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Abstract 

We give a quadratic algorithm for finding the minimum 
number of reversals needed to sort a signed permutation. 
Our algorithm is faster than the previous algorithm of 
Hannenhalli and Pevzner and its faster implementation 
of Berman and Hannenhalli. The algorithm is conceptu- 
ally simple and does not require special data structures. 
Our study also considerably simplifies the combinatorial 
structures used by the analysis. 

1 Introduction 

In this paper we study the problem of sorting signed 
permutations by reversals. A signed permutation is a 
permutation ?r = (~1, . . . , ?r,) on the integers { 1, . . . , n}, 
where each number is also assigned a sign of plus or 
minus. A reversal, p(i, j), on ?r transforms 7r to 

7r’ = 7rp(i, j) = 

(n,.. ., R-1, -Tj, -Tj-l, a. 9 7 -Ti, Tj+l, * * .) Tan>. 

The minimum number of reversals needed to trans- 
form one permutation to another is called the reversal 

distance between them. The problem of sorting signed 
permutations by reversals is to find for a given signed 
permutation 7r its reversal distance from the identity 
permutation (+l, $2,. . . , +n). 

The motivation to studying the problem arises in 
molecular biology: Concurrent with the fast progress 
of the Human Genome Project, genetic and DNA data 
on many model organisms is accumulating rapidly, 
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and consequently the ability to compare genomes of 
different species has grown dramatically. One of the 
best ways of checking similarity between genomes on 
a large scale is to compare the order of appearance 
of identical genes in the two species. In the Thirties, 
Dobzhansky and Sturtevant [6] have already studied 
the notion of inversions in chromosomes of drosophila. 
Beginning in the late Eighties, Jeffrey Palmer has 
demonstrated that different species may have essentially 
the same genes, but the gene order may differ between 
species. Taking a distant perspective, the genes along 
a chromosome can be thought of as points along a line. 
Numbers identify the particular genes, and as genes 
have directionality, signs correspond to their direction. 
Palmer and others have shown that the difference in 
order may be explained by a small number of reversals 
[15, 16, 17, 18, 111. These reversals correspond to 
evolutionary changes along the history between the 
two genomes, so the number of reversals reflects the 
evolutionary distance between the species. Hence, given 
two such permutations, their reversal distance measures 
their evolutionary distance. 

Mathematical analysis of genome rearrangement 
problems was initiated by Sankoff [20, 191. Kececioglu 
and Sankoff [14] gave the first constant factor poly- 
nomial approximation algorithm for the problem and 
conjectured that the problem is NP-hard. Bafna and 
Pevzner [2] have subsequently improved the approxi- 
mation factor, and additional studies have revealed a 

rich combinatorial structure for rearrangement prob- 
lems [13, 12, 3, 8, lo]. Quite recently, Caprara [5] has 
established that sorting unsigned permutations in in- 
deed NP-hard, using some of the combinatorial tools 
developed by Bafna and Pevzner [2]. 

In 1995, Hannenhalli and Pevzner [9] have shown 
for the first time that the problem of sorting a signed 
permutation by reversals is polynomial: They have 
proved a duality theorem which equates the reversal 
distance with the sum of three combinatorial parameters 
(see Theorem 2.1 below). Based on this theorem, 
Hannenhalli and Pevzner proved that sorting signed 
permutations by reversals can be done in O(n4) time. 
More recently, Berman and Hannenhalli [4] described a 
faster implementation that finds a minimum sequence 
of reversals in O(n20(n)) time, where o() is the inverse 
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of Ackerman’s function [l] (see also [21]). 
In this study we give an O(n’) algorithm for sorting 

a signed permutation of n elements, thereby improving 
upon the previous best known bound in [4]. In fact, 
if the reversal distance is r, our algorithm requires 
O(na(n)+nxr) time. In the worst case r = O(n), but in 
the biological context it is expected that r << n, so the 
performance may be substantially better. In addition to 
the better time bound our study simplifies considerably 
both the algorithm and combinatorial structure needed 
for the analysis: 

l The basic object we work with is an implicit rep- 
resentation of the overlap graph, to be defined later, 
in contrast with the interleaving graph in [9] and [4]. 
The overlap graph is combinatorially simpler than the 
interleaving graph. As a result, it is easier to produce 
a representation for the overlap graph from the input, 
and to maintain it while searching for reversals. 

l As a consequence of our ability to work with the 
overlap graph we need not perform any “padding 
transformations”, nor do we have to work with “sim- 
ple permutations” as [9] and [4]. 

l We deal with the unoriented and oriented parts of 
the permutation separately, which makes the algo- 
rithm much simpler. 

l The notion of a hurdle, one of the combinatorial 
entities defined by [9] for the duality theorem, is 
simplified and is addressed in a more symmetric 
manner. 

l The search for the next reversal is much simpler, and 
requires no special data structures. Our algorithm 
computes connected components only once, and any 
simple implementation of it suffices to obtain the 
quadratic time bound. In contrast, in [4] a logarith- 
mic number of connected components computations 
may be performed per reversal, using the union-find 
data structure. 

The paper is organized as follows: Section 2 gives the 
necessary preliminaries. Section 3 describes how to 
implicitly generate and represent the overlap graph of 
a permutation. Sections 4 and 5 give the details of our 
algorithm. We summarize our results and suggest some 
further research in Section 6. 

2 Preliminaries 

This section gives the basic background, primarily the 
theory of Hannenhalli and Pevzner, on which we base 
our algorithm. We start with some definitions for 
unsigned permutations: Let s = (~1,. . . , TV) denote a 
permutation of { 1, . . . , n}. Augment x to a permutation 
on n + 2 vertices by adding tn = 0 and 7rfl+i = n + 1 
to it. A pair (ri,ri+l), 0 5 i 5 n is called a gap. 
Gaps are classified into two types. A gap (ri, 7rc+i) is a 

breakpoint of r if and only if ]wi - 7~i+r] > 1, otherwise 
it is an adjacency of ?r. We denote by b(r) the number 
of breakpoints in 7r. 

A reversal, p(i, j), on a permutation a trans- 
forms r to T’ = rp(i, j) = (Al, . . .,wi-r,rj,r?~j-1, 
. . . , ri, Tj+l, . . .P rfl). We say that a reversal p(;, j) 
is acting on the gaps (li-i,Ti) and (rj, rj+i). 
The breakpoint graph B(r) of a permutation w = 

CT1 ,.“, n,) is an edge-colored graph on n + 2 vertices 

{no, Rl,' * ., %I+11 = {O,L. . . , n + 1). We join vertices 
xi and rj by a black edge if (ti, rj) is a breakpoint in r 
and by a gray edge if (i, j) is a breakpoint in 7r-l. 

We define a one to one mapping u from the set of 
signed permutations of order n into the set of unsigned 
permutations of order 2n as follows. Let r be a signed 
permutation. To obtain U(X) replace each positive 
element t in ?r by 22 - 1,22 and negative element 
-x by 22,2x - 1. For any signed permutation K, let 
B(r) = B(u(r)). For th e rest of this paper we limit the 
discussion to signed permutations. Note that in B(n) 
every vertex is either isolated or incident with exactly 
one black edge and one gray edge. Therefore, there is 
a unique decomposition of B(r) into cycles. The edges 
of each cycle are alternating gray and black. Call a 
reversal p(i, j) such that i is odd and j even an even 
reversal. The reversal p(2i + 1,2j) on U(T) mimics the 
reversal p(; + 1, j) on X. Thus, sorting a by reversals is 
equivalent to sorting the unsigned permutation U(T) by 
even reversals. Henceforth we will consider the latter 
problem and by reversal we will always mean an even 
reversal. Let b(n) = b(u(?r)) and C(T) be the number of 
cycles in B(7r). 

For an arbitrary reversal p on a permutation ‘lr, 
denote by Ab(?r, p) = b(ap) - b(?r) and Ac(n,p) = 
c(rp) - c(r). When the reversal p and the permutation 
A will be clear from the context we will abbreviate 
Ab(?r, p) to Ab and Ac(?r, p) to AC. The following values 
are taken by Ab and AC depending upon the types of 
the gaps p(i, j) is acting on. They were first observed 
by Bafna and Pevzner [2], and are straightforward to 
verify: 

1. Two adjacencies; AC = 1 and Ab = 2. 
2. A breakpoint and an adjacency; AC = 0 and 

Ab= 1. 
3. Two breakpoints each belonging to a different 

cycle; Ab = 0, AC = -1. 
4. Two breakpoints of the same cycle C: 

a. (ni,~rj+i) and (ri-i,wj) are gray edges; AC = 
-1, Ab = -2. 
b. Exactly one of (ri, rj+i) and (riTi-r, rj) is a gray 
edge; AC = 0, Ab = -1. 
c. Neither (ri, rj+l) nor (ri-i, rj) is a gray edge, 
and when breaking C at i and j vertices i - 1 and 
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j + 1 end up in the same path; Ab = 0, AC = 0 
d. Neither (ri,7~j+r) nor (ri-r,nj) is a gray edge, 
and when breaking C at i and j vertices i - 1 and 
j + 1 end up in different paths; Ab = 0, AC = 1 

Call a reversal proper if Ab - AC = -1, i.e. it is 
either of type 4a, 4b, or 4d. We say that a reversal p is 
acting on a gray edge e if it is acting on the breakpoints 
which correspond to the black edges incident with e. 
A gray edge is oriented if a reversal acting on it is 
proper, otherwise it is unoriented. A cycle is oriented if 
it contains an oriented gray edge, and it is unoriented 
otherwise. 

Two intervals on the real line overlap if their 
intersection is nonempty but neither properly contains 
the other. A graph G is an interval overlap graph if 
one can assign an interval to each vertex such that two 
vertices are adjacent if and only if the corresponding 
intervals overlap (see, e.g., [73). For a permutation x, 
we associate with a gray edge (rri, rj) the interval [i, j]. 
The overlap graph of a permutation 7r, denoted OV(?r), 
is the interval overlap graph of the gray edges of B(n). 
Namely, the vertex set of OV(n) is the set of gray edges 
in g(s), and two vertices are connected if the intervals 
associated with their gray edges overlap. Throughout 
this paper whenever we talk about the representation of 
OV(rr) we refer to this canonical representation. Note 
that all the endpoints of intervals in this representation 
are distinct integers. We also identify a vertex in OV(rr) 
with the edge it represents and with its interval in the 
representation. Thus, the endpoints of a gray edge 
are actually the endpoints of the interval representing 
the corresponding vertex in OV(?r). A connected 
component of OV(T) that contains an oriented edge is 
called an oriented component, otherwise it is called an 
unoriented component. 

Let X be a set of gray edges in B(r). 
Define min(X) = min{i ( (7ri,rj) E X}, 
max(X) = max{j [ ( ?~i, rrj) E X} and span(X) = 
[min(X), max(X)]. Equivalently, one can look at the in- 
terval overlap representation of OV(T) mentioned above 
and define the span of a set of vertices X as the mini- 
mum interval which contains all the intervals of vertices 
in X. 

The major object our algorithm will work with 
is OV(?r) though for efficiency considerations we will 
avoid generating it explicitly. In contrast, Pevzner and 
Hannenhalli worked with the inlerzeaving graph H,, 
whose vertices are the alternating cycles of B(r) and 
two cycles Cr and Cr are connected by an edge in H, 
iff there exists a gray edge er E Cr and a gray edge 
e2 E C2 that overlap. 

The following lemma and its corollary imply that 
the partition imposed by the connected components of 

OV(rr) on the set of gray edges is identical to the one 
imposed by the connected components of H,: 

LEMMA 2.1. Assume M is a set of gray edges in 
B(n) that corresponds to a connected component in 
OV(n) then min(M) is even and max(M) is odd. 

Proof. Assume min(M) is odd, then rmin(M) + 1 
and 7rrnincM) - 1 must both be in span(M) (i.e. there 
exist Ii, 12 e ~pn(M) such that ~1~ = rmi”(M) + 1 
and ?r19 = ?Tmin(M) - 1). Thus, rmin(M) is neither 
the maximum nor the minimum element in the set 
{ri 1 i E span(M)}. H ence, either the maximum 
element or the minimum element in span(M) is rj for 
some min(M) < j < max(M). By the definition of B(T) 
there must be a gray edge (rj, 71) for some 1 $Z span(M), 
contradicting the fact that M is a connected component 
in OV(x). The proof that max(M) is odd is similar. m 

COROLLARY 2.1. Every connected component of 
OV(a) corresponds to the set of gray edges of a union 
of cycles. 

Proof. Assume, by contradiction, that C is a cycle 
whose gray edges belong to at least two connected 
components in OV(rr). Assume Ml and MS are two of 
these components such that there are two consecutive 
gray edges ei E Ml and er E Mz along C. Since 
the spans of different connected components in OV(rr) 
cannot overlap there are two different cases to consider. 
1. spank C_ span(M1) (the case spank E 
span(M2) is symmetric). Since el and es are in different 
components they cannot overlap. Thus, either the right 
endpoint of e2 is even and equals max(Mz) or the left 
endpoint of ez is odd and equals min(Mz). In both cases 
we obtained a contradiction to Lemma 2.1. 
2. spank and spank are disjoint intervals. 
W.1.o.g. assume that max(M1) < min( Mz). The right 
endpoint of er is even and equals max(Mr ), and that 
contradicts Lemma 2.1. n 

Let vi,, Til, f - *, ni* be the subsequence 
of 0, tr, . . . , r,,, n + 1 consisting of those elements in- 
cident with gray edges in B(T) that occur in unoriented 
components of OV(?r). Order nil, ria,. . . , rrik on a cir- 
cle CR such that rij follows Rijml for 2 5 j 2 k and ril 
fOllOWS Tik. Let M be an unoriented connected com- 
ponent in OV(rr). Let E(M) c {rriI, riz,. . .,T;~} be 
the set of endpoints of the edges in M. An unoriented 
component M is a hurdle if the elements of E(M) occur 
consecutively on CR. 

This definition of a hurdle is different from the one 
given by Hannenhalli and Pevzner [9]. It is simpler in 
the sense that minimal hurdles and the maximal one 
do not have to be treated in a different way. Using 
Corollary 2.1 above one can prove that the hurdles as 
we defined them are identical to the ones defined by 
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Hannenhalli and Pevener. Let h(n) denote the number 
of hurdles in a permutation ?r. 

A hurdle is simple if when one deletes it from OV(?r) 
no other unoriented component becomes a hurdle, and it 
is a super hurdle otherwise. A fortress is a permutation 
with an odd number of hurdles all of which are super 
hurdles. 

The following theorem was proved by Hannenhalli 
and Pevaner . 

THEOREM 2.1. [9] The minimum number of rever- 
sals required to sort a permutation ?r is b(a)-c(?r)+h(?r) 
unless rr is a fortress in which case exactly one addi- 
tional reversal is necessary and suficient. 

Denote by d(?r) the reversal distance of x. I.e. 
d(r) = b(n)-c(n)+h(n)+l if 7r isafortress and d(n) = 

w - c(r) + h(r) otherwise. Following the theory 
developed in [9] it turns out that given a permutation 
?r with h(a) > 0 one can perform t = rh(?r)/2] 
reversals and transform ?r to a permutation 7~’ such 
that h(rr’) = 0 and d(#) = d(?r) - t. Our method of 
“clearing the hurdles” uses the same theory developed 
by Hannenhalli and Pevzner. In Section 5 we describe 
an efficient implementation of this process which uses 
the implicit representation of the overlap graph OV(n). 
Our implementation runs in O(n)-time assuming OV(?r) 
is already partitioned into its connected components. 
Recently, Berman and Hannenhalli [4] gave an O(ncr(n)) 
algorithm for computing the connected components 
of an interval overlap graph given implicitly by its 
representation. Using their algorithm we can clear the 
hurdles from a permutation in O(ncu(n)) time. 

The overlap graph of r’, OV(x’), has only oriented 
components. In Section 4 we prove that in the neigh- 
borhood of any oriented gray edge e there is an oriented 
gray edge el (el could be the same as e) such that a 
reversal acting on el does not create new hurdles. Call 
such a reversal a safe reversal. We develop an efficient 
algorithm to locate a safe reversal in a permutation with 
at least one oriented gray edge. Our algorithm uses only 
an implicit representation of the overlap graph and it 
runs in O(n) time. 

3 Representing the overlap graph 

We assume that the input is given as a sequence of n 
signed integers representing se. First the permutation 
rr = u(#) is constructed as described in the previous 
section. The second stage is to construct an interval 
overlap representation of OV(a). By that we mean a 
listing of the intervals corresponding to the gray edges 
which are the vertices in OV(rr) ordered in increasing 
left endpoint order. 

One could construct the representation in linear 
time as follows. Construct an array b representing 7-l. 

For each i from 0 to 2n do: if lb(i) - b(i + 1) 1 > 1 
then add the interval [b(i), b(i-t l)] (or [b(i+ l), b(i)], if 
b(i) > b(i + 1)) to the representation. 

4 Eliminating oriented components 

First we introduce some notation. Recall that the 
vertices of OV(?r) are the gray edges of B(A). In order to 
avoid confusion we will usually refer to them as vertices 
of OV(%). Hence a vertex of OV(r) is oriented if the 
corresponding gray edge is oriented and it is unoriented 
otherwise. Let e be a vertex in OV(n). Denote by 
r(e) the reversal acting on the gray edge corresponding 
to e. Denote by N(e) the set of neighbors of e in 
OV(rr) including e itself. Denote by ON(e) the subset 
of N(e) containing the oriented vertices and by UN(e) 
the subset of N(e) containing the unoriented vertices. 

In this section we prove that if an oriented vertex 
e exists in OV(n) then there exists an oriented vertex 
f E ON(e) such that r(f) is proper and safe. We also 
describe an algorithm that finds a proper safe reversal in 
a permutation that contains at least one oriented edge. 

We start with the following useful observation: 
OBSERVATION 4.1. Let e be a vertex in OV(w) and 

let ‘IT’ = m(e). OV(7r’) could be obtained from OV(n) 
by the following operations. 1) Complement the graph 

induced by OV( A on N(e), and flip the orientation of ) 
every vertex in N(e). 2) If e is oriented in OV(r) then 
remove it from OV(?r). 3) If there exists an oriented 
edge e’ in OV(n) with r(e) = r(e’) then remove e’ from 
OV(?r). 

Note that if e is an oriented vertex in a component 
M of OV(r), M-(e) may split into several components 
in OV(rr’). Denote these components M:(e), . . . , ML(e), 
where k 2 1. We will refer to M:(e) simply as Mi 
whenever e is clear from the context. 

Let C be a clique of oriented vertices in OV(s). We 
say that C is happy if for every oriented vertex e $! C 
and every vertex f E C such that (e, f) E E(OV(?r)) 
there exists an oriented vertex g @ C such that (g, e) E 
E(OV(n)) and (g, f) $ E(OV(?r)). Our first theorem 
claims that one of vertices in any happy clique defines 
a safe proper reversal. 

THEOREM 4.1. Let C be a happy clique and let e be 
a vertex in C such that IUN(e’)l 5 IUN(e)I for every 
e’ E C then the reversal r(e) is safe. 

Proof. Let ?r’ = nr(e) and assume by contradiction 
that M,‘(e) is unoriented for some 1 2 i 5 k. Clearly 
N(e) fl M,! # 0. 

Assume there exists y E N(e)flMi such that y g! C. 
Clearly y must be oriented in OV(7r) and since C is 
happy it must also have an oriented neighbor y’ such 
that (y’, e) $Z E(OV(n)). Since y’ is not adjacent 
to e in OV(n) it stays oriented and adjacent to y in 
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OV(r’) in contradiction with the assumption that M,! is 
unoriented. Hence we may assume that N(e) n A!,! E C. 

Let y E N(e) n Mi and let z E UN(e). Vertex 
z is oriented in OV(?r’) and if it is connected to y in 
OV(?r’) we obtain a contradiction. Hence, z and y are 
not connected in OV(d), so they must be connected 
in OV(?r). Hence we obtain that UN(e) E UN(y) 
in OV(?r). Corollary 2.1 implies that component M/ 
cannot contain y alone. Thus y must have a neighbor 
z in Mi. Since N(e) fl M,! C C vertex z is not adjacent 
to e in OV(r). So we obtain that (z, y) E OV(r), 
(z, e) @ OV(*), and z is unoriented in OV(n). Since we 
already proved that UN(e) E UN(y) this implies that 

UN(e) c UN(Y) in contradiction with the choice of e. 
n 

THEOREM 4.2. Let e be an oriented vertex in a 
component A4 of OV(?r). There exists an oriented 
vertex f E ON(e) such that M{(f), . . . , ML(f) are all 
oriented in OV(r’), where r’ = XT-(~). 

Proof. By Theorem 4.1 it suffices to show that there 
exists a happy clique C in ON(e). 

Let Ext(e) = {z E ON(e) 1 there exists y E 
ON(z) such that y $! ON(e)}. I.e. Ezt(e) contains all 
oriented neighbors of e which have oriented neighbors 
outside of ON(e). 
Case 1: Ext(e) = ON(e) - {e}. Set C = {e}, 
Case 2: Ext(e) c ON(e) - {e}. let Do = ON(e) - 
Erl(e). For j > 0, while Di is not a clique let Kj be a 
maximal clique in ti and define ti+l = oj - Kj. Let 
Dk, k 2 0 be the final clique and set C = D”. 

It is straightforward to verify that in each of the 
two cases C is indeed a happy clique. m 

Though OV(lr) h a.3 at most n + 1 vertices, it may 
have a superlinear number of edges. Thus creating and 
maintaining it while looking for reversals may be expen- 
sive. In contrast, the interval overlap representation of 
OV(n) has linear size. In the next section we describe 
an algorithm that will find an oriented edge e such that 
r(e) is safe given a representation of OV(n). The al- 
gorithm first finds a happy clique C and then searches 
for the vertex with maximum unoriented degree in C. 
According to Theorem 4.1 that vertex defines a safe re- 
versal. The time complexity of each stage is O(n). 

4.1 Finding a happy clique In this section we 
give an algorithm that locates a happy clique in OV(n). 
Let el,..., ek be the oriented vertices in OV(r) in 
increasing left endpoint order. Let L(e) and R(e) be 
the left and right endpoints, respectively, of vertex e 
in the realization of OV(n). The algorithm traverses 
the oriented vertices in OV(n) according to this order. 
After traversing el , . . . , e;, 1 5 i 5 k the algorithm 
maintains a happy clique Ci in the subgraph of OV(r) 

induced by these vertices. Assume iCi[ = j, j 5 i and 
let ei,, . . . , eij be the vertices in Ci where ii < i2 < 
. . . < ij. The vertices of Ci are maintained in a linked 
list ordered in increasing left endpoint order. If there 
exists an interval that contains all the intervals in Ci 
then the algorithm maintains one such interval ti. The 
clique Ci and the vertex ti (if exists) satisfy the following 
invariant. 

INVARIANT 4.1. 
1) Every vertex et 6 Ci, 1 < i, such that L(eil) < L(el) 
must be adjacent to ti, i.e., R(el) > R(ti). 
2) Every vertex er # Ci, L(er) < L(ei,) that is adjacent 
to a vertex in Ci is either adjacent to an interval ep such 
that R(e,) < L(ei,) or adjacent to ti. 

The fact that Ci is happy in the subgraph induced 

by el,. . . , ei follows from this invariant. We initialize 
the algorithm by setting (7’1 = {ei}. Initially, tl is 
not defined. Let the current interval be ei+l. If 
R(eij) < L(ei+r) then Ci is guaranteed to be happy 
in OV(r) since all remaining oriented vertices are not 
adjacent to Ci& Hence the algorithm stops and returns 
Ci as the answer. 

We now assume that R(eij) > L(ei+l) and show 
how to obtain Ci+l and ti+l. We have to consider the 
following cases. 
Case 1. The interval ti is defined and R(ea+l) > R(ti). 
Continue with Ci+l := Ci and ti+l := ti. 
Case 2. The interval ti is not defined or R(ed+l) < R(ti). 
a) R(ei+l> > R(eij) and L(ei+l) < R(ei,). Ci+i is 
ztained by adding ei+i to Ci and ti+l := ti. 

b) R(ei+l) > R(eij) and L(ei+l) > R(ei,). The clique 
G+1 consists of ei+l alone and ti+l := ti. 
C) R(ei+l) < R(eij). AS in the previous case C;+i = 
Fi+i}. In this case ti+l is set to eij, the last interval in 
ct. 

The following theorem proves that the algorithm we 
described produces a happy clique. 

THEOREM 4.3. Let Cl be the current clique when 
the algorithm stops. Then Cl is a happy clique in 
OV(7r). 

Proof. A straightforward induction on the number 
of oriented vertices traversed by the algorithm proves 
that Cl and tl satisfy Invariant 4.1. 

The algorithm stops either when R(ei,) < L(el+l) 
or when I= k where k is the number of oriented vertices. 
In either case since Cl is happy in the subgraph induced 
by ei,... , el it must be happy in OV(n). n 

The running time of the algorithm is proportional 
to the number of oriented vertices traversed since a 
constant amount of work is performed per such vertex. 

4.2 Searching the happy clique 
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After locating a happy clique C in OV(a) we need 
to search it for a vertex with a maximum number 
of unoriented neighbors. In this section we give an 
algorithm that performs this task. 

Let ei,...,ei be the intervals in C ordered in 
increasing left endpoint order. Clearly, L(1) < L(2) < 
. . . < L(j) < R(1) < R(2) < . . . < R(j). Thus 
the endpoints of the j vertices in C partition the line 
into 2j + 1 disjoint intervals 10,. . . , Izj, where 10 = 
(-oO,L(l)], 11 = (L(I),L(I + l)] for 1 5 I < j, Ij = 
(L(j), R(l)], It = (R(I - j), R(1 - j + l)] for j < I < 2j 
and Izj = (R(j), ao). The algorithm consists of the 
following three stages. 
Stage 1: Let e be an unoriented vertex that overlaps 
with the interval [L(l),R(j)]. Mark each of e’s end- 
points with the index of the interval that contains it. 
Stage 2: Let o be an array of j counters each correspond- 
ing to a vertex in C. The intention is to assign values to 
o such that the sum Cf=, o[i] is the unoriented degree 
of the vertex er E C. The counters are initialized to 
zero. For each unoriented vertex e that overlaps with 
the interval [L(l), R(j)] we change at most four of the 
counters as follows. Let 11 and 1,. be the intervals in 
which L(e) and R( e occur respectively. We may as- ) 
sume 1 < r as otherwise e is not adjacent to any vertex 
in C and we can ignore it, We continue according to 
one of the following cases. 
Case 1: T 5 j. All the vertices from er+l to e, are ad- 
jacent to e hence we increment o[l + l] and decrement 
o[r+ l] (ifr <j). 
Case 2: j 5 1. All the vertices from el-j+i to e,-j are 
adjacent to e hence we increment o[/ - j + l] and decre- 
ment o[p - j]. 
Case3:1< jandj<r. Letm=min{l,r-j}. If 
m > 0 then all the vertices from el to e, are adjacent 
to e hence we increment o[l] and decrement o[m + 11. 
Similarly let M = max{l, r - j}. If M < j then the 
vertices from el+i to ej intersect e hence we increment 
the counter o[Z + 11. 
Stage 3: Compute f = max,{‘& o[i](l 2 1 s j}, Re- 
turn ef. 

The following theorem summarizes the result of this 
section. We omit, the proof which is straightforward. 

THEOREM 4.4. Given a clique C, the vertex ef E C 
computed by the algorithm above has maximum unori- 
ented degree among the vertices in C. 

The complexity of the algorithm is proportional to 
the size of C plus the number of unoriented vertices in 
OV(?r). That is O(n). 

5 Clearing the hurdles 

In case there are unoriented components in OV(T) 
there exists a sequence ~1, . . . rt of t reversals that 
transform ?r into 7r’ such that d(r’) = d(?r) - t, where 
t = rh(?r)/2]. In this section we summarize the 
characterization given by Hannenhalli and Pevzner for 
these t reversals and outline how to find them using our 
implicit representation of OV(?r). 

We will use the following definitions. A reversal 
merges hurdles Hi and H2 if it acts on two breakpoints 
one incident with a gray edge in HI and the other 
incident with a gray edge in HZ. Recall the circle CR 
defined in Section 2 of the endpoints of the edges in the 
unoriented components of OV(r) is ordered consistently 
with their order in A. Two hurdles HI and Hz are 

consecutive if their sets of endpoints E( HI) and E( H2) 

occur consecutively on CR. I.e. there is no hurdle H 
such that E(H) separates E(Hi) and E(H2) on CR. 

The following lemmas were essentially proved by 
Hannenhalli and Pevzner though stated differently in 
their paper. 

LEMMA 5.1. ([9]) Let T be a permutation with an 
even number, say 2k, of hurdles. Any sequence of 

k-l reversals each of which merges two non-consecutive 
hurdles followed by a reversal merging the remaining 
two hurdles will transform T into w’ such that d(n’) = 
d(n) - k and ~8 has only oriented components. 

LEMMA 5.2. ([9]) Let ?r be a permutation with an 
odd number, say 2k+l, of hurdles. If at least one hurdle 
H is simple then a reversal acting on two breakpoints 
incident with edges in H transforms 7~ into T’ with 2k 

hurdles such that d(?r’) = d(w) - 1. If x is a fortress 
then a sequence of k - 1 reversals merging pairs of non- 
consecutive hurdles followed by two additional merges 
of pairs of consecutive hurdles (one merges two original 
hurdles and the next merges a hurdle created by the first 

and the last original hurdle) will transform IT into n’ 
such that d(a’) = d(n)-(k+ 1) and T’ has only oriented 
components. 

We now outline how to turn these lemmas into an 
algorithm that finds a particular sequence of reversals 

Tt with the properties described above. First 

z%‘j . T is decomposed into connected components as 
described in [4]. 0 ne then has to identify those un- 
oriented components that are hurdles. This task could 
be done by traversing the endpoints of the circle CR 
counting the number of elements in each run of consec- 
utive endpoints belonging to the same component. If 
a run contains all endpoints of a particular unoriented 
component M then M is an hurdle. 

In a similar fashion one could check for each hurdle 
whether it is a simple hurdle or a super hurdle. While 
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traversing the cycle a list of the hurdles in the order they 
occur on CR should be created. At the next stage this 
list would be used to identify correct hurdles to merge. 

We assume that given an endpoint one can locate 
its connected component in constant time. It is easy to 
verify that the data could be maintained such that it is 
possible to do so. 

THEOREM 5.1. Given OV(?r) decomposed into its 
connected components, the algorithm outlined above 
finds t reversals such that when we apply them to ?r we 
obtain r’ which is hurdle-free and d(#) = d(a) - t. It 

could be implemented to run in O(n)-time. 

Proof. The correctness follows from Lemma 5.1 
and 5.2. The time bound is achieved if we always merge 
hurdles that are separated by a single hurdle. If the ith 
merge merged hurdles H1 and Hz that are separated 
by H then H should be merged in the i + 1st merge. 
Carrying out the merges that way guarantees that the 
span of each hurdle H overlaps at most two merging 
reversals the second of which eliminates H. n 

6 Summary 

Figure 1 gives a schematic description of the algorithm. 

algorithm SIGNED REVERSALS(X); 
/* A is a signed permutation */ 
1. Compute the connected components of OV(K). 
2. Clear the hurdles. 
3. while x is not sorted do : 
/* iteration */ 
begin 

a. find a happy clique C in OV(A). 
b. find a vertex et E C with maximum unoriented 
degree, and perform a safe reversal on ef; 
c. update A and the representation of Ok’(*). 

end 
4. output the sequence of reversals. 

Figure 1: An algorithm for sorting signed permutations 

THEOREM 6.1. 
Algorithm SIGNED REVERSALS finds the reversal dis- 
tance r in O(ncr(n) + r x n) time, and in particular in 
O(n’) time. 

Proof. The correctness of the algorithm follows 
from Theorem 2.1, Theorem 4.1 and Lemmas 5.1 and 
5.2. 

Step 1 takes O(ncu(n)) by the algorithm of Berman 
and Hannenhalli [4]. Step 2 takes O(n) time by 
Theorem 5.1. Step 3 takes O(n) time per reversal, by 
the discussion in Section 4. n 

It is an intriguing open question whether a faster 
algorithm for sorting signed permutations by reversals 
exists. It certainly might be the case that one can find 
an optimal sequence of reversals much faster. To date, 
no nontrivial lower bound is known for this problem. 

Acknowledgments 

We thank Sridhar Hannenhalli, Pave1 Pevzner and Izik 
Pe’er for their comments on a preliminary version of this 
paper. 

References 

[l] W. Ackermann. Zum hilbertshen aufbau der reelen 
zahlen. Math. Ann., 99:118-133, 1928. 

[2] V. Bafna and P. Pevzner. Genome rearrangements 
and sorting by reversals. In Proc. 94th IEEE Symp. 
of the Foundations of Computer Science, pages 148- 
157. IEEE Computer Society Press, 1994. To appear 
in SIAM J. of Computing. 

[3] V. Bafna and P. Pevzner. Sorting permutations by 
transpositions. In Proceedings of the 6th Annual Sym- 
posium on Discrete Algorithms, pages 614-623. ACM 
Press, Jan. 1995. 

[4] P. Berman and S. Hannenhalli. Fast sorting by reversal. 
In Proc. Combinatorial Pattern Matching (CPM) 1996, 
1996. 

[5] A. Caprara. Sorting by reversals is difficult. Technical 
report, DEIS, University of Bologna, April 1996. 

[6] T. Dobzhansky and A. H. Sturtevant. Inversions in the 
chromosomes of drosophila pseudoobscura. Genetics, 
23~28-64, 1938. 

[7] M. C. Golumbic. Algorithmic Graph Theory and Per- 
fect Graphs. Academic Press, New York, 1980. 

[8] S. Hannenhalli. Polynomial algorithm for computing 
translocation distance between genomes. Technical 
Report CSE95-005, Pennsylvania State University, 
1995. 

[9] S. Hannenhalli and P. Pevzner. Transforming cabbage 
into turnip (polynomial algorithm for sorting signed 
permutations by reversals). In Proceeding of the 
Twenty-Seventh Annual ACM Symposium on Theory 
of Computing, pages 178-189, Las Vegas, Nevada, 29 
May-l June 1995. 

[lo] S. Hannenhalli and P. Pevzner. Transforming men 
into mice (polynomial algorithm for genomic distance 
problems. In Proc. IEEE Symp. of the Foundations of 
Computer Science, 1995. 

[ll] S. B. Hoot and J. D. Palmer. Structural rearrange- 
ments, including parallel inversions, within the chloro- 
plast genome of Anemone and related genera. J. Molec- 
ular Evooution, 38:274-281, 1994. 

[12] J. Kececioglu and R. Ravi. Physical mapping of chro- 
mosomes using unique probes. In Proc. sixth annual 
ACM-SIAM Symp. on Discrete Algorithms [SODA 95), 
pages 604-613. ACM Press, 1995. 

[13] J. Kececioglu and D. Sankoff. Efficient bounds for 
oriented chromosome inversion distance. In Proc. of 



351 

5th Ann. Symp. on Combinatorial Pattern Matching, 
pages 307-325. Springer, 1994. LNCS 807. 

[14] J. Kececioglu and D. Sankoff. Exact and approximation 
algorithms for sorting by reversals, with application 
to genome rearrangement. Algorithmica, 13(1/2):180- 
210, Jan. 1995. 

[15] J. D. Palmer and L. A. Herbon. Tricircular mitochon- 
drial genomes of Brsssica and Raphanus: reversal of 
repeat configurations by inversion. Nucleic Acids Re- 
search, 14:9755-9764, 1986. 

[16] J. D. Palmer and L. A. Herbon. Unicircular structure 
of the Brassica hirta mitochondrial genome. Current 
Genetics, 11:565-570, 1987. 

[17] J. D. Palmer and L. A. Herbon. Plant mitochondrial 
DNA evolves rapidly in structure, but slowly in se- 
quence. J. Molecular Evolution, 28:87-97, 1988. 

[18] J. D. Palmer, B. Osorio, and W. Thompson. Evolu- 
tionalry significance fo inversions in legume chorloplast 
DNAs. Current Genetics, 14:65-74, 1988. 

[19] D. Sankoff. Edit distance for genome comparison based 
on non-local operations. Lecture Notes in Computer 
Science, 644:121-135, 1992. 

[20] D. Sankoff, R. Cedergren, and Y. Abel. Genomic 
divergence through gene rearrangement. Methods in 
Enzymology, 183:428-438, 1990. 

[21] R. E. Tarjan. Efficiency of a good but not linear set 
union algorithm. J. ACM, 22(2):215-225, 1979. 


