
Faster Eigenvector Computation via Shift-and-Invert Preconditioning

Dan Garber DGARBER@TTIC.EDU

Toyota Technological Institute at Chicago

Elad Hazan EHAZAN@CS.PRINCETON.EDU

Princeton University

Chi Jin CHIJIN@BERKELEY.EDU

University of California, Berkeley

Sham M. Kakade SHAM@CS.WASHINGTON.EDU

University of Washington

Cameron Musco CNMUSCO@MIT.EDU

Massachusetts Institute of Technology

Praneeth Netrapalli PRANEETH@MICROSOFT.COM

Aaron Sidford ASID@MICROSOFT.COM

Microsoft Research, New England

Abstract

We give faster algorithms and improved sam-

ple complexities for the fundamental problem of

estimating the top eigenvector. Given an ex-

plicit matrix A ∈ R
n×d, we show how to com-

pute an ǫ approximate top eigenvector of A⊤
A

in time Õ
([

nnz(A) + d sr(A)
gap2

]
· log 1/ǫ

)
. Here

nnz(A) is the number of nonzeros in A, sr(A) is

the stable rank, and gap is the relative eigengap.

We also consider an online setting in which,

given a stream of i.i.d. samples from a distribu-

tion D with covariance matrix Σ and a vector x0
which is an O(gap) approximate top eigenvector

for Σ, we show how to refine x0 to an ǫ approx-

imation using O
(

v(D)
gap·ǫ

)
samples from D. Here

v(D) is a natural notion of variance. Combin-

ing our algorithm with previous work to initialize

x0, we obtain improved sample complexities and

runtimes under a variety of assumptions on D.

We achieve our results via a robust analysis of the

classic shift-and-invert preconditioning method.

This technique lets us reduce eigenvector compu-

tation to approximately solving a series of linear

systems with fast stochastic gradient methods.

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

1. Introduction

Given A ∈ R
n×d, computing the top eigenvector of A⊤

A

is a fundamental problem in numerical linear algebra, ap-

plicable to principal component analysis (Jolliffe, 2002),

spectral clustering and learning (Ng et al., 2002; Vempala

& Wang, 2004), pagerank computation, and many other

graph computations (Page et al., 1999; Koren, 2003; Spiel-

man, 2007). For instance, a degree-k principal component

analysis is nothing more than performing k leading eigen-

vector computations. Given the ever-growing size of mod-

ern datasets, it is thus a key challenge to come up with more

efficient algorithms for this basic computational primitive.

In this work we provide improved algorithms for comput-

ing the top eigenvector, both in the offline case, when A is

given explicitly and in the online or statistical case where

we access samples from a distribution D over Rd and wish

to estimate the top eigenvector of the covariance matrix

Ea∼D
[
aa⊤

]
. In the offline case, our algorithms are the

fastest to date in a wide and meaningful regime of parame-

ters. Notably, while the running time of most popular meth-

ods for eigenvector computations is a product of the size

of the dataset (i.e. number of non-zeros in A) and certain

spectral characteristics of A, which both can be quite large

in practice, we present running times that actually split the

dependency between these two quantities, and as a result

may yield significant speedups. In the online case, our re-

sults yield improved sample complexity bounds and allow

for very efficient streaming implementations with memory

Shift-and-Invert Preconditioning

and processing-time requirements that are proportional to

the size of a single sample.

On a high-level, our algorithms are based on a robust anal-

ysis of the classic idea of shift-and-invert preconditioning

(Saad, 1992), which allows us to efficiently reduce eigen-

vector computation to approximately solving a short se-

quence of well-conditioned linear systems in λI−A
⊤
A for

some shift λ ≈ λ1(A). We apply state-of-the-art stochastic

gradient methods to approximately solve these linear sys-

tems. We believe our results suggest the general effective-

ness of shift-and-invert based approaches and imply that

further computational gains may be reaped in practice.

1.1. Our Approach

The well known power method for computing the top

eigenvector of A⊤
A starts with an initial vector x and re-

peatedly multiplies by A
⊤
A, eventually causing x to con-

verge to the top eigenvector. For a random start vector,

convergence requires O(log(d/ǫ)/gap) iterations, where

gap = (λ1 − λ2)/λ1, λi denotes the ith largest eigenvalue

of A
⊤
A, and we assume a high-accuracy regime where

ǫ < gap. The dependence on this gap ensures that the

largest eigenvalue is significantly amplified in comparison

to the remaining values.

If the eigenvalue gap is small, one approach is to replace

A
⊤
A with a preconditioned matrix – i.e. a matrix with the

same top eigenvector but a much larger gap. Specifically,

let B = λI−A
⊤
A for some shift parameter λ. If λ > λ1,

we can see that the smallest eigenvector of B (the largest

eigenvector of B−1) is equal to the largest eigenvector of

A
⊤
A. Additionally, if λ is close to λ1, there will be a con-

stant gap between the largest and second largest values of

B
−1. For example, if λ = (1 + gap)λ1, then we will have

λ1
(
B

−1
)
= 1

λ−λ1
= 1

gap·λ1
and λ2

(
B

−1
)
= 1

λ−λ2
=

1
2·gap·λ1

.

This constant factor gap ensures that the power method ap-

plied to B
−1 converges to the top eigenvector of A⊤

A in

just O(log(d/ǫ)) iterations. Of course, there is a catch –

each iteration of this shifted-and-inverted power method

must solve a linear system in B, whose condition number

is proportional 1
gap . For small gap, solving this system via

iterative methods is more expensive.

Fortunately, linear system solvers are incredibly well stud-

ied and there are many efficient iterative algorithms we can

adapt to apply B
−1 approximately. In particular, we show

how to accelerate the iterations of the shifted-and-inverted

power method using variants of Stochastic Variance Re-

duced Gradient (SVRG) (Johnson & Zhang, 2013). Due

to the condition number of B, we will not entirely avoid a
1

gap dependence, however, we can separate this dependence

from the input size nnz(A).

Typically, stochastic gradient methods are used to optimize

convex functions that are given as the sum of many convex

components. To solve a linear system (M⊤
M)x = b we

minimize the convex function f(x) = 1
2x

⊤(M⊤
M)x −

b⊤x with components ψi(x) = 1
2x

⊤ (mim
⊤
i

)
x − 1

nb
⊤x

where mi is the ith row of M. Such an approach can be

used to solve systems in A
⊤
A, however solving systems

in B = λI − A
⊤
A requires more care. We require an

analysis of SVRG that guarantees convergence even when

some of our components are non-convex. We give a sim-

ple analysis for this setting, generalizing recent work in the

area (Shalev-Shwartz, 2015; Csiba & Richtárik, 2015).

Given fast approximate solvers for B, the second main

piece of our algorithmic framework is a new error bound

for the shifted-and-inverted power method, showing that

it is robust to approximate linear system solvers, such as

SVRG. We give a general analysis, showing exactly what

accuracy each system must be solved to, allowing for faster

implementations using linear solvers with weaker guar-

antees. Our proofs center around the potential function:

G(x)
def

=
∥∥∥Pv⊥

1
x
∥∥∥
B

/ ‖Pv1
x‖

B
, where Pv1 and Pv⊥

1
are

the projections onto the top eigenvector and its complement

respectively. This function resembles tangent based poten-

tial functions used in previous work (Hardt & Price, 2014)

except that we use the B norm rather than the ℓ2 norm.

For the exact power method, this is irrelevant – progress

is identical in both norms (see Lemma 37 of our full ver-

sion). However, ‖·‖
B

is a natural norm for measuring the

progress of linear system solvers for B, so our potential

function makes it possible to extend analysis to the case

when B
−1x is computed up to error ξ with bounded ‖ξ‖

B
.

1.2. Our Results

Our algorithmic framework described above offers several

advantages. We obtain improved running times for comput-

ing the top eigenvector in the offline model. In Theorem 16

we give an algorithm running in time

O

([
nnz(A) +

d srA

gap2

]
·
[
log

1

ǫ
+ log2

d

gap

])

where sr(A) = ‖A‖2F / ‖A‖22 ≤ rank(A) is the stable

rank and nnz(A) is the number of non-zero entries. Up

to log factors, our runtime is in many settings proportional

to the input size nnz(A), and so is very efficient for large

matrices. In the case when nnz(A) ≤ d sr(A)
gap2 we apply the

results of (Frostig et al., 2015b; Lin et al., 2015) to provide

an accelerated runtime of:

O

([
nnz(A)

3
4 (d sr(A))

1
4

√
gap

] [
log

d

gap
log

1

ǫ
+ log3

d

gap

])
.

Finally, in the case when ǫ > gap, our results easily ex-

tend to give gap-free bounds (Theorems 34 and 35 of our

Shift-and-Invert Preconditioning

full paper), identical to those shown above but with gap
replaced by ǫ. Note that our offline results hold for any

A and require no initial knowledge of the top eigenvec-

tor. In Section 6 we discuss how to estimate the param-

eters λ1, gap, with modest additional runtime cost. Our

algorithms return an approximate top eigenvector x with

x⊤A⊤
Ax ≥ (1− ǫ)λ1. By choosing error ǫ · gap, we can

ensure that x is actually close to v1 – i.e. that |x⊤v1| ≥
1 − ǫ. Further, we obtain the same asymptotic runtime

since O
(
log 1

ǫ·gap + log2 d
gap

)
= O

(
log 1

ǫ + log2 d
gap

)
.

We compare our runtimes with previous work in Table 1.

In the online case, in Theorem 25, we show how to improve

an O(gap) approximation to the top eigenvector to an ǫ

approximation with constant probability using O
(

v(D)
gap·ǫ

)

samples where v(D) is a natural variance measure. Our

algorithm is based on the streaming SVRG algorithm of

(Frostig et al., 2015a). It requires just O(d) amortized time

per sample, uses just O(d) space, and is easily parallelized.

We can apply our result in a variety of regimes, using exist-

ing algorithms to obtain the initial O(gap) approximation

and our algorithm to refine this solution. As shown in Ta-

ble 2, this gives improved runtimes and sample complex-

ities over existing work. Notably, we give better asymp-

totic sample complexity than known matrix concentration

results for general distributions, and give the first stream-

ing algorithm that is asymptotically optimal in the popular

Gaussian spike model.

Our robust shifted-and-inverted power method analysis

provides new understanding of this widely implemented

technique. It gives a means of obtaining provably ac-

curate results when each iteration is implemented using

solvers with weak accuracy guarantees. In practice, this

reduction between approximate linear system solving and

eigenvector computation shows that optimized regression

libraries can be leveraged for faster eigenvector compu-

tation in many cases. Furthermore, in theory we believe

that the reduction suggests computational limits inherent

in eigenvector computation as seen by the often easier-to-

analyze problem of linear system solving. Indeed, in Sec-

tion 7 of our full paper we provide evidence that in certain

regimes our statistical results are optimal.

1.3. Previous Work

OFFLINE EIGENVECTOR COMPUTATION

Due to its universal applicability, eigenvector computation

in the offline case is extremely well studied. Classical

methods, such as the QR algorithm, take roughly O(nd2)
time to compute a full eigendecomposition. They can

be accelerated using fast matrix multiplication (Williams,

2012; Le Gall, 2014), however remain prohibitively expen-

sive for large matrices. Hence, faster iterative methods are

often employed, especially when only the top eigenvector

(or a few of the top eigenvectors) is desired.

As discussed, the popular power method requires

O (log(d/ǫ)/gap) iterations to converge to an ǫ approx-

imate top eigenvector. Using Chebyshev iteration or

the Lanczos method, this bound can be improved to

O
(
log(d/ǫ/

√
gap
)

(Saad, 1992), giving total runtime of

O
(
nnz(A) · log(d/ǫ)/√gap

)
. When ǫ > gap, the gap

terms in these runtimes can be replaced by ǫ. We focus

on the high-precision regime when ǫ < gap, but also give

gap-free bounds in Section 8 of our full paper.

Unfortunately, if nnz(A) is very large and gap is small,

the above runtimes can still be quite expensive, and there is

a natural desire to separate the 1/
√
gap dependence from

the nnz(A) term. One approach is to use random sub-

space embedding matrices (Ailon & Chazelle, 2009; Clark-

son & Woodruff, 2013) or fast row sampling algorithms

(Cohen et al., 2015), which can be applied in O(nnz(A))
time and yield a matrix Ã which is a good spectral ap-

proximation to the original. The number of rows in Ã de-

pends only on the stable rank of A and the error of the em-

bedding. Applying such a subspace embedding and then

computing the top eigenvector of Ã
⊤
Ã requires runtime

O (nnz(A) + poly(sr(A), ǫ, gap)), achieving the goal of

reducing runtime dependence on the input size nnz(A).
Unfortunately, the dependence on ǫ is significantly subopti-

mal – such an approach cannot be used to obtain a linearly

convergent algorithm. Further, the technique does not ex-

tend naturally to the online setting.

Another approach, which we follow more closely, is to

apply stochastic optimization techniques, which iteratively

update an estimate to the top eigenvector, consider-

ing a random row of A with each update step. Such

algorithms naturally extend to the online setting and

have led to improved dependence on the input size for

a variety of problems (Bottou, 2010). Using variance-

reduced stochastic gradient techniques, (Shamir, 2015c)

achieves a runtime bound assuming an upper bound on

the squared row norms of A. In the best case, when

row norms are uniform, this runtime can be simplified to

O
((
nnz(A) + d sr(A)2/gap2

)
· log(1/ǫ) log log(1/ǫ)

)
.

This result makes an important contribution in separating

input size and gap dependencies using stochastic optimiza-

tion techniques. Unfortunately, the algorithm requires an

approximation to the eigenvalue gap and a starting vector

that has a constant dot product with the top eigenvector.

Initializing with a random vector loses polynomial factors

in d (Shamir, 2015b), on top of the already suboptimal

dependencies on sr(A) and ǫ.

Shift-and-Invert Preconditioning

Algorithm Runtime

Power Method O
(

nnz(A) log(d/ǫ)
gap

)

Lanczos Method O
(

nnz(A) log(d/ǫ)√
gap

)

Fast Subspace Embeddings (Clarkson & Woodruff, 2013)
+ Lanczos

O

(

nnz(A) + d sr(A)

max{gap2.5ǫ,ǫ2.5}

)

SVRG (Shamir, 2015c)
(assuming bounded row norms and warm-start)

O
((

nnz(A) + d sr(A)2

gap2

)

· log(1/ǫ) log log(1/ǫ)
)

Theorem 16 O
([

nnz(A) + d sr(A)

gap2

]

·
[

log 1
ǫ
+ log2 d

gap

])

Theorem 17 (full paper) O
([

nnz(A)3/4(d sr(A))1/4√
gap

]

·
[

log d
gap

log 1
ǫ
+ log3 d

gap

])

Table 1. Comparision to previous work on Offline Eigenvector Estimation. We give runtimes for computing a unit vector x such that

x⊤
A

⊤
Ax ≥ (1− ǫ)λ1 in the regime ǫ = O(gap).

ONLINE EIGENVECTOR COMPUTATION

In the online, or statistical setting, research often looks be-

yond runtime. One focus is on minimizing the sample size

required to achieve a given accuracy. Another common fo-

cus is on obtaining streaming algorithms, which use just

O(d) space - proportional to the size of a single sample.

In this section, in order to more easily compare to previous

work, we normalize λ1 = 1 and assume we have the row

norm bound ‖a‖22 ≤ O(d) which then gives us the variance

bound
∥∥Ea∼D

[
(aa⊤)2

]∥∥
2
= O(d). Additionally, we com-

pare runtimes for computing some x such that |x⊤v1| ≥
1 − ǫ, as this is the most popular guarantee studied in the

literature. Theorem 25 is easily extended to this setting

as obtaining x with xTAA
⊤x ≥ (1 − ǫ · gap)λ1 ensures

|x⊤v1| ≥ 1 − ǫ. Our algorithm requires O(d/(gap2ǫ))
samples to find such a vector under the above assumptions.

The simplest algorithm in this setting is to take n samples

from D and compute the leading eigenvector of the empir-

ical estimate Ê[aa⊤] = 1
n

∑n
i=1 aia

⊤
i . By a matrix Bern-

stein bound (Tropp, 2015), O
(

d log d
gap2ǫ

)
samples is enough

to insure

∥∥∥Ê[aa⊤]− E[aa⊤]
∥∥∥
2
≤ √

ǫ · gap. By Lemma 36

in our full version, this ensures that, if x is set to the top

eigenvector of Ê[aa⊤] it will satisfy |x⊤v1| ≥ 1− ǫ.

A large body of work focuses on improving this simple

algorithm. In Table 2 we give a sampling of results, all

which rely on distributional assumptions at least as strong

as those given above. Note that, in each setting, we can

use the cited algorithm to first compute an O(gap) approx-

imate eigenvector, and then refine this approximation with

our streaming from Theorem 25 using O
(

d
gap2ǫ

)
samples.

This gives us improved runtime and sample complexity re-

sults. Notably, by the lower bound in Section 7 of our full

paper, in all settings considered in Table 2, we achieve op-

timal asymptotic sample complexity - as our sample size

grows large, ǫ decreases at an optimal rate. To save space,

we do not show our improved runtime bounds, but they are

easy to derive by adding the runtime required by the given

algorithm to achieve O(gap) accuracy to O
(

d2

gap2ǫ

)
– the

runtime of our streaming algorithm.

The bounds given for the simple matrix Bernstein based al-

gorithm described above, Krasulina/Oja’s Algorithm (Bal-

subramani et al., 2013), and SGD (Shamir, 2015a) require

no additional assumptions, aside from those given at the

beginning of this section. The streaming results cited for

(Mitliagkas et al., 2013) and (Hardt & Price, 2014) as-

sume a is generated from a Gaussian spike model, where

ai =
√
λ1γiv1+Zi and γi ∼ N (0, 1), Zi ∼ N (0, Id). We

note that under this model, the matrix Bernstein results im-

prove by a log d factor and so match our results in achiev-

ing asymptotically optimal convergence rate. The results of

(Mitliagkas et al., 2013) and (Hardt & Price, 2014) sacri-

fice this optimality in order to operate under the streaming

model. Our work gives the best of both works – a streaming

algorithm giving asymptotically optimal results.

(Sa et al., 2015) assumes E
∥∥aa⊤Waa⊤

∥∥ ≤ O(1)tr(W)
for any symmetric W that commutes with Eaa⊤.

This is much stronger than the assumption above that∥∥Ea∼D
[
(aa⊤)2

]∥∥
2
= O(d) and there are easy examples

where the above assumption holds while theirs does not.

1.4. Organization

While our general approach is simple, our proofs are quite

involved, and hence, most are omitted from the main pa-

per. They can be found in our full paper. In Section 2

we review problem definitions and parameters. In Section

3 we describe the shifted-and-inverted power method and

show how it can be implemented using approximate system

solvers. In Section 4 we instantiate this framework, show-

ing how to apply SVRG to solve systems in our shifted

matrix and giving our main offline results. In Section 5 we

discuss extending these techniques to the online setting. Fi-

nally, in Section 6 we discuss how to efficiently estimate

the shift parameters required by our algorithms.

Shift-and-Invert Preconditioning

Algorithm
Sample

Size
Runtime Streaming?

Our Sample
Complexity

Matrix Bernstein + Lanczos
(explicitly forming matrix)

O
(

d log d
gap2ǫ

)

O
(

d3 log d
gap2ǫ

)

× O
(

d log d
gap3

+ d
gap2ǫ

)

Matrix Bernstein + Lanczos
(iteratively applying matrix)

O
(

d log d
gap2ǫ

)

O
(

d2 log d·log(d/ǫ)
gap2.5ǫ

)

× O
(

d log d
gap3

+ d
gap2ǫ

)

Memory-efficient PCA
(Mitliagkas et al., 2013),

(Hardt & Price, 2014)
O
(

d log(d/ǫ)

gap3ǫ

)

O
(

d2 log(d/ǫ)

gap3ǫ

) √
O
(

d log(d/gap)

gap4
+ d

gap2ǫ

)

Alecton (Sa et al., 2015) O(d log(d/ǫ)

gap2ǫ
) O

(

d2 log(d/ǫ)

gap2ǫ

) √
O(d log(d/gap)

gap3
+ d

gap2ǫ
)

Krasulina / Oja’s
Algorithm

(Balsubramani et al., 2013)
O
(

dc1

gap2ǫc2

)

O
(

dc1+1

gap2ǫc2

) √
O
(

dc1

gap2+c2
+ d

gap2ǫ

)

SGD (Shamir, 2015a) O
(

d3 log(d/ǫ)

ǫ2

)

O
(

d4 log(d/ǫ)

ǫ2

) √
O
(

d3 log(d/gap)

gap2 + d
gap2ǫ

)

Table 2. Summary of existing Online Eigenvector Estimation results. Bounds are for computing a unit vector x with |x⊤v1| ≥ 1 − ǫ.
For each result, we obtain improved bounds by running the algorithm to compute an O(gap) approximate eigenvector, and then using

our algorithm to obtain an ǫ approximation using an additional O
(

d
gap2ǫ

)

samples, O(d) space, and O(d) work per sample.

2. Preliminaries

In the Offline Setting we are given A ∈ R
n×d with rows

a(1), ..., a(n) and wish to compute an approximation to the

top eigenvector of Σ
def

= A
⊤
A. Specifically, for error ǫ we

want a unit vector x with x⊤Σx ≥ (1− ǫ)λ1(Σ).

In the Online Setting we access an oracle returning inde-

pendent samples from distribution D on R
d. We wish to

approximate the top eigenvector of Σ
def

= Ea∼D
[
aa⊤

]
,

specifically, to find unit x with x⊤Σx ≥ (1− ǫ)λ1(Σ).

2.1. Problem Parameters

Let λ1, ..., λd denote the eigenvalues of Σ and v1, ..., vd de-

note their corresponding eigenvectors. We define the eigen-

value gap by gap
def

= (λ1 − λ2)/λ1. Our bounds also em-

ploy the following parameters:

In the Offline Setting: Let sr(A)
def
= ‖A‖2F / ‖A‖22 de-

note the stable rank of A. Note that we always have

sr(A) ≤ rank(A). Let nnz(A) denote the number of non-

zero entries in A.

In the Online Setting: Let v(D)
def

=

∥∥∥Ea∼D

[
(aa⊤)

2
]∥∥∥

2

‖Ea∼D(aa⊤)‖2
2

=
∥∥∥Ea∼D

[
(aa⊤)

2
]∥∥∥

2

λ2
1

denote a natural upper bound on the vari-

ance of D in various settings. Note that v(D) ≥ 1.

3. Algorithmic Framework

Here we overview our robust shift-and-invert framework,

focusing on intuition, with proofs relegated to our full pa-

per. We let B
def

= λI − Σ, and assume that we have

a crude estimate of λ1 and gap so can set λ to satisfy(
1 + gap

150

)
λ1 ≤ λ ≤

(
1 + gap

100

)
λ1. (See Section 6 for how

we can compute such a λ). Note that λi
(
B

−1
)
= 1

λi(B) =

1
λ−λi

and so
λ1(B−1)
λ2(B−1) = λ−λ2

λ−λ1
≥ gap

gap/100 = 100. This

large gap ensures that, assuming the ability to apply B
−1,

the power method will converge very quickly.

3.1. Potential Function

Our eigenvector algorithms aim to maximize the Rayleigh

quotient, x⊤Σx for unit x. However, to track the progress

of our algorithm we use a different potential function. We

define for x 6= 0:

G(x)
def

=

∥∥∥Pv⊥

1
x
∥∥∥
B

‖Pv1
x‖

B

=

√∑
i≥2 α

2
i /λi(B

−1)
√
α2
1/λ1(B

−1)
. (1)

where Pv1
and Pv⊥

1
denote the projections onto v1 and the

subspace orthogonal to v1 and αi = v⊤i x.

When the Rayleigh quotient error ǫ = λ1−x⊤Σx is small,

we can show that G(x) closely tracks ǫ, so we can ana-

lyze our algorithms exclusively in terms of G(x) and then

convert the resulting bounds to Rayleigh quotient error (see

Lemma 3 of full paper).

3.2. Power Iteration

It is easy to see that the shifted-and-inverted power iteration

makes progress with respect to our objective function given

an exact linear system solver for B.

Theorem 4. Let x be a unit vector with 〈x, v1〉 6= 0 and

let x̃ = B
−1x, i.e. the power method update of B−1 on x.

Then, under our assumption on λ, we have:

G(x̃) ≤ λ2
(
B

−1
)

λ1 (B−1)
G(x) ≤ 1

100
G(x).

Proof. Writing x in the eigenbasis, we have x =
∑

i αivi
and x̃ =

∑
i αiλi

(
B

−1
)
vi. Since 〈x, v1〉 6= 0, α1 6= 0

Shift-and-Invert Preconditioning

and by the equivalent formulation of G(x) given in (1):

G(x̃) =

√∑
i≥2 α

2
iλi(B

−1)
√
α2
1λ1(B

−1)

≤ λ2
(
B

−1
)

λ1 (B−1)
·

√∑
i≥2 α

2
i /λi(B

−1)
√
α2
1/λ1(B

−1)
=
λ2
(
B

−1
)

λ1 (B−1)
G(x).

Recalling that λ1
(
B

−1
)
/λ2

(
B

−1
)

≥ gap
gap/100 = 100

yields the result.

In the next section we show that Theorem 4 can be made

robust – we still make progress on our objective function

even if we only approximate B
−1x using a fast linear sys-

tem solver.

3.3. Approximate Power Iteration

We can show that each iteration of the shifted-and-inverted

power method makes constant expected progress on G(x)
assuming we:

1. Start with a sufficiently good x and an approximation

of λ1

2. Can apply B
−1 approximately using a system solver

such that the function error (i.e. distance to B
−1x in

the B norm) is sufficiently small in expectation.

3. Can estimate Rayleigh quotients over Σ well enough

to only accept updates that do not hurt progress on the

objective function too much.

Note that the second assumption is very weak. An expected

progress bound allows, for example, the solver to occa-

sionally return a solution that is entirely orthogonal to v1,

causing us to make unbounded backwards progress. The

third assumption allows us to reject possibly harmful up-

dates and ensure that we still make progress in expectation.

In the offline setting, we can access A and are able to com-

pute Rayleigh quotients trivially. However, we only assume

the ability to estimate quotients, since in the online setting

we only have access to Σ through samples from D.

Theorem 5 (Approximate Shifted-and-Inverted Power It-

eration – Warm Start). Let x =
∑

i αivi be a unit vector

such that G(x) ≤ 1√
10

. Suppose we have an estimate λ̂1 of

λ1 such that 10/11 (λ− λ1) ≤ λ− λ̂1 ≤ λ−λ1. Further-

more, suppose we have a subroutine solve(·) such that on

any input x

E
[∥∥solve (x)−B

−1x
∥∥
B

]
≤ c1

1000

√
λ1(B−1),

for some c1 < 1, and a subroutine q̂uot (·) that on any

input x 6= 0 satisfies

∣∣∣q̂uot (x)− quot(x)
∣∣∣ ≤ 1

30 (λ− λ1)

where quot(x)
def

= x⊤
Σx

x⊤x
. Let x̂ = solve (x). Then the

following update procedure:

Set x̃ =

x̂ if

{
q̂uot (x̂) ≥ λ̂1 −

(
λ− λ̂1

)
/6 and

‖x̂‖2 ≥ 2
3

1

λ−λ̂1

x otherwise,

satisfies: G(x̃) ≤ 1√
10

and E [G(x̃)] ≤ 3
25G(x) +

c1
500 .

That is, not only do we decrease our potential function by

a constant factor in expectation, but we are guaranteed that

the potential function will never increase beyond 1/
√
10.

Roughly, the proof of Theorem 5 shows that, conditioning

on accepting our iterative step:

E [G(x̂)] = E

∥∥∥Pv⊥

1
B

−1x
∥∥∥
B

‖Pv1
B−1x‖

B

≤ G(x)

50
+ 2

E
[∥∥x̂−B

−1x
∥∥
B

]
√
λ1(B−1)

That is, the potential function decreases as in the exact case

(Theorem 4) with additional additive error due to the inex-

act linear system solve.

Theorem 5 assumes that we can solve linear systems to

some absolute accuracy in expectation. However, system

solvers typically only guarantee relative progress bounds

with respect to an initial estimate of B
−1x. Fortunately,

we can show that approximating B
−1x with 1

x⊤Bx
x, and

applying a linear system solver that improves this estimate

by a constant factor in expectation gives small enough error

to make progress in each power iteration:

Corollary 6 (Relative Error Linear System Solvers). For

any unit vector x, we have:
∥∥∥∥

1

x⊤Bx
x−B

−1x

∥∥∥∥
B

≤ α1

√
λ1(B−1) ·G(x),

so instantiating Theorem 5 with c1 = α1G(x) gives

E[G(x̃)] ≤ 4
25G(x) as long as:

E
[∥∥solve (x)−B

−1x
∥∥
B

]
≤

∥∥∥ 1
λ−x⊤Σx

x−B
−1x

∥∥∥
B

1000
.

3.4. Initialization

Theorem 5 and Corollary 6 show that, given a good enough

approximation to v1, we can rapidly refine this approxi-

mation by applying the shifted-and-inverted power method

with very coarse approximate linear system solves. To ob-

tain the initial approximation, we rely on a ‘burn-in’ period

in which we solve each linear system to higher accuracy.

During burn-in, we may have a very small component of

x in the direction of v1, and so require higher accuracy to

ensure that we do not ‘lose’ this component.

Shift-and-Invert Preconditioning

Theorem 8 (Approximate Shifted-and-Inverted Power

Method – Burn-In). Suppose we initialize x0 ∼ N (0, I)
and suppose we have access to a subroutine solve (·) such

that

E
[∥∥solve (x)−B

−1x
∥∥
B

]

≤ 1

3000κ(B−1)d21
·
∥∥∥∥

1

λ− x⊤Σx
x−B

−1x

∥∥∥∥
B

,

where κ(B−1) = λ1(B
−1)

λd(B−1) = O(1
gap). Then iteratively

computing: xt = solve (xt−1) / ‖solve (xt−1)‖2, for T =
O (log(d/gap)), we have G(xT) ≤ 1√

10
with probability

1−O(1
d10).

4. Offline Eigenvector Computation

We now discuss how to instantiate the framework of Sec-

tion 3 in the offline setting. We adapt Stochastic Variance

Reduced Gradient (SVRG) (Johnson & Zhang, 2013) to

solve linear systems in B. To solve a system in the positive

definite matrix A
⊤
A, one optimizes the objective function

f(x) = 1
2x

⊤
A

⊤
Ax − b⊤x. This function is the sum of n

convex components, ψi(x) = 1
2x

⊤ (aia⊤i
)
x − 1

nb
⊤x. In

each iteration of traditional gradient descent, one computes

the full gradient of f(xi) and takes a step in that direction.

In stochastic gradient methods, at each iteration, a single

component is sampled, and the step direction is based only

on the gradient of the sampled component. Hence, a full

gradient computation is avoided at each iteration, leading

to runtime gains.

Unfortunately, while we have access to the rows of A

and so can solve systems in A
⊤
A, it is less clear how to

solve systems in B = λI − A
⊤
A. To do this, we will

split our function into components of the form ψi(x) =
1
2x

⊤ (wiI− aia
⊤
i

)
x − 1

nb
⊤x for some set of weights wi

with
∑

i∈[n] wi = λ.

Importantly, wiI− aia
⊤
i may not be positive semidefinite.

We are minimizing a sum of functions which is convex, but

consists of non-convex components. While recent results

for minimizing such functions could be applied directly

(Shalev-Shwartz, 2015; Csiba & Richtárik, 2015), in our

full paper we obtain stronger results by using a more gen-

eral form of SVRG and analyzing the specific properties of

our function.

Our analysis shows that we can make constant fac-

tor progress in solving linear systems in B in time

O
(
nnz(A) + d sr(A)

gap2

)
. If

d sr(A)
gap2 ≤ nnz(A) this gives

a runtime proportional to the input size – the best we

could hope for. If not, we show that it is possi-

ble to accelerate our system solver using the results of

(Frostig et al., 2015b; Lin et al., 2015), achieving run-

time O
(

nnz(A)3/4(d sr(A))1/4√
gap · log

(
d

gap

))
. We show how

to use the unaccelerated system solvers to obtain our main

offline result. The analysis is identical in the accelerated

case.

Theorem 16 (Shifted-and-Inverted Power Method With

SVRG). Let B = λI − A
⊤
A for

(
1 + gap

150

)
λ1 ≤ λ ≤(

1 + gap
100

)
λ1 and let x0 ∼ N (0, I) be a random initial

vector. Running the inverted power method on B initial-

ized with x0, using the SVRG solver from Theorem 12

(in our full paper) to approximately apply B
−1 at each

step, returns x such that with probability 1 − O
(

1
d10

)
,

x⊤Σx ≥ (1− ǫ)λ1 in total time

O

((
nnz(A) +

d sr(A)

gap2

)
·
(
log2

(
d

gap

)
+ log

(
1

ǫ

)))
.

Instantiating the theorem with ǫ′ = ǫ · gap, we can find a

unit vector x with |v⊤1 x| ≥ 1 − ǫ in the same asymptotic

running time (an extra log(1/gap) term is absorbed into the

log2(d/gap) term).

Proof. By Theorem 8, if we start with x0 ∼ N (0, I) we

can run O
(
log
(

d
gap

))
iterations of the inverted power

method, to obtain x1 with G(x1) ≤ 1/
√
10 with proba-

bility 1 − O(1/d10). Each iteration requires applying an

linear solver that decreases initial error in expectation by a

factor of 1
poly(d,1/gap) . Such a solver is given by applying

our constant factor solverO(log(d/gap)) times. So overall

in order to find x1 with G(x1) ≤ 1/
√
10, we require time

O
((

nnz(A) + d sr(A)
gap2

)
· log2

(
d

gap

))
.

After this initial ‘burn-in’ period we can apply Corollary

6 of Theorem 5. In each iteration, we only need to use

a solver that decreases initial error by a constant factor in

expectation so requires time O
(
nnz(A) + d sr(A)

gap2

)
. With

O(log(d/ǫ)) iterations, we can obtain x with E
[
G(x)2

]
=

O(ǫ/d10), which is sufficient for the result. Note that the

second stage requires O
(
log
(
d
ǫ

))
= O(log d + log(1/ǫ))

iterations to achieve the high probability bound. How-

ever, theO(log d) term is smaller than theO
(
log2

(
d

gap

))

term, so is absorbed into the asymptotic notation.

5. Online Eigenvector Computation

We now discuss how to extend our results to the online set-

ting. This setting is somewhat more difficult since there is

no canonical A, – we only have access to the distribution

D through samples. In order to apply Theorem 5 we must

show how to both estimate the Rayleigh quotient as well as

solve the requisite linear systems in expectation.

Our Rayleigh quotient estimation procedure is standard –

we first approximate the Rayleigh quotient by its empiri-

Shift-and-Invert Preconditioning

cal value on a batch of k samples and prove using Cheby-

shev’s inequality that the error on this sample is small

with constant probability. We then repeat this procedure

O(log(1/p)) times and output the median, obtaining a good

estimate probability 1− p.

Theorem 18 (Online Rayleigh Quotient Estimation).

Given ǫ ∈ (0, 1], p ∈ [0, 1], and unit vector x set k =
⌈4 v(D)ǫ−2⌉ and m = O(log(1/p)). For all i ∈ [k] and

j ∈ [m] let a
(j)
i be drawn independently from D and set

Ri,j = x⊤a(j)i (a
(j)
i)⊤x and Rj = 1

k

∑
i∈[k]Ri,j . If we let

z be median value of the Rj then with probability 1− p we

have
∣∣z − x⊤Σx

∣∣ ≤ ǫλ1.

The next challenge is to solve linear systems in B in the

streaming setting. We follow the general strategy of the

offline algorithms given in Section 4, replacing traditional

SVRG with the streaming SVRG algorithm of (Frostig

et al., 2015a). Whereas in the offline case, we could en-

sure that our initial error ‖x0 − xopt‖2
B

is small by simply

scaling by the Rayleigh quotient (Corollary 6) in the online

case estimating the Rayleigh quotient to sufficient accuracy

would require too many samples. Instead, we simply show

how to use streaming SVRG to solve the desired linear sys-

tems to absolute accuracy without an initial point. Ulti-

mately, due to the different error dependences in the online

case this guarantee suffices and the lack of an initial point

is not a bottleneck.

Corollary 24 (Streaming SVRG Solver). Given a linear

system Bx = b with unit vector b there is a streaming al-

gorithm that returns x with E ‖x− xopt‖2
B
≤ 10cλ1(B

−1)

using O(v(D)
gap2·c) samples from D.

Note that convergence for this streaming algorithm is sig-

nificantly worse than for offline SVRG algorithms. The

number of samples we take is proportional to 1/c, so, if we

wanted to for example, apply Theorem 8 we would need

poly(1/gap, d) samples (compared with just log(d/gap)
iterations in the online case). This is why we only give a

warm-start algorithm in the online case – one that operates

in the regime where coarse linear solves are sufficient. Our

main theorem is:

Theorem 25 (Online Shifted-and-Inverted Power Method –

Warm Start). Let B = λI−A
⊤
A for

(
1 + gap

150

)
λ1 ≤ λ ≤(

1 + gap
100

)
λ1 and let x0 be some vector withG(x0) ≤ 1√

10
.

Running the shifted-and-inverted power method on B ini-

tialized with x0, using the streaming SVRG solver of Corol-

lary 24 to approximately apply B−1 at each step, returns x
such that x⊤Σx ≥ (1− ǫ)λ1 with constant probability for

any target ǫ < gap. The algorithm uses O(v(D)
gap·ǫ) samples

and amortized O(d) time per sample.

6. Parameter Estimation for Offline

Eigenvector Computation

In Section 4, in order to invoke Theorems 5 and 8 we as-

sumed knowledge of some λ with (1+gap/150)λ1 ≤ λ ≤
(1 + gap/100)λ1. Here we mention that it is possible to

efficiently estimate this parameter, incurring a modest ad-

ditional runtime cost. Algorithm 1 of our full paper uses

the gap-free eigenvalue estimation algorithm of (Musco

& Musco, 2015), applying the shifted-and-inverted power

method with the SVRG based solver of Section 4 to two

vectors simultaneously to compute estimates of both λ1 and

λ2. Using the gap between these estimates, the algorithm

iteratively refines its approximation of gap. Overall:

Theorem 26. There is an algorithm that, with probability

1 − O(1/d10) returns λ with (1 + gap/150)λ1 ≤ λ ≤
(1 + gap/100)λ1 (λ̂1) in time

O

([
nnz(A) +

d sr(A)

gap2

]
· log3

(
d

gap

))
.

Note that, by using the accelerated solver dis-

cussed in Section 4 we can also accelerate this to

Õ
(

nnz(A)3/4(d sr(A))1/4√
gap

)
. The runtime of Theorem 26 is

within a O(log(d/gap)) factor of our runtimes that assume

knowledge of λ. Additionally, note that this extra cost is

separated from the ǫ dependencies in the runtimes.

References

Ailon, Nir and Chazelle, Bernard. The fast Johnson-

Lindenstrauss transform and approximate nearest neigh-

bors. SIAM Journal on Computing, 39(1):302–322,

2009.

Balsubramani, Akshay, Dasgupta, Sanjoy, and Freund,

Yoav. The fast convergence of incremental PCA. In

Advances in Neural Information Processing Systems 26

(NIPS), pp. 3174–3182, 2013.

Bottou, Léon. Large-scale machine learning with stochas-

tic gradient descent. In Proceedings of COMPSTAT, pp.

177–186. Springer, 2010.

Clarkson, Kenneth L and Woodruff, David P. Low rank

approximation and regression in input sparsity time. In

Proceedings of the 45th Annual ACM Symposium on

Theory of Computing (STOC), pp. 81–90, 2013.

Cohen, Michael B, Lee, Yin Tat, Musco, Cameron, Musco,

Christopher, Peng, Richard, and Sidford, Aaron. Uni-

form sampling for matrix approximation. In Proceed-

ings of the 6th Conference on Innovations in Theoretical

Computer Science (ITCS), pp. 181–190, 2015.

Shift-and-Invert Preconditioning

Csiba, Dominik and Richtárik, Peter. Primal method

for ERM with flexible mini-batching schemes and non-

convex losses. arXiv:1506.02227, 2015.

Frostig, Roy, Ge, Rong, Kakade, Sham M, and Sidford,

Aaron. Competing with the empirical risk minimizer in

a single pass. In Proceedings of the 28th Annual Con-

ference on Computational Learning Theory (COLT), pp.

728–763, 2015a.

Frostig, Roy, Ge, Rong, Kakade, Sham M, and Sidford,

Aaron. Un-regularizing: approximate proximal point

and faster stochastic algorithms for empirical risk mini-

mization. In Proceedings of the 32nd International Con-

ference on Machine Learning (ICML), 2015b.

Hardt, Moritz and Price, Eric. The noisy power method: A

meta algorithm with applications. In Advances in Neural

Information Processing Systems 27 (NIPS), pp. 2861–

2869, 2014.

Johnson, Rie and Zhang, Tong. Accelerating stochastic

gradient descent using predictive variance reduction. In

Advances in Neural Information Processing Systems 26

(NIPS), pp. 315–323, 2013.

Jolliffe, Ian. Principal component analysis. Wiley Online

Library, 2002.

Koren, Yehuda. On spectral graph drawing. In Computing

and Combinatorics, pp. 496–508. Springer, 2003.

Le Gall, François. Powers of tensors and fast matrix multi-

plication. In Proceedings of the 39th International Sym-

posium on Symbolic and Algebraic Computation, pp.

296–303. ACM, 2014.

Lin, Hongzhou, Mairal, Julien, and Harchaoui, Zaid.

A universal catalyst for first-order optimization.

arXiv:1506.02186, 2015.

Mitliagkas, Ioannis, Caramanis, Constantine, and Jain, Pra-

teek. Memory limited, streaming PCA. In Advances in

Neural Information Processing Systems 26 (NIPS), pp.

2886–2894, 2013.

Musco, Cameron and Musco, Christopher. Randomized

block krylov methods for stronger and faster approxi-

mate singular value decomposition. In Advances in Neu-

ral Information Processing Systems 28 (NIPS), 2015.

Ng, Andrew Y, Jordan, Michael I, and Weiss, Yair. On

spectral clustering: Analysis and an algorithm. In Ad-

vances in Neural Information Processing Systems 15

(NIPS), pp. 849–856, 2002.

Page, Lawrence, Brin, Sergey, Motwani, Rajeev, and Wino-

grad, Terry. The PageRank citation ranking: bringing

order to the Web. 1999.

Sa, Christopher D, Re, Christopher, and Olukotun, Kunle.

Global convergence of stochastic gradient descent for

some non-convex matrix problems. In Proceedings of

the 32nd International Conference on Machine Learn-

ing (ICML), pp. 2332–2341, 2015.

Saad, Yousef. Numerical methods for large eigenvalue

problems. SIAM, 1992.

Shalev-Shwartz, Shai. SDCA without duality.

arXiv:1502.06177, 2015.

Shamir, Ohad. Convergence of stochastic gradient descent

for PCA. arXiv:1509.09002, 2015a.

Shamir, Ohad. Fast stochastic algorithms for SVD

and PCA: Convergence properties and convexity.

arXiv:1507.08788, 2015b.

Shamir, Ohad. A stochastic PCA and SVD algorithm

with an exponential convergence rate. In Proceedings of

the 32nd International Conference on Machine Learning

(ICML), pp. 144–152, 2015c.

Spielman, Daniel A. Spectral graph theory and its applica-

tions. In null, pp. 29–38. IEEE, 2007.

Tropp, Joel A. An introduction to matrix concentration in-

equalities. arXiv:1501.01571, 2015.

Vempala, Santosh and Wang, Grant. A spectral algorithm

for learning mixture models. Journal of Computer and

System Sciences, 68(4):841–860, 2004.

Williams, Virginia Vassilevska. Multiplying matrices faster

than Coppersmith-Winograd. In Proceedings of the

44th Annual ACM Symposium on Theory of Computing

(STOC), pp. 887–898, 2012.

http://arxiv.org/abs/1506.02227
http://arxiv.org/abs/1506.02186
http://arxiv.org/abs/1502.06177
http://arxiv.org/abs/1509.09002
http://arxiv.org/abs/1507.08788
http://arxiv.org/abs/1501.01571

