468, 2011.
15. A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem.

J. Assoc. Comput. Mach., 35:921–940, 1988.
16. D. Goldfarb and M. Grigoriadis. A Computational Comparison of the Dinic and

Network Simplex Methods for Maximum Flow. Ann. Op. Res., 13:83–123, 1988.
17. J. Hao and J. B. Orlin. A Faster Algorithm for Finding the Minimum Cut in a

Directed Graph. J. Algorithms, 17:424–446, 1994.
18. D. S. Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-

flow problem. Operations Research, 56(4):992–1009, 2008.
19. P. Kohli and P. H. S. Torr. Dynamic graph cuts for efficient inference in markov

random fields. IEEE Trans. Pattern Anal. Mach. Intell., 29(12):2079–2088, 2007.
20. P. Kohli and P. H. S. Torr. Measuring uncertainty in graph cut solutions. Computer

Vision and Image Understanding, 112(1):30–38, 2008.
21. D. Sýkora, J. Dingliana, and S. Collins. Lazybrush: Flexible painting tool for

hand-drawn cartoons. Comput. Graph. Forum, 28(2):599–608, 2009.
22. T. Verma and D. Batra. Maxflow revisited: An empirical comparison of maxflow

algorithms for dense vision problems. In BMVC, pages 1–12, 2012.

