
Received June 25, 2020, accepted August 7, 2020, date of publication September 11, 2020, date of current version October 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023423

Faster Dynamic Graph CNN: Faster Deep Learning
on 3D Point Cloud Data

JINSEOK HONG 1,3, KEEYOUNG KIM 1,2, AND HONGCHUL LEE 3
1Artificial Intelligence Research Institute, Seongnam 13120, South Korea
2Ingenio AI, Seoul 02841, South Korea
3School of Industrial Management Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Hongchul Lee (hclee@korea.ac.kr)

This work was supported in part by the Ministry of Culture, Sports and Tourism (MCST), and in part by the Korea Creative Content

Agency (KOCCA), Culture Technology (CT) Research and Development Program, in 2020.

ABSTRACT Geometric data are commonly expressed using point clouds, with most 3D data collection

devices outputting data in this form. Research on processing point cloud data for deep learning is ongoing.

However, it has been difficult to apply such data as input to a convolutional neural network (CNN) or

recurrent neural network (RNN) because of their unstructured and unordered features. In this study, this

problemwas resolved by arranging point cloud data in a canonical space through a graph CNN. The proposed

graph CNN works dynamically at each layer of the network and learns the global geometric features by

capturing the neighbor information of the points. In addition, by using a squeeze-and-excitation module

that recalibrates the information for each layer, we achieved a good trade-off between the performance and

the computation cost, and a residual-type skip connection network was designed to train the deep models

efficiently. Using the proposed model, we achieved a state-of-the-art performance in terms of classification

and segmentation on benchmark datasets, namely ModelNet40 and ShapeNet, while being able to train our

model 2 to 2.5 times faster than other similar models.

INDEX TERMS Classification, deep learning, graph CNN, point cloud, segmentation.

I. INTRODUCTION

The point cloud is the simplest form in which data can be

expressed. Advances in technologies, such as Light Detec-

tion and Ranging (LIDAR) and three-dimensional (3D)

scanning, have enabled acquiring 3D point cloud forms

quickly. Accordingly, a vision and graphic process that can

directly processes point clouds without mesh reconstruc-

tion or denoising, which is an essential preprocessing step

for point cloud data, has recently emerged in applications

such as automatic indoor navigation [1], self-driving vehicles

[2]–[4] and robotics [5]–[7]. This process uses an algo-

rithm that identifies semantic information and image fea-

tures, instead of identifying geometric features such as

nodes and edges. A learning-based approach, rather than an

existing computational framework or a geometric approach,

is required to use these features.

In this paper, we introduce an algorithm that ensures the

speed and accuracy of point cloud classification and seg-

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingbo Zhao .

mentation. Conventional point cloud processing methods use

handcrafted features to extract the geometric features of the

point cloud. With advancements in deep learning architec-

tures for 2D image processes, various learning-based algo-

rithms for processing 3D point clouds, with the first being

proposed in [8], have emerged. These methods outperform

the conventional ones.

The learning-based point cloud processing algorithms are

more complex than 2D images. The neural network model

for a 2D image uses a grid input, whereas 3D point cloud

data have a fundamentally irregular shape. The position of

the points is distributed continuously in the 3D space, and

the typical ordering permutation does not change the spatial

distribution. Accordingly, a method for applying the point

cloud to deep learning models by converting the point cloud

into a 3D grid format has been introduced; however, this

approach requires excessive memory, and it is difficult to

obtain high-resolution features.

PointNet [9] exhibits permutation invariance by accumu-

lating features using symmetric functions independently at

each point. This research enabled inputting point cloud data to

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 190529

https://orcid.org/0000-0002-1664-0219
https://orcid.org/0000-0001-8849-2465
https://orcid.org/0000-0002-4407-0348
https://orcid.org/0000-0003-0381-4360

J. Hong et al.: Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data

a deep neural network as raw data without any preprocessing.

Starting with PointNet, various point cloud processing deep

neural networks (DNNs) have been studied by considering

point-oriented neighbors and further developing the learning

of local features ([10], [11]). The authors in [10] considered

the regional information of input data by sampling and group-

ing and then applying PointNet. However, the geometric

information between a point and an adjacent point could not

be considered, and there were limitations in extracting the

local features of the point cloud.

A dynamic graph convolutional neural network (DGCNN)

([12]) addresses this problem by introducing the concept

of EdgeConv, which enables the acquisition of geometric

features of the point cloud while maintaining permutation

invariance. The edge feature between the points and the

adjacent points was utilized instead of directly embedding

the points, as in the conventional method. Edge information

is also permutative because it can be imported regardless of

the order of the neighboring points. EdgeConv can group

points in both the Euclidean space and the semantic space

because it builds a local graph and learns by embedding the

edge.

Amid the development of models that can manage 3D

point clouds, research on creating a more efficient model for

a 2D image-processing natural network is ongoing. Recent

studies have found that the performance of neural networks

can be improved by built-in embedding learning algorithms

that capture spatial cores without additional control. For

example, the inception architecture [13], [14] can modu-

larize multi-scale processes and incorporate them into the

network to enhance the performance of the model. The

authors in [15], [16] suggested a method to consider the

spatial dependency more comprehensively, while the authors

in [17] built an efficient model by considering the spatial

attention. The ‘‘squeeze-and-excitation’’ (SE) network [18]

is a fast and high-performing module realized through feature

recalibration.

This paper presents a model that can manage 3D point

cloud data more quickly and accurately. The proposed model

considers the local features between 3D points, maintains

its performance, and learns much faster than conventional

models through the recalibration process. We conducted clas-

sification and segmentation experiments on the ModelNet40

[19] and ShapeNet [20] datasets. Our model has a learning

speed twice that of the existing model and demonstrates a

state-of-the-art performance.

The key contributions of this study are as follows:

• The expression power of the edge feature and point

feature map is improved using the recalibration block

on the edge convolution block.

• Using a skip-dense network, we learned a model with

more number of layers faster.

• We conducted experiments with the proposed model and

achieved a state-of-the-art performance on benchmark

datasets with a learning speed 2 to 2.5 times faster than

those of other similar models.

II. RELATED WORKS

A. DEEP NEURAL NETWORK ARCHITECTURES

VGGNet [21] and the inception model [14] can provide

improved depth in a neural network model. Batch nor-

malization [13] can be applied to stabilize the learning

process by inserting a module to adjust the layer input.

ResNet [22], [23] can learn high-depth models effectively

using a skip connection, and a highway network [24] can

adjust short connections using a gating mechanism. The

authors in [25], [26] further improved the learning features

by reforming the connections between the networks.

Other researchers studied how to adjust the functions

of the modules entering the network. References [27],

[28] proposed grouped convolution to improve performance

by increasing the cardinality of the transformation. Refer-

ences [14], [29], [30] proposed a generalized grouped con-

volution concept—multi-branch convergence—that enabled

a more flexible operator configuration. References [31],

[32] proposed an automated method of learning and exhib-

ited competitive performance. References [33], [34] exhib-

ited cross-channel correlation mapped to a new combina-

tion of features regardless of spatial structure, while [35]

proposed cross-channel correlation using standard convolu-

tion filters with 1 × 1 convolutions. These two forms of

research have been focused on the goal of reducing model

and computational complexity, reflecting the assumption that

channel relationships can be formalized with the config-

uration of instance agnostic functions and local receptive

fields.

Other studies have been conducted on increasing the

performance of models using ‘‘attention,’’ which can be

described as a vector of the importance of weights. Atten-

tion identifies how strongly the input elements are associ-

ated with other elements and represents them by their sum

to predict or estimate any input elements, such as pixel

values in images or words in sentences. This algorithm

has been applied in several areas, ranging from localiza-

tion and image interpretation [17], [36] to sequence-based

models [37], [38].

Attention is typically implemented with gating functions,

such as softmax or sigmoid, or with sequential techniques

[39]. Recent studies have found that it can be applied to tasks

such as image captions [28], [40]. The authors in [41] intro-

duced a powerful trunk-and-mask attachment mechanism

using the hourglass module [16], and a high-capacity unit

that was inserted into the deep residual networks between the

intermediate stages, demonstrating excellent performance.

The SE network (SE-net) [18] focuses on channel relation-

ships, using modules that recalibrate the features of the chan-

nel, achieving state-of-the-art results in ImageNet recogni-

tion. In this paper, we propose a DNN with 3D point cloud

data as the input. In contrast to the existing 3D deep learning

models, our model achieves a state-of-the-art performance

using a skip-connection network and attention-recalibration

blocks; moreover, it learns 2-2.5 times faster than the other

similar-level models.

190530 VOLUME 8, 2020

J. Hong et al.: Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data

FIGURE 1. 3D Data Representation [28].

B. 3D DATA REPRESENTATION

Three-dimensional data can be represented using four meth-

ods, as depicted in Fig. 1: (a) multi-view, (b) voxel grid,

(c) point cloud, or (4) triangle mesh.

The multi-view-based method (Fig. 1(a)) represents a 3D

object as a set of images from various viewpoints. The multi-

view method can reduce the dimensions by expressing 3D

objects as a set of 2D images. However, it will not show 3D

characteristics and requires multiple datasets for one object.

A voxel-based method is a form of expression that converts

an object into a voxel grid, as depicted in Fig. 1(b). Voxels

are data representations suitable for naturally extending the

processing methods in 2D to 3D.

However, because voxels have many sparse parts and are

expressed in a grid unit form, it cannot effectively capture

the details of 3D objects and incurs a high computational

cost. As depicted in Fig. 1(c), the point cloud-based method

is expressed in a 3D coordinate set. Point clouds are widely

used for 3D objects and scenes, and many 3D point cloud

datasets can be obtained today using 3D scanners, depth

cameras, and LIDAR devices. A triangular mesh (Fig. 1(d))

is expressed as a collection of triangular faces approximat-

ing a geometric surface and can be viewed as a collection

of 3D points sampled from a continuous geometric surface.

The mesh-based method aims to represent a surface in a

way that it can be easily rendered. The triangular mesh was

initially created for computer graphics but is also useful for

3D vision.

This study incorporates 3D point cloud data because the

point cloud object model is more realistic than multi-view,

voxel, andmesh-basedmethods, and the associated input data

processing has a lower computational cost. Classification

and segmentation experiments were conducted using Mod-

elNet40 and ShapeNet, which are 3D point cloud benchmark

datasets.

C. GEOMETRIC DEEP LEARNING

Since the breakthrough of the convergence neural network in

the 2D image field, as described in Section II-A, there have

been many attempts to apply these methods to the geometry

domain. However, in contrast to 2D images, geometric data

over three dimensions typically lack a basic grid. Therefore,

a network block applicable to convolution and pooling or grid

structures is required.

A multi-view-based learning algorithm [43], [44] or voxel-

based learning algorithms [19], [45]–[47] and a method of

combining them [48] have been proposed to solve this prob-

lem. Voxel-based deep learning models require significant

memory. More recently, in PointNet [9], [10] a CNN model

was used with point cloud input, bringing significant research

attention to geometric deepening-related algorithms [49] that

use non-Euclidean data, such as graphics and manifolds. The

authors in [10] considered regional information of input data

by sampling and grouping them and then applying PointNet.

Therefore, it could not consider the geometric information

between a point and an adjacent point and had limitations

in extracting local features of the point cloud. The authors

in [50] suggested applying neural networks to graphs, and the

authors in [51] developed this approach to apply a gated recur-

rent unit to the graphs. The authors in [52], [53] graphically

generalized convolution using Laplacian eigenvectors. These

methods have computational shortcomings that have been

addressed using polynomial filters [54]–[56] and spectral

filters [57], [58] to avoid Laplacian eigendecomposition and

ensure localization.

A geodesic CNN (GCNN) [59] is a non-Euclidean deep

learning algorithm that uses a spectral filter instead of a spa-

tial filter. The GCNN is a CNN model applied to meshes that

generalize the concept of the patch using local internal param-

eterization. The advantage of this spectral approach is that it

is easy to configure for directional filters and offers superior

generalization. The authors in [60] used anisotropic diffusion,

and the authors in [61], [62] proposed a new local charting

technique in a GCNN using a Gaussian mixture model. The

authors [63], [64] performed an essential structural prediction

of the correspondence between nonrigid shapes by integrating

a differentiated functional map layer into a geometric deep

learning model.

As described previously, studies on applying deep learn-

ing models to 3D objects have continued. In this study,

a deep learning model was constructed using point cloud data

as the input. We propose a model with minimal computa-

tional cost and state-of-the-art accuracy based on an efficient

deep learning model that considers regional features between

points.

VOLUME 8, 2020 190531

J. Hong et al.: Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data

FIGURE 2. Our proposed classification model: The classification model receives n points as input and computes an edge feature map through a spatial
transform block and an edge convolution block. The output edge feature map is recalibrated through the SE module, and the recalibrated feature maps
are aggregated. The aggregated feature map finally outputs the classification score for the label through the skip-dense network.

FIGURE 3. Two Significant Blocks for Backbone Networks.

III. METHOD

This section describes our proposed model, which is signifi-

cantly influenced by the DGCNN model [12]. Based on the

edge convolution, the geometric features (or edge features)

between the points were captured, and the edge features

were learned. The DGCNN model is constructed based on a

multilayer perceptron (MLP), whereas we built a deeper and

faster network by adding our own skip-connection network

and recalibration block.

A. CLASSIFICATION MODEL

1) PIPELINE MODEL

As depicted in the Fig. 2, the spatial transform block and edge

convolution blocks are the major elements of the backbone

model. The spatial transform block is designed to align the

point cloud input to the canonical space by applying the

estimated 3×3 matrix. To estimate this 3×3 matrix, a tensor

connecting the coordinate difference between each point and

k adjacent points is used (Fig. 3(a)). The coordinate differ-

ence between the k nearest neighbor and the coordinates of

the point is concatenated. Therefore, as shown in Fig. 3(a),

the size of the feature map after the k-NN graph is n × k ×

(3 + 3) = n× k × 6. The edge convolution block calculates

the edge feature for each point and applies a pooling function

to output the tensor of with an n × n shape. Here, n is the

number of points entering as the inputted, and an is the size

of the applied MLP (Fig. 3(b)).

The edge convolution block is described in detail as fol-

lows. Suppose that the F-dimensional point cloud dataset

X = {p1, p2, · · · , pn} ⊆ R
F is inputted. For most 3D point

cloud data, F = 3, and pi = (xi, yi, zi). When information

such as texture or color is added, F increases. Based on this

X , we configured a directed graph G = (V, E) comprising

V = {p1, p2, · · · , pn} as a vertex set and E ⊆ V × V

representing an edge set. The edge set E is expressed as

follows:

E = {eij | eij = f2(pi, pj) for 1 ≤ i, j ≤ n} (1)

where f2 is a nonlinear function with R
F × R

F → R
F ′, and

2 is a learnable parameter. Based on this configured V and E ,

G is constructed as a k-nearest-neighbor graph and reflected

in the edge convolution block. The function f2 that defines

the edge features is expressed as follows:

f2(pi, pj) = f̄2(pi, pj − pi) (2)

This asymmetric function combines the pi-centered global

shape structure and the pj − pi-centered local neighborhood.

Finally, the edge feature of the lth channel through the MLP

is expressed as follows:

e′ijl = ReLU(θl · (pj − pi) + φl · pi),

2 = (θ1, θ2, · · · , θl, φ1, φ2, · · · , φl) (3)

After constructing the k-NN graph G for an n point set

X , we perform an edge convolution process with G as input.

In edge convolution, we apply a symmetric aggregation func-

tion g to the edge feature related to all the edges that are

connected from each vertex. Through this process, the edge

feature becomes permutation-invariant. The edge convolution

result xi
′ from the ith point xi can be expressed as follows:

p′
i = g(f2(pi, pj)) for ∀j : (i, j) ∈ E (4)

190532 VOLUME 8, 2020

J. Hong et al.: Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data

TABLE 1. Comparison of typical order invariant methods in terms of the
ModelNet40 testset classification accuracy as the metric. The experiments
were conducted by the authors in [9].

FIGURE 4. Squeeze and excitation model.

This symmetric function takes n vectors as input and out-

puts a new vector that is robust (or invariant) to the input

order. Consequently, given an F-dimensional point cloud

with n points, passing through the edge convolution block

creates a point cloud with the same number of points in the

F ′ dimension. Methods, such as attention, long short-term

memory (LSTM), average pooling, and max pooling, can

be used to select the order-invariant function g; we selected

the max pooling function g based on Table.1. Therefore,

the result of the edge convolution following (4) is as follows:

p′
im = max

j:(i,j)∈E
e′ijl (5)

Because the edge feature function f is a symmetric func-

tion, it is invariant to permutation, and the feature aggregation

function g, which is max-pooling in our model, is also invari-

ant to the permutation. Therefore, p′
i, the result of (5), is also

permutation-invariant to input pj. Furthermore, the edge fea-

ture is preserved when each point is moved by T based on (6).

For φl = 0, the edge features are fully translation-invariant.

In this case, the model utilizes only the features between the

points (or edge features) and ignores the geometric informa-

tion of each point. Therefore, for φl 6= 0, by considering

pi and pj − pi as input values simultaneously, the model

can consider local region information while maintaining the

original shape information.

e′′ijl = θl · ((pj + T) − (pi + T)) + φl · (pi + T)

= θl · (pj − pi) + φl · (pi + T)

= e′ijl + φl · (pi + T) (6)

2) SE MODULE

In the CNN structure, each convolution filter learns the

local feature of an image or feature map—a combination

of information in the local receptive field. By passing these

combinations through the active function, we deduce the non-

linear relationship, and using the same approach as pooling,

reduce the large features so that they can be seen at once.

Consequently, CNNs have been able to outperform humans in

areas such as image classification because they can efficiently

manage the relationship of the global receptive fields. The

SE module models the dependency between the convolution

features to further enhance the expressiveness of the existing

CNN. The SE module consists of a squeeze operation that

summarizes the complete information on each feature map

and an excitation operation that scales the importance of each

feature map. With the SE module, the model performance

improvement is significant compared with the increase in the

number of parameters, while ensuring that the model and

computational complexities do not increase significantly.

The squeeze operation literally squeezes the features. Only

import information is extracted from each channel. The con-

cept of extracting core information is important in the sub-

network, where the local receptive field is very small. We use

global average pooling (GAP), one of the most common

methodologies for extracting core information. The GAP

enables global spatial information to be compressed into a

channel descriptor.

After squeezing the core information, the module recal-

ibrates through the acquisition operation, which calculates

channel-wise dependencies.

Fscale(·, ·) is a channel-wise multiplication, and X̃ is the

feature map of H ,W ,C size before the squeeze operation.

Eventually, the scale value after the excitation operation has

a value between 0 and 1. Therefore, it is scaled based on the

importance of the channels.

In this study, the SE operation is applied to each feature

map through an edge convolution block and then combined

to create a point cloud feature. Furthermore, a deeper fea-

ture map can be constructed by adding a channel-specific

weighted SE operation output at each step. Through this

process, high-dimensional point cloud data can be processed

more efficiently, and a high learning speed and improvement

in performance can be expected with negligible additional

computation.

3) SKIP-DENSE NETWORK

We use the output of the backbone network described above

as input to the skip-dense network [65] (Fig. 6(a)). A skip-

dense network includes stacked fully connected layers with

skip connections, expressed as follows:

Il+1=W · max(0,BNγ,β (Il))+b+α×Il (7)

In (7), Il is the skip-dense input of the lth layer,BNγ,β is the

batch normalization, and γ and β are the parameters for batch

normalization. The next step is the ReLU activation function

and a fully connected layer. W and b are the parameters of

the fully connected layer. α is the coefficient that adjusts the

ratio of the skip connections. This pure skip-dense network

adds depth to the model while increasing the performance at

the cost of a significant increase in the number of parameters

and computational complexity. Therefore, the SEmodule was

VOLUME 8, 2020 190533

J. Hong et al.: Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data

FIGURE 5. Our proposed segmentation model.

FIGURE 6. Two types of skip-dense Network.

applied to the skip-dense network to improve the learning

speed and performance (Fig. 6(b)).

B. PART SEGMENTATION MODEL

Fig. 5 shows the segmentation model. The segmentation

model is similar to the classification model but additionally

considers a categorical vector. The difference between the

segmentation and classification models is that the categorical

vector is aggregated to the recalibrated feature map. By con-

sidering the label vector and bundling the point cloud feature

and the segmentation label of the point into the same feature

map, the effects of learning both local and global information

occur simultaneously. Finally, the model predicts an n × p

label for segmentation.

IV. EXPERIMENT

In this section, we introduce the classification and segmenta-

tion experiments of our proposed model and the correspond-

ing results.

A. DATASET AND DATA AUGMENTATION

The classification models were tested on the Model-

Net40 dataset [19], which includes 12311 CAD modes

in 40 categories. This dataset was divided into 9843

validation sets and 2468 test sets. Furthermore, 1024 points

were sampled uniformly for each model and resized to fit

the unit sphere. The segmentation model was tested on the

ShapeNet part dataset [20], which includes 16881 CAD

FIGURE 7. Training loss and training accuracy graph of the DGCNN,
proposed model, proposed model with only the SE module, and proposed
model with only the skip-dense network. The left axis represents the
training loss, and the right axis represents the training accuracy.

modes in 16 categories, annotated with a total of 50 parts.

Each point in this dataset is classified as a part category label.

Themodel learns 2048 uniformly sampled points and consists

of up to six part types.

Furthermore, we performed data augmentation to increase

the generalization capability of the learning model. As with

previous studies, the input point cloud is rotated, shifted,

jittered, and scaled randomly, and noise is randomly added at

each point. Through data augmentation, the model is trained

robustly for rotation and translation.

B. EXPERIMENT IMPLEMENTATION

For the classification experiments, we optimized the model

using an Adam optimizer with a learning rate of 0.001 and

applied gradient clipping to suppress gradient explosion.

We set the number of input points to 1024, batch size to 16,

and the momentum of the batch normalization to 0.9. The

k-NN graph was set to k = 20, the scaling factor of the

skip-dense network was set to 0.1, and the dropout rate of the

dropout layer was set to 0.5. For the loss function, a cross-

entropy function was used, and overfitting was prevented

by considering the L2-regularization loss. The segmentation

experiment was performed by increasing the number of input

points to 2048 and the k value to 30 with the above settings.

190534 VOLUME 8, 2020

J. Hong et al.: Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data

FIGURE 8. Comparison of segmentation results among PointCNN, Pointnet++, DGCNN, Ground Truth and proposed model.

TABLE 2. Classification results on ModelNet40.

TABLE 3. Comparison of models’ complexity.

The models presented in our paper were implemented

using Python and TensorFlow 1.14. The classification exper-

iment was conducted using one 16 GB NVIDIA TESLA

V100 GPU, and the segmentation was performed using two

16 GB NVIDIA TESLA V100 GPUs.

V. RESULT

This section introduces the results of experiments with the

settings specified in Section IV.

A. CLASSIFICATION EXPERIMENTAL RESULT

First, we introduce the results of the classification model

experiment on the ModelNet40 dataset.

1) PERFORMANCE COMPARISON WITH EXISTING MODELS

Table.2 presents a comparison between the results of the

previous studies and those of our proposed model. The mean

accuracy is the average value of the class-specific accuracy,

TABLE 4. Effects of SE module and the skip-dense network. The train
metric column means the first train step index when the train accuracy
reached 90%. © indicates the model containing the module, and X
indicates the opposite case.

and the overall accuracy is the ratio of the correct number

of classifications to the overall object classification. Except

for PointNet++, 1024 points were used as input values.

Based on the results, the proposed model has the highest

accuracy. Based on the results of the experiments conducted

in the same settings, the proposed model exhibited a 1.3%

higher accuracy than the previous state-of-the-art DGCNN

model.

Table.3 lists the result of evaluating the complexity of the

models by comparing the model size, number of parameters,

and computation time with other classification networks. Our

proposed model includes additional networks, thus increas-

ing the model size and number of parameters. Nevertheless,

through the SE module, our model was able to learn more

efficiently, resulting in a faster computing time and higher

accuracy.

2) EFFECTS OF APPLIED NETWORKS

Fig. 7 and Table.4 present the effect of SE modules and

the skip-dense networks that we additionally applied in this

study, each of which increased the classification perfor-

mance. Moreover, the models with the SE module reduced

the loss at a faster rate, and the training metric confirms

that the models with the SE module can train 2 to 2.5 times

faster than the other models. This demonstrates that the

SE module learns more efficiently through the recalibration

operation.

VOLUME 8, 2020 190535

J. Hong et al.: Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data

TABLE 5. Part segmentation results on ShapeNet part dataset. The values are mean Intersection over Union (mIoU) (%) on points.

TABLE 6. Comparison of results by changing the number of nearest
neighbors (k) value.

3) EFFECTS OF NUMBER OF NEAREST NEIGHBORS k

We compared the performance of the model by conduct-

ing an experiment where the k value was varied. As k

increases, the computation time increases approximately lin-

early. A similar performance is observed when k = 30 and

k = 20, but decreases when k = 40. If the k value is too

small or too large, the model does not correctly capture the

geometric features around each point.

B. SEGMENTATION EXPERIMENTAL RESULT

This section presents the results of the part segmentation

experiment on the ShapeNet dataset.

The intersection over union (IoU) was used as a perfor-

mance metric for point cloud segmentation. The segmenta-

tion model predicts the part label of each point and finds

the intersection and union of the actual and predicted labels.

The IoU is the number of intersections divided by the num-

ber of unions. As depicted in Table.5, some classes exhibit

a state-of-the-art segmentation performance, and the total

IoU has (marginally) the second-highest performance after

PointCNN. The greater the number of shapes, the higher

the segmentation performance. Fig. 8 shows an example of

the actual segmentation results. For a more realistic com-

parison of the results, the segmentation results of the poorly

predicted classes are also included (such as the motorcycle

in Fig. 8).

VI. CONCLUSION

In this study, we developed a faster DGCNNmodel to classify

and segment point clouds. The overall architecture was opti-

mized by adding a skip-dense network to theDGCNN to build

an in-depth network and adding an SEmodule for an efficient

learning. This model exhibited state-of-the-art performance

on two benchmark datasets: ModelNet40 and ShapeNet.

In terms of the classification, our model exhibited a 1%

to 1.7% higher accuracy than the previous models, and the

learning speed was 2 to 2.5 times faster. As described in

Section V-A2, the skip-dense network enabled the use of a

high-performance model by building a deeper network, and

the SE module increased the model efficiency, enabling a

faster learning process using feature recalibration. Further-

more, for data with large dimensions, such as point clouds,

the processing speed is high, so accelerating the learning is

a beneficial research result. In the segmentation process, our

model achieved the best IoU for 7 out of 16 categories and

exhibited the highest overall performance.

In the future, we plan to conduct research on the classifi-

cation and segmentation with real 3D data as input. For real-

time point cloud deep learning research, we plan to apply

a model compression method such as quantization. We will

also apply the proposedmodel to higher-dimensional geomet-

ric data beyond 3D.

REFERENCES

[1] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and

A. Farhadi, ‘‘Target-driven visual navigation in indoor scenes using deep

reinforcement learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),

May 2017, pp. 3357–3364.

[2] M. Liang, B. Yang, S. Wang, and R. Urtasun, ‘‘Deep continuous fusion

for multi-sensor 3d object detection,’’ in Proc. Eur. Conf. Comput. Vis.

(ECCV), 2018, pp. 641–656.

[3] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, ‘‘Frustum PointNets for

3D object detection from RGB-D data,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Jun. 2018, pp. 918–927.

[4] S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun, ‘‘Deep para-

metric continuous convolutional neural networks,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2589–2597.

[5] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, ‘‘Towards

3D point cloud based object maps for household environments,’’ Robot.

Auto. Syst., vol. 56, no. 11, pp. 927–941, Nov. 2008.

[6] K. Zhang, C. Xiong, W. Zhang, H. Liu, D. Lai, Y. Rong, and C. Fu,

‘‘Environmental features recognition for lower limb prostheses toward

predictive walking,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 3,

pp. 465–476, Mar. 2019.

[7] K. Zhang, C. W. de Silva, and C. Fu, ‘‘Sensor fusion for predictive

control of Human-Prosthesis-Environment dynamics in assistive walk-

ing: A survey,’’ 2019, arXiv:1903.07674. [Online]. Available: http://

arxiv.org/abs/1903.07674

[8] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,

Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and

F. Yu, ‘‘ShapeNet: An information-rich 3D model repository,’’ 2015,

arXiv:1512.03012. [Online]. Available: http://arxiv.org/abs/1512.03012

[9] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, ‘‘PointNet: Deep

learning on point sets for 3D classification and segmentation,’’ in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 652–660.

190536 VOLUME 8, 2020

J. Hong et al.: Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data

[10] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, ‘‘Pointnet++: Deep hierarchical

feature learning on point sets in a metric space,’’ in Proc. Adv. Neural Inf.

Process. Syst., 2017, pp. 5099–5108.

[11] Y. Shen, C. Feng, Y. Yang, and D. Tian, ‘‘Neighbors do help: Deeply

exploiting local structures of point clouds,’’ vol. 1, no. 2, 2017,

arXiv:1712.06760. [Online]. Available: http://arxiv.org/abs/1712.06760

[12] Y.Wang, Y. Sun, Z. Liu, S. E. Sarma,M.M. Bronstein, and J. M. Solomon,

‘‘Dynamic graph CNN for learning on point clouds,’’ ACM Trans. Graph.,

vol. 38, no. 5, pp. 1–12, Nov. 2019.

[13] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network

training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.

[Online]. Available: http://arxiv.org/abs/1502.03167

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[15] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick, ‘‘Inside-outside net:

Detecting objects in context with skip pooling and recurrent neural net-

works,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016,

pp. 2874–2883.

[16] A. Newell, K. Yang, and J. Deng, ‘‘Stacked hourglass networks for

human pose estimation,’’ in Proc. Eur. Conf. Comput. Vis. Springer, 2016,

pp. 483–499.

[17] M. Jaderberg, K. Simonyan, and A. Zisserman, ‘‘Spatial transformer net-

works,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 2017–2025.

[18] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-Excitation networks,’’ in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7132–7141.

[19] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,

‘‘3D ShapeNets: A deep representation for volumetric shapes,’’ in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,

pp. 1912–1920.

[20] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,

A. Sheffer, and L. Guibas, ‘‘A scalable active framework for region annota-

tion in 3D shape collections,’’ ACM Trans. Graph., vol. 35, no. 6, pp. 1–12,

Nov. 2016.

[21] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-

able: http://arxiv.org/abs/1409.1556

[22] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for

image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

Jun. 2016, pp. 770–778.

[23] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Identity mappings in deep residual

networks,’’ in Proc. Eur. Conf. Comput. Vis. Springer, 2016, pp. 630–645.

[24] R. K. Srivastava, K. Greff, and J. Schmidhuber, ‘‘Training very deep

networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 2377–2385.

[25] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, ‘‘Dual path networks,’’

in Proc. Adv. Neural Inf. Process. Syst., ss2017, pp. 4467–4475.

[26] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely

connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Jul. 2017, pp. 4700–4708.

[27] Y. Ioannou, D. Robertson, R. Cipolla, and A. Criminisi, ‘‘Deep roots:

Improving CNN efficiency with hierarchical filter groups,’’ in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 1231–1240.

[28] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, ‘‘Aggregated residual

transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., Jul. 2017, pp. 1492–1500.

[29] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,

inception-resnet and the impact of residual connections on learning,’’ in

Proc. 31st AAAI Conf. Artif. Intell., 2017.

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818–2826.

[31] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforce-

ment learning,’’ 2016, arXiv:1611.01578. [Online]. Available: http://arxiv.

org/abs/1611.01578

[32] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable

architectures for scalable image recognition,’’ inProc. IEEEConf. Comput.

Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[33] M. Jaderberg, A. Vedaldi, and A. Zisserman, ‘‘Speeding up convolu-

tional neural networks with low rank expansions,’’ 2014, arXiv:1405.3866.

[Online]. Available: http://arxiv.org/abs/1405.3866

[34] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convolu-

tions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,

pp. 1251–1258.

[35] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ 2013,

arXiv:1312.4400. [Online]. Available: http://arxiv.org/abs/1312.4400

[36] C. Cao, X. Liu, Y. Yang, Y. Yu, J. Wang, Z. Wang, Y. Huang, L. Wang,

C. Huang, W. Xu, D. Ramanan, and T. S. Huang, ‘‘Look and think

twice: Capturing top-down visual attention with feedback convolutional

neural networks,’’ in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,

pp. 2956–2964.

[37] T. Bluche, ‘‘Joint line segmentation and transcription for end-to-end hand-

written paragraph recognition,’’ in Proc. Adv. Neural Inf. Process. Syst.,

2016, pp. 838–846.

[38] A. Miech, I. Laptev, and J. Sivic, ‘‘Learnable pooling with context gating

for video classification,’’ 2017, arXiv:1706.06905. [Online]. Available:

http://arxiv.org/abs/1706.06905

[39] M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber, ‘‘Deep networks

with internal selective attention through feedback connections,’’ in Proc.

Adv. Neural Inf. Process. Syst., 2014, pp. 3545–3553.

[40] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao,W. Liu, and T.-S. Chua, ‘‘SCA-

CNN: Spatial and channel-wise attention in convolutional networks for

image captioning,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

Jul. 2017, pp. 5659–5667.

[41] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and

X. Tang, ‘‘Residual attention network for image classification,’’ in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 3156–3164.

[42] M. Garimella and P. Naidu. (Aug. 2018). Beyond the Pixel Plane: Sensing

and Learning in 3D. [Online]. Available: https://thegradient.pub/beyond-

the-pixel-plane-sensing-and-learning-in-3d/

[43] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, ‘‘Multi-view con-

volutional neural networks for 3D shape recognition,’’ in Proc. IEEE Int.

Conf. Comput. Vis., Dec. 2015, pp. 945–953.

[44] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li, ‘‘Dense human

body correspondences using convolutional networks,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2016, pp. 1544–1553.

[45] R. Klokov andV. Lempitsky, ‘‘Escape from cells: Deep kd-networks for the

recognition of 3D point cloud models,’’ in Proc. IEEE Int. Conf. Comput.

Vis., Oct. 2017, pp. 863–872.

[46] D. Maturana and S. Scherer, ‘‘VoxNet: A 3D convolutional neural network

for real-time object recognition,’’ in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst. (IROS), Sep. 2015, pp. 922–928.

[47] M. Tatarchenko, A. Dosovitskiy, and T. Brox, ‘‘Octree generating net-

works: Efficient convolutional architectures for high-resolution 3D out-

puts,’’ in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 2088–2096.

[48] C. R. Qi, H. Su,M. Nießner, A. Dai, M. Yan, and L. J. Guibas, ‘‘Volumetric

and multi-view CNNs for object classification on 3D data,’’ in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 5648–5656.

[49] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,

‘‘Geometric deep learning: Going beyond Euclidean data,’’ IEEE Signal

Process. Mag., vol. 34, no. 4, pp. 18–42, Jul. 2017.

[50] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,

‘‘The graph neural network model,’’ IEEE Trans. Neural Netw., vol. 20,

no. 1, pp. 61–80, Jan. 2009.

[51] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, ‘‘Gated graph

sequence neural networks,’’ 2015, arXiv:1511.05493. [Online]. Available:

http://arxiv.org/abs/1511.05493

[52] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, ‘‘Spectral networks and

locally connected networks on graphs,’’ 2013, arXiv:1312.6203. [Online].

Available: http://arxiv.org/abs/1312.6203

[53] M. Henaff, J. Bruna, and Y. LeCun, ‘‘Deep convolutional networks

on graph-structured data,’’2015, arXiv:1506.05163. [Online]. Available:

https://arxiv.org/abs/1506.05163

[54] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph

convolutional networks,’’ 2016, arXiv:1609.02907. [Online]. Available:

http://arxiv.org/abs/1609.02907

[55] F. Monti, M. Bronstein, and X. Bresson, ‘‘Geometric matrix completion

with recurrent multi-graph neural networks,’’ in Proc. Adv. Neural Inf.

Process. Syst., 2017, pp. 3697–3707.

[56] F. Monti, K. Otness, and M. M. Bronstein, ‘‘MotifNet: A motif-based

graph convolutional network for directed graphs,’’ in Proc. IEEE Data Sci.

Workshop (DSW), Jun. 2018, pp. 225–228.

[57] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural

networks on graphs with fast localized spectral filtering,’’ in Proc. Adv.

Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[58] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, ‘‘CayleyNets: Graph

convolutional neural networks with complex rational spectral filters,’’

IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97–109, Jan. 2019.

VOLUME 8, 2020 190537

J. Hong et al.: Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data

[59] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, ‘‘Geodesic

convolutional neural networks on Riemannian manifolds,’’ in Proc. IEEE

Int. Conf. Comput. Vis. Workshop, Dec. 2015, pp. 37–45.

[60] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein, ‘‘Learning shape

correspondence with anisotropic convolutional neural networks,’’ in Proc.

Adv. Neural Inf. Process. Syst., 2016, pp. 3189–3197.

[61] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and

M. M. Bronstein, ‘‘Geometric deep learning on graphs and manifolds

using mixture model CNNs,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jul. 2017, pp. 5115–5124.

[62] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,

‘‘Graph attention networks,’’ 2017, arXiv:1710.10903. [Online]. Avail-

able: http://arxiv.org/abs/1710.10903

[63] O. Halimi, O. Litany, E. Rodolà, A. Bronstein, and R. Kimmel,

‘‘Self-supervised learning of dense shape correspondence,’’ 2018,

arXiv:1812.02415. [Online]. Available: http://arxiv.org/abs/1812.02415

[64] O. Litany, T. Remez, E. Rodolà, A. Bronstein, and M. Bronstein, ‘‘Deep

functional maps: Structured prediction for dense shape correspondence,’’

in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5659–5667.

[65] K. Kim, B. Seo, S.-H. Rhee, S. Lee, and S. S.Woo, ‘‘Deep learning for blast

furnaces: Skip-dense layers deep learning model to predict the remaining

time to close tap-holes for blast furnaces,’’ in Proc. 28th ACM Int. Conf.

Inf. Knowl. Manage., 2019, pp. 2733–2741.

[66] Y. Li, R. Bu,M. Sun,W.Wu, X. Di, and B. Chen, ‘‘PointCNN: Convolution

on X-transformed points,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018,

pp. 820–830.

JINSEOK HONG was born in Suwon, Gyeonggi,

South Korea, in 1992. He received the B.S. degree

in industrial engineering from Korea University,

South Korea, in 2015, where he is currently pur-

suing the integrated Ph.D. degree with the Depart-

ment of Industrial Engineering.

Since 2018, he has been with the Artificial Intel-

ligence Research Institute. His research interests

include deep learning on vision processing and

designing and applying deep learning architectures

on real industrial problems and optimization.

KEEYOUNG KIM was born in Anyang, Gyeonggi,

South Korea, in 1980. He received the B.S. degree

in computer science from Seoul National Univer-

sity, South Korea, in 2004, and the M.S. degree in

computer science from Seoul National University,

in 2006. He is currently pursuing the Ph.D. degree

with the Department of Computer Science, State

University of New York, South Korea.

From 2006 to 2010, he was an Engineer with

Samsung Electronics. From 2010 to 2016, he was

a Researcher with the CEWIT Korea Research Institute. From 2016 to 2019,

he was also a Senior Researcher with the Artificial Intelligence Research

Institute. Since 2019, he has been with Ingenio AI. His research interests

include machine learning algorithms, such as genetic algorithms and deep

learning, and diverse application fields, such as prediction and control in

smart factory, recognition for CAD and 3D scanning data, adversarial attack

for CNN, and medical imaging.

HONGCHUL LEE received the B.S. degree in

industrial engineering from Korea University,

in 1983, the M.S. degree in industrial engineer-

ing from The University of Texas at Arlington,

in 1988, and the Ph.D. degree in industrial engi-

neering from Texas A&M University, in 1993.

He is currently a Professor with the Department of

Industrial Systems and Information Engineering,

Korea University. His research interests include

system engineering, system simulations, and

artificial intelligence.

190538 VOLUME 8, 2020

