
Nonparametric methods of calculating points on the curve produce the recently

introduced superquadric objects at great savings in time.
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Designers in CAD/CAM, modeling complex shapes
on the computer, frequently create all their objects from a
small library of fundamental objects whose properties are
well understood. Thus, PADL, .,2 a solid-object design
system, uses rectangular boxes and cylinders. Another
system, EUKLID,3 uses prisms, anti-prisms, boxes, and
so on. In the first issue of IEEE Computer Graphics and
Applications, Barr4 introduced a new family of paramet-
ric objects called superquadric shapes. They are gener-
alizations of conic sections and toruses with the exponent,
formerly 2, replaced by an arbitrary positive number (see
Figures I and 2). Thus, they are 3-D versions of Piet
Hien's superellipses. These curves are also mentioned by
Faux and Pratt5 and by Flanagan and Hefner.6 Figure 3
shows superellipses with nine different exponents from

Figure 1. Superquadric ellipsoids.

0.1 to 10. These objects are being used in solid modeling
and display on color raster graphics equipment because
they are flexible enough to represent a broad family of
shapes, and because they are easy to calculate. The pic-
tures in Barr's article show the wide variety of useful
shapes that can be created with generalizations of toroids
and hyperboloids of one and two sheets. The shapes can
be rounded, squared, or pinched, and can have different
properties in different directions.

Superquadrics can be defined by either implicit or
parametric equations. The parametric form is used for
calculation, since surface points and normal vectors can
be generated more easily with this method than with im-
plicit equations, but the sampled points are sometimes
very unevenly spaced. We have used computational ge-

Figure 2. Superquadric toroids.
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Figure 4(e). Superellipse: e = 2, varying a
in 100 Increments.

Figure 4(f). Superellipse: e = 1, varying e
In 100 increments.

Figure 4(h). Superellipse: e = 0.2, varying
9 in 100 incrernents.

Figure 4(i). Superellipse: e = 0.1, varying e
In 10° increments.
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length varies with 6 for x= cos 02 0, y= sin.02 0:
60 x y

0 1.0000 .0000
5 .9998 .9070
10 .9994 .9324
15 .9986 .9474
20 .9975 .9580
25 .9961 .9661
30 .9943 .9727
35 .9921 .9780
40 .9894 .9825
45 .9862 .9862

Note how slowly y, which is the faster changing coor-
dinate, varies for large 0. One possible solution is to take
smaller increments for 0, but that produces little improve-
ment in covering the large gap. Thus, generating smooth
curves with the raw parametric method requires calculat-
ing many points, especially when using exponents that
make very square shapes.
Now, it is possible to calculate the superquadric's local

curvature and the rate of change of arc length as the
parameter varies, and from there to determine how much
to vary the parameter for each new point. This method
produces an optimal sampling of the surface, using the
fewest number of points. However, this is both compli-
cated and strongly dependent on the particular super-
quadric being calculated. In any case, even if no useless
points are calculated, each useful point will still take
longer to calculate with the parametric method than with
the explicit method.

Finally, plotting the superquadric on a raster device by
the explicit method, we can produce points spaced one
pixel apart, and then we don't have to scan-convert the
piecewise linear approximation generated by the unevenly
spaced points produced by the parametric method.

The explicit equation for a superellipse

In this section, we assume some simplifications that do
not affect any essential concepts: we are working in 2-D;
we are ignoring scaling and translation; we are ignoring
parabolas and hyperbolas and considering only ellipses;
and we are using the same exponent for both x and y. The
parametric form of the superellipse is

x = cos, 6

y = sine 0, -Tr 0 < T

The implicit form is

x n + y In= 1, where n = 2/e

Figure 3 shows how n controls the shape of the curve:
n = 2 gives a circle, and as n- o, the curve approaches a
square; n = I gives a diagonal square, and as n-0, the
curve becomes more and more pinched. Since the curve
has eightfold symmetry, let us calculate only the piece
with 0sx<y and then reflect it seven times. We obtain
the explicit equation by expressingyas a function ofxand
using the binomial expansion:

y = (I -xn) I/n (1)

-I- 1 n- I x2n (n-1)(2n-1) X3-
n 2n2 6n3

How accurate is this expression? It gets less accurate as x
gets bigger, so the worst case occurs when x = y, that is,
when x = 2 - i In. Then,

I n - I (n - 1)(2n - 1)
Y =lI -- - _ . . .

2n 8n2 48n3

Figure 5. Superquadric cuboid: (a) raw parametric sampling of surface and (b) explicit sampling of surface.

IEEE CG&A44



Thus the explicit equation becomes more accurate as n in-
creases, that is, as the parametric method becomes less
suited. Consider, for example, n = 5, i.e., e = 0.4, which
gives a mildly rounded superellipse, as shown in Figure
4(g). The terms of the above equation, for the worst
point, are

y= I - .1 - .02- .006- .0021 - .000798-

Thus after only five terms, the partial sum is accurate
enough for display on a 1000-by-1000 screen. If we want a
squarer curve, which means a higher n, even fewer terms
will suffice. For most points with a given n, such as n = 5
and x = 0.5, the series converges much faster than above:

y= I - .00625- .0000781 - . . .

Thus a mere two terms will suffice on a 1000-by-1000
screen to calculate this point. The n can range up to 346
before the ellipse becomes a square at our resolution, and
there the series converges in one or two terms for all x.

For small n, the binomial series converges too slowly,
so it is faster to use the exact equation (1). The exact equa-
tion is still better than the raw parametric method, since it
requires only two exponentiations, while the parametric
method requires two exponentiations and two trigono-
metric evaluations. The exact equation also produces
equally spaced points. We could also use the binomial ap-
proximation for small x on a given curve, and then switch
to the exponentiation functions when x is larger and the
series converges more slowly.

It is useful to allow the exponents of x and y to differ.
The only effect of this is to reduce the degree of symmetry
from eightfold to fourfold.

In summary, the explicit equation is faster than the
parametric method for calculating superellipses for all
values of n.

The explicit equation for a superquadric

Calculating a superquadric in 3-D is similar to calcu-
lating a superellipse in 2-D. The parametric form is

x=cosElin COSe2w

y = cosEi, sinE2 .

- ir/2 s q s 7r/2

-7r S u < 7r

z = sinet 7

The surface is generated at each value of q and w from two
superelliptic curves-one associated with i7, and one
associated with co (see Figure 5a). The speediest way to
generate the surface points is to precompute and store the
superellipses by the explicit method, because only two
multiplies and three retrievals are needed for each super-
quadric surface point (see Figure 5b). This property is true
for any surface that can be represented in the form of a
spherical product. It is also true for the superquadric nor-
mal vectors. For cases in which e I = E2, the explicit equa-
tion becomes

Z = ( - yn)In

We will evaluate it forOsxsyszs I, which is 1/48 of
the superquadric, and reflect it 47 times. If n > > 1, then
we can expand the binomial series as before. Note that the
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parametric form obscures the 48-fold symmetry of this
type of superquadric because spherical coordinate sys-
tems have a distinguished orientation. Using the exact ex-
plicit equation requires three exponentiations per point,
compared to the raw parametric method's four trigono-
metric evaluations plus four exponentiations-167 per-
cent more function calls. However, the spherical product
parametric representation requires only two multiplies
per surface point. As before, the binomial series is even
faster when it converges efficiently. And, as before, we
can generate points at exactly equal intervals in x or y, a
requirement which the spherical product form is not well-
suited to meet.

If we relax the restriction that the exponents be equal,
then the implicit equation can be generalized to

Xn] + yn2 + Zn3 = I

This equation is more general than the parametric equa-
tion, since that has only two degrees of freedom, e I and e2,
which forces n2 = n3. However, there is no spherical
product that corresponds to this form, and the normal
vectors do not have the same functional form as the posi-
tion vectors, although they are easy to calculate from the
(n - 1)th powers of x, y, and z. Letting the exponents dif-
fer reduces the degree of symmetry, so we must calculate
more points. That is also the major effect of calculating
hyperboloids, paraboloids, and toroids, as well as ellip-
soids.
We frequently wish to generate surface points or voxels

of a superquadric so that a solid modeling system can then
manipulate the object. A sphere filling a 1000-by-1000-
by-1000 grid has about 2,000,000 surface points, and in-
serting so many points into a data base may be expensive.
If we wish only to plot a set of the superquadrics and not
intersect them, then it is much more efficient merely to
write their points into the Z-buffer and never to create the
data base at all, saving the large amount of space that such
a data base would require.

formations have been calculated, sort and bring together
all points for each transformation.

Using lookup tables

Evaluation of superquadric surface points and normal
vectors is slow because they require so many exponentia-
tions. One way to increase speed would be to attach to the
bus a peripheral processor that does nothing but exponen-
tiations. For images, an easier method is to use lookup
tables, since we only need to resolve to 0.001 accuracy.
There are two ways we might use lookup tables other than
the previously mentioned spherical product method. Sup-
pose that we must plot

X5 + y5 + Z5 1

We can calculate a table of ( = c5, tabulated from 0 to 1 in
steps of 0.001, and another table of _=3002. Then
calculating each z(x,y) takes three lookups, two subtrac-
tions, and no floating-point operations or function calls.
Precalculating and storing the table takes insignificant
time and space compared to the superquadric itself.
The other method is to precalculate tables of exponen-

tials and logs. Then we can evaluate ac by calculating
e3 ln(a). This method is slower because of the multiplica-
tion, and it is possibly less accurate because we must inter-
polate into a more rapidly changing function table for the
second lookup. However, one set of tables works for all
powers.

If we proportionally increase the number of points that
we calculate as we increase the accuracy, then no matter
what the accuracy, the lookup tables will always take an
insignificant fraction of time and space. However, if we
wish to calculate only a few points to a high accuracy,
possibly because we wish to postprocess the superquadric
without compounding roundoff errors, then the lookup
tables might become too large a fraction of the total data
structure. Then we would revert to the explicit equation
or series approximation.

Generally oriented superquadrics

The preceding derivation assumed an orthogonal cubi-
cal superquadric. The easiest way to add scale factors and
arbitrary orientation is to generate a point (x,y,z) of the
standardized superquadric for the desired parameter n,
and then generate and transform the reflections. We can
then postprocess them as desired, for example sorting
them back-to-front for writing into a Z-buffer. Since the
program uses a lot of virtual memory, we must process the
data in order as much as possible, to reduce the size of the
program's working set and minimize page faulting.
For generating a sequence of related superquadric-s

with the same parameter, n, as in an animated sequence
showing an assembly of parts opening up, there are two

ways to speed up the process. If it is faster to read a page of
points from disk than to calculate them, we might calcu-
late once and store a superquadric in some standard orien-
tation, and then just reread and transform its points. Or,
after we calculate a point, we might calculate all its
transformations and, after all the points and their trans-

Implementation results

We implemented, on a Prime 750, six different
methods of calculating the points on superquadrics:

(1) the raw parametric method without using spherical
products;

(2) the exact explicit equation;
(3) the series approximation, using three terms;
(4) the above series approximation, using a lookup

table for lg(a);
(5) the parametric method, using a spherical product

with lookup tables for cosel , etc.;

(6) the exact explicit equation, using lookup tables for

an and ai/n

The execution time to calculate the coordinates of a

point was isolated and measured. In each case, the cal-

culation was repeated 10,000 times. Even so, the times

varied about 10 percent from run to run. For the table

lookups, the tables were assumed to be precalculated,
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since in practice the time to calculate them is completely
dominated by the rest of the program. The calculation
times and their ratios to the time of the raw parametric
method are as follows:

Method CPU time (sec.) for
10,000 points

# times as fast
as method I

1 8.61 1.00
2 4.46 1.93
3 3.20 2.69
4 1.69 5.09
5 0.158 54.10
6 0.039 219.00

Thus, the time to calculate the points on the superquadric
is reduced from a dominant problem into insignificance.

Techniques from traditional computer science, such
as numerical analysis and data structures, can be brought
to bear on computationally difficult problems in com-
puter graphics to great effect. In the case of superquad-
rics, by changing from a parametric method to an explicit
equation, we can produce evenly spaced points, faster,
for a surface of greater generality. Thus, solid modelers
can use flexible families of shapes at much lower cost than
before. U
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