
Faster and Simpler Algorithms for Multicommodity Flow and other

Fractional Packing Problems

Naveen Garg

�

Jochen K�onemann

y

Abstract

This paper considers the problem of designing fast, approximate, combinatorial algorithms for

multicommodity
ows and other fractional packing problems. We provide a di�erent approach

to these problems which yields faster and much simpler algorithms. In particular we provide the

�rst polynomial-time, combinatorial approximation algorithm for the fractional packing problem;

in fact the running time of our algorithm is strongly polynomial. Our approach also allows us

to substitute shortest path computations for min-cost
ow computations in computing maximum

concurrent
ow and min-cost multicommodity
ow; this yields much faster algorithms when the

number of commodities is large.

�

Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. Supported by the EU ESPRIT

LTR Project N. 20244 (ALCOM-IT).

y

Universit�at des Saarlandes, Im Stadtwald, 66123 Saarbr�ucken, Germany.

0

1 Introduction

Consider the problem of computing a maximum s-t
ow in a graph with unit edge capacities. While

there are many di�erent algorithms known for this problem we discuss one which views the problem

purely as one of packing s-t paths so that constraints imposed by edge-capacities are not violated. The

algorithm associates a length with each edge and at any step it routes a unit
ow along the shortest

s-t path. It then multiplies the length of every edge on this path by 1+ � for a �xed �. Thus the longer

an edge is the more is the
ow through it. Since we always choose the shortest s-t path to route
ow

along, we essentially try to balance the
ow on all edges in the graph. One can argue that, if, after

su�ciently many steps, M is the maximum
ow through an edge, then the
ow computed is almost

M times the maximum s-t
ow. Therefore scaling the
ow by M gives a feasible
ow which is almost

maximum.

Note that the length of an edge at any step is exponential in the total
ow going through the edge.

Such a length function was �rst proposed by Shahrokhi and Matula [12] who used it to compute the

throughput of a given multicommodity
ow instance. While this problem (and all other problems

considered in this paper) can be formulated as a linear program and solved to optimality using fast

matrix multiplication [15], [12] were mainly interested in providing fast, possibly approximate, com-

binatorial algorithms. Their procedure, which applied only to the case of uniform edge capacities,

computed a (1 + !)-approximation to the maximum throughput in time polynomial in !

�1

. The key

idea of their procedure, which was adopted in a lot of subsequent work, was to compute an initial
ow

by disregarding edge capacities and then to reroute this, iteratively, along short paths so as to reduce

the maximum congestion on any edge.

The running time of [12] was improved signi�cantly by Klein et.al. [8]. It was then extended and

re�ned to the case of arbitrary edge capacities by Leighton et.al. [9], Goldberg [4] and Radzik [11] to

obtain better running times; see Table 1 for the current best bound.

Plotkin, Shmoys and Tardos [10] and Grigoriadis and Khachiyan [6] observed that a similar technique

could be applied to solve any fractional packing or covering problem. Their approach, for packing

problems, starts with an infeasible solution. The amount by which a packing constraint is violated is

captured by a variable which is exponential in the extent of this violation. At any step the packing is

modi�ed by a �xed amount in a direction determined by these variables. Hence, the running time of

the procedure depends upon the maximum extent to which any constraint could be violated; this is

referred to as the width of the problem [10]. The running time of their algorithm for packing problems

being only pseudo-polynomial, [10] suggest di�erent ways of reducing the width of the problem.

In a signi�cant departure from this line of research and motivated by ideas from randomized rounding,

Young [16] proposed an oblivious rounding approach to packing problems. Young's approach has the

essential ingredient of previous approaches | a length function which measures, and is exponential

in, the extent to which each constraint is violated by a given solution. However, [16] builds the

solution from scratch and at each step adds to the packing a variable which violates only such packing

constraints that are not already too violated. In particular, for multicommodity
ow, it implies a

procedure which does not involve rerouting
ow (the
ow is only scaled at the end) and which for the

case of maximum s-t
ow reduces to the algorithm discussed at the beginning of this section.

Our Contributions. In this paper we provide a uni�ed framework for a host of multicommodity
ow

and packing problems which yields signi�cantly simpler and faster algorithms than previously known.

Our approach is similar to Young's approach for packing problems. However, we develop a new and

simple combinatorial analysis which has the added
exibility that it allows us to make the greatest

1

possible advance at each step. Thus for the setting of maximum s-t
ows with integral edge capacities,

Young's procedure routes a unit
ow at each step while our procedure would route enough
ow so as to

saturate the minimum capacity edge on the shortest s-t path. This simple modi�cation is surprisingly

powerful and delivers better running times and simpler proofs. In particular, it lets us argue that the

contribution of a constraint to the running time of the procedure cannot exceed a certain bound which

is independent of the width. This yields the �rst strongly-polynomial combinatorial approximation

algorithm for the fractional packing problem (Section 3).

Our approach yields a new, very natural, algorithm for maximum concurrent
ow (Section 5) which

extends in a straightforward manner to min-cost multicommodity
ows (Section 6). Both these algo-

rithms use a min-cost
ow computation as a subroutine as do all earlier algorithms. Contradicting

popular belief that using min-cost
ow as a subroutine is better, we provide algorithms for these two

problems which use shortest path computations as a subroutine and are faster than previous algo-

rithms by at least a factor min

n

n;

nk log k

m

o

where k;m; n are the number of commodities, edges and

vertices respectively.

Table 1 summarizes our results. T

sp

and T

mcf

are the times to compute single-source shortest paths

and single-commodity min-cost
ow in a graph with positive edge lengths and costs while T

orc

is the

time taken for each call to an oracle as in [10]. All our algorithms are deterministic and compute

a (1 + !)-approximation to the optimum solution. For brevity we de�ne C

1

def

= d

1

�

1

log

1+�

1

me where

(1� �

1

)

�2

= 1 + ! and C

2

def

= d

1

�

2

log

1+�

2

m

1��

2

e where (1� �

2

)

�3

= 1 + !.

Problem Previous Best Our running time Improvement

Max. multicomm. O(!

�3

m

2

logm) [13] mC

1

(kT

sp

) !

�1

ow

Fractional Packing Pseudo-polynomial mC

1

T

orc

Strongly poly.

running time [10, 16] running time

Spreading metrics O(!

�3

nm lognT

sp

) [3] mC

1

(nT

sp

) !

�1

Maximum O(k(!

�2

+ log k) lognT

mcf

) (2k log k)C

2

T

mcf

In constants

concurrent
ow [11, 9] (2k log k +m)C

2

T

sp

For k � m=n

Max. cost-bounded O(k(!

�2

+ log k) logn log(!

�1

k) (2k log k + 1)C

2

T

mcf

log(!

�1

k)

concurrent
ow T

mcf

) [5] (2k log k +m+ 1)C

2

T

sp

For k � m=n

Table 1: A summary of our results

Note that in the running time of our algorithms for concurrent
ow problems we can replace C

2

log k

by O(logn(!

�2

+ log k)) using a trick from earlier papers; we remark on this in Section 5.

2 Maximum multicommodity
ow

Given a graph G = (V;E) with edge capacities c : E ! R

+

and k pairs of terminals (s

i

; t

i

), with one

commodity associated with each pair, we want to �nd a multicommodity
ow such that the sum of

the
ows of all commodities is maximized. The dual of the maximum multicommodity
ow problem

is an assignment of lengths l : E ! R

+

to the edges such that D(l)

def

=

P

e

l(e)c(e) is minimized. This

is subject to the constraint that the shortest path between any pair s

i

; t

i

under the length function

2

l, which we denote by dist

i

(l), is at least one. Let �(l)

def

= min

i

dist

i

(l) be the minimum length path

between any pair of terminals. Then the dual problem is equivalent to �nding a length function

l : E ! R

+

such that

D(l)

�(l)

is minimized. Let �

def

= min

l

D(l)=�(l).

The algorithm proceeds in iterations. Let l

i�1

be the length function at the beginning of the i

th

iteration and f

i�1

be the total
ow routed in iterations 1 : : : i� 1. Let P be a path of length �(l

i�1

)

between a pair of terminals and let c be the capacity of the minimum capacity edge on P . In the i

th

iteration we route c units of
ow along P . Thus f

i

= f

i�1

+ c. The function l

i

di�ers from l

i�1

only

in the lengths of the edges along P ; these are modi�ed as l

i

(e) = l

i�1

(e)(1 + �c=c(e)), where � is a

constant to be chosen later.

Initially every edge e has length �, ie., l

0

(e) = � for some constant � to be chosen later. For brevity

we denote �(l

i

); D(l

i

) by �(i); D(i) respectively. The procedure stops after t iterations where t is the

smallest number such that �(t) � 1.

2.1 Analysis

For every iteration i � 1

D(i) =

X

e

l

i

(e)c(e) =

X

e

l

i�1

(e)c(e) + �

X

e2P

l

i�1

(e)c = D(i� 1) + �(f

i

� f

i�1

)�(i� 1)

which implies that

D(i) = D(0) + �

i

X

j=1

(f

j

� f

j�1

)�(j � 1) (1)

Consider the length function l

i

� l

0

. Note that D(l

i

� l

0

) = D(i)� D(0) and �(l

i

� l

0

) � �(i) � �L

where L is the longest path along which
ow is routed. Hence

� �

D(l

i

� l

0

)

�(l

i

� l

0

)

�

D(i)�D(0)

�(i)� �L

Substituting this bound on D(i)�D(0) in equation 1 we get

�(i) � �L+

�

�

i

X

j=1

(f

j

� f

j�1

)�(j � 1)

which implies that

�(i) � �Le

�f

i

=�

By our stopping condition

1 � �(t) � �Le

�f

t

=�

and hence

�

f

t

�

�

ln(�L)

�1

(2)

Claim 2.1 There is a feasible
ow of value

f

t

ln

1+�

1+�

�

3

Proof: Consider an edge e. For every c(e) units of
ow routed through e the length of e increases by

a factor of at least 1+ �. The last time its length was increased, e was on a path of length strictly less

than 1. Since every increase in edge-length is by a factor of at most 1+ �, l

t

(e) < 1+ �. Since l

0

(e) = �

it follows that the total
ow through e is at most c(e) ln

1+�

1+�

�

. Scaling the
ow, f

t

, by ln

1+�

1+�

�

then

gives a feasible
ow of claimed value.

Thus the ratio of the values of the dual and the primal solutions,
, is

�

f

t

ln

1+�

1+�

�

. By substituting

the bound on �=f

t

from (2) we obtain

 �

� ln

1+�

1+�

�

ln(�L)

�1

=

�

ln(1 + �)

ln

1+�

�

ln(�L)

�1

The ratio

ln(1+�)�

�1

ln(�L)

�1

equals (1� �)

�1

for � = (1+ �)((1+ �)L)

�1=�

. Hence with this choice of � we have

 �

�

(1� �) ln(1 + �)

�

�

(1� �)(�� �

2

=2)

� (1� �)

�2

Since this quantity should be no more than our approximation ratio (1+w) we choose � appropriately.

2.2 Running time

In the i

th

iteration we increase the length of the minimum capacity edge along P by a factor of 1 + �.

Since for any edge e, l

0

(e) = � and l

t

(e) < 1 + � and there are m edges in all, the total number of

iterations is at most m ln

1+�

1+�

�

= m ln

1+�

((1 + �)L)

1=�

= m(1 + ln

1+�

L)=�.

3 Packing LP

A packing LP is a linear program of the kind max

n

c

T

xjAx � b; x � 0

o

where A; b and c are (m �

n); (m� 1) and (n� 1) matrices all of whose entries are positive. We also assume that for all i; j, the

(i; j)

th

entry of A, A(i; j), is at most b(i). The dual of this LP is min

n

b

T

yjA

T

y � c; y � 0

o

.

We view the rows of A as edges and the columns as paths. b(i) is the capacity of edge i and every

unit of
ow routed along the j

th

column consumes A(i; j) units of capacity of edge i while providing

a bene�t of c(j) units.

The dual variable y(i) corresponds to the length of edge i. De�ne the length of a column j with

respect to the dual variables y as length

y

(j)

def

=

P

i

A(i; j)y(i)=c(j). Finding a shortest path now

corresponds to �nding a column whose length is minimum; de�ne �(y)

def

= min

j

length

y

(j). Also

de�ne D(y)

def

= b

T

y. Then the dual program is equivalent to �nding a variable assignment y such that

D(y)=�(y) is minimized.

Once again our procedure will be iterative. Let y

k�1

be the dual variables and f

k�1

the value of

the primal solution at the beginning of the k

th

iteration. Let q be the minimum length column of

A ie., �(y

k�1

) = length

y

k�1

(q) | this corresponds to the path along which we route
ow in this

iteration. The minimum capacity edge is the row for which b(i)=A(i; q) is minimum; let this be row

p. Thus in this iteration we will increase the primal variable x(q) by an amount b(p)=A(p; q) so that

f

k

= f

k�1

+ c(q)b(p)=A(p; q). The dual variables are modi�ed as

y

k

(i) = y

k�1

(i)(1 + �

b(p)=A(p; q)

b(i)=A(i; q)

)

4

where � is a constant to be chosen later.

The initial values of the dual variables are given by y

0

(i) = �=b(i), for some constant � to be chosen

later. For brevity we denote �(y

k

); D(y

k

) by �(k); D(k) respectively. Thus D(0) = m�. The procedure

stops at the �rst iteration t such that D(t) � 1.

3.1 Analysis

The analysis here proceeds almost exactly as in the case of maximum multicommodity
ow. For every

iteration k � 1

D(k) =

X

i

b(i)y

k

(i) =

X

i

b(i)y

k�1

(i) + �

b(p)

A(p; q)

X

i

A(i; q)y

k�1

(i) = D(k � 1) + �(f

k

� f

k�1

)�(k � 1)

which, as before, implies that

D(k) = D(0) + �

k

X

l=1

(f

l

� f

l�1

)�(l� 1)

Let �

def

= min

y

D(y)=�(y). Then � � D(l� 1)=�(l� 1) and so

D(k) � m� +

�

�

k

X

l=1

(f

l

� f

l�1

)D(l� 1)

which implies that

D(k) � m�e

�f

k

=�

By our stopping condition

1 � D(t) � m�e

�f

t

=�

and hence

�

f

t

�

�

ln(m�)

�1

Claim 3.1 There is a feasible solution to the packing LP of value

f

t

ln

1+�

1+�

�

Proof: The primal solution x we constructed has value f

t

. However, it may not be feasible since some

packing constraint (

P

j

A(i; j)x(j))=b(i) � 1 may be violated. When we pick column q and increase

x(q) by b(p)=A(p; q) we increase the left-hand-side (LHS) of the i

th

constraint by

A(i;q)b(p)

b(i)A(p;q)

(= z say).

Simultaneously we increase the dual variable y(i) by a multiplicative factor of 1+�z. By our de�nition

of p it follows that z � 1 and hence increasing the LHS of the i

th

constraint by 1 causes an increase in

y(i) by a multiplicative factor of at least 1 + �. Note that y

t�1

(i) < 1=b(i) and so y

t

(i) < (1+ �)=b(i).

Since y

0

(i) = �=b(i) it follows that the �nal value of the LHS of the i

th

constraint is no more than

ln

1+�

1+�

�

. Since this is true for every i, scaling the primal solution by ln

1+�

1+�

�

gives a feasible solution

of value as in the claim.

The rest of the analysis is exactly the same as in Section 2.1 with m replacing L. Thus � = (1 +

�)((1 + �)m)

�1=�

.

5

3.2 Running time

In the k

th

iteration we increase the dual variable of the \minimum capacity" row by a factor of (1+ �).

Since for any row i, y

0

(i) = �=b(i) and y

t

(i) < (1 + �)=b(i) and there are m rows in all, the total

number of iterations is at most m ln

1+�

1+�

�

= m ln

1+�

((1 + �)m)

1=�

= m(1 + ln

1+�

m)=�.

4 Spreading metrics

Given a graph G = (V;E) with edge costs c : E ! R

+

, a spreading metric is an assignment of lengths

to the edges, l : E ! R

+

, so as to minimize

P

e

l(e)c(e) subject to the constraint that for any set

S � V and vertex r 2 S,

P

v2S

dist

r;v

(l) � f(S) where dist

r;v

(l) is the distance from r to v under

the length function l and f() is a function only of the size of S. For the linear arrangement problem

f(S) = (jSj � 1)(jSj � 3)=4 [2] while for the problem of computing a �-separator

1

f(S) is de�ned as

jSj � �jV j [3].

Since the length function l is positive, the shortest paths from r to the other vertices in S forms a

tree | the shortest path tree rooted at r. Thus the above constraints can be equivalently stated as:

for any tree T , for any subset S of vertices in T and for any vertex r 2 S

X

v2S

dist

r;v

(l; T)� f(S)

where dist

r;v

(l; T) denotes the distance from r to v in tree T under the length function l.

Let u

e

(T; S; r) be the number of vertices of S in the subtree below edge e when T is rooted at r. Then

the above constraint can be rewritten again to obtain the LP

minimize

P

e

l(e)c(e)

subject to

P

e2T

l(e)u

e

(T; S; r) � f(S) 8T; 8S � T; 8r 2 S

The primal program, which is a packing LP, has a non-negative variable x(T; S; r) for every tree T ,

subset S � T and vertex r 2 S and is as follows

maximize

P

T;S;r

x(T; S; r)f(S)

subject to

P

T :e2T

x(T; S; r)u

e

(T; S; r) � c(e) 8e 2 E

Note that the packing LP has exponentially many variables. However, the (1 + w)-approximation

to the optimum fractional solution, in the previous section, only needed an oracle that returned

the \most violated constraint" of the dual LP. In this setting, this oracle is a subroutine, which,

given a length function l �nds a triple (T; S; r) for which (

P

e2T

l(e)u

e

(T; S; r))=f(S), or equivalently

(

P

v2S

dist

r;v

(l; T))=f(S), is minimum.

Our subroutine will try out all n choices for vertex r and for each of these it will determine the best

choice of T; S. For a given r and every subset S, the expression

P

v2S

dist

r;v

(l; T) is minimized when

1

a minimum cost set of edges whose removal disconnects the graph into connected components each of which at most

�jV j vertices.

6

T is the tree of shortest paths from r and under the length function l. Therefore, for a given r, our

choice of T will be the shortest path tree rooted at r. Since f(S) depends only on jSj, given that

jSj = k, the ratio (

P

v2S

dist

r;v

(l; T))=f(S) is minimized when S is the set of k nearest vertices to r.

Amongst the n di�erent choices for k, and hence for S, we choose the set for which the above ratio is

minimum.

The subroutine thus requires n single-source shortest path computations. The running time of the

procedure is obtained by noting that the subroutine is invoked once in each of the m(1 + ln

1+�

m)=�

iterations.

5 Maximum concurrent
ow

Once again we are given a graph with edge capacities c : E ! R

+

and k commodities with s

i

; t

i

being

the source, sink for commodity i. Now each commodity has a demand d(i) associated with it and

we want to �nd the largest � such that there is a multicommodity
ow which routes �d(i) units of

commodity i.

Let min cost

j

(l) be the minimum cost of shipping d(j) units of
ow from s

j

to t

j

where l(e) is the

cost of shipping one unit of
ow along edge e and the total
ow through e is at most c(e). Further let

�(l)

def

=

P

k

j=1

min cost

j

(l). The dual problem now is an assignment of lengths to the edges, l : E ! R

+

,

such that D(l)=�(l) is minimized. Let � be this minimum. For now we assume that � � 1 and shall

remove this assumption later.

The algorithm now proceeds in phases; each phase is composed of k iterations. Consider the j

th

iteration of the i

th

phase and let l

i;j�1

be the length function before this iteration. In this iteration

we route d(j) units of commodity j along the paths given by min cost

j

(l

i;j�1

). Let f

i;j

(e) be the
ow

through edge e. The length function is modi�ed as l

i;j

(e) = l

i;j�1

(e)(1 + �f

i;j

(e)=c(e)). Then

D(l

i;j

) =

X

e

l

i;j

(e)c(e) = D(l

i;j�1

) + �

X

e

l

i;j�1

(e)f

i;j

(e) = D(l

i;j�1

) + � � min cost

j

(l

i;j�1

)

The lengths at the start of the (i+ 1)

th

phase are the same as that at the end of the i

th

phase, ie.,

l

i+1;0

= l

i;k

. Initially, for any edge e, l

1;0

(e) = �=c(e) = l

0;k

(e).

5.1 The Analysis

We shall be interested in the values of the functions D(); �() only for the length functions l

i;k

; i � 0.

For brevity we denote D(l

i;k

); �(l

i;k

) by D(i); �(i) respectively. With these new notations we have for

i � 1

D(i) = D(l

i;k

) = D(l

i;0

) + �

k

X

j=1

min cost

j

(l

i;j�1

)

Since the edge-lengths are monotonically increasing min cost

j

(l

i;j�1

) � min cost

j

(l

i;k

) and hence

D(i) � D(l

i;0

) + �

k

X

j=1

min cost

j

(l

i;k

) = D(i� 1) + ��(i)

Since

D(i)

�(i)

� � we have

D(i) �

D(i� 1)

1� �=�

7

Since D(0) = m� we have for i � 1

D(i) �

m�

(1� �=�)

i

=

m�

1� �=�

(1 +

�

� � �

)

i�1

�

m�

1� �=�

e

�(i�1)

���

�

m�

1� �

e

�(i�1)

�(1��)

where the last inequality uses our assumption that � � 1.

The procedure stops at the �rst phase t for which D(t) � 1. Therefore,

1 � D(t) �

m�

1� �

e

�(t�1)

�(1��)

which implies

�

t � 1

�

�

(1� �) ln

1��

m�

(3)

In the �rst t � 1 phases, for every commodity j, we have routed (t� 1)d(j) units. However, this
ow

may violate capacity constraints.

Claim 5.1 � �

t�1

ln

1+�

1=�

.

Proof: Consider an edge e. For every c(e) units of
ow routed through e, we increase its length by at

least a factor 1+ �. Initially, its length is �=c(e) and after t� 1 phases, since D(t� 1) < 1, the length

of e satis�es l

t�1;k

(e) < 1=c(e). Therefore the total amount of
ow through e in the �rst t� 1 phases

is at most ln

1+�

1=c(e)

�=c(e)

= ln

1+�

1=� times its capacity. Scaling the
ow by ln

1+�

1=� implies the claim.

Thus the ratio of the values of the dual and primal solutions,
, is

�

t�1

ln

1+�

1=�. Substituting the

bound on �=(t� 1) from (3) we get

 �

� ln

1+�

1=�

(1� �) ln

1��

m�

=

�

(1� �) ln(1 + �)

ln 1=�

ln

1��

m�

For � = (m=(1� �))

�1=�

the ratio

ln 1=�

ln

1��

m�

equals (1� �)

�1

and hence

 �

�

(1� �)

2

ln(1 + �)

�

�

(1� �)

2

(�� �

2

=2)

� (1� �)

�3

Now it remains to choose � suitably so that (1� �)

�3

is at most our desired approximation ratio 1+w.

5.2 Running time

By weak-duality we have

1 �
 =

�

t � 1

ln

1+�

1

�

and hence the number of phases in the above procedure, t, is at most 1+� ln

1+�

1=� = 1+

�

�

ln

1+�

m

1��

.

The running time of our computation depends on � which can be reduced/increased by multiplying

the demands/capacities appropriately. Let z

i

be the maximum possible
ow of commodity i and let

z

def

= min

i

z

i

=d(i). Then z denotes the maximum fraction of the demands that can be routed indepen-

dently and hence z=k � � � z. We scale the capacities/demands so that z=k = 1 thus satisfying our

assumption that � � 1. Note however that � could now be as large as k.

8

l

p

i;j

l

s

i;j

l

i;j

l

i;k

l

i�1;k

i

th

phase

1

st

iter j

th

iter. k

th

iter

p

th

steps

th

step1

st

step

l

0

i;j

l

s�1

i;j

l

i+1;0

l

i;j�1

l

i;0

Figure 1: The notation used in Sections 6 and 7. The length functions above the central axis are the lengths

before the box on the right and the ones below are the lengths after the box on the left.

If our procedure does not stop within 1+

2

�

ln

1+�

m

1��

(= T , say) phases then we know that � � 2. We

double the demands of all commodities and continue the procedure. Note that � is now half its value

in the previous phase and is at least 1. We run the procedure for an additional T phases and if it

does not halt we again double demands. Since we halve the value of � after every T phases, the total

number of phases is at most T log k.

The number of phases can be reduced further using an idea from [10]. We �rst compute a 2-

approximation to � using the procedure outlined above. This requires O(log k logm) phases and

returns

^

�, � �

^

� � 2�. Now create a new instance by multiplying demands by

^

�=2; this instance has

1 � � � 2. Therefore we need at most an additional T phases to obtain a (1 + w)-approximation.

Thus the number of phases is O(logm(log k+ (� ln 1 + �)

�1

)) which multiplied by k gives the number

of single commodity min-cost
ow computations required.

6 Minimum cost multicommodity
ow

Given an instance of the multicommodity
ow problem, as in the previous section, edge costs b : E !

R

+

, where b(e) represents the cost incurred in shipping 1 unit of
ow along edge e, and a bound B, we

consider the problem of maximizing � subject to the additional constraint that the cost of the
ow is

no more than B. The dual of this linear program is an assignment of lengths to the edges, l : E ! R

+

,

and a scalar � | which we view as a length associated with a pseudo-edge of capacity B | such that

D(l; �)

def

=

P

e

l(e)c(e)+�B is minimized subject to the constraint that �(l; �)

def

=

P

j

min cost

j

(l+ �b)

is at least 1. This is equivalent to �nding a length function (l; �) such that D(l; �)=�(l; �) is minimum;

let � denote this minimum value. As in the case of maximum concurrent
ow we begin by assuming

that � � 1.

Once again the algorithm proceeds in phases each of which is composed of k iterations. In the

j

th

iteration of the i

th

phase we begin with length functions (l

i;j�1

; �

i;j�1

) and route d(j) units of

commodity j. As before, for all edges e, de�ne l

i+1;0

(e) = l

i;k

(e) and l

1;0

(e) = l

0;k

(e) = �=c(e).

Similarly �

i+1;0

= �

i;k

and �

1;0

= �=B.

The
ow in each iteration is routed in a sequence of steps; in each step we only route so much
ow

that its cost does not exceed the bound B. Let (l

s�1

i;j

; �

s�1

i;j

) be the length functions at the start of the

s

th

step (see Fig. 1); the lengths at the start of the �rst step are given by l

0

i;j

= l

i;j�1

and �

0

i;j

= �

i;j�1

.

Further, let d

s�1

i;j

be the
ow of commodity j that remains to be routed in this iteration. We compute

f

s

i;j

def

=min cost

j

(l

s�1

i;j

+ b�

s�1

i;j

) which routes d(j) units of
ow of commodity j. Since we need to route

9

only d

s�1

i;j

units of
ow we multiply the
ow function f

s

i;j

by d

s�1

i;j

=d(j). If B

s

i;j

is the cost of
ow f

s

i;j

then the cost of the scaled
ow is B

s

i;j

d

s�1

i;j

=d(j). If this quantity exceeds B then we multiply the

original
ow function f

s

i;j

by B

s

i;j

=B. We reuse notation and denote the �nal scaled
ow and its cost

by f

s

i;j

; B

s

i;j

respectively. Now f

s

i;j

routes at most d

s�1

i;j

units of
ow at cost B

s

i;j

� B.

The length functions are modi�ed in a similar manner as before. Thus l

s

i;j

= l

s�1

i;j

(1 + �f

s

i;j

(e)=c(e))

and �

s

i;j

= �

s�1

i;j

(1 + �B

s

i;j

=B). Further, only d

s

i;j

= d

s�1

i;j

� f

s

i;j

, more units of commodity j remain to

be routed in this iteration. The iteration ends at the step p for which d

p

i;j

= 0. The procedure stops

at the �rst step at which D() exceeds 1; let this happen in the t

th

phase.

6.1 Analysis

Note that now

D(l

s

i;j

; �

s

i;j

) = D(l

s�1

i;j

; �

s�1

i;j

) + � � min cost

j

(l

s�1

i;j

+ b�

s�1

i;j

)f

s

i;j

=d(j)

� D(l

s�1

i;j

; �

s�1

i;j

) + � � min cost

j

(l

p

i;j

+ b�

p

i;j

)f

s

i;j

=d(j)

where the last inequality holds because the edge-lengths are monotonically increasing over steps. The

total
ow routed in the p steps equals the demand of commodity j, ie.,

P

p

s=1

f

s

i;j

= d(j). Summing

over all p steps we get

D(l

p

i;j

; �

p

i;j

) � D(l

0

i;j

; �

0

i;j

) + � � min cost

j

(l

p

i;j

+ b�

p

i;j

)

The length functions at the start of the (j + 1)

th

iteration are given by l

i;j

= l

p

i;j

and �

i;j

= �

p

i;j

.

Moving from steps to iterations we have

D(l

i;j

; �

i;j

) � D(l

i;j�1

; �

i;j�1

) + � � min cost

j

(l

i;j

+ b�

i;j

)

� D(l

i;j�1

; �

i;j�1

) + � � min cost

j

(l

i;k

+ b�

i;k

)

where the last inequality uses the fact that the edge-lengths are monotonically increasing over itera-

tions. Summing over all iterations in the i

th

phase we have

D(l

i;k

; �

i;k

) � D(l

i;0

; �

i;0

) + �

k

X

j=1

min cost

j

(l

i;k

+ b�

i;k

) = D(l

i�1;k

; �

i�1;k

) + ��(l

i;k

; �

i;k

)

As before we abbreviate D(l

i;k

; �

i;k

); �(l

i;k

; �

i;k

) to D(i); �(i) respectively to obtain

D(i) � D(i� 1) + ��(i)

The remainder of the analysis is exactly as in Section 5.1. The only modi�cation is in the claim about

the throughput of the
ow routed. Now we need to argue that the cost of the
ow after we scale it by

ln

1+�

1=� is at most B, or equivalently, that the cost of the
ow routed in the �rst t� 1 iterations is at

most B ln

1+�

1=�. This follows from the fact that �

t�1;k

< 1=B (since D(t� 1) < 1), that �

1;0

= �=B

and that in our procedure every time we route
ow whose total cost is B we increase � by at least a

factor 1 + �.

10

6.2 Running time

Note that except for the last step in each iteration, in all other steps we increase the length function

� by a factor 1 + �. This implies that the total number of steps exceeds the number of iterations by

at most ln

1+�

1=�.

Now de�ne z

i

as the maximum possible
ow of commodity i of cost no more than B. Again

z

def

= min

i

z

i

=d(i) denotes the maximum fraction of the demands that can be routed if the capacity

constraints and the bound B on the cost of the
ow applied independently to each commodity. Thus

z=k � � � z and we multiply demands suitably so that for the new instance 1 � � � k. As before we

double the demands, thereby halving �, after every T phases. Thus the number of iterations is kT log k

and so our procedure for minimum cost multicommodity
ow needs at most

1

�

(2k log k + 1) ln

1+�

m

1��

single-commodity min-cost
ow computations.

7 Avoiding min-cost
ow computations

We now use ideas from our algorithm for min-cost multicommodity
ow to give algorithms for the

maximum concurrent
ow and min-cost multicommodity
ow problems which use shortest path com-

putations instead of min-cost
ow computations and are faster than the algorithms in Section 5 and

6 by at least a factor min

n

n;

nk log k

m

o

.

7.1 Maximum concurrent
ow revisited

De�ne �(l)

def

=

P

j

d(j)dist

j

(l) where dist

j

(l) denotes the shortest path distance between s

j

and t

j

under the length function l. The dual to the maximum concurrent
ow problem can also be viewed

as an assignment of lengths to edges, l : E ! R

+

, such that D(l)=�(l) is minimized. Let � be this

minimum.

The structure of this new algorithm is similar to that in the previous section. Thus the algorithm runs

in phases each of which is composed of k iterations. In the j

th

iteration of the i

th

phase we route d(j)

units of commodity j in a sequence of steps. Let l

s�1

i;j

be the length function before the s

th

step and

let P

s

i;j

be the shortest path between s

j

and t

j

, ie., P

s

i;j

has length dist

j

(l

s�1

i;j

). In this step we route

f

s

i;j

= min

n

c; d

s�1

i;j

o

units of
ow along P

s

i;j

where c is the capacity of the minimum capacity edge on

this path. We now set d

s

i;j

to d

s�1

i;j

� f

s

i;j

; the iteration ends after p steps where d

p

i;j

= 0.

Thus at each step we perform a shortest path computation instead of a min-cost
ow computation as

in Section 6. The length functions are modi�ed in exactly the same manner as before and the analysis

is almost exactly the same. Thus after routing all
ow of commodity j we have

D(l

p

i;j

) � D(l

0

i;j

) + � � d(j)dist

j

(l

p

i;j

)

and after routing all commodities in the i

th

phase we have

D(l

i;k

) � D(l

i;0

) + �

k

X

j=1

d(j)dist

j

(l

i;k

)

Using the same abbreviations as before we again obtain

D(i) � D(i� 1) + ��(i)

11

Beyond this point we follow the analysis of Section 5.1 to argue that we have a (1+!)-approximation

for the same choice of � and �.

For the running time we again note that in each step, except the last one in an iteration, we increase

the length of at least one edge by a factor 1 + �. Since each edge has an initial length of � and a �nal

length less than 1 + �, the number of steps exceeds the number of iterations by at most m ln

1+�

1+�

�

.

Thus the total number of steps is at most

1

�

(2k log k + m) ln

1+�

m

1��

and each of these involves one

shortest path computation.

7.2 Min-cost multicommodity
ow revisited

We now de�ne �(l; �)

def

=

P

j

d(j)dist

j

(l+ b�). The dual to the min-cost multicommodity
ow problem

is an assignment of lengths to edges, l : E ! R

+

, and a scalar � such that D(l)=�(l) is minimized.

Let � be this minimum.

The algorithm di�ers from the one developed in Section 6 in that at any step we route
ow along

only one path, which, if this is the s

th

step of the j

th

phase of the i

th

iteration, is the shortest path

between s

j

and t

j

under the length function l

s�1

i;j

+ b�

s�1

i;j

. If the minimum capacity edge on this path

has capacity c then the
ow function at this step, f

s

i;j

, corresponds to routing c units of
ow along

this path. If c � d

s�1

i;j

and the cost of this
ow is less than B we route this
ow completely. Else we

scale it so that the
ow routed in this step has cost no more than B and the total
ow routed in this

iteration does not exceed d(j).

The analysis of the algorithm proceeds as in Section 6.1 with the only modi�cation that min cost

j

(:)

is replaced with d(j)dist

j

(:). For the running time we need only observe that in each step, except

the last step in an iteration, we increase, either the length of some edge or the value of � by a factor

1 + �. The lengths of the edges and � can each be increased by a factor 1+ � at most ln

1+�

1+�

�

times.

Hence the number of steps exceeds the number of iterations by at most

1

�

(m+ 1) ln

1+�

m

1��

.

Acknowledgments. The �rst author would like to thank Philip Klein, Cli� Stein and Neal Young

for useful discussions.

References

[1] B. Awerbuch and F.T. Leighton. Improved approximation algorithms for the multicommodity
ow

problem and local competitive routing in dynamic networks. In Proceedings, ACM Symposium

on Theory of Computing, pages 487{496, 1994.

[2] G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer approximation algorithms via

spreading metrics. In Proceedings, IEEE Symposium on Foundations of Computer Science, pages

62{71, 1995.

[3] G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximate graph partitioning algorithms. In

Proceedings, ACM-SIAM Symposium on Discrete Algorithms, pages 639{648, 1997.

[4] A.V. Goldberg. A natural randomization strategy for multicommodity
ow and related algo-

rithms. Inform. Process. Lett., 42:249{256, 1992.

[5] M. Grigoriadis and L.G. Khachiyan. Approximate minimum-cost multicommodity
ows in

~

O(�

�2

knm) time. Math. Programming, 75:477{482, 1996.

12

[6] M.D. Grigoriadis and L.G. Khachiyan. Fast approximation schemes for convex programs with

many blocks and coupling constraints. SIAM J. Optimization, 4(1):86{107, 1994.

[7] D. Karger and S. Plotkin. Adding multiple cost constraints to combinatorial optimization prob-

lems, with applications to multicommodity
ows. In Proceedings, ACM Symposium on Theory of

Computing, pages 18{25, 1995.

[8] P. Klein, S. Plotkin, C. Stein, and E. Tardos. Faster approximation algorithms for the unit

capacity concurrent
ow problem with applications to routing and �nding sparse cuts. SIAM

J. Comput., 23(3):466{487, 1994.

[9] T. Leighton, F. Makedon, S. Plotkin, C. Stein, S. Tragoudas, and E. Tardos. Fast approximation

algorithms for multicommodity
ow problems. J. Comput. System Sci., 50:228{243, 1995.

[10] S. Plotkin, D. Shmoys, and

�

E. Tardos. Fast approximation algorithms for fractional packing and

covering problems. Math. Oper. Res., 20:257{301, 1995.

[11] T. Radzik. Fast deterministic approximation for the multicommodity
ow problem. In Proceed-

ings, ACM-SIAM Symposium on Discrete Algorithms, pages 486{492, 1995.

[12] F. Shahrokhi and D. Matula. The maximum concurrent
ow problem. J. ACM, 37(2):318{334,

1990.

[13] David Shmoys. Approximation algorithms for NP-hard problems, chapter Cut problems and their

application to divide and conquer, pages 192{235. PWS Publishing Company, 1997.

[14] C. Stein. Approximation algorithms for multicommodity
ow and scheduling problems. PhD

thesis, MIT, 1992.

[15] P.M. Vaidya. Speeding up linear programming using fast matrix multiplication. In Proceedings,

IEEE Symposium on Foundations of Computer Science, pages 332{337, 1989.

[16] N. Young. Randomized rounding without solving the linear program. In Proceedings, ACM-SIAM

Symposium on Discrete Algorithms, 170-178, 1995.

13

