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Abstract. A novel technique for computing a 2n-bit modular multipli-
cation using n-bit arithmetic was introduced at CHES 2002 by Fischer
and Seifert. Their technique makes use of an Euclidean division based
instruction returning not only the remainder but also the integer quo-
tient resulting from a modular multiplication, i.e., on input x, y and z,
both �xy/z� and xy mod z are returned. A second algorithm making
use of a special modular ‘multiply-and-accumulate’ instruction was also
proposed.
In this paper, we improve on these algorithms and propose more ad-
vanced computational strategies with fewer calls to these basic opera-
tions, bringing in a speed-up factor up to 57%. Besides, when Euclidean
multiplications themselves have to be emulated in software, we propose a
specific modular multiplication based algorithm which surpasses original
algorithms in performance by 71%.

Keywords: Modular multiplication, crypto-processors, embedded cryp-
tographic software, efficient implementations, RSA.

1 Introduction

When a cryptographic coprocessor is inherently limited to handle numbers of a
specific bitsize n, performing modular arithmetic operations over larger operands
turns out to be an intricate implementation problem. One may think of natural
and simple solutions like programming multi-precision algorithms such as those
of Montgomery [5], Barrett [3], Quisquater [8] or Walter [10]. These algorithms
as well as others, however, require processing data blocks via smaller operations
that may not be supported by the underlying hardware architecture. A typical
example lies in the regular (n×n)-bit integer multiplication (with a 2n-bit result),
which may not be directly available on a crypto-processor like Infineon’s ACE
where only n-bit modular operations —for n up to 1100— are programmable. To
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remedy this, a conventional trick tells us to take a blocksize n ≤ 1100/2 (say n =
512), so that integer multiplications result from multiplications modulo 21100.
Adopting this strategy, a Montgomery-based implementation for a single 2048-
bit multiplication would cost no less than forty 512-bit integer multiplications,
an unacceptable performance. So implementing a 2048-bit RSA while sustaining
higher expectations in terms of execution speed is not a straightforward task on
this platform. Given that context, one has to devise more specific techniques to
emulate modular arithmetic operations over operands of larger sizes.

Surprisingly enough, little is known about software strategies that would
overcome this hardware-originated length limitation in a very efficient way. Two
different techniques, however, have appeared in the literature recently. In [6],
Paillier presents a 2n-bit modular multiplication emulated with 8 → 6 calls to a
modular multiplier of bitsize n (plus other, negligible operations). Paillier’s algo-
rithm, inspired by Montgomery’s technique [5], strongly relies on Residue Num-
ber Systems (RNS) [7,9] for representing data and performing partial operations
on them. It simplifies earlier, more intricate approaches making use of mixed base
representations [1,2]. The efficiency of this system is due to the use of fast base
extensions in connection with a specific choice for the RNS base, a choice which
also ensures that the result of the double-size multiplication is returned under a
representation compatible with the input operands themselves, thereby allowing
repeated invocations of the algorithm. Unfortunately, its Montgomery-like style
forces one to precompute a modulus-dependent constant prior to multiplying
any data.

More recently, in [4], Fischer and Seifert suppress the need for precomputed
constants: 2n-bit operands are handled through a classical radix representation
with base 2n, the new technique outputting a result under the same representa-
tion. Independently, in this work, Fischer and Seifert replace the basic operation
with an Euclidean multiplication, i.e., an operation that simultaneously returns
both the quotient and remainder of the division xy ÷ z, given arbitrary n-bit
integers x, y and z. The motivation for this stems from the ease of integrating
such an operation in a hardware architecture which already supports modular
multiplications. On most architectures indeed, the arithmetic units involved in
the execution of a modular reduction could be easily enriched to simultaneously
output quotient bits with extremely moderate extra cost.

In this paper, we improve on Fischer and Seifert’s algorithms and propose
more advanced computational strategies with fewer calls to the Euclidean mul-
tiplication. Our improved algorithms use 2n-radix representations of numbers in
the spirit of [4]. We also show that adapting the choice of the radix base accord-
ing to the modulus may further speed up our technique. This modification can be
carried out while maintaining inputs and outputs under the same arithmetic for-
mat, thereby making it possible to iterate executions. In the most favorable case,
we emulate a double-size modular multiplication with no more than 3 Euclidean
multiplications, which leads to a speedup factor of 7−3

7 ≈ 57%. In addition,
when Euclidean multiplications themselves must be emulated in software from
modular multiplications, we show how to use these directly without referring
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to RNS-based approaches [1,2,7,9]. More precisely, we propose a simple alterna-
tive to these works which keeps numbers under a radix representation and runs
as fast as 2 Euclidean multiplications. This accelerates original algorithms by
14−4
14 ≈ 71%. We remind that, whatever the computational strategy, it is agreed

that n-bit linear operations such as signed additions, subtractions, xors, con-
ditional branchings and so forth, are always available and that their respective
running times remain negligible in comparison with operations of multiplicative
nature. As usual, we consider these as being virtually free operations throughout
the paper.

The rest of this paper is organized as follows. In the next section, we review
the technique introduced by Fischer and Seifert for emulating a 2n-bit modular
multiplication and show how to improve it in Section 3. Then, in Section 4, we
investigate the influence of data representations on the performances of our algo-
rithms. In Section 5, we detail an implementation of an Euclidean multiplication.
Section 6 describes a specific strategy for cases when Euclidean multiplications
are emulated in software. Finally, we summarize and compare our results in
Section 7.

2 Fischer and Seifert’s Algorithms

Fischer and Seifert’s technique [4] relies on the two basic instructions

MultModDiv(x, y, z) ∆= (�(x · y)/z�, (x · y) mod z) (1)

and

MultModDivInit(x, y, t, z) ∆= (�(x · y + t · 2n)/z�, (x · y + t · 2n) mod z) , (2)

where x, y, t, z are n-bit integers. It is implicitly required in [4] that operands x, y
and t can be negative, i.e., that the processor is able to handle them whatever
their sign through a signed representation without affecting computation results.
In fact, these two instructions should, by extension, work for any non-reduced
inputs x, y, t, namely whenever |x| > z for instance, provided that �|x|/z� re-
mains an extremely small value. Subsequent hardware or software corrections
are neglected in the description of all algorithms, as proposed in [4].

The algorithms originally proposed by Fischer and Seifert, which we denote
by FS1 and FS2, are depicted on Fig. 1 and Fig. 2, respectively. We refer the
reader to [4] for proofs of correctness.

3 Improved Algorithms

Our idea consists in rewriting the modular multiplication in terms of manipula-
tions over half-size operands. This is reminiscent of Karatsuba’s famous method
which we recall here for the sake of completeness.
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Input: 2n-bit integers A = A12n + A0, B = B12n + B0, N = N12n + N0

Output: AB (mod N)
Cost: 7 MultModDiv

(Q(1), R(1)) = MultModDiv(B1, 2n, N1)
(Q(2), R(2)) = MultModDiv(Q(1), N0, 2n)
(Q(3), R(3)) = MultModDiv(A1, R

(1) − Q(2) + B0, N1)
(Q(4), R(4)) = MultModDiv(A0, B1, N1)
(Q(5), R(5)) = MultModDiv(Q(3) + Q(4), N0, 2n)
(Q(6), R(6)) = MultModDiv(A1, R

(2), 2n)
(Q(7), R(7)) = MultModDiv(A0, B0, 2n)

Return (R(3) + R(4) − Q(5) − Q(6) + Q(7))2n + (R(7) − R(6) − R(5))

Fig. 1. Fischer-Seifert’s modular multiplication algorithm FS1

Input: 2n-bit integers A = A12n + A0, B = B12n + B0, N = N12n + N0

Output: AB (mod N)
Cost: 5 MultModDiv + 1 MultModDivInit

(Q(1), R(1)) = MultModDiv(A1, B1, N1)
(Q(2), R(2)) = MultModDivInit(N0, −Q(1), R(1), N1)
(Q(3), R(3)) = MultModDiv(A1, B0, N1)
(Q(4), R(4)) = MultModDiv(A0, B1, N1)
(Q(5), R(5)) = MultModDiv(A0, B0, 2n)
(Q(6), R(6)) = MultModDiv(Q(2) + Q(3) + Q(4), N0, 2n)

Return (R(2) + R(3) + R(4) + Q(5) − Q(6))2n + (R(5) − R(6))

Fig. 2. Fischer-Seifert’s modular multiplication algorithm FS2

Lemma 1 (Karatsuba). If A = A12n + A0 and B = B12n + B0 then

AB = 2n(2n − 1)A1B1 + 2n(A1 + A0)(B1 + B0) − (2n − 1)A0B0 .

Our first algorithm only makes use of Fischer and Seifert’s MultModDiv in-
struction while our second algorithm also employs the MultModDivInit instruc-
tion.

3.1 Using MultModDiv Instructions Only

In this section, we eliminate a MultModDiv instruction in Fischer-Seifert’s tech-
nique. We state:

Theorem 1. Given arbitrary 2n-bit integers N and A, B ≤ N , the 2n-bit inte-
ger AB mod N can be computed with at most six n-bit MultModDiv instructions.
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Input: 2n-bit integers A = A12n + A0, B = B12n + B0, N = N12n + N0

Output: AB (mod N)
Cost: 6 MultModDiv

(Q(1), R(1)) = MultModDiv(A1, B1, N1)
(Q(2), R(2)) = MultModDiv(Q(1), N0, 2n)
(Q(3), R(3)) = MultModDiv(A1 + A0, B1 + B0, 2n − 1)
(Q(4), R(4)) = MultModDiv(A0, B0, 2n)
(Q(5), R(5)) = MultModDiv(2n − 1, R(1) + Q(3) − Q(2) − Q(4), N1)
(Q(6), R(6)) = MultModDiv(Q(5), N0, 2n)

Return (R(3) + R(5) − Q(6) − R(2) − R(4))2n + (R(2) + R(4) − R(6))

Fig. 3. Our improved algorithm A1 for double-size modular multiplication

Our algorithm, denoted A1, is described hereafter on Fig. 3.

Proof (of correctness for A1). For convenience, we write Z = 2n and denote by
≡N the equivalences modulo N . Then, rewriting Lemma 1 gives

AB = Z(Z − 1)A1B1 + Z(A1 + A0)(B1 + B0) − (Z − 1)A0B0 .

Moreover, noticing that N1Z ≡N −N0, we get

Z(Z − 1)A1B1 ≡N Z(Z − 1)(Q(1)N1 + R(1))
≡N −(Z − 1)(Q(1)N0) + Z(Z − 1)R(1)

≡N −(Z − 1)(Q(2)Z + R(2)) + Z(Z − 1)R(1)

≡N Z(Z − 1)(R(1) − Q(2)) − (Z − 1)R(2) ,

Z(A1 + A0)(B1 + B0) = Z((Z − 1)Q(3) + R(3)) = Z(Z − 1)Q(3) + ZR(3)

and

(Z − 1)A0B0 = (Z − 1)(ZQ(4) + R(4)) = Z(Z − 1)Q(4) + (Z − 1)R(4) .

Hence, we have

AB ≡N Z(Z − 1)(R(1) + Q(3) − Q(2) − Q(4)) + ZR(3) − (Z − 1)(R(2) + R(4))
≡N Z(Q(5)N1 + R(5)) + ZR(3) − (Z − 1)(R(2) + R(4))
≡N −Q(5)N0 + Z(R(3) + R(5)) − (Z − 1)(R(2) + R(4))
≡N −(Q(6)Z + R(6)) + Z(R(3) + R(5)) − (Z − 1)(R(2) + R(4))
≡N (R(3) + R(5) − Q(6) − R(2) − R(4))Z + (R(2) + R(4) − R(6)) ,

which proves the correctness of Algorithm A1 and of Theorem 1. 	
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3.2 Using MultModDiv and MultModDivInit Instructions

Here again, we invoke Lemma 1 and improve Fischer and Seifert’s double size
multiplier FS2. Formally, we state:

Theorem 2. Given arbitrary 2n-bit integers N and A, B ≤ N , the 2n-bit inte-
ger AB mod N can be computed with at most four n-bit MultModDiv instructions
and one n-bit MultModDivInit instruction.

Our algorithm, denoted A2, is described below on Fig. 4.

Input: 2n-bit integers A = A12n + A0, B = B12n + B0, N = N12n + N0

Output: AB (mod N)
Cost: 4 MultModDiv + 1 MultModDivInit

(Q(1), R(1)) = MultModDiv(A1, B1, N1)
(Q(2), R(2)) = MultModDiv(A1 + A0, B1 + B0, 2n − 1)
(Q(3), R(3)) = MultModDiv(A0, B0, 2n)
(Q(4), R(4)) = MultModDivInit(Q(1), N0, Q

(3) − R(1) − Q(2), N1)
(Q(5), R(5)) = MultModDiv(N0 + N1, Q

(4), 2n)

Return (R(2) + Q(5) − R(3) − R(4))2n + (R(3) + R(4) + R(5))

Fig. 4. Improved algorithm A2 for double-size modular multiplication

Proof (of correctness for A2). As before, we set Z = 2n. We have

Z(Z − 1)A1B1 ≡N Z(Z − 1)(Q(1)N1 + R(1)) ≡N (Z − 1)(−Q(1)N0 + R(1)Z) ,

Z(A1 + A0)(B1 + B0) = Z((Z − 1)Q(2) + R(2)) = (Z − 1)Q(2)Z + ZR(2) ,

(Z − 1)A0B0 = (Z − 1)(ZQ(3) + R(3)) = (Z − 1)Q(3)Z + (Z − 1)R(3)

so that

AB ≡N −(Z − 1)
(
Q(1)N0 + (Q(3) − R(1) − Q(2))Z

)
+ ZR(2) − (Z − 1)R(3)

≡N −(Z − 1)(Q(4)N1 + R(4)) + ZR(2) − (Z − 1)R(3)

≡N (N0 + N1)Q(4) + ZR(2) − (Z − 1)(R(3) + R(4))
≡N (Q(5)Z + R(5)) + ZR(2) − (Z − 1)(R(3) + R(4))
≡N (R(2) + Q(5) − R(3) − R(4))Z + (R(3) + R(4) + R(5))

since N1(Z − 1) ≡N −N0 − N1. 	


4 Further Improvements Using Specific Representations

All algorithms considered so far manipulate integers in radix representation with
base 2n. We now show how changing that representation may lead to further
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cost savings in our algorithms. Although we explicitly describe only a couple
of (modulus-dependent) representations in what follows, there might exist other
ones which would reveal quite as efficient. In both cases, the idea is simply to
employ a clever representation base derived from modulus N . This computation
is performed prior to the execution of the corresponding double-size modular
multiplication and can be executed once and for all, especially when the multi-
plication is invoked repeatedly.

4.1 Down to 5 MultModDiv

Let X = �√N�. Then setting α = X2 mod N , we have α < 2X. We state:

Theorem 3. Given arbitrary 2n-bit integers N and A, B ≤ N , the 2n-bit inte-
ger AB mod N can be computed with at most five n-bit MultModDiv instructions.

We denote our new algorithm by A3 and describe it on Fig. 5.

Input: radix base X, 2n-bit integers A = A1X + A0, B = B1X + B0

Output: AB (mod N)
Cost: 5 MultModDiv

(Q(1), R(1)) = MultModDiv(A0, B0, X)
(Q(2), R(2)) = MultModDiv(A1 + A0, B1 + B0, X)
(Q(3), R(3)) = MultModDiv(A1, B1, X)
(Q(4), R(4)) = MultModDiv(α, Q(3), X)
(Q(5), R(5)) = MultModDiv(α, −Q(1) + Q(2) − Q(3) + Q(4) + R(3), X)

Return (R(5) + R(1)) + (R(4) − R(1) + Q(1) + R(2) − R(3) + Q(5))X

Fig. 5. Double-size modular multiplication algorithm A3

Proof (of Algorithm A3). Using X2 ≡N α and

AB = X(X − 1)A1B1 + X(A1 + A0)(B1 + B0) − (X − 1)A0B0 ,

we get

(X − 1)A0B0 ≡N (X − 1)(Q(1)X + R(1)) ≡N Q(1)α − R(1) + (R(1) − Q(1))X ,

X(A1 + A0)(B1 + B0) ≡N X(Q(2)X + R(2)) ≡N Q(2)α + R(2)X ,

and

XA1B1 ≡N X(Q(3)X + R(3)) ≡N Q(3)α + R(3)X ,

X2A1B1 ≡N X(R(3)X + Q(3)α) ≡N R(3)α + Q(3)αX ,

X(X − 1)A1B1 ≡N (−Q(3) + R(3))α + (−R(3) + Q(3)α)X ,

where-from
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AB ≡N α(−Q(1) + Q(2) − Q(3) + R(3)) + R(1)

+X(−R(1) + Q(1) + R(2) − R(3) + Q(3)α)
≡N α(−Q(1) + Q(2) − Q(3) + R(3)) + R(1)

+X(Q(4)X + R(4) − R(1) + Q(1) + R(2) − R(3))
≡N α(−Q(1) + Q(2) − Q(3) + Q(4) + R(3)) + R(1)

+X(R(4) − R(1) + Q(1) + R(2) − R(3))
≡N (R(5) + R(1)) + (R(4) − R(1) + Q(1) + R(2) − R(3) + Q(5))X ,

which proves the correctness of A3. 	

Again, this algorithm uses only 5 MultModDiv instructions. But if we take a

careful look at its description, we observe that a couple of MultModDiv instruc-
tions are performed directly with operand α. Therefore, having a small value for
α would render these two MultModDiv instructions significantly faster. Suppose
for example that an n-bit X can be found given N such that α ≤ 2n/2. Assum-
ing that the execution time of MultModDiv is essentially linear in the bitsize of
its first operand, then Algorithm A3 would have a time consumption close to 4
MultModDiv, resulting in an additional speedup of 20%.

4.2 Extreme Cases: Down to 3 MultModDiv

Optimal performances are reached when α = −1, 2, 3 for instance, in which cases
the computational cost of our algorithm reduces to 3 MultModDiv instructions.
One may of course ask under which circumstances there exists an n-bit integer
X with such a trivial square modulo a 2n-bit RSA modulus N . A practical way
to ensure this consists in modifying the RSA key generation. We believe that
simple algebraic techniques allow to do that while preserving the security of RSA
moduli.

Other choices for the representation base may also present interesting prop-
erties, as we now illustrate. Assume for instance that for a given N , there exists
an n-bit Y ≥ �√N� such that

Y 2 ≡ α + δY (mod N) ,

where we try to make α and δ as trivial as possible. If α and δ are simple numbers
(ideally δ = 1), A3 simplifies into Algorithm A4 depicted on Fig. 6.

Proof (of correctness for A4). Using Y 2 ≡N α + δY and Lemma 1, one gets

(Y − 1)A0B0 ≡N (Y − 1)(Q(1)Y + R(1))
≡N −Q(1)Y − R(1) + R(1)Y + Q(1)(α + δY )
≡N Q(1)α − R(1) + (R(1) − Q(1) + Q(1)δ)Y ,

Y (A1 + A0)(B1 + B0) ≡N Y (Q(2)Y + R(2))
≡N R(2)Y + Q(2)(α + δY )
≡N Q(2)α + (R(2) + Q(2)δ)Y ,
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Input: radix base Y , 2n-bit integers A = A1Y + A0, B = B1Y + B0

Output: AB (mod N)
Cost: 3 MultModDiv

(Q(1), R(1)) = MultModDiv(A0, B0, Y )
(Q(2), R(2)) = MultModDiv(A1 + A0, B1 + B0, Y )
(Q(3), R(3)) = MultModDiv(A1, B1, Y )

Return α(−Q(1) + Q(2) − Q(3) + R(3) + Q(3)δ) + R(1)

+ Y (−R(1) − R(3) + Q(1) + R(2) + Q(3)(α + δ2) + (−Q(3) + R(3) − Q(1) + Q(2))δ)

Fig. 6. Double-size modular multiplication algorithm A4

Y A1B1 ≡N Y (Q(3)Y + R(3)) ≡N Q(3)α + (R(3) + Q(3)δ)Y
Y 2A1B1 ≡N Y (Q(3)α + (R(3) + Q(3)δ)Y )

≡N Q(3)αY + (R(3) + Q(3)δ)(α + δY )
≡N (R(3) + Q(3)δ)α + ((R(3) + Q(3)δ)δ + Q(3)α)Y ,

Y (Y − 1)A1B1 ≡N (R(3) − Q(3) + Q(3)δ)α
+ ((R(3) + Q(3)δ)(δ − 1) + Q(3)α)Y

≡N (R(3) − Q(3) + Q(3)δ)α + (−R(3) + (−Q(3) + R(3))δ
+ Q(3)(δ2 + α))Y ,

so that

AB ≡N α(−Q(1) + Q(2) − Q(3) + R(3) + Q(3)δ) + R(1)

+ Y (−R(1) − R(3) + Q(1) + R(2) + Q(3)(α + δ2)
+ (−Q(3) + R(3) − Q(1) + Q(2))δ) ,

thereby proving Algorithm A4. 	

Again, this algorithm has a cost of 3 MultModDiv instructions provided that

the values for α, δ and α+δ2 are simple constant numbers. This could be ensured
by properly adapting the RSA key generation algorithm.

5 Emulating Euclidean Multiplications

When the Euclidean multiplication itself is not directly available in hardware, it
can be emulated easily with a couple of modular multiplications. The quotient
of MultModDiv in [4] is calculated from the remainders of x · y modulo z and
modulo (z + 1). However, such a situation is most unfortunate for fast modular
multiplication algorithms based on Montgomery’s technique as either z or z + 1
is even. Although extensions of Montgomery to even moduli exist, we suggest a
simple alternative hereafter. Our method is based on the next lemma.
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Lemma 2. If 0 < xy ≤ (z − 1)2 then
⌊ xy

z + β

⌋
≤

⌊xy

z

⌋
≤

⌊ xy

z + β

⌋
+ β

for any nonnegative β.

Proof. Since z < z + β, it follows that xy/(z + β) < xy/z and consequently
�xy/(z + β)� ≤ �xy/z�. For the second inequality, we observe that

xy

z
=

xy

z + β

(
1 +

β

z

)
≤ xy

z + β
+

(z − 1)2β
(z + β)z

<
xy

z + β
+ β .

Therefore, we get �xy/z� ≤ �xy/(z + β)� + �β� = �xy/(z + β)� + β. 	


So, letting

∆β =
⌊xy

z

⌋
−

⌊ xy

z + β

⌋
and Cβ = xy mod (z + β) ,

(with 0 ≤ ∆β ≤ β by Lemma 1), one expresses the integer quotient resulting
from the modular multiplication, C = xy mod z, as

⌊xy

z

⌋
=

C − Cβ − ∆β(z + β)
β

. (3)

Proof. By definition, we have xy = �xy/z�z + C = �xy/(z + β)�(z + β) + Cβ =
(�xy/z� + ∆β)(z + β) + Cβ , which implies C = �xy/z�β + ∆β(z + β) + Cβ . 	


In particular, the value β = 2 yields the integer quotient from two modular
reductions with moduli having the same parity as z. Carrying out a division by
β is inexpensive as it amounts to a shift of a single bit to the right. Finally, since
∆2 ≤ 2, there are (at most) only two negligible corrections to make to get the
exact value of the quotient.

Remark 1. This method readily extends for any value of β; the powers of 2 are
of particular interest. Note also that a way to lower the expected error (cf. ∆β)
consists in increasing the numerator in �xy/(z + β)�.

6 A Modular Multiplication Based Algorithm

When Euclidean multiplications are emulated in software from modular multi-
plications, one may wonder if using these directly could yield faster algorithms
without necessarily coming back to RNS-based approaches [1,2,7,9]. In this sec-
tion, we propose a simple alternative to these works that keeps numbers under
a radix representation. We rely on the following lemma.



224 B. Chevallier-Mames, M. Joye, and P. Paillier

Lemma 3. Let X be an n-bit odd integer not divisible by 3 and N an arbitrary
integer such that X > �√N�. There exists an algorithm which, given any A =
A1X + A0 and B = B1X + B0 such that A, B < N outputs the representation

AB = C3X
3 + C2X

2 + C1X + C0

in at most four n-bit modular multiplications.

We refer the reader to Appendix A for a description of such an algorithm,
which we denote by Coefficients in the sequel.

Now, very much in the spirit of Section 4.1, we precompute X such that
X > �√N� and set α = X2 mod N . Here however, as we need gcd(X, 6) = 1,
we try out X = �√kN� for increasing values of k = 1, . . . , until X is found
odd and coprime to 3. Even if |X| exceeds n, the difference |X| − n will be a
very small value in any case, and we refer to the fact that we are able to work
with non-reduced numbers when they do not exceed their range too much (see
Section 2). Relying on Lemma 3, we devise Algorithm A5 as shown on Fig. 7.

Input: radix base X, 2n-bit integers A = A1X + A0, B = B1X + B0

Output: AB (mod N)
Cost: 2 MultModDiv + 1 Coefficients

(U (1), V (1), W (1), R(1)) = Coefficients(A, B, X)
(Q(2), R(2)) = MultModDiv(α, U (1), X)
(Q(3), R(3)) = MultModDiv(α, V (1) + Q(2), X)

Return R(1) + R(3) + (R(2) + W (1) + Q(3))X

Fig. 7. Double-size modular multiplication algorithm A5

Proof (of correctness for A5). By definition,

AB = U (1)X3 + V (1)X2 + W (1)X + R(1)

≡N R(1) + V (1)α + (U (1)α + W (1))X
≡N R(1) + V (1)α + (Q(2)X + R(2) + W (1))X
≡N R(1) + (V (1) + Q(2))α + (R(2) + W (1))X
≡N R(1) + R(3) + (R(2) + W (1) + Q(3))X ,

thereby validating A5. 	

As indicated, our algorithm runs two MultModDiv and one Coefficients

operations, which (relying on Section 5 or [4]) yields 8 modular multiplications
among which 4 are executed with operand α. Then, we can combine A5 with a
proper modification of the RSA key generator to ensure that α is some small
(absolute) constant. In this context of use, the cost of a double size modular
multiplication by A5 reduces to four n-bit multiplications only, i.e., becomes
computationally equivalent to 2 calls to MultModDiv thereby yielding a speedup
factor of (14 − 4)/14 ≈ 71% in comparison with FS1.
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7 Conclusion

In this paper, we showed how to optimally reduce the cost of Fischer and Seifert
double-size modular multiplications, provided that the same basic operation (Eu-
clidean multiplication) is available. We highlighted the role of the data represen-
tation towards the performance of emulated multiplications and proposed new
ones featuring dramatic cost savings.

Table 1. Number of calls in double-size modular multiplication algorithms. The last
line displays the number of equivalent n-bit modular multiplications

Calls
Fischer-Seifert Our algorithms
FS1 FS2 A1 A2 A3 A4 A5

MultModDiv 7 5 6 4 5 → 3 3 2 → 0
MultModDivInit 0 1 0 1 0 0 0
Coefficients 0 0 0 0 0 0 1
Equiv. MultMod 14 12 12 10 10 → 6 6 8 → 4

We stress that in each and every of our algorithms, modifications of the
radix base can be carried out while maintaining inputs and outputs under the
same arithmetic format, which allows repeated executions with the same modu-
lus. Naturally, the same algorithms may readily be used to perform double-size
modular squarings. In the most favorable case, we emulate a double-size modu-
lar multiplication with no more than 3 Euclidean multiplications, resulting in a
speedup factor of 57% in comparison with Fischer and Seifert’s original proce-
dures, as indicated in Table 1. When Euclidean multiplications cannot be carried
out in hardware, we provide a variation based on modular multiplications only
which surpasses original algorithms in performance by 71%. Although we doubt
the existence of more advanced yet simple techniques, we challenge the crypto-
graphic community for better results.
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A Proof of Lemma 3

Our four modular multiplications will be





R0 = (A mod X)(B mod X) mod X ,

R1 = (A mod (X + 1))(B mod (X + 1)) mod (X + 1) ,

R2 = (A mod (X + 2))(B mod (X + 2)) mod (X + 2) ,

R3 = (A mod (2X + 3))(B mod (2X + 3)) mod (2X + 3) .

In what follows, we use the notations

k0 = AB div X , k1 = AB div (X + 1) ,
k2 = AB div (X + 2) , k3 = AB div (2X + 3) ,

and we have by definition

AB = k0X + R0 = k1(X + 1) + R1 = k0(X + 1) + (R0 − k0)
= k2(X + 2) + R2 = k0(X + 2) + (R0 − 2k0) ,

2AB = 2k0X + 2R0 = 2k3(2X + 3) + 2R3 = k0(2X + 3) − 3k0 + 2R0 ,

so that

k0 ≡ R0 − R1 (mod (X + 1))
2k0 ≡ R0 − R2 (mod (X + 2))
3k0 ≡ 2(R0 − R3) (mod (2X + 3)) .
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Since X is coprime to 3, if we call a = (R0 − R2 + ((R0 − R2) mod 2)(X +
2))/2 mod X + 2, b = R0 − R1 mod (X + 1) and c = (2(R0 − R3) + (2(R0 −
R3) mod 3)(2X +3))/3 mod (2X +3), we get that k0 ≡ b (mod (X +1)), k0 ≡ a
(mod (X + 2)) and k0 ≡ c (mod (2X + 3)). Starting from these equations, we
can perform Chinese remaindering, because X+1, X+2 and 2X+3 are pairwise
relatively prime:

k0 mod ((X + 1)(X + 2)) = ((b − a) mod (X + 1))(X + 2) + a .

Letting d = ((b − a) mod (X + 1)) and e = a + 2d, we have

k0 mod ((X + 1)(X + 2)) = dX + e .

Moreover, remarking that (X + 1)(X + 2)(−4) ≡ 1 (mod (2X + 3)) and letting
f = −6d + 4e − 4c mod (2X + 3), we notice that the second CRT recombination

k0 = [−4(c − dX − e) mod (2X + 3)](X + 1)(X + 2) + dX + e

= [2d(2X + 3) − 6d + 4e − 4c) mod (2X + 3)](X + 1)(X + 2) + dX + e

= f(X + 1)(X + 2) + dX + e

is easily rewritten as k0 = fX2 +(d+3f)X +(e+2f). Consequently, C = AB is
computed in 4 modular multiplications as C = C3X

3 + C2X
2 + C1X + C0 with

C3 = f ,

C2 = d + 3f ,

C1 = e + 2f ,

C0 = R0 .

Note that these operations are not of size 2n × 2n modulo n but of size n × n
modulo n, because, from A = A1X + A0 and B = B1X + B0, R0, R1, R2 and
R3 can be computed as

R0 = A0B0 mod X ,

R1 = (A0 − A1)(B0 − B1) mod (X + 1) ,

R2 = (A0 − 2A1)(B0 − 2B1) mod (X + 2) ,

R3 = (A0 + (A1 mod 2)X − 3(A1 div 2))
×(B0 + (B1 mod 2)X − 3(B1 div 2)) mod (2X + 3) .

As before, the cost of auxiliary operations (additions, subtractions, parity bits,
etc.) is neglected. 	
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