
Faster and Simpler Algorithm for Sorting Signed Permutations by Reversals

Haim Kaplan* Ron S hkmirt Robert E. Tarjant

Abstract

We give a quadratic algorithm for finding the minimum
number of reversals needed to sort a signed permutation.
Our algorithm is faster than the previous algorithm of
Hannenhalli and Pevzner and its faster implementation
of Berman and Hannenhalli. The algorithm is conceptu-
ally simple and does not require special data structures.
Our study also considerably simplifies the combinatorial
structures used by the analysis.

1 Introduction

In this paper we study the problem of sorting signed
permutations by reversals. A signed permutation is a
permutation ?r = (~1, . . . , ?r,) on the integers { 1, . . . , n},
where each number is also assigned a sign of plus or
minus. A reversal, p(i, j), on ?r transforms 7r to

7r’ = 7rp(i, j) =

(n,.. ., R-1, -Tj, -Tj-l, a. 9 7 -Ti, Tj+l, * * .) Tan>.

The minimum number of reversals needed to trans-
form one permutation to another is called the reversal

distance between them. The problem of sorting signed
permutations by reversals is to find for a given signed
permutation 7r its reversal distance from the identity
permutation (+l, $2,. . . , +n).

The motivation to studying the problem arises in
molecular biology: Concurrent with the fast progress
of the Human Genome Project, genetic and DNA data
on many model organisms is accumulating rapidly,

‘Uepartmejnt of Computer Science, Princeton University,
Princeton, NJ 08544 USA and NEC Institute, Princeton, NJ. Re-
search at Princeton University supported by the Office of Naval
Research, Contract No. N00014-91-J-1463, and the NSF, Grants
No. CCR-8920505 and CCR-9626862. hkl&s.princetonedu.

‘Department of Computer Science, Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel-Aviv 69978 ISRAEL. Research
supported in part by grants from the Ministry of Science and
the Arts, Israel, and from the Israeli Academy of Sciences.
shamirOmath.tauac.il

*Department of Computer Science, Princeton University,
Princeton, NJ 08544 USA and NEC Institute, Princeton, NJ.
Research at Princeton University partially supported by the
NSF, Grants No. CCR-8920505 and CC%9626862, and the
Office of Naval Research, Contract No. N00014-91-J-1463.
retQcs.princeton.edu

and consequently the ability to compare genomes of
different species has grown dramatically. One of the
best ways of checking similarity between genomes on
a large scale is to compare the order of appearance
of identical genes in the two species. In the Thirties,
Dobzhansky and Sturtevant [6] have already studied
the notion of inversions in chromosomes of drosophila.
Beginning in the late Eighties, Jeffrey Palmer has
demonstrated that different species may have essentially
the same genes, but the gene order may differ between
species. Taking a distant perspective, the genes along
a chromosome can be thought of as points along a line.
Numbers identify the particular genes, and as genes
have directionality, signs correspond to their direction.
Palmer and others have shown that the difference in
order may be explained by a small number of reversals
[15, 16, 17, 18, 111. These reversals correspond to
evolutionary changes along the history between the
two genomes, so the number of reversals reflects the
evolutionary distance between the species. Hence, given
two such permutations, their reversal distance measures
their evolutionary distance.

Mathematical analysis of genome rearrangement
problems was initiated by Sankoff [20, 191. Kececioglu
and Sankoff [14] gave the first constant factor poly-
nomial approximation algorithm for the problem and
conjectured that the problem is NP-hard. Bafna and
Pevzner [2] have subsequently improved the approxi-
mation factor, and additional studies have revealed a

rich combinatorial structure for rearrangement prob-
lems [13, 12, 3, 8, lo]. Quite recently, Caprara [5] has
established that sorting unsigned permutations in in-
deed NP-hard, using some of the combinatorial tools
developed by Bafna and Pevzner [2].

In 1995, Hannenhalli and Pevzner [9] have shown
for the first time that the problem of sorting a signed
permutation by reversals is polynomial: They have
proved a duality theorem which equates the reversal
distance with the sum of three combinatorial parameters
(see Theorem 2.1 below). Based on this theorem,
Hannenhalli and Pevzner proved that sorting signed
permutations by reversals can be done in O(n4) time.
More recently, Berman and Hannenhalli [4] described a
faster implementation that finds a minimum sequence
of reversals in O(n20(n)) time, where o() is the inverse

344

345

of Ackerman’s function [l] (see also [21]).
In this study we give an O(n’) algorithm for sorting

a signed permutation of n elements, thereby improving
upon the previous best known bound in [4]. In fact,
if the reversal distance is r, our algorithm requires
O(na(n)+nxr) time. In the worst case r = O(n), but in
the biological context it is expected that r << n, so the
performance may be substantially better. In addition to
the better time bound our study simplifies considerably
both the algorithm and combinatorial structure needed
for the analysis:

l The basic object we work with is an implicit rep-
resentation of the overlap graph, to be defined later,
in contrast with the interleaving graph in [9] and [4].
The overlap graph is combinatorially simpler than the
interleaving graph. As a result, it is easier to produce
a representation for the overlap graph from the input,
and to maintain it while searching for reversals.

l As a consequence of our ability to work with the
overlap graph we need not perform any “padding
transformations”, nor do we have to work with “sim-
ple permutations” as [9] and [4].

l We deal with the unoriented and oriented parts of
the permutation separately, which makes the algo-
rithm much simpler.

l The notion of a hurdle, one of the combinatorial
entities defined by [9] for the duality theorem, is
simplified and is addressed in a more symmetric
manner.

l The search for the next reversal is much simpler, and
requires no special data structures. Our algorithm
computes connected components only once, and any
simple implementation of it suffices to obtain the
quadratic time bound. In contrast, in [4] a logarith-
mic number of connected components computations
may be performed per reversal, using the union-find
data structure.

The paper is organized as follows: Section 2 gives the
necessary preliminaries. Section 3 describes how to
implicitly generate and represent the overlap graph of
a permutation. Sections 4 and 5 give the details of our
algorithm. We summarize our results and suggest some
further research in Section 6.

2 Preliminaries

This section gives the basic background, primarily the
theory of Hannenhalli and Pevzner, on which we base
our algorithm. We start with some definitions for
unsigned permutations: Let s = (~1,. . . , TV) denote a
permutation of { 1, . . . , n}. Augment x to a permutation
on n + 2 vertices by adding tn = 0 and 7rfl+i = n + 1
to it. A pair (ri,ri+l), 0 5 i 5 n is called a gap.
Gaps are classified into two types. A gap (ri, 7rc+i) is a

breakpoint of r if and only if]wi - 7~i+r] > 1, otherwise
it is an adjacency of ?r. We denote by b(r) the number
of breakpoints in 7r.

A reversal, p(i, j), on a permutation a trans-
forms r to T’ = rp(i, j) = (Al, . . .,wi-r,rj,r?~j-1,
. . . , ri, Tj+l, . . .P rfl). We say that a reversal p(;, j)
is acting on the gaps (li-i,Ti) and (rj, rj+i).
The breakpoint graph B(r) of a permutation w =

CT1 ,.“, n,) is an edge-colored graph on n + 2 vertices

{no, Rl,' * ., %I+11 = {O,L. . . , n + 1). We join vertices
xi and rj by a black edge if (ti, rj) is a breakpoint in r
and by a gray edge if (i, j) is a breakpoint in 7r-l.

We define a one to one mapping u from the set of
signed permutations of order n into the set of unsigned
permutations of order 2n as follows. Let r be a signed
permutation. To obtain U(X) replace each positive
element t in ?r by 22 - 1,22 and negative element
-x by 22,2x - 1. For any signed permutation K, let
B(r) = B(u(r)). For th e rest of this paper we limit the
discussion to signed permutations. Note that in B(n)
every vertex is either isolated or incident with exactly
one black edge and one gray edge. Therefore, there is
a unique decomposition of B(r) into cycles. The edges
of each cycle are alternating gray and black. Call a
reversal p(i, j) such that i is odd and j even an even
reversal. The reversal p(2i + 1,2j) on U(T) mimics the
reversal p(; + 1, j) on X. Thus, sorting a by reversals is
equivalent to sorting the unsigned permutation U(T) by
even reversals. Henceforth we will consider the latter
problem and by reversal we will always mean an even
reversal. Let b(n) = b(u(?r)) and C(T) be the number of
cycles in B(7r).

For an arbitrary reversal p on a permutation ‘lr,
denote by Ab(?r, p) = b(ap) - b(?r) and Ac(n,p) =
c(rp) - c(r). When the reversal p and the permutation
A will be clear from the context we will abbreviate
Ab(?r, p) to Ab and Ac(?r, p) to AC. The following values
are taken by Ab and AC depending upon the types of
the gaps p(i, j) is acting on. They were first observed
by Bafna and Pevzner [2], and are straightforward to
verify:

1. Two adjacencies; AC = 1 and Ab = 2.
2. A breakpoint and an adjacency; AC = 0 and

Ab= 1.
3. Two breakpoints each belonging to a different

cycle; Ab = 0, AC = -1.
4. Two breakpoints of the same cycle C:

a. (ni,~rj+i) and (ri-i,wj) are gray edges; AC =
-1, Ab = -2.
b. Exactly one of (ri, rj+i) and (riTi-r, rj) is a gray
edge; AC = 0, Ab = -1.
c. Neither (ri, rj+l) nor (ri-i, rj) is a gray edge,
and when breaking C at i and j vertices i - 1 and

346

j + 1 end up in the same path; Ab = 0, AC = 0
d. Neither (ri,7~j+r) nor (ri-r,nj) is a gray edge,
and when breaking C at i and j vertices i - 1 and
j + 1 end up in different paths; Ab = 0, AC = 1

Call a reversal proper if Ab - AC = -1, i.e. it is
either of type 4a, 4b, or 4d. We say that a reversal p is
acting on a gray edge e if it is acting on the breakpoints
which correspond to the black edges incident with e.
A gray edge is oriented if a reversal acting on it is
proper, otherwise it is unoriented. A cycle is oriented if
it contains an oriented gray edge, and it is unoriented
otherwise.

Two intervals on the real line overlap if their
intersection is nonempty but neither properly contains
the other. A graph G is an interval overlap graph if
one can assign an interval to each vertex such that two
vertices are adjacent if and only if the corresponding
intervals overlap (see, e.g., [73). For a permutation x,
we associate with a gray edge (rri, rj) the interval [i, j].
The overlap graph of a permutation 7r, denoted OV(?r),
is the interval overlap graph of the gray edges of B(n).
Namely, the vertex set of OV(n) is the set of gray edges
in g(s), and two vertices are connected if the intervals
associated with their gray edges overlap. Throughout
this paper whenever we talk about the representation of
OV(rr) we refer to this canonical representation. Note
that all the endpoints of intervals in this representation
are distinct integers. We also identify a vertex in OV(rr)
with the edge it represents and with its interval in the
representation. Thus, the endpoints of a gray edge
are actually the endpoints of the interval representing
the corresponding vertex in OV(?r). A connected
component of OV(T) that contains an oriented edge is
called an oriented component, otherwise it is called an
unoriented component.

Let X be a set of gray edges in B(r).
Define min(X) = min{i ((7ri,rj) E X},
max(X) = max{j [(?~i, rrj) E X} and span(X) =
[min(X), max(X)]. Equivalently, one can look at the in-
terval overlap representation of OV(T) mentioned above
and define the span of a set of vertices X as the mini-
mum interval which contains all the intervals of vertices
in X.

The major object our algorithm will work with
is OV(?r) though for efficiency considerations we will
avoid generating it explicitly. In contrast, Pevzner and
Hannenhalli worked with the inlerzeaving graph H,,
whose vertices are the alternating cycles of B(r) and
two cycles Cr and Cr are connected by an edge in H,
iff there exists a gray edge er E Cr and a gray edge
e2 E C2 that overlap.

The following lemma and its corollary imply that
the partition imposed by the connected components of

OV(rr) on the set of gray edges is identical to the one
imposed by the connected components of H,:

LEMMA 2.1. Assume M is a set of gray edges in
B(n) that corresponds to a connected component in
OV(n) then min(M) is even and max(M) is odd.

Proof. Assume min(M) is odd, then rmin(M) + 1
and 7rrnincM) - 1 must both be in span(M) (i.e. there
exist Ii, 12 e ~pn(M) such that ~1~ = rmi”(M) + 1
and ?r19 = ?Tmin(M) - 1). Thus, rmin(M) is neither
the maximum nor the minimum element in the set
{ri 1 i E span(M)}. H ence, either the maximum
element or the minimum element in span(M) is rj for
some min(M) < j < max(M). By the definition of B(T)
there must be a gray edge (rj, 71) for some 1 $Z span(M),
contradicting the fact that M is a connected component
in OV(x). The proof that max(M) is odd is similar. m

COROLLARY 2.1. Every connected component of
OV(a) corresponds to the set of gray edges of a union
of cycles.

Proof. Assume, by contradiction, that C is a cycle
whose gray edges belong to at least two connected
components in OV(rr). Assume Ml and MS are two of
these components such that there are two consecutive
gray edges ei E Ml and er E Mz along C. Since
the spans of different connected components in OV(rr)
cannot overlap there are two different cases to consider.
1. spank C_ span(M1) (the case spank E
span(M2) is symmetric). Since el and es are in different
components they cannot overlap. Thus, either the right
endpoint of e2 is even and equals max(Mz) or the left
endpoint of ez is odd and equals min(Mz). In both cases
we obtained a contradiction to Lemma 2.1.
2. spank and spank are disjoint intervals.
W.1.o.g. assume that max(M1) < min(Mz). The right
endpoint of er is even and equals max(Mr), and that
contradicts Lemma 2.1. n

Let vi,, Til, f - *, ni* be the subsequence
of 0, tr, . . . , r,,, n + 1 consisting of those elements in-
cident with gray edges in B(T) that occur in unoriented
components of OV(?r). Order nil, ria,. . . , rrik on a cir-
cle CR such that rij follows Rijml for 2 5 j 2 k and ril
fOllOWS Tik. Let M be an unoriented connected com-
ponent in OV(rr). Let E(M) c {rriI, riz,. . .,T;~} be
the set of endpoints of the edges in M. An unoriented
component M is a hurdle if the elements of E(M) occur
consecutively on CR.

This definition of a hurdle is different from the one
given by Hannenhalli and Pevzner [9]. It is simpler in
the sense that minimal hurdles and the maximal one
do not have to be treated in a different way. Using
Corollary 2.1 above one can prove that the hurdles as
we defined them are identical to the ones defined by

347

Hannenhalli and Pevener. Let h(n) denote the number
of hurdles in a permutation ?r.

A hurdle is simple if when one deletes it from OV(?r)
no other unoriented component becomes a hurdle, and it
is a super hurdle otherwise. A fortress is a permutation
with an odd number of hurdles all of which are super
hurdles.

The following theorem was proved by Hannenhalli
and Pevaner .

THEOREM 2.1. [9] The minimum number of rever-
sals required to sort a permutation ?r is b(a)-c(?r)+h(?r)
unless rr is a fortress in which case exactly one addi-
tional reversal is necessary and suficient.

Denote by d(?r) the reversal distance of x. I.e.
d(r) = b(n)-c(n)+h(n)+l if 7r isafortress and d(n) =

w - c(r) + h(r) otherwise. Following the theory
developed in [9] it turns out that given a permutation
?r with h(a) > 0 one can perform t = rh(?r)/2]
reversals and transform ?r to a permutation 7~’ such
that h(rr’) = 0 and d(#) = d(?r) - t. Our method of
“clearing the hurdles” uses the same theory developed
by Hannenhalli and Pevzner. In Section 5 we describe
an efficient implementation of this process which uses
the implicit representation of the overlap graph OV(n).
Our implementation runs in O(n)-time assuming OV(?r)
is already partitioned into its connected components.
Recently, Berman and Hannenhalli [4] gave an O(ncr(n))
algorithm for computing the connected components
of an interval overlap graph given implicitly by its
representation. Using their algorithm we can clear the
hurdles from a permutation in O(ncu(n)) time.

The overlap graph of r’, OV(x’), has only oriented
components. In Section 4 we prove that in the neigh-
borhood of any oriented gray edge e there is an oriented
gray edge el (el could be the same as e) such that a
reversal acting on el does not create new hurdles. Call
such a reversal a safe reversal. We develop an efficient
algorithm to locate a safe reversal in a permutation with
at least one oriented gray edge. Our algorithm uses only
an implicit representation of the overlap graph and it
runs in O(n) time.

3 Representing the overlap graph

We assume that the input is given as a sequence of n
signed integers representing se. First the permutation
rr = u(#) is constructed as described in the previous
section. The second stage is to construct an interval
overlap representation of OV(a). By that we mean a
listing of the intervals corresponding to the gray edges
which are the vertices in OV(rr) ordered in increasing
left endpoint order.

One could construct the representation in linear
time as follows. Construct an array b representing 7-l.

For each i from 0 to 2n do: if lb(i) - b(i + 1) 1 > 1
then add the interval [b(i), b(i-t l)] (or [b(i+ l), b(i)], if
b(i) > b(i + 1)) to the representation.

4 Eliminating oriented components

First we introduce some notation. Recall that the
vertices of OV(?r) are the gray edges of B(A). In order to
avoid confusion we will usually refer to them as vertices
of OV(%). Hence a vertex of OV(r) is oriented if the
corresponding gray edge is oriented and it is unoriented
otherwise. Let e be a vertex in OV(n). Denote by
r(e) the reversal acting on the gray edge corresponding
to e. Denote by N(e) the set of neighbors of e in
OV(rr) including e itself. Denote by ON(e) the subset
of N(e) containing the oriented vertices and by UN(e)
the subset of N(e) containing the unoriented vertices.

In this section we prove that if an oriented vertex
e exists in OV(n) then there exists an oriented vertex
f E ON(e) such that r(f) is proper and safe. We also
describe an algorithm that finds a proper safe reversal in
a permutation that contains at least one oriented edge.

We start with the following useful observation:
OBSERVATION 4.1. Let e be a vertex in OV(w) and

let ‘IT’ = m(e). OV(7r’) could be obtained from OV(n)
by the following operations. 1) Complement the graph

induced by OV(A on N(e), and flip the orientation of)
every vertex in N(e). 2) If e is oriented in OV(r) then
remove it from OV(?r). 3) If there exists an oriented
edge e’ in OV(n) with r(e) = r(e’) then remove e’ from
OV(?r).

Note that if e is an oriented vertex in a component
M of OV(r), M-(e) may split into several components
in OV(rr’). Denote these components M:(e), . . . , ML(e),
where k 2 1. We will refer to M:(e) simply as Mi
whenever e is clear from the context.

Let C be a clique of oriented vertices in OV(s). We
say that C is happy if for every oriented vertex e $! C
and every vertex f E C such that (e, f) E E(OV(?r))
there exists an oriented vertex g @ C such that (g, e) E
E(OV(n)) and (g, f) $ E(OV(?r)). Our first theorem
claims that one of vertices in any happy clique defines
a safe proper reversal.

THEOREM 4.1. Let C be a happy clique and let e be
a vertex in C such that IUN(e’)l 5 IUN(e)I for every
e’ E C then the reversal r(e) is safe.

Proof. Let ?r’ = nr(e) and assume by contradiction
that M,‘(e) is unoriented for some 1 2 i 5 k. Clearly
N(e) fl M,! # 0.

Assume there exists y E N(e)flMi such that y g! C.
Clearly y must be oriented in OV(7r) and since C is
happy it must also have an oriented neighbor y’ such
that (y’, e) $Z E(OV(n)). Since y’ is not adjacent
to e in OV(n) it stays oriented and adjacent to y in

348

OV(r’) in contradiction with the assumption that M,! is
unoriented. Hence we may assume that N(e) n A!,! E C.

Let y E N(e) n Mi and let z E UN(e). Vertex
z is oriented in OV(?r’) and if it is connected to y in
OV(?r’) we obtain a contradiction. Hence, z and y are
not connected in OV(d), so they must be connected
in OV(?r). Hence we obtain that UN(e) E UN(y)
in OV(?r). Corollary 2.1 implies that component M/
cannot contain y alone. Thus y must have a neighbor
z in Mi. Since N(e) fl M,! C C vertex z is not adjacent
to e in OV(r). So we obtain that (z, y) E OV(r),
(z, e) @ OV(*), and z is unoriented in OV(n). Since we
already proved that UN(e) E UN(y) this implies that

UN(e) c UN(Y) in contradiction with the choice of e.
n

THEOREM 4.2. Let e be an oriented vertex in a
component A4 of OV(?r). There exists an oriented
vertex f E ON(e) such that M{(f), . . . , ML(f) are all
oriented in OV(r’), where r’ = XT-(~).

Proof. By Theorem 4.1 it suffices to show that there
exists a happy clique C in ON(e).

Let Ext(e) = {z E ON(e) 1 there exists y E
ON(z) such that y $! ON(e)}. I.e. Ezt(e) contains all
oriented neighbors of e which have oriented neighbors
outside of ON(e).
Case 1: Ext(e) = ON(e) - {e}. Set C = {e},
Case 2: Ext(e) c ON(e) - {e}. let Do = ON(e) -
Erl(e). For j > 0, while Di is not a clique let Kj be a
maximal clique in ti and define ti+l = oj - Kj. Let
Dk, k 2 0 be the final clique and set C = D”.

It is straightforward to verify that in each of the
two cases C is indeed a happy clique. m

Though OV(lr) h a.3 at most n + 1 vertices, it may
have a superlinear number of edges. Thus creating and
maintaining it while looking for reversals may be expen-
sive. In contrast, the interval overlap representation of
OV(n) has linear size. In the next section we describe
an algorithm that will find an oriented edge e such that
r(e) is safe given a representation of OV(n). The al-
gorithm first finds a happy clique C and then searches
for the vertex with maximum unoriented degree in C.
According to Theorem 4.1 that vertex defines a safe re-
versal. The time complexity of each stage is O(n).

4.1 Finding a happy clique In this section we
give an algorithm that locates a happy clique in OV(n).
Let el,..., ek be the oriented vertices in OV(r) in
increasing left endpoint order. Let L(e) and R(e) be
the left and right endpoints, respectively, of vertex e
in the realization of OV(n). The algorithm traverses
the oriented vertices in OV(n) according to this order.
After traversing el , . . . , e;, 1 5 i 5 k the algorithm
maintains a happy clique Ci in the subgraph of OV(r)

induced by these vertices. Assume iCi[= j, j 5 i and
let ei,, . . . , eij be the vertices in Ci where ii < i2 <
. . . < ij. The vertices of Ci are maintained in a linked
list ordered in increasing left endpoint order. If there
exists an interval that contains all the intervals in Ci
then the algorithm maintains one such interval ti. The
clique Ci and the vertex ti (if exists) satisfy the following
invariant.

INVARIANT 4.1.
1) Every vertex et 6 Ci, 1 < i, such that L(eil) < L(el)
must be adjacent to ti, i.e., R(el) > R(ti).
2) Every vertex er # Ci, L(er) < L(ei,) that is adjacent
to a vertex in Ci is either adjacent to an interval ep such
that R(e,) < L(ei,) or adjacent to ti.

The fact that Ci is happy in the subgraph induced

by el,. . . , ei follows from this invariant. We initialize
the algorithm by setting (7’1 = {ei}. Initially, tl is
not defined. Let the current interval be ei+l. If
R(eij) < L(ei+r) then Ci is guaranteed to be happy
in OV(r) since all remaining oriented vertices are not
adjacent to Ci& Hence the algorithm stops and returns
Ci as the answer.

We now assume that R(eij) > L(ei+l) and show
how to obtain Ci+l and ti+l. We have to consider the
following cases.
Case 1. The interval ti is defined and R(ea+l) > R(ti).
Continue with Ci+l := Ci and ti+l := ti.
Case 2. The interval ti is not defined or R(ed+l) < R(ti).
a) R(ei+l> > R(eij) and L(ei+l) < R(ei,). Ci+i is
ztained by adding ei+i to Ci and ti+l := ti.

b) R(ei+l) > R(eij) and L(ei+l) > R(ei,). The clique
G+1 consists of ei+l alone and ti+l := ti.
C) R(ei+l) < R(eij). AS in the previous case C;+i =
Fi+i}. In this case ti+l is set to eij, the last interval in
ct.

The following theorem proves that the algorithm we
described produces a happy clique.

THEOREM 4.3. Let Cl be the current clique when
the algorithm stops. Then Cl is a happy clique in
OV(7r).

Proof. A straightforward induction on the number
of oriented vertices traversed by the algorithm proves
that Cl and tl satisfy Invariant 4.1.

The algorithm stops either when R(ei,) < L(el+l)
or when I= k where k is the number of oriented vertices.
In either case since Cl is happy in the subgraph induced
by ei,... , el it must be happy in OV(n). n

The running time of the algorithm is proportional
to the number of oriented vertices traversed since a
constant amount of work is performed per such vertex.

4.2 Searching the happy clique

349

After locating a happy clique C in OV(a) we need
to search it for a vertex with a maximum number
of unoriented neighbors. In this section we give an
algorithm that performs this task.

Let ei,...,ei be the intervals in C ordered in
increasing left endpoint order. Clearly, L(1) < L(2) <
. . . < L(j) < R(1) < R(2) < . . . < R(j). Thus
the endpoints of the j vertices in C partition the line
into 2j + 1 disjoint intervals 10,. . . , Izj, where 10 =
(-oO,L(l)], 11 = (L(I),L(I + l)] for 1 5 I < j, Ij =
(L(j), R(l)], It = (R(I - j), R(1 - j + l)] for j < I < 2j
and Izj = (R(j), ao). The algorithm consists of the
following three stages.
Stage 1: Let e be an unoriented vertex that overlaps
with the interval [L(l),R(j)]. Mark each of e’s end-
points with the index of the interval that contains it.
Stage 2: Let o be an array of j counters each correspond-
ing to a vertex in C. The intention is to assign values to
o such that the sum Cf=, o[i] is the unoriented degree
of the vertex er E C. The counters are initialized to
zero. For each unoriented vertex e that overlaps with
the interval [L(l), R(j)] we change at most four of the
counters as follows. Let 11 and 1,. be the intervals in
which L(e) and R(e occur respectively. We may as-)
sume 1 < r as otherwise e is not adjacent to any vertex
in C and we can ignore it, We continue according to
one of the following cases.
Case 1: T 5 j. All the vertices from er+l to e, are ad-
jacent to e hence we increment o[l + l] and decrement
o[r+ l] (ifr <j).
Case 2: j 5 1. All the vertices from el-j+i to e,-j are
adjacent to e hence we increment o[/ - j + l] and decre-
ment o[p - j].
Case3:1< jandj<r. Letm=min{l,r-j}. If
m > 0 then all the vertices from el to e, are adjacent
to e hence we increment o[l] and decrement o[m + 11.
Similarly let M = max{l, r - j}. If M < j then the
vertices from el+i to ej intersect e hence we increment
the counter o[Z + 11.
Stage 3: Compute f = max,{‘& o[i](l 2 1 s j}, Re-
turn ef.

The following theorem summarizes the result of this
section. We omit, the proof which is straightforward.

THEOREM 4.4. Given a clique C, the vertex ef E C
computed by the algorithm above has maximum unori-
ented degree among the vertices in C.

The complexity of the algorithm is proportional to
the size of C plus the number of unoriented vertices in
OV(?r). That is O(n).

5 Clearing the hurdles

In case there are unoriented components in OV(T)
there exists a sequence ~1, . . . rt of t reversals that
transform ?r into 7r’ such that d(r’) = d(?r) - t, where
t = rh(?r)/2]. In this section we summarize the
characterization given by Hannenhalli and Pevzner for
these t reversals and outline how to find them using our
implicit representation of OV(?r).

We will use the following definitions. A reversal
merges hurdles Hi and H2 if it acts on two breakpoints
one incident with a gray edge in HI and the other
incident with a gray edge in HZ. Recall the circle CR
defined in Section 2 of the endpoints of the edges in the
unoriented components of OV(r) is ordered consistently
with their order in A. Two hurdles HI and Hz are

consecutive if their sets of endpoints E(HI) and E(H2)

occur consecutively on CR. I.e. there is no hurdle H
such that E(H) separates E(Hi) and E(H2) on CR.

The following lemmas were essentially proved by
Hannenhalli and Pevzner though stated differently in
their paper.

LEMMA 5.1. ([9]) Let T be a permutation with an
even number, say 2k, of hurdles. Any sequence of

k-l reversals each of which merges two non-consecutive
hurdles followed by a reversal merging the remaining
two hurdles will transform T into w’ such that d(n’) =
d(n) - k and ~8 has only oriented components.

LEMMA 5.2. ([9]) Let ?r be a permutation with an
odd number, say 2k+l, of hurdles. If at least one hurdle
H is simple then a reversal acting on two breakpoints
incident with edges in H transforms 7~ into T’ with 2k

hurdles such that d(?r’) = d(w) - 1. If x is a fortress
then a sequence of k - 1 reversals merging pairs of non-
consecutive hurdles followed by two additional merges
of pairs of consecutive hurdles (one merges two original
hurdles and the next merges a hurdle created by the first

and the last original hurdle) will transform IT into n’
such that d(a’) = d(n)-(k+ 1) and T’ has only oriented
components.

We now outline how to turn these lemmas into an
algorithm that finds a particular sequence of reversals

Tt with the properties described above. First

z%‘j . T is decomposed into connected components as
described in [4]. 0 ne then has to identify those un-
oriented components that are hurdles. This task could
be done by traversing the endpoints of the circle CR
counting the number of elements in each run of consec-
utive endpoints belonging to the same component. If
a run contains all endpoints of a particular unoriented
component M then M is an hurdle.

In a similar fashion one could check for each hurdle
whether it is a simple hurdle or a super hurdle. While

350

traversing the cycle a list of the hurdles in the order they
occur on CR should be created. At the next stage this
list would be used to identify correct hurdles to merge.

We assume that given an endpoint one can locate
its connected component in constant time. It is easy to
verify that the data could be maintained such that it is
possible to do so.

THEOREM 5.1. Given OV(?r) decomposed into its
connected components, the algorithm outlined above
finds t reversals such that when we apply them to ?r we
obtain r’ which is hurdle-free and d(#) = d(a) - t. It

could be implemented to run in O(n)-time.

Proof. The correctness follows from Lemma 5.1
and 5.2. The time bound is achieved if we always merge
hurdles that are separated by a single hurdle. If the ith
merge merged hurdles H1 and Hz that are separated
by H then H should be merged in the i + 1st merge.
Carrying out the merges that way guarantees that the
span of each hurdle H overlaps at most two merging
reversals the second of which eliminates H. n

6 Summary

Figure 1 gives a schematic description of the algorithm.

algorithm SIGNED REVERSALS(X);
/* A is a signed permutation */
1. Compute the connected components of OV(K).
2. Clear the hurdles.
3. while x is not sorted do :
/* iteration */
begin

a. find a happy clique C in OV(A).
b. find a vertex et E C with maximum unoriented
degree, and perform a safe reversal on ef;
c. update A and the representation of Ok’(*).

end
4. output the sequence of reversals.

Figure 1: An algorithm for sorting signed permutations

THEOREM 6.1.
Algorithm SIGNED REVERSALS finds the reversal dis-
tance r in O(ncr(n) + r x n) time, and in particular in
O(n’) time.

Proof. The correctness of the algorithm follows
from Theorem 2.1, Theorem 4.1 and Lemmas 5.1 and
5.2.

Step 1 takes O(ncu(n)) by the algorithm of Berman
and Hannenhalli [4]. Step 2 takes O(n) time by
Theorem 5.1. Step 3 takes O(n) time per reversal, by
the discussion in Section 4. n

It is an intriguing open question whether a faster
algorithm for sorting signed permutations by reversals
exists. It certainly might be the case that one can find
an optimal sequence of reversals much faster. To date,
no nontrivial lower bound is known for this problem.

Acknowledgments

We thank Sridhar Hannenhalli, Pave1 Pevzner and Izik
Pe’er for their comments on a preliminary version of this
paper.

References

[l] W. Ackermann. Zum hilbertshen aufbau der reelen
zahlen. Math. Ann., 99:118-133, 1928.

[2] V. Bafna and P. Pevzner. Genome rearrangements
and sorting by reversals. In Proc. 94th IEEE Symp.
of the Foundations of Computer Science, pages 148-
157. IEEE Computer Society Press, 1994. To appear
in SIAM J. of Computing.

[3] V. Bafna and P. Pevzner. Sorting permutations by
transpositions. In Proceedings of the 6th Annual Sym-
posium on Discrete Algorithms, pages 614-623. ACM
Press, Jan. 1995.

[4] P. Berman and S. Hannenhalli. Fast sorting by reversal.
In Proc. Combinatorial Pattern Matching (CPM) 1996,
1996.

[5] A. Caprara. Sorting by reversals is difficult. Technical
report, DEIS, University of Bologna, April 1996.

[6] T. Dobzhansky and A. H. Sturtevant. Inversions in the
chromosomes of drosophila pseudoobscura. Genetics,
23~28-64, 1938.

[7] M. C. Golumbic. Algorithmic Graph Theory and Per-
fect Graphs. Academic Press, New York, 1980.

[8] S. Hannenhalli. Polynomial algorithm for computing
translocation distance between genomes. Technical
Report CSE95-005, Pennsylvania State University,
1995.

[9] S. Hannenhalli and P. Pevzner. Transforming cabbage
into turnip (polynomial algorithm for sorting signed
permutations by reversals). In Proceeding of the
Twenty-Seventh Annual ACM Symposium on Theory
of Computing, pages 178-189, Las Vegas, Nevada, 29
May-l June 1995.

[lo] S. Hannenhalli and P. Pevzner. Transforming men
into mice (polynomial algorithm for genomic distance
problems. In Proc. IEEE Symp. of the Foundations of
Computer Science, 1995.

[ll] S. B. Hoot and J. D. Palmer. Structural rearrange-
ments, including parallel inversions, within the chloro-
plast genome of Anemone and related genera. J. Molec-
ular Evooution, 38:274-281, 1994.

[12] J. Kececioglu and R. Ravi. Physical mapping of chro-
mosomes using unique probes. In Proc. sixth annual
ACM-SIAM Symp. on Discrete Algorithms [SODA 95),
pages 604-613. ACM Press, 1995.

[13] J. Kececioglu and D. Sankoff. Efficient bounds for
oriented chromosome inversion distance. In Proc. of

351

5th Ann. Symp. on Combinatorial Pattern Matching,
pages 307-325. Springer, 1994. LNCS 807.

[14] J. Kececioglu and D. Sankoff. Exact and approximation
algorithms for sorting by reversals, with application
to genome rearrangement. Algorithmica, 13(1/2):180-
210, Jan. 1995.

[15] J. D. Palmer and L. A. Herbon. Tricircular mitochon-
drial genomes of Brsssica and Raphanus: reversal of
repeat configurations by inversion. Nucleic Acids Re-
search, 14:9755-9764, 1986.

[16] J. D. Palmer and L. A. Herbon. Unicircular structure
of the Brassica hirta mitochondrial genome. Current
Genetics, 11:565-570, 1987.

[17] J. D. Palmer and L. A. Herbon. Plant mitochondrial
DNA evolves rapidly in structure, but slowly in se-
quence. J. Molecular Evolution, 28:87-97, 1988.

[18] J. D. Palmer, B. Osorio, and W. Thompson. Evolu-
tionalry significance fo inversions in legume chorloplast
DNAs. Current Genetics, 14:65-74, 1988.

[19] D. Sankoff. Edit distance for genome comparison based
on non-local operations. Lecture Notes in Computer
Science, 644:121-135, 1992.

[20] D. Sankoff, R. Cedergren, and Y. Abel. Genomic
divergence through gene rearrangement. Methods in
Enzymology, 183:428-438, 1990.

[21] R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. J. ACM, 22(2):215-225, 1979.

