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FASTER APPROXIMATION ALGORITHMS FOR THE UNIT
CAPACITY CONCURRENT FLOW PROBLEM WITH

APPLICATIONS TO ROUTING AND FINDING SPARSE CUTS*

PHILIP KLEIN, SERGE PLOTKIN, CLIFFORD STEIN AND IVA TARDOS

Abstract. This paper describes new algorithms for approximately solving the concurrent multicommodity flow
problem with uniform capacities. These algorithms are much faster than algorithms discovered previously. Besides
being an important problem in its own right, the uniform-capacity concurrent flow problem has many interesting appli-
cations. Leighton and Rao used uniform-capacity concurrent flow to find an approximately "sparsest cut" in a graph
and thereby approximately solve a wide variety of graph problems, including minimum feedback arc set, minimum cut

linear arrangement, and minimum area layout. However, their method appeared to be impractical as it required solving
a large linear program. This paper shows that their method might be practical by giving an O(m log m) expected-
time randomized algorithm for their concurrent flow problem on an m-edge graph. Raghavan and Thompson used
uniform-capacity concurrent flow to solve approximately a channel width minimization problem in very large scale
integration. An O (k3/2 (m + n log n)) expected-time randomized algorithm and an O (k min {n, k} (m + n log n) log k)
deterministic algorithm is given for this problem when the channel width is f2 (log n), where k denotes the number
of wires to be routed in an n-node, m-edge network.
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1. Introduction. The multicommodity flow problem involves shipping several different
commodities from their respective sources to their sinks in a single network with the total
amount of flow going through an edge limited by its capacity. The amount of each commodity
we wish to ship is called the demand for that commodity. An optimization version of this
problem is the concurrentflow problem in which the goal is to find the maximum percentage
z such that at least z percent of each demand can be shipped without violating the capacity
constraints. Here we consider the concurrent flow problem with unit capacities. Observe that
in this case, the problem is equivalent to the problem of finding a flow (disregarding capacities)
that minimizes the maximum total flow on any edge (the congestion). Let m, n, and k be,
respectively, the number of edges, nodes, and commodities for the input network.

In this paper, we give algorithms that, for any positive E, find a solution whose congestion
is no more than (1 + E) times the minimum congestion. Our algorithms significantly improve
the time required for finding such approximately optimal solutions.

One contribution of this paper is the introduction of a randomization technique useful in
iterative approximation algorithms. This technique enables each iteration to be carried out
much more quickly than by using known deterministic methods.
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Part of our motivation in developing algorithms for concurrent flow derives from two
important applications, finding sparsest cuts and finding a very large scale integration (VLSI)
routing that minimizes channel width.

Leighton and Rao [14] showed how to use the solution of a unit-capacity concurrent
flow problem to find an approximate "sparsest cut" of a graph. As a consequence, they and
other researchers have developed polylog-times-optimal approximation algorithms for a wide
variety of graph problems, including minimum area VLSI layout, minimum cut linear arrange-
ment, minimum feedback arc set 14], optimal linear and higher-dimensional arrangement [7],
minimum chordal fill [9], and single-processor scheduling 17].

The computational bottleneck ofthe method ofLeighton and Rao is solving a unit-capacity
concurrent flow problem with O(n) commodities, each with unit demand. They appealed to
linear programming techniques to show that the problem can be solved in polynomial time.
The new approximation algorithm greatly improves the resulting running time.

THEOREM 1.1. For anyfixed > 0, a (1 + )-factor approximation to the unit-capacity,
unit-demand concurrent flow problem can be found by a randomized algorithm in O((k +
m)m log m) expected time, where the constant depends on .

As an application of this result we substantially reduce the time required for Leighton and
Rao’s method.

THEOREM 1.2. An O(log n)-factor approximation to the sparsest cut in a graph can be

found by a randomized algorithm in expected O(m 2 log m) time.

Previous to our work, the best algorithm for this problem and a running time of
O (n4"5 log n) [21 and made use of linear programming techniques and fast matrix multi-
plication.

Another application of our approximation algorithm is to VLSI routing in graphs. Ragha-
van and Thompson [16] and Raghavan [15] considered the problem of routing two-terminal
nets (essentially wires) in a graph so as to minimize approximately the channel width, i.e.,
the maximum number of nets routed through an edge. The computational bottleneck in their
algorithms is solving a unit-capacity concurrent flow problem. Their algorithms require a
better than constant e approximation to the concurrent flow problem. In fact, the algorithm
of Theorem 1.1 is a fully polynomial approximation algorithm, i.e., its running time depends
polynomially on e-I.

THEOREM 1.3. For any positive < that is at least inverse polynomial in n, a (1 +
)-factor approximation to the unit-capacity concurrent flow problem can be found by a

randomized algorithm in expected time O((-lk + -3m)(m logn + n log2 m)) and by a

deterministic algorithm in time O((k + -2m)k(m log m + n log2 m)).
An application of the algorithm of Theorem 1.3 is a significant improvement in the time

needed to solve Raghavan and Thompson’s problem.
THEOREM 1.4. If L0min denotes the minimum achievable channel width and L0min

(logm), a routing of width Wmin + O(v/Wmin log n) can be found by a randotnized al-
gorithm in expected time O(k3/Z(m + n log n)) and by a deterministic algorithm in time

O(k min {n, k} (m + n log n) log k).
Our algorithms compare favorably to previous work. The concurrent flow problem can

be formulated as a linear program in O(mk) variables and O(m + nk) constraints (see, for
example, 18]). Linear programming can be used to solve the problem optimally in polynomial
time. Kapoor and Vaidya [8] gave a method to speed up the matrix inversions involved in
Karmarkar type algorithms for multicommodity flow problems; combining their technique
with Vaidya’s new linear programming algorithm using fast matrix multiplication [21 yields
a time bound of O(k3"Sn3C-log(nD)) for the unit-capacity concurrent flow problem with
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integer demands (where D denotes the sum of the demands) and an O(/-k25n 2 log(ne-1D))
bound for the approximation problem.

Shahrokhi and Matula 18] gave a combinatorial fully polynomial approximation scheme
for the unit-capacity concurrent flow problem (which they called the concurrent flow problem
with uniform capacities). Their algorithm runs in O(nm7e-5) time.

Our approach to solving concurrent flow problems is a modification of the framework
originated by Shahrokhi and Matula 18]. The idea is to use a length function on the edges to
reflect congestion and iteratively reroute flow from long (more congested) paths to short (less
congested) paths. Our approach differs from that of Shahrokhi and Matula in several ways. We
develop a framework of relaxed optimality conditions that allows us to measure the congestion
on both a local and a global level, thereby giving us more freedom in choosing which flow
paths to reroute at each iteration. We exploit this freedom by using a faster randomized
method for choosing flow paths. In addition, this framework also allows us to achieve greater
improvement as a result of each rerouting. In Table 1, we give upper bounds on the running
times for our algorithms. Our actual bounds are slightly better than those in the table and are
given in more detail in the remainder of the paper. Note that by use of various combinations
of our techniques, we can obtain slightly better bounds than those stated in Theorems 1.1 and
1.3.

TA3LE
Upper bounds on the running times ofottr algorithms. The actual bounds are slightly better.

Algorithm type Running Time

Randomized, fixed e O(m(k + m)log n)

Deterministic, fixed e O(mk(k + m)log n)

O(-3Randomized, < < m(k + m) log n)

Deterministic, < < O(-2mk(k + m)log2 n)

An earlier version of this paper has appeared in 11 ]. In the earlier version the case when
both the capacities and the demands are uniform was considered separately from the more
general case when only the capacities are assumed to be uniform. The earlier version presented
a fast algorithm for the first case and a factor of e-lm slower one for the more general case.
In this version we extend the algorithm for the uniform demand case to work for the more
general case with at most a logarithmic slowdown.

In subsequent work building on that described here, Leighton et al. [13] gave a fast
approximation algorithm for concurrent flow with arbitrary capacities. That algorithm is faster
than ours when the number of commodities is less than q’. It makes use of the randomized
technique introduced in this paper. Also, in subsequent work, Goldberg [4] and Grigoriadis
and Khachiyan [6] showed that by a modification of the randomized technique, one can reduce
the running time’s dependence on e for both our algorithm and that of Leighton et al.

2. Preliminaries and definitions. In this section we define the concurrent flow problem,
introduce our notation, and give some basic facts regarding the problem. Concurrent flow is
a variant of multicommodity flow, and we start by giving a formal definition of the latter.

The multicommodity flow problem is the problem of shipping several different commodi-
ties from their respective sources to their sinks in a single network, while obeying capacity
constraints. More precisely, an instance of the multicommodity flow problem consists of an
undirected graph G (V, E), a nonnegative capacity cap(vw) for every edge vw E, and
a specification of k commodities, numbered through k. The specification for commodity
consists of a source-sink pair si, ti V and a nonnegative integer demand d(i). We will
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denote the maximum demand by dmax, the total demand Ei d(i) by D, the number of nodes by
n, the number of edges by m, and the number of different sources by k*. Notice that k* < n.
For notational convenience we assume that rn > n and that the graph G has no parallel edges.
If there is an edge between nodes v and w, this edge is unique by assumption, and we denote
it by vw. Note that vw and wv denote the same edge.

Aflow fi in G from node si to node ti can be defined as a collection of paths from si to ti,
with associated real values. Let ’]’)i denote a collection of paths from si to ti in G, and let f (P)
be a nonnegative value for every P in Pi. The value of the flow thus defined is EpET)i fi(P),
which is the total flow delivered from si to ti. The amount of flow through an edge vw is

f (vw) f P) P Pi and vw P}.

A feasible multicornrnodity flow f in G consists of a flow f from si to ti of value d(i)
for each commodity _< _< k. We require that f(vw) <_ cap(vw) for every edge vw E,
where we use f(vw) i= f(vw) to denote the total amount of flow on the edge vw.

We consider the optimization version of the multicommodity flow problem, called the
concurrent flow problem and first defined by Shahrokhi and Matula [18]. In this problem
the objective is to compute the maximum possible value z such that there is a feasible mul-
ticommodity flow with demands z. d(i) for every _< _< k. We call z the throughput of
the multicommodity flow. An equivalent formulation of the concurrent flow problem is to
compute the maximum z such that there is a feasible flow with demands d(i) and capacities
cap(vw)/z.

In this paper we shall focus exclusively on the special case of unit capacities, in which
all edge-capacities are equal. The problem of finding a maximum throughput z can be refor-
mulated in this special case as follows" ignore capacities, and find a multicommodity flow f
that satisfies.the demands and minimizes If[ maxE {f(vw)}, the maximum total flow
on any edge.

A multicommodity flow f satisfying the demands d(i) is e-optimal if If[ is at most a
factor (1 + e) more than the minimum possible If[. The approximation problem associated
with the unit-capacity concurrent flow problem is to find an -optimal multicommodity flow
f. We shall assume implicitly throughout that e is at least inverse polynomial in n and at
most 1/10. These assumptions are not very restrictive as they cover practically every case of
interest. To find an e-optimal flow where e >_ 1/10, one can just find a 1/10-optimal flow.
To find an e-optimal flow when 1/e is greater than any polynomial in n, one can run our
algorithm. It will work for arbitrarily small e, however, the running time will be slower than
the time bounds given, as we will need to manipulate numbers whose size is exponential in
the input. However, if this amount of accuracy is desired, it is more sensible and efficient to
use any polynomial time linear programming algorithm to solve the problem exactly.

One can define the analogous problem for directed graphs. Our algorithms, and the
corresponding time bounds, easily extend to the directed case by replacing (undirected) edges
by (directed) arcs and paths by directed paths. Henceforth, we will concentrate only on the
undirected case.

Linear programming duality gives a characterization of the optimum solution to the con-
current flow problem. Let E -- R be a nonnegative length function. For nodes v, w V
let diste (v, w) denote the length of the shortest path from v to tv in G with respect to the length
function . For a path P we shall use (P) to denote the length of P. We shall use [1 to
denote ’we (vw), the sum of the length of the edges. The following theorem is a special
case of the linear programming duality theorem (see, for example, 18]).

THEOREM 2.1. For a multicommodity flow f satisfying the demands d(i) and a length
function .,
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k

vwE i--1 vwE

k k

E e(P)fi(P)>_ diste(si, ti)d(i).
i=l P’P# i=1

Furthermore, a multicommodity flow f minimizes fl if and only if there exists a nonzero
length function g. for which all of the above terms are equal.

The optimality (complementary slackness) conditions given by linear programming can
be reformulated in terms of conditions on edges and paths.

THEOREM 2.2. A multicommodity flow f has minimum fl /f and only if there exists a
nonzero length function g. such that

(1) for every edge vw E either (vw) 0 or f(vw) Ifl, and
(2) for every commodity and ever), path P

diste (st, ti ).
The goal of our algorithms is to solve the approximation problem, i.e., to find a multi-

commodity flow f and a length function such that the largest term, Iflll, in (1) is within
a (1 + e) factor of the smallest term, i diste(si, ti)d(i). In this case, we say that f and
are e-optimal. Note that if f and are e-optimal, then clearly f is e-optimal. In fact, a

multicommodity flow f is e-optimal if and only if there exists a length function such that f
and are e-optimal.

3. Relaxed optimality conditions. Theorems 2.1 and 2.2 give two (apparently) different
characterizations of exact optimality. Our goal is to find a flow that satisfies a relaxed version
of Theorem 2.1. In order to do so, we will introduce a relaxed version of Theorem 2.2, the
complementary slackness conditions of linear programming. We will then show that these
relaxed optimality conditions are sufficient to show that the first and last terms in (1) are
within a (1 -t- e) factor, and hence the flow f is e-optimal. Our notion of relaxed optimality
is analogous to the notion of e-optimality used by Goldberg and Tarjan in the context of the
minimum-cost flow problem [5].

Let e > 0 be an error parameter, f a multicommodity flow, and a length function.
We say that a path P 7i for aThroughout this section we shall use e’ to denote

commodity is e-good if

(P) diste(si, ti) < e’e(P)
min{D, kd(i)}

and e-bad otherwise. The intuition is that a flow path is e-good if it is short in either a relative
or an absolute sense, i.e., either it is almost as short as the shortest possible (s#, ti)-path or it is
at most a small fraction of I1. We use this notion in defining the following relaxed optimality
conditions (with respect to a flow f, a length function e, and an error parameter e):

(R1) For every edge vw E either e(vw) <

k k

i=1 i=1
P
P e-bad

The first condition says that every edge either has a length that is a small fraction of the
sum of the lengths of all edges or is almost saturated. The second condition says that the
amount of flow that is on e-bad paths, i.e., long paths, contributes a small fraction of the sum
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The next two lemmas show that the relaxed optimality conditions are sufficient to imply
e-optimality. We will first show that Condition (R1) implies that the first two terms in (1) are
close. Then we will show that the two conditions together imply that the first and last terms
in (1) are close. Thus we can conclude that the relaxed optimality conditions are sufficient to
imply e-optimality.

LEMMA 3.1. Suppose a multicommodity flow f and a length function satisfy relaxed
optimality condition (R1). Then

(1 e’)lfllel < (1 + e’) f(vw)e(vw).(2)

Proof We estimate If[[el Yv, Ifle(vw) in two parts. The first part is the sum of the
terms contributed by edges that satisfy Ifl _< (1 + e’)f(vw). This part of the sum is clearly
at most (1 + e’) Yvo f(vw)e(vw). If vw is an edge whose contribution is not counted in the
first part, then, by assumption, e(vw) < (e’/m)lel. Therefore, the sum of all other terms is
at most ’lfllel. Thus, Ifllel _< (1 / ’) o,o f(vw)e(vw) + ’lfllel. This implies the
lemma. q

THEOREM 3.2. Suppose f and e and e satisfy the Relaxed Optimality Conditions (R1)
and (R2). Then f is e-optimal, i.e., Ill is at most a factor (1 + e) more than the minimum
possible.

Proof We need to estimate the ratio of the terms in inequality (1) of Theorem 2.1.
Lemma 3.1 estimates the ratio of the first two terms. We shall use this in estimating the ratio
of the first and the last terms.

Consider the penultimate term in (1). We break this sum, i ZPE79i g(P)f(P), into
two parts" the sum over e-good paths and the sum over e-bad paths. Relaxed optimality
condition (R2) gives us an upper bound of e’i ZPE79i e(P)f(P) on the sum over the e-bad
paths, and the definition of an e-good path gives us the following bound on the sum over the
e-good paths"

k

i-’l

P e-good

<(l--et)-It (diste(si, ti)f(P)+ Ifl I1 f(P))min D, kd

Observing that (min{D, kd(i)})- < D- + (kd(i))- and ZpE79i f(P) d(i), we can
bound the sum over the e-good paths by

( t(1 e’)-’ diste(si, ti)d(i) + ’lfllel, --D-- /
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Now observe that there are exactly k commodities and; d(i) D, so the last term sums to
exactly 2e’lfllgl. This gives that

f(P)g(P) < (1 e’)- diste(&, t)d(i) + 2e’lfllgl
i=1

P 6 T:’i
P -good

Combining the bounds on the sum over e-bad and e-good paths we get

k

PeT’i i=1

P -good

< (1 et) -2 diste(si, ti)d(i) + 2(1 e’)-2e’lfllgll.

By the middle equations in Theorem 2.1, Y.i,,r,e(P)f(P) is equal to

w f(vw)e(vw). Lemma 3.1 gives a bound on voE f(vw)e(vw) in terms on l/llel.
Combining these inequalities and rearranging terms we get

(1 et) 2 2e’ )7+ -7 , Ifllel, <
1-e’

diste(si, ti)d(i).

Combining the fractions and dropping low-order terms we get that

q-e’
Ifllgl- 5-e’< diste(si, ti)d(i).

The assumption that e < / 10 implies that e’ < 1/70, which in turn implies that the factor
(1 + e’)/(1 5e’) is less than (1 + 7e’) (1 +e). We combine this bound with inequality (1)
to complete the proof.

In the next two sections, we will focus on algorithms that achieve the relaxed optimality
conditions.

4. Generic rerouting. In this section, we describe the procedure REDUCE that is the core
of our approximation algorithms and prove bounds on its running time. Given a multicom-
modity flow f, procedure REDUCE modifies f until either f becomes e-optimal or fl is
reduced below a given target value. The approximation algorithms presented in the next two
sections repeatedly call procedure REDUCE to decrease fl by a factor of 2, until an e-optimal
solution is found.

The basic step in our algorithms is choosing a flow path and rerouting some flow from
this path to a "better" path. This step closely resembles the basic step in the algorithm of
Shahrokhi and Matula [18]. The main differences are in the way we choose the paths and in
the amount of flow that is rerouted at each iteration.

The key idea is to measure how good the current flow is by using the notion of e-optimality,
described in the previous section. Given a flow f and a value ot to be determined later, we
use a length function defined by g(vw) ef(vw), which reflects the congestion of the edge
vw. In other words, the length of an edge depends on the flow carried by the edge. Given
an input e, our algorithms gradually update f until f and g (defined by the above formula)
become e-optimal. Each update is done by choosing an e-bad flow path, rerouting some flow
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from this path to a much shorter path (with respect to e), and recomputing the length function.
We will prove below that the parameter ot in the definition of length can be selected so that
relaxed optimality condition (R 1) is always satisfied. Through iterative reroutings of flow, we
gradually enforce relaxed optimality condition (R2). When both relaxed optimality conditions
are satisfied then Theorem 3.2 can be used to infer that f is e-optimal.

For simplicity of presentation, we shall assume for now that the value of the length
function g(vw) ef(vw) at an edge vw can be computed in one step from f(vw) and
represented in a single computer word. In 4.3 we will remove this assumption and show that
it is sufficient to compute an approximation to this value and show that the time required for
computing a sufficiently good approximation does not change the asymptotic running times
of our algorithms.

Procedure REDUCE (see Fig. 1) takes as input a multicommodity flow f, a target value r,
an error parameter e, and a flow quantum cri for each commodity i. We require that each flow
path comprising f carries flow that is an integer multiple of ri. The procedure repeatedly
reroutes cri units of flow from an e-bad path of commodity to a shortest path. We will
need a technical granularity condition that O" is small enough for every to guarantee that
approximate optimality is achievable through such reroutings. In particular, we assume that
upon invocation of REDUCE, for every commodity we have

(3) O" __< e2
102 log(7m e -l

Upon termination, the procedure outputs an improved multicommodity flow f such that
either fl is less than the target value r or f is e-optimal. (Recall that we have assumed that

_< /0.)
In the remainder of this section, we analyze the procedure REDUCE shown in Fig. 1. First,

we show that throughout REDUCE f and satisfy relaxed optimality condition (RI). Second,
we show that if the granularity condition is satisfied, the number of iterations in REDUCE
is small. Third, we give an even smaller bound on the number of iterations for the case in
which the flow f is O (e)-optimal upon invocation ofREDUCE. This bound will be used in 5 to
analyze an e-scaling algorithm presented there. Fourth, we describe efficient implementations
of procedure FINDPATH.

REDUCE(f, "/’, E, O" for k)
Ot (7 -" 6)’1-15 -1 1og(7me-l).
While fl >_ r and f and are not e-optimal,

For each edge vw, (vw) +-- eafvu’).
Call FNDPAVrt(f, e, e) to find an e-bad flow path P and a short path Q
with the same endpoints as P.

Reroute cri units of flow from P to Q.
Return f.

FIG. 1. Procedure REDUCE.

4.1 Bounding the number of iterations of REDUCE.

LEMMA 4.1. Iff is a multicommodityflow and ot > (7 + e)lfl-e -1 log(7me-l), then
the multicommodityflow f and the lengthfunction (vw) eaf(vw) satisfy relaxed optimality
condition (R 1).

Proof Assume Ifl- f(v, w) >_ f(v, w) for an edge vw E, and let e’ denote .
Observe that lel >_ etrlfl. Hence, we have
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eOtlfl Colfl
g.(v, w) ef(v,w) elfl(l+’)-

We can use the bound on ot in the statement of the lemma to conclude that this last term is at
7m lelleast-7-" Thus, e(,vw) <_
At the beginning of REDUCE, ot is set equal to (7 + e)r -le -! log(7me-l). As long as

fl > r, the value of oe is sufficiently large, so by Lemma 4.1, relaxed optimality condition (R1)
is satisfied. If we are lucky and relaxed optimality condition (R2) is also satisfied, then it
follows that f and e are e-optimal. Now we show that if (R2) is not satisfied, then we can
make significant progress. Like Shahrokhi and Matula, we use lelt as a measure of progress.

LEMMA 4.2. Suppose o and r satisfy the granularity condition. Then rerouting o" units of
flowfrom an e-badpath ofcommodity to the shortest path with the same endpoints decreases
I/ll by

o.
f2 min{/ kd(i)} I1

log rn).
Proof. Let P be an e-bad path from S to ti, and let Q be a shortest (si, ti)-path. Let

,4 P Q and B Q P. The only edges whose length changes due to the rerouting are
those in A tO B. The decrease in lel is e(A) + e(B) e-,e(A) e,e(B), which can also
be written as

(1 e-’’)(g(A) g.(B)) (1 e-;)(e’r; 1)e(B).

The granularity condition, the definition of c, and the assumption that e < 1/10 imply
7+E 7- 141that 0/O" -i-0-’e 6/7 1/70. For 0 < x < we have e > + x, e < +-fa-6.t, and
139e-x < ga-Ox. Thus the decrease is at least

139 /’141 )14---otcri (e(A) e(B)) (olo’i) --OlO" e(B).

Now, observe that g(A) e(B) is the same as e(P) e(Q) and that e(Q) diste(si, ti). Also
e(B) <_ e(P). This gives a lower bound of

139
140

141
otcri (g(P) diste(si, ti)) "-Ol 2(1 e(P).

But P is e-bad, so this must be at least

139 Ifl
140

tcr; (e’e(P) + e’min{D, kd(i)}

141 :re(p)

139

140

139 O"
otie’e(P)

141 ce2cr/e(P) + oe’lfl lel.14--- 1 min{D, kd(i)}

7+eWe have seen that T0-fe > cri, which implies that 1396’ > 141cri, and therefore the
first term dominates the second term. Thus the third term gives a lower bound on the decrease
in lel.

Substituting the value of ot and using the fact that during execution of REDUCE we have
r < Ifl yields the claim of the lemma, l-1

The following theorem bounds the number of iterations in REDUCE.
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THEOREM 4.3. If, for every commodity i, r and ri satisfy the granularity condition and
fl O (r) initially, then the procedure REDUCE terminates after

min D, kd (i)
O(e- max

O"

iterations.

Proof. Theorem 3.2 implies that if f and satisfy the relaxed optimality conditions,
then they are e-optimal. By Lemma 4.1, relaxed optimality condition (R1) is maintained
throughout all iterations. The fact that f is not yet e-optimal implies that condition (R2) is
not yet satisfied. Hence there exists an e-bad path for IT’INDPATH tO find. A single rerouting
of flow from an e-bad path of commodity to a shortest path results in a reduction in Ill of
at least

( O’i
ill log(me-I)).min{/J kd(i)}

Since x < e-x, it follows that every

min D, kd (i)
0 max log-1 (m e-l)

o-

iterations reduce Jell by at least a constant factor.
Next we bound the number of times lel can be reduced by a constant factor. Let f’

denote the input multicommodity flow. For every edge vw, f’(vw) < If’l. Hence after we
first assign lengths to edges, the value of Ielt is at most melf’l. The length of every edge
remains at least 1, so Ie[l is always at least m. Therefore, Il can be reduced by a factor of
e at most clf’[ times, which is O(e- log(me-)) by the assumption that f O(r) and the
value of c. This proves that REDUCE terminated in the claimed number of iterations.

THEOREM 4.4. Suppose that the inputflow f is O(e)-optimal, cr and r satisfy the gran-
ularity condition, and Ifl O(r) initially. Then the procedure REDUCE terminates after

min D kd (i) "O max
o"

iterations.

Proof. Again let f’ denote the input multicommodity flow. The assumption that f’ is
O(e)-optimal implies that ]f’l _< (1 + O(e))lfl for every multicommodity flow f. Therefore,
the value of Iel is never less than e(l+O(e))-alf’l. As in Theorem 4.3, the initial value of

Iell is at most melf’l, so the number of times Iel can be reduced by a constant factor is

O(otelf’l + log m), which is O(celf’l) by the choice of ot and r. The theorem then follows
as in the proof of Theorem 4.3. 1

4.2. Implementing an iteration of REI)UC:. We have shown that REDUCE terminates
after a small number of iterations. It remains to show that each iteration can be carried
out quickly. REDUCE consists of three stepsqcomputing lengths, executing FINDPATH, and
rerouting flow. We discuss computing lengths in 4.3. In this section, we discuss the other
two steps.

We now consider the time taken by procedure FINDPATH. We will give three implemen-
tations of this procedure. First, we will give a simple deterministic implementation that runs
in O(k*(m + n log n) + n Y4(d(i)/cri)) time, then a more sophisticated implementation that
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runs in time O(k*n log n + m(log n + rain {k, k* log dmax})), and finally a randomized imple-
mentation that runs in expected O(e -1 (m + n log n)) time. All of these algorithms use the
shortest-paths algorithm of Fredman and Tarjan [3] that runs in O(m + n log n) time.

To find a bad flow path deterministically, we first compute, for every source node si, the
length of the shortest path from si to every other node v. This takes O(k*(m / n log n))
time. In the simplest implementation we then compute the length of every flow path in 79 and
compare its length to the length of the shortest path to decide if the path is e-bad. There could
be as many as _,i(d(i)/ri) flow paths, each consisting of up to n edges; hence, computing
these lengths takes O(n _,i(d(i)/ri)) time.

To decrease the time required for FINDPATH we have to find an e-bad path, if one exists,
without computing the length of so many paths. Observe that if there is an e-bad flow path
for commodity i, then the longest flow path for commodity must be e-bad. Thus, instead of
looking for an e-bad path in 79i for some commodity i, it suffices to find an e-bad path in the
directed graph obtained by taking all flow paths in 79i and treating the paths as directed away
from si. In order to see if there is an e-bad path we need to compute the length of the longest
path from si to ti in this directed graph. To facilitate this computation we shall maintain that
the directed flow graph is acyclic.

Let G denote the flow graph of commodity i. If G is acyclic, an O(m) time dynamic
programming computation suffices to compute the longest paths from si to every other node.
Suppose that in an iteration we reroute flow from an e-bad path from s; to ti, in the flow
graph G;. We must first update the flow graph G to reflect this change. Second, the update
might introduce directed cycles in G i, so we must eliminate such cycles of flow. We use an

algorithm due to Sleator and Tarjan [19] to implement this process. Sleator and Tarjan gave a

simple O(nm) algorithm and a more sophisticated O(m log n) algorithm for the problem of
converting an arbitrary flow into an acyclic flow.

Note that eliminating cycles only decreases the flows on edges, so it cannot increase Ilt.
Thus our bound on the number of iterations in REDUCE still-holds.

We compute the total time required for each iteration of REDUCE as follows. In order to

implement FINDPATH, we must compute the shortest path from si to ti in G and the longest
path from si to ti in G for every commodity i, so the time required is O (k* (m + n log n)+km ).
Furthermore, after each rerouting, we must update the appropriate flow graph and eliminate
cycles. Elimination of cycles takes O(m log n) time. Combining these bounds gives an
O(k*n logn + m(k + log n)) bound on the running time of FINDPATH.

In fact, further improvement is possible if we consider the flow graphs of all commodities
with the same source and same flow quantum cri together. Let G v,, be the directed graph
obtained by taking the union of all flow paths P 6 79i for a commodity with si v and

oi or, treating each path as directed away from v. If G v,o is acyclic, an O (m) time dynamic
programming computation suffices to compute the longest paths from v to every other node
in G,,.

During our concurrent flow algorithm all commodities with the same demand will have

the same flow quantum. To limit the different flow graphs that we have to consider we want
to limit the number of different demands. By decomposing demand d(i) into at most log d(i)
demands with source si and sink ti we can assume that each demand is a power of 2. This way
the number of different flow graphs that we have to maintain is at most k* log dmax.

LEMMA 4.5. The total time required for deterministically implementing an iteration

of REDUCE (assuming that exponentiation is a single step) is O(k*n log n + m(logn +
min {k, k* log dmax})).

Next, we give a randomized implementation of FINDPATH that is much faster when e is
not too small; this implementation seems simple enough to be practical. If f and e are not e-
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optimal, then relaxed optimality condition (R2) is not satisfied, and thus e-bad paths contribute
at least an -fraction ofthe total sum _,i ,peT:,, e(P)fi(P). Therefore, by randomly choosing
a flow path P with probability proportional to its contribution to the above sum, we have at

chance of selecting an e-bad path Furthermore, we will show that we can select aleast an 7
candidate e-bad path according to the right probability in O(m) time. Then we can compute
a shortest path with the same endpoints in O(m + n log n) time. This enables us to determine
whether ornot P was an e-bad path. Thus we can implement FINDPATH in O(e- (m +n log n))
expected time.

The contribution of a flow path P to the above sum is just the length of P times the flow
on P, so we must choose P with probability proportional to this value. In order to avoid
examining all such flow paths explicitly, we use a two-step procedure, as described in the
following lemma.

LEMMA 4.6. Ifwe choose an edge vw with probability proportional to g(vw)f(vw) and
then select aflow path among paths through this edge vw with probability proportional to the
value of theflow carried on the path, then the probability that we have selected a given flow
path P is proportional to its contribution to the sum Yi Pe7 e(P) f(P).

Proof Let B ie7,g.(P)f(P). Select an edge vw with probability
f(vw)e(vw)/B. Once an edge vw is selected, choose a path P 6 79i through edge vw

fP) Consider a commodity and a path P 6 79i.with probability f(--ff).

(P) f(vw)e(vw) f(P)
Pr(P chosen) Pr(w chosen) x

1 f(vw) - B
x

vwe oweP f(vw)

g(wv)f(P) fl(P)g.(P)
[3

vwe B B

Choosing an edge with probability proportional to g.(vw)f(vw) can easily be done in
O (m) time. In order to choose with the right probability a flow path going through that edge,
we need a data structure to organize these flow paths. For each edge we maintain a balanced
binary tree with one leaf for each flow path through the edge, labeled with the flow value of
that flow path. Each internal node of the binary tree is labeled with the total flow value of its
descendent leaves. The number of paths is polynomial in n and e-l" therefore, using this data
structure, we can randomly choose a flow path through a given edge in O(log n) time.

In order to maintain this data structure, each time we change the flow on an edge, we must
update the binary tree for that edge, at a cost of O (log n) time. In one iteration of REDUCE the
flow only changes on O(n) edges; therefore, the time to do these updates is O(n log n) per
call to FINDPATH, which is dominated by the time to compute single-source shortest paths.

We have shown that if relaxed optimality condition (R2) is not satisfied, then, with prob-
ability of at least e/7, we can find an e-bad path in O(m -t- n log n) time. FNDPATH continues
to pick paths until either an e-bad path is found or 7/e trials are made. Observe that given
that f and are not yet e-optimal (which implies that condition (R2) is not yet satisfied), the
probability of failure to find an e-bad path in 7/e trials is bounded by 1/e. Thus, in this case,
RDUCE can terminate, claiming that f and are e-optimal with probability of at least 1/e.
Computing lengths and updating flows can each be done in O(n log n) time, thus we get the
following bound"

LEMMA 4.7. One iteration ofREDUCE can be implemented randomly in time (e -1 (m -t-
n log n)) time (assuming that exponentiation is a single step).

The randomized algorithm as it stands is Monte Carlo; there is a nonzero probability that
REDUCE erroneously claims to terminate with an e-optimal f. To make the algorithm Las
Vegas (never wrong, sometimes slow), we introduce a deterministic check. If FINDPATH fails
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to find an e-bad path, REDUCE computes the sumi distg (si, ti)d(i) to the required precision
and compares it with Ill I1 to determine whether f and are really e-optimal. If not, the loop
resumes. The time required to compute the sum is O(k* (m + n log n)), because at most k*
single-source shortest path computations are required. The probability that the check must be
done times in a single call to REDUCE is at most (e-l)t-l, so the total expected contribution
to the running time of REDUCE is at most O(k*(m + n log n)).

Recall that the bound on the number of iterations of REDUCE is greater than

minlD, kd(i)}
max

which in turn is at least k. Since in each iteration we carry out at least one shortest path
computation, the additional time spent on checking does not asymptotically increase our
bound on the running time for REDUCE.

We conclude this section with a theorem summarizing the running time of REDUCE for
some cases of particular interest. For all of these bounds the running time is computed by
multiplying the appropriate time for an iteration of REDUCE by the appropriate number of
iterations of REDUCE. These bounds depend on the assumption that exponentiation is a single
step. In 4.3 we shall show that the same bounds can be achieved without this assumption.
We shall also give a more efficient implementation for the case when e is a constant.

THEOREM 4.8. Let f O(r) and r and (7 satisfy the granularity condition. Let

H(k, d, o) max
min{D, kd(i)}

and let f min {k, k* log dmax }. Then the following table contains running timesfor various
implementations ofprocedure REDUCE (assuming that exponentiation is a single step).

Randomized Implementation Deterministic Implementation

< 6 < 0 (:-2(m .qt_ ?/logn)H(k, d, or)) 0 (e- H(k, d,poly(n)

logn + m(logn +/)l).[k*n
< < O(e-(m+nlogn)H(k,d, cr)) O(H(k dpoly(n

f is .O(e)-opt. [k*n logn + m(logn + ),])

4.3. Further implementation details. In this section, we will show how to get rid of the
assumption that exponentiation can be performed in a single step. We will also give a more
efficient implementation of the procedure REDUCE for the case when e is fixed.

4.3.1. Removing the assumption that exponentiation can be performed in O (1) time.
To remove the assumption that exponentiation can be performed in O (1) time, we will need to
do two things. First we will show that it is sufficient to work with edge-lengths (vw) that are
approximations to the actual lengths (vw) eaf(vw). We then show that computing these
approximate edge-lengths does not change the asymptotic running times of our algorithms.

The first step is to note that in the proof of Lemma 4.2, we never used the fact that we
reroute flow onto a shortest path. We only need that we reroute flow onto a sufficiently short
path. More precisely, it is easy to convert the proof ofLemma 4.2 into a proof for the following
claim.

LEMMA 4.9. Suppose cri and satisfy the granularity condition, and let P be an e-badflow
path ofcommodity i. Let Q be a path connecting the endpoints ofP such that the length ofQ
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is no more than ’g(P)/2 + ’ I___!11gl/2 greater than the length ofthe shortestpath connecting
the same endpoints. Then rerouting (Yi units offlowfrom path P to Q decreases lel by

O’i
lel logm))f2 min{6 kd(i)}

We will now show that in order to compute the lengths of paths up to the precision given
in this lemma, we only need to compute the lengths of edges up to a reasonably small amount
of precision.

By Lemma 4.9, the length of a path can have a rounding error of et! lel/2. Each path has

Izl /2)at most n edges, so it will suffice to ensure that each edge has a rounding error of a (’-- Igl
We will now bound this quantity. II is the maximum flow on an edge and hence must be at
least as large as the average flow on an edge, i.e., Ifl >_ ,,w f(vw)/m. Every unit of flow
contributes to the total flow on at least one edge, and hence Yow f(vw) >_ D, and combining
with the previous equation, we get that Ifl/D >_ 1/m. Ill is at least as big as the length of
the longest edge, i.e., [el > ealfl. Plugging in these bounds we see that it suffices to compute
with an error of at most (e’/nm)elfl. Each edge has a positive length of at most elfl and
can be expressed as eclflp, where 0 < p _< 1. Thus we need to compute p up to an error of
e’/nm. To do so, we need to compute O(log(e-lnm)) bits, which by the assumption that is
inverse polynomial in n is just O (log n) bits.

By using the Taylor series expansion of e, we can compute one bit of the length function
in O (1) time. Therefore, to compute the lengths of all edges at each iteration of REDUCE, we
need O(m log n) time. In the deterministic implementation of REDUCE each iteration takes
at least f2 (m log n) time (the time required for cycle cancelling)" therefore, the time spent on
computing the lengths is dominated by the running time of an iteration.

The approximation above depends on the current value of If I, which may change after each
iteration. It was crucial that we recomputed the lengths of every edge in every iteration. The
time to do so, O(m log n), would dominate the running time ofthe randomized implementation
of REDUCE. (Recall that the randomized implementation does not do cycle cancelling.) Thus,
we need to find an approximation that does not need to be recomputed at every iteration.
We will choose one that does not depend on the current [fl and hence will only need to be
updated on the O (n) edges on which the flow actually changes. We proceed to describe such
an approximation that will depend on r rather than fl.

Throughout REDUCE all edge length are at most e() and at least one edge has length
more than e. Therefore, I11 is at least eat, and by the same argument as for the deterministic
case O(e- log n) bits of precision suffice throughout REDUCE. When we first call REDUCE,
we must spend O(e-m logn) time to compute all the edge lengths. For each subsequent
iteration, we only need to spend O(e-n logn) time updating the O(n) edges whose length
have changed. Since each iteration of REDUCE is expected to take O(e- (m -t- n log n)) time
to compute shortest paths in FINDPATH, the time for updating edges is dominated by the time
required by F]NDPATH. While it appears that the time to compute initially all the edge lengths
may dominate the time spent in one invocation of REDUCE, we shall see in 5 that whenever
any of our algorithms calls REDUCE, it will have at least f2 (log n) iterations. Each iteration is
expected to take at least f2 (e- m) time to compute the shortest paths in FINDPATH. Therefore,
the time spent on initializing lengths will be dominated by the running time of REDUCE.

Note that in describing the randomized version of FINDPATH in Lemma 4.6, we assumed
we knew the exact lengths. However, by using the approximate lengths we do not significantly
change a path’s apparent contribution to the sum Yi ’PeTi g’(P)f(P)" Hence we do not

significantly reduce the probability of selecting a bad path.
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Thus we have shown that without any assumptions, REDUCE can be implemented deter-
ministically in the same time as is stated in Theorem 4.8. Although for the randomized version,
there is additional initialization time, for all the algorithms in this paper the initialization time
is dominated by the time spent in the iterations of REDUCE.

THEOREM 4.10. The times requiredfor the deterministic implementations ofprocedure
REDUCE stated in Theorem 4.8 hold without the assumption that exponentiation is a single
step. The time required by the randomized implementations increases by an additive term of
O(e-m log n) without this assumption.

4.3.2. Further improvements for fixed e. In this section we show how one can reduce
the time per iteration of REDUCE for the case in which e is a constant. First we show how
using approximate lengths can reduce the time required by FINDPATH; we use an approximate
shortest-paths algorithm that runs in O(m + ne-) time. Then we give improved imple-
mentation details for an iteration of REDUCE to decrease the time required by other parts of
REDUCE.

We will describe how, given the lengths and an e-bad path P from s to t, we can find a

path Q with the same endpoints such that() _< dist (s, t) / e’(P)/2 in O(m / ne-) time.
First, we discard all edges with length greater than (P), for they can never be in a path that
is shorter than P (if P is a shortest path between s and t, then P is not an e-bad path). Next,
on the remaining graph, we compute shortest paths from s using approximate edge-lengths

(v w)
e’t!(P)

[(vw)
2n

2---- e’e(P) ]’

thus giving us dist/(s, t), an approximation of diste(s, t), the length of the actual shortest
(s, t)-path. There are at most n edges on any shortest path, and for each such edge, the
approximate length is at most e’g.(P)/2n more than the actual length. Thus we know that

e’g(P)
distg(s, t) < diste(s, t) + n

2n
diste(s, t) -+

2

Further, since each shortest path length is an integer multiple of e’g.(P)/2n and no more than
g(P), we can use Dial’s implementation of Dijkstra’s algorithm [2] to compute distg(s, t) in
O(m + ne-) time.

Implementing F’INDPATH with this approximate shortest path computation directly im-
proves the time required by a deterministic implementation of REDUCE. The randomized im-
plementation of FINDPATH with approximate shortest path computation requires O(e- (m +
ne-)) expected time. In order to claim that an iteration of REDUCE can be implemented in
the same amount of time, we must handle two difficulties" updating edge lengths and up-
dating each edge’s table of flow paths when flow is rerouted. Previously, these steps took
O(n log n) time, which was dominated by the time for FINDPATH. We have reduced the time

for FINDPATH, so the time for these steps now dominates. We show how to carry out these
steps in O(n) time. For the first step, we show that a table can be precomputed so that each
edge length can be updated in constant time. For the second step, we sketch a three-level data
structure that allows selection of a random flow path through an edge in O (n) time and allows
constant-time addition and deletion of flow paths.

Say that before computing the length eaf(vw), we were to round crf(vw) to the nearest

multiple of e/c, for some constant c. This will introduce an additional multiplicative error
of + O(e/c) in the length of each edge and hence an additional multiplicative error of

+ O(e/c) on each path. However, by arguments similar to the previous subsection, this will
still give us a sufficiently precise approximation.
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Now we will show that by rounding in this way there are a small enough number ofpossible
values for g(vw) that we can just compute them all at the beginning of an iteration of REDUCE
and then compute the length of an edge by simply looking up the value in a precomputed
table. The largest value of cf(vw) we will ever encounter is O( -1 log n). Since we are only
concerned with multiples of /c, there is a total of only O( -2 log n) values that we will ever
encounter. At the beginning of each iteration, we can compute each of these numbers to a
precision of O(log n) bits in O( -2 log2 n) time. Once we have computed all these numbers,
we can compute the length of an edge by computing otf(vw), truncating to a multiple of /c,
and then looking up the value of g.(vw) in the table. This takes O(1) time. Thus for constant, we are spending O (log2 n + m) O(m) time per iteration.

Now we address the problem of maintaining, for each edge, the flow paths going through
that edge. Henceforth we will describe the data structure associated with a single edge. First
suppose that all the flow paths carry the same amount of flow, i.e., cri is the same for each. In
this case, we keep pointers to the flow paths in an array. We maintain that the array is at most
one-quarter empty. It is then easy to select a flow path in constant expected time randomly; one
randomly chooses an index and checks whether the corresponding array entry has a pointer to
a flow path. If so, select that flow path. If not, try another index.

One can delete flow paths from the array in constant time. If one maintains a list of empty
entries, one can also insert in constant time. If the array gets too full, copy its contents into
a new array of twice the size. The time required for copying can be amortized over the time
required for the insertions that filled the array. If the array gets too empty, copy its contents
into a new array of half the size. The time required for copying can be amortized over the
time required for the deletions that emptied the array. (See, for example, [1], for a detailed
description of this data structure.)

Now we consider the more general case, in which the flow values of flow paths may
vary. In this case, we use a three-level data structure. In the top level, the paths are organized
according to their starting nodes. In the second level, the paths with a common starting node
are organized according to their ending nodes. The paths with the same starting and ending
nodes may be assumed to belong to the same commodity and hence all carry the same amount
of flow. Thus these paths can be organized using the array as described above.

The first level consists of a list; each list item specifies a starting node, the total flow of all
flow paths with that starting node, and a pointer to the second-level data structure organizing
the flow paths with the given starting node. Each second-level data structure consists of a list;
each list item specifies an ending node, the total flow of all flow paths with that ending node
and the given starting node, and a pointer to the third-level data structure, the array containing
flow paths with the given starting and ending nodes.

Now we analyze the time required to maintain this data structure. Adding and deleting
a flow path takes constant time. Choosing a random flow path with the right probability can
be accomplished in O(n) time. First we randomly choose a value between 0 and the total
flow through the edge. Then we scan the first-level list to select an appropriate item based
on the value. Next we scan the second-level list pointed to by that item and select an item in
the second-level list. Each of these two steps takes O(n) time. Finally, we select an entry in
the third-level array. In the third-level array, all the flows have the same cri; thus, this can be
accomplished in O(1) expected time by the scheme described above.

So we have shown that for constant , each of the three steps in procedure REDUCE can
be implemented in O(m) expected time, thus yielding the following theorem.

THEOREM 4.11. Let f O(r) and r and O" satisfy the granularity condition. Let

min{D, kd(i)}
H(k, d, or) max

o"
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and let c min {k, k* log dmax}. For any constant e > 0 the procedure REDUCE can be
implemented in randomized O(m H(k, d, r)) and in deterministic O(H(k, d, o)m (log n +/))
time.

5. Concurrent flow algorithms. In this section, we give approximation algorithms for
the concurrent flow problem with uniform capacities. We describe two algorithms" CONCUR-
RENT and SCALINGCONCURRENT. CONCURRENT is simpler and is best if e is constant. SCALING-
CONCURRENT gradually scales e to the right value and is faster for small e.

Algorithm CONCURRENT (see Fig. 2) consists of a sequence of calls to procedure REDUCE
described in the previous section. The initial flow is constructed by routing each commodity
on a single flow path from si to ti. Initially, we set ri d(i). Before each call to REDUCE

we divide the flow quantum cri by 2 for every commodity where this is needed to satisfy the
granularity condition (3). Each call to REDUCE modifies the multicommodity flow f so that
either Ill decreases by a factor of 2 or f becomes e-optimal. (The procedure REDUCE can set
a global flag to indicate whether it has concluded that f is e-optimal.) In the latter case our
algorithm can terminate and return the flow. As we will see, O(log m) calls to REDUCE will
suffice to achieve e-optimality.

CONCURReNT(G, e, {d(i), (si, ti) < k})
For each commodity i" o’i +- d(i), create a simple path from si to ti and route d(i) flow on it.
r +--Ifl/2.
While f is not e-optimal,
For every i,
Until oi and r satisfy the granularity condition,

O" 4v.- O"i/2.
Call RtttJct (J; l’, e, d).
r +- r/2.
Return f.

FIG. 2. Procedure CONCURRENT.

THEOREM 5.1. The algorithm CONCURRENT finds an e-optimal multicommodity flow
in O((e-k + e-3m)(k*n logn + re(log n + min{k, k* logdmax}))logn) or in expected time

O((ke -2 + me-a)(m + n log n) log n).
Proof. Immediately after the initialization we have Ifl _< D. To bound the number

of phases we need a lower bound on the minimum value of fl. Observe that for every
multicommodity flow f, the total amount of flow in the network is D. Every unit of flow
contributes to the total flow on at least one of the edges, and hence vwE f(vw) > D.
Therefore,

(4) Ifl > Dim.

This implies that the number of iterations of the main loop of CONCURRENT is at most

O(log m). By Theorems 4.3 and 4.8, procedure REDUCE invoked during a single iteration of
CONCURRENT first spends O(m log n) time initializing edge lengths and then executes

min D, kd (i)
O e- max

O"

iterations. Throughout the algorithm for every cri is either equal tod(i) oris (R)(e2r/log(me-)).
In the first case,
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min D, kd(i)
o-

min D, kd (i)

d(i)
=min d--’k <k.

In the second case

min kd(i)} D
min {D, kd(i)} e-2Z"-1 log(me -l) < e-2- log(me-l).

Thus the total number of iterations of the loop of REDUCE is at most
O(e-(k + e -2 D log(mE-7 )), and the time spent on the initialization of the edge length
is dominated. The value r is halved at every iteration; therefore, the total number of calls
required for all iterations is at most O(e-lk log n) plus twice the number required for the last

Diteration of CONCURRENT. It follows from (4) that r is f2 (), and the total number of iterations
of the loop of REDUCE is at most O(e-k log n + e-3m log n).

Consider the special case when e is constant. We use the version of REDUCE imple-
mented with an approximate shortest path computation and apply the bounds ofTheorem 4.11
combined with a proof similar to that of Theorem 5.1 to get the following result:

THEOREM 5.2. For any constant e > O, an E-optimal solution for the unit-capacity
concurrentflow problem can befound in O(m(k + m) log2 n) expected time by a randomized
algorithm and in O(m(k + m)(logn + min {k,k* logdmax})logn) time by a deterministic
algorithm.

If e is less than a constant, we use the algorithm SCALINGCONCURRENT, shown in Fig. 3.
It starts with a large e and then gradually scales e down to the required value. More precisely,
algorithm SCALINGCONCURRENT starts by applying algorithm CONCURRENT with
SCALINGCONCURRENT then repeatedly divides e by a factor of 2 and calls REDUCE. After the
initial call to CONCURRENT, f is -optimal, i.e., fl is no more than twice the minimum
possible value. Therefore, Ifl cannot be decreased below r/2, and every subsequent call
to REDUCE returns an E-optimal multicommodity flow (with the current value of e). As
in CONCURRENT, each call to REDUCE uses the largest flow quantum a permitted by the
granularity condition (3).

SCA.NGCONCURRNT(G, ’, {d(i), (si, ti) < <_ k})

10"
Call CONCtJRRN’(G, , {d(i), (si, ti) < <_ k}), and let f be the resulting flow.
r +-- r/2.

While > ’,
e /2,
For every i,
Until or; and r satisfy the granularity condition,

o’; +-- o’/2.
Call Rt)tc (f, r, e, o’).

Return f.

FIG. 3. Procedure SCALING CONCURRENT.

THEOREM 5.3. The algorithm SCALINGCONCURRENTfinds an e-optimal multicommodity
flow in expected time O((ke- + me -3 log n)(m + n log n)).

Proof. As is stated in Theorem 5.2, the call to procedure CONCURRENT takes O(km log n+
m 2 log m) time and returns a multicommodity flow f that is -optimal; hence, Ifl is no more
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than twice the minimum. Therefore every subsequent call to REDUCE returns an e-optimal
multicommodity flow f.

The time required by one iteration is dominated by the call to REDUCE. The input flow f
of REDUCE is 2-optimal, so, by Theorems 4.8 and 4.10, the time required by the randomized
implementation of REDUCE is

We have seen that

O (e- (m + n log n) maxi
min{D, kd(i)})

min{D, kd(i)}
nlax

o

is at most 0 (k + -2m log m). The value of is reduced by a factor of two in every iteration.
Therefore, the total time required for all iterations is at most twice the time required by the last
iteration. The last iteration takes O((k + -2m log n)(- (m + n log n))) time, which proves
the claim.

Consider an implementation of CONCURRENT or SCALINGCONCURRENT with the deter-
ministic version of REDUCE. The time required by FINDPATH does not depend on , so we
cannot claim that the time is bounded by at most twice the time required for the last call to
REDUCE. Since there are at most log- iterations, we have the following theorem.

THEOREM 5.4. An e-optimal solution to the unit-capacity concurrent flow
problem can be found deterministically in time O(km logZn + (k log- + f-Zm log n)
(k*n logn + m(logn + min {k, k* log dmax}))).

6. o applications. In this section we describe two applications of our unit-capacity
concuent flow algorithm. The first application is to implement efficiently Leighton and Rao’s
sparsest cut approximation algorithm [14], and the second application is to minimize approx-
imately channel width in VLSI routing; the second problem was considered by Raghavan and
Thompson [16] and Raghavan [15].

We start by reviewing the result of Leighton and Rao concerning finding an approximately
sparsest cut in a graph. For any paition of the nodes of a graph G into two sets A and B, the
associated cut is the set of edges between A and B, and 8 (A, B) denotes the number of edges
in that cut. A cut is sparsest if 3(A, B)/(IAIIBI) is minimized. Leighton and Rao [14] gave
an O (log n)-approximation algorithm for finding the sparsest cut of a graph. By applying this
algorithm they obtained polylog-times-optimal approximation algorithms for a wide variety
of NP-complete graph problems, including minimum feedback arc set, minimum cut linear
arrangement, and minimum area layout.

Leighton and Rao exploited the following connection between sparsest cuts and concurrent
flow. Consider an all-pairs multicommodity flow in G, where there is a unit ofdemand between
every pair of nodes. In a feasible flow f, for any paition A U B of the nodes of G, a total
of at least AI] B] units of flow must cross the cut between A and B. Consequently, one such
edge must cay at least a [A[IB[/3(A, B) flow for the sparsest cut A U B. Leighton and Rao
prove an approximate max-flow, min-cut theorem for the all-pairs concurrent flow problem, by
showing that in fact this lower bound for fl is at most an O (log n) factor below the minimum
value. Their approximate sparsest-cut algorithm makes use of this connection. More precisely
given a nearly optimal length function (dual variables) they show how to find a partition A U B
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that is within a factor of O (log n) of the minimum value of fl and, hence, of the value of the
sparsest cut.

The computational bottleneck of their method is solving a unit-capacity concurrent flow
problem, in which there is a demand of between every pair of nodes. In their paper, they
appealed to the fact that concurrent flow can be formulated as a linear program and hence can
be solved in polynomial time. A much more efficient approach is to use our unit-capacity
approximation algorithm. The number of commodities required is O(n2). Leighton 12] has
discovered a technique to reduce the number of commodities required. He shows that if the
graph in which there is an edge connecting each source-sink pair is an expander graph, then
the resulting flow problem suffices for the purpose of finding an approximately sparsest cut.
(We call this graph the demand graph.) In an expander we have:

For any partition of the node set into A and B, where AI BI, the number
of commodities crossing the associated cut is 0(IAI).

Therefore, the value of Ifl for this smaller flow problem is K2(IAI/(A, B)). Since

IBI >_ n/2, it follows that nlfl is S2(IAIIBI)/6(A, B)). The smaller flow problem essen-
tially "simulates" the original all-pairs problem. Moreover, Leighton and Rao’s sparsest-cut
algorithm can start with the length function for the smaller flow problem in place of that for
the all-pairs problem. Thus Leighton’s idea allows one to find an approximate sparsest cut
after solving a much smaller concurrent flow problem. If one is willing to tolerate a small
probability of error in the approximation, one can use O(n) randomly selected source-sink
pairs for the commodities. It is well known how to select node pairs randomly so that, with
high probability, the resulting demand graph is an expander.

By Theorem 5.2, algorithm CONCURRENT takes expected time O(m 2 log2 m) to find an
appropriate solution for this smaller problem.

THEOREM 6.1. An O(log n)-factor approximation to the sparsest cut in a graph can be

found by a randomized algorithm in O(m 2 log2 m) time.

The second application we discuss is approximately minimizing channel width in VLSI
routing. Often a VLSI design consists of a collection of modules separated by channels; the
modules are connected by wires that are routed through the channels. For purposes of regularity
the channels have uniform width. It is desirable to minimize that width in order to minimize the
total area of the VLSI circuit. Raghavan and Thompson 16] give an approximation algorithm
for minimizing the channel width. They model the problem as a graph problem in which
one must route wires between pairs of nodes in a graph G so as to minimize the maximum
number of wires routed through an edge. To solve the problem approximately, they first solve
a concurrent flow problem where there is a commodity with demand for each path that needs
to be routed. An optimal solution fopt fails to be a wire routing only in that it may consist
of paths of fractional flow. However, the value of foptl is certainly a lower bound on the
minimum channel width. Raghavan and Thompson give a randomized method for converting
the fractional flow fopt to an integral flow, increasing the channel width only slightly. The
resulting wire routing f achieves channel width

(5) Ifl Ifoptl + O(v/lfoptl log n),

Their algorithm also works for edge-weighted graphs; weights translate to edge capacities in the corresponding
concurrent flow problem.
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which is at most tOmin -- O(//Wmin log n), where //)min is the minimum width. In fact, the
constant implicit in this bound is quite small. Later Raghavan 15] showed how this conversion
method can be made deterministic.

The computational bottleneck is, once again, solving a unit-capacity concurrent flow
problem. Theorems 5.3 and 5.4 are applicable and yield good algorithms. But if LOmin is
f2 (log n), we can do substantially better.2 In this case, a modified version of our algorithm
SCALINGCONCURRENT directly yields an integral f satisfying (5), although the big-Oh constant
is not as good as that of 16].

Consider the procedure SCALINGCONCURRENT. It consists of two parts. First the pro-
cedure CONCURRENT is called with to achieve 0-optimality. Next, SCALING-
CONCURRENT repeatedly calls REDUCE, reducing the error parameter e by a factor of two

every iteration, until the required accuracy is achieved. The demands are the same for every
commodity; hence, O" is independent of i, and we shall denote it by

We claim that if tOmin ’2 (log n), then or, which is initially for this application, need
never be reduced. Consequently, there remains a single path of flow per commodity, and the
randomized conversion method of Raghavan and Thompson becomes unnecessary. We show
that these paths constitute a routing with width//)min "at- O(v/tOmin log n).

First suppose the call to CONCURRENT terminates because the granularity condition be-
comes false. At this point, we have that

(6) > 2"r/(51 log(7m-l)).
We have that r > Ifl/2 and e , and therefore If[ O(logn). By our assumption

Wmi ’2 (log n), and hence fl _< L0min -I" O (V/l/)min log n).
Now assume that the call to CONCURRENT terminates with a -optimal flow. We proceed

with SCALINGCONCURRENT. It terminates when the granularity condition becomes false, at
which point inequality (6) implies that e2 O((logm)/r). The flow f is e-optimal and
integral. So Ifl <_ tOmin + O(wminV/iogm)/’r). Since r If[/2 > tOmin/2, this bound on

Ifl is at most l/)min -]- O(v/1/)min logm), as required.
THEOREM 6.2. If tOmin denotes the minimum possible width and L0min ’ (log m), a

routing ofwidth 1/)min -I- O(v’///)min log n) can befound by a randomized algorithm in expected
time O(km log n log k + k3/2(m + n log n)/v/log n) and by a deterministic algorithm in time

O(k log k(k*n log n + mk* + m log n)).
Proof. We have shown that algorithm SCALINGCONCURRENT finds the required routing

if it is terminated as soon as the granularity condition becomes false with r 1. Now we

analyze the time required.
We have D k and d(i) for every i, and throughout the algorithm we have O" for

every i. The number of calls to REDUCE during CONCURRENT is O (log k) (initially fl < k,
and it never gets below with cr 1). Therefore, the number iterations of the loop ofREDUCE
required during CONCURRENT is O(k log k). Next we proceed with SCALINGCONCURRENT.
The number of iterations is at most O(log k), because e is reduced by a factor of two each
iteration, starts at , and never gets below ! k. Each iteration is a call to REDUCE, which in
turn results in O (k) iterations of the loop of REDUCE.

The time required by one iteration of the loop deterministically is
O(k*n log n + m(k* + log m)), and the total time to find a good routing of wires is

O(k log k(k*n log n + mk* + m log n)).
The expected time required by the randomized implementation ofREDUCE is O(m log n

k- (m + n log n)). The total expected time required by CONCURRENT is O(mk log k log n).

9-This is the case of most interest, for if tOmi is O(log n), then the error term in (5) dominates tOmi
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After the call to CONCURRENT decreases by a factor of two each iteration, it follows that the
total expected time required for all iterations is O (m log n log- 1) plus twice the time for the
last call to REDUCE. During the last call to REDUCE, ,-1 O(v/k/log n), so the time required
for all iterations is O(km log n log k + k3/2(m + n log n)/v/’log n). This time dominates the
time required by CONCURRENT since tOmi ’2 (log n) implies k (log n). 13
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