
Faster Evolutionary Algorithms by Superior Graph

Representation

Benjamin Doerr

Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany

Christian Klein

Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany

Tobias Storch

Department of Computer Science 2

University of Dortmund

Otto-Hahn-Str. 14

44221 Dortmund, Germany

Abstract—We present a new representation for individuals
in problems that have cyclic permutations as solutions. To
demonstrate its usefulness, we analyze a simple randomized local
search and a (1+1) evolutionary algorithm for the Eulerian cycle
problem utilizing this representation. Both have an expected run-
time of Θ(m2 log(m)), where m denotes the number of edges
of the input graph. This clearly beats previous solutions, which
all have an expected optimization time of Θ(m3) or worse
(PPSN ’06, CEC ’04). We are optimistic that our representa-
tion also allows superior solutions for other cyclic permutation
problems. For NP-complete ones like the TSP, however, other
means than theoretical run-time analyses are necessary.

I. INTRODUCTION

Randomized search heuristics not only have many applica-

tions but also a high variety. The probably best-known heuris-

tics belonging to this broad class of optimizers are randomized

local search (RLS) and evolutionary algorithms (EAs) (cf. [1]).

For a wide range of applications a remarkable experimental

success of such heuristics (and hybrid algorithms) is reported

(see, for example, [8] for the traveling salesman problem).

From a theoretical point of view, however, only little is

known about randomized search heuristics. The first rigorous

probabilistic runtime analyses of EAs investigated the behavior

of simple variants thereof on simple classes of functions (see

[4]). Even less is known for the behavior of randomized

search heuristics in combinatorial optimization. Only recently,

analyses of simple EAs on combinatorial optimization prob-

lems were presented (see, for example, [13] for the partition

problem and [11] for the minimum spanning tree problem).

Most of these EAs are intended to optimize pseudo-Boolean

objective functions f : {0, 1}n → R or functions f : Sn → R

on the set of all permutations. Nonetheless, it is well-known

in evolutionary computation that the appropriate choice of the

objective function describing the given problem – and thereby,

in particular the choice of the search space – is of huge

importance (see [12] for the minimum spanning tree problem).

Many combinatorial optimization problems deal with graphs

and subclasses thereof, such as trees. We develop an edge-

based representation for graphs which is quite simple and

natural and efficient to handle. Moreover, an appropriate

mutation operator for our representation is given. We examine

how simple randomized search heuristics for the Eulerian

cycle problem benefit from our representation to illustrate its

advantages.

A. The Eulerian Cycle Problem

The Eulerian cycle problem is a prototypical problem on

graphs. It is the generalization of the well-known problem of

the Seven Bridges of Königsberg presented by Leonard Euler

in 1736, one of the first considerations of graph theory (see

[6]). Furthermore, the Eulerian cycle problem is not only an

interesting theoretical problem, it is also a subroutine for many

established algorithms such as Christofides approximation

algorithm for the metric traveling salesman problem [2]. Given

an undirected connected graph G = (V, E) a solution to the
Eulerian cycle problem is a tour that uses every edge exactly

once. Euler already proved that such a tour exists if and only if

the degree of each vertex is even. Graphs containing an Eule-

rian cycle are called Eulerian (graphs). Optimal deterministic

algorithms for the Eulerian cycle problem compute such a tour

in time O(|V |+ |E|) (see [7]).

Since randomized search heuristics are not problem-specific,

it is doubted that they can outperform algorithms specifically

tailored for a problem. They are, however, typically easy to

implement and thus quite popular for real-world applications.

Randomized search heuristics for a specific problem may

also be able to solve generalizations of the problem. They

can also be easily applied to a wide range of not so well

understood problems. Investigating them can help to increase

the knowledge about such problems or their generalizations

and may thus even lead to better problem-specific algorithms

(see [5] for generalizations of the Eulerian cycle problem).

B. Previous Work

Neumann [10] investigated the Eulerian cycle problem for

the search space of all permutations of the edges. He considers

two mutation operators; the “exchange”-operator, which swaps

two elements of the permutation and the “jump”-operator,

which inserts an element of the permutation at a new position.

His objective function counts how many of the leading ele-

ments of the permutation still describe a path in the graph. For

the exchange-operator, he proves that the RLS and the (1+1)-
EA have an infinite resp. exponential expected optimization

time. Using the jump-operator, both RLS and the (1 + 1)-
EA have a polynomial expected runtime of O(|E|5). Doerr,
Hebbinghaus, and Neumann [3] analyzed a restricted version

of the jump operator. Their modification improves the expected

245

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

ev ew

v w
e = {v, w}

Fig. 1. The edge e = {v, w} and its two associated pointers.

optimization time to O(|E|3) for both RLS and the (1 + 1)-
EA. They also give a class of graphs for which both heuristics

have optimization time Ω(|E|3) with high probability.

C. Our Contribution

In this paper, we improve the optimization time to

O(|E|2 ln |E|) for the RLS and the (1 + 1)-EA. To achieve
this significant improvement, we do not tweak the mutation

operator as in the above mentioned papers, but design a better

graph representation for the heuristics to use. We also show

that our analysis is tight by giving graphs that exhibit an

expected optimization time of Ω(|E|2 ln |E|).
In order to concentrate on the effects of our newly developed

graph representation, we only consider two simple randomized

search heuristics; the RLS, which just performs local changes,

and the so-called (1 + 1)-EA, which also performs global
changes. This avoids unnecessary complications in the analysis

due to the effects of other components of randomized search

heuristics. For some optimization problems, a representation

dual to the one presented in this paper, i.e., with the roles of

vertices and edges exchanged, may be more suitable.

In Section II we introduce our new graph representation

for evolutionary computation together with an appropriate

mutation operator. We also give a natural and easy evaluable

objective function for the Eulerian cycle problem. In Sec-

tion III we define and analyze a RLS for this representation.

This analysis is extended to the (1+1)-EA in Section IV. We
finish with a summary and some conclusions in Section V.

II. REPRESENTATION

In this section we propose a new representation of individu-

als that in particular allows faster computation of an Eulerian

cycle.

A. The Search Space

Given an undirected graph G = (V, E) let v1, . . . , vn be the

n vertices and e1, . . . , em be the m edges in an arbitrary but
fixed order.

In previous works individuals are represented as permu-

tation of the edges. This permutation-based representation,

however, leads to various problems, for example if a graph

consists of multiple cycles (cf. [3], [10]).

A representation of paths used in classical graph theory is

to name the edges in the order traversed and for each pair of

edges name the vertex they share. Based on this we give an

edge-based representation that represents a graph as sequence

of paths. For each edge, we want to store its two neighboring

edges in a path. In other words, for an edge e = {v, w} ∈
E, v, w ∈ V we need to store its neighboring edge incident to
v and its neighboring edge incident to w.
Technically, an individual is represented by an array of

2m pointers, two of them associated with each edge, one

for each vertex incident to the edge. More precisely, let

ei = {vj , vk}, i ∈ [1..m], j, k ∈ [1..n], j < k ≤ n. We
associate the (2i − 1)st and the 2ith pointer with the edge
ei. The first pointer, denoted e

vj

i , is associated with vertex vj

of edge ei, and the second pointer, denoted evk

i , is associated

with vertex vk of edge ei. Figure 1 shows the situation for

one edge e = {v, w}.
A pointer ew of an edge e ∈ E should always point to an
edge f ∈ E for which w ∈ f holds. Otherwise the pointer
points to a special value ⊥. In the first case we write ew → f ,
in the second case we write ew → ⊥.
For two edges e, f ∈ E we write e

=
↔ f , if

∃v ∈ V : (v ∈ e) ∧ (v ∈ f) ∧ (ev → f) ∧ (fv → e).

In other words, we write e
=
↔ f if the edges e and f have a

common vertex v and each of them has a pointer to the other
edge.

The initial individual has all pointers pointing to ⊥. Hence
the first individual is just a collection of m connected com-
ponents (the edges). An individual representing an Eulerian

cycle on the other hand has just one connected component of

size m. The set of all individuals (of size m) is called the
search space and denoted by Im.

B. The Mutation Operator

Having characterized the search space, we now give a

canonical mutation operator for it. We denote this mutation

operator on Im by “⊕”. The operator will connect two random
edges by adjusting their pointers accordingly (see Figure 2).

A formal definition follows.

Definition 1: Let e, f ∈ E and e′, f ′ ∈ E ∪ {⊥} such that
ev → e′ and fw → f ′. If both e′, f ′ 6= ⊥ and v = w then
ev ⊕ fw changes the pointers of those four edges as follows:

ev := f ; fw := e

e′v := f ′ ; f ′w := e′

If v = w but e′, f ′ = ⊥, then only ev := f ; fw := e will be
changed, as ⊥ has no pointers. If v 6= w, then the ⊕-operator
will set all pointers to ⊥.
From the definition of the ⊕-operator and the fact that the
initial individual has only ⊥-pointers, the following Lemma
easily follows.

Lemma 2: Assume that an arbitrary number of ⊕-
operations is applied to the individual with all pointers set to

⊥. Then the following holds for any edge e ∈ E containing a
vertex v ∈ e.

1) If ev → ⊥ then there exists an edge f ∈ E with v ∈ f
and fv → ⊥.

2) If ev → f and f 6= ⊥ then fv → e.

246

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

e′v

ev

ve′ v

ve f

f ′

v e f

f ′e′

e′v

ev

fv

f ′v

⇒
fv

f ′v

Fig. 2. The ⊕-Operator ev ⊕fv on four edges incident to a common vertex
v. The pointers are depicted as arrows.

⊥ ⊥⊥ ⊥

(a)

v v

(b)

Fig. 3. Two cycles meeting in a common vertex v may pose a problem for
simple fitness functions. In case (a) the fitness function fptr will fail, in case
(b) fcomp cannot increase. Dashed ellipses mark connected edge-pointers.

Proof: This follow from the fact that if the ⊕-operator
changes a pointer ev := f it also changes fv := e.
By this Lemma it immediately follows that if ev → f then
e

=
↔ f holds.

C. A Fitness Function for the Eulerian Cycle Problem

We have designed the search space and the mutation oper-

ator without using any knowledge about the specific problem

at hand. To allow randomized search heuristics to solve a

given problem, we need to find a good objective function

f : Im → R that assigns to each element of the search

space a value. This value should somehow reflect how close

an element of the search space is to being a solution to our

problem. Such a function is called fitness function, since it

tells us how fit a certain element of Im is. We now give a

fitness function for the Eulerian cycle problem whose value

will be small for elements close to a solution. The goal of

a randomized search heuristic is then to to minimize this

function.

Two possible functions seem to be candidates for the fitness

function. One is the number of pointers to ⊥, denoted fptr, as

an Eulerian cycle has no ⊥-pointers. The other is the number
of connected components in the individual, denoted fcomp, as

an Eulerian cycle is just one connected component.

Unfortunately, they both don’t work as expected. To see

this, consider a graph consisting of multiple cycles. For fptr,

an individual where each cycle forms its own component will

have the same fitness as an Eulerian cycle (see Figure 3(a)

for an example). A search heuristic using fcomp may also fail,

although an individual consisting of just one component is an

Eulerian tour and vice versa. To see this, again consider a

graph consisting of multiple cycles and an individual where

each cycle forms its own component. If each component has

exactly one pair of ⊥-pointers, then, no matter what operation

RANDOMIZED LOCAL SEARCH

1 Initialize pointers of individual I to ⊥.
2 repeat

3 I ′ ← I
4 Choose pointers ev, fw u. a. r.

5 Apply ev ⊕ fw to I ′.
6 if f(I ′) ≤ f(I)
7 then I ← I ′

8 until false

Fig. 4. Randomized Local Search.

is done, the number of components will stay the same. This

is illustrated in Figure 3(b).

Although the above examples look quite similar, the fitness

functions fail for different reasons. Indeed, the fitness function

we will use is simply the sum of both functions, i.e. f :=
fptr + fcomp. For this fitness function we will prove that both

a variant of RLS and a simple EA will successfully generate

an Eulerian cycle.

Since an Eulerian tour has no pointers to ⊥ and consists
of just one component, f will assign a fitness of 1 to it. The
initial individual has fitness 3m, as each of the m edges is its
own component and has two pointers to ⊥. If a graph is not
Eulerian, it has a fitness of more than 1. Hence we will only
consider Eulerian graphs as input.

Note that if we consider multi-graphs, the above given

representation and fitness function still work.

III. RANDOMIZED LOCAL SEARCH

Randomized local search is one of the simplest randomized

search heuristics. It considers a population of size one and

produces a single new individual in each generation. To

generate the new individual, a single mutation is applied to

the current individual. If the fitness of the newly generated

individual is not worse than that of the old individual, the

new individual replaces the old one. As we are minimizing,

this happens if the value assigned to the old individual by f is
not lower than the value assigned to the new individual. The

mutation and selection is then repeated forever. In the mutation

step, two array elements i, j ∈ [1..2m], corresponding to two
pointers ev, fw, are chosen uniformly at random. The mutation

applied to get the new individual is ev ⊕ fw. Figure 4 shows

the pseudo-code for the variant of RLS considered by us. In

practice, a stopping criterion is needed, as we cannot run the

algorithm forever. Hence, we are interested in the expected

number of fitness evaluations until the individual I represents
an Eulerian cycle.

A. An Upper Bound on the Optimization Time of RLS

We first analyze the probability that a random mutation will

improve the fitness of an individual.

Lemma 3: The probability for a mutation to improve the

fitness of an individual with fitness k > 1 is Ω(k
m2).

247

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Proof: First observe that each component in the repre-

sentation of an individual contributes at least 1 to its fitness.
On the other hand, each component can contribute at most 3
(1 for it being a component and 2 for two ⊥-pointers if it is
not a cycle but a path) to the fitness. Hence an individual of

fitness k has Θ(k) components.

We now show that for each component there is at least one

fitness-increasing mutation ev ⊕ fv, where e is an edge of the
component. This and the fact that there are Θ(k) components
proves the Lemma.

Case 1: The component is a cycle.

Since k > 1, this cannot be the only component of the
individual. Hence there exists a vertex v which is incident with
both an edge of the component and an edge not belonging to

the component. Let e and e′ be two edges of the component
containing the vertex v for which e

=
↔ e′ holds. Since each

vertex has even degree, there are at least two edges f, f ′ not

belonging to the component and adjacent to v such that either
one of them, say f , is the first edge of a component, or they
both belong to the same component and f

=
↔ f ′. In both cases

the mutation ev ⊕ fv will merge the two components e and
f belong to. Hence, the number of components decreases and
thus the fitness of the individual improves under this mutation.

Case 2: The component is not a cycle.

Then there must be an edge e with e
=
↔ ⊥ in the component.

Let v ∈ e be the vertex of e for which ev → ⊥. By Lemma 2,
there exists another edge f with v ∈ f and fv → ⊥. But
then ev⊕ fv will decrease the number of ⊥-pointers and thus
improve the fitness. Observe that either e and f can be edges of
the same components, in which case the mutation will change

the component to a cycle, or f belongs to another component,
in which case the component of e is enlarged.

Since RLS will not accept mutations that decrease the fitness

of an individual, Lemma 3 tells us how long we need to

wait in expectation until a fitness-increasing mutation happens.

Because the fitness of the initial individual is known to be

3m, this allows us to give an upper bound on the expected
optimization time.

Theorem 4: Randomized Local Search will produce an Eu-

lerian cycle after an expected number of at most O(m2 log m)
steps.

Proof: According to Lemma 3 it takes an expected

number of

O

(

m
∑

k=1

m2

k

)

= O(m2 log m)

steps until the individual consist of only one connected compo-

nent. If this component forms an Eulerian cycle, we are done.

If not, we can apply case 2 from the proof of Lemma 3 to get

an Eulerian cycle after an expected number of m2 additional

steps.

B. A Lower Bound on the Optimization Time of RLS

To prove that our analysis is tight, let Cm be the graph

consisting of a single cycle ofm = n edges. For this graph the

(1 + 1) EVOLUTIONARY ALGORITHM

1 Initialize pointers of individual I to ⊥.
2 repeat

3 s← Pois(λ = 1).
4 I ′ ← I .
5 for i← 1 to s + 1
6 do

7 Choose pointers ev, fw u. a. r.

8 Apply ev ⊕ fw to I ′.
9 if f(I ′) ≤ f(I)
10 then I ← I ′

11 until false

Fig. 5. The (1 + 1) Evolutionary Algorithm.

expected optimization time can be calculated exactly. Define

the mth harmonic number as Hm :=
∑m

i=1
1
i
.

Theorem 5: The expected optimization time of Randomized

Local Search on Cm equals 2m2Hm ∈ Θ(m2 log m).
Proof: The first individual consists of the m single edges

and all pointers set to ⊥ and thus has a fitness of 3m. As
long as the individual does not represent an Eulerian cycle,

its fitness is a multiple of 3, namely 3 times the number of
components, as it cannot contain any sub-cycles.

As long as the fitness is 3m, there exists exactly one pointer
fv for any fixed pointer ev, such that ev ⊕ fv improves the

fitness of the individual. Hence with probability 1
2m
the fitness

will improve by 3.
Now assume that the current individual consists of 1 <

k < m connected components, hence having fitness 3k.
Then there are 2k pointers (namely the first and last of
each individual) which can be used to improve the fitness.

One of those is picked with probability 2k
2m
. If this happens,

then the probability that the second pointer is such that the

fitness improves is 1
2m
, since there is only one such pointer.

Hence, with probability 2k
4m2 the fitness improves by 3 in a

single mutation. We conclude that the expected time for this

improvement is 2m2

k
.

Thus, to reach fitness 3, we need an expected number of
∑m

k=2
2m2

k
steps. For the last step, there are only two unused

pointers left. The probability to pick one of them as first

pointer is 1
m
, and the probability to pick the other unused

pointer as second pointer is 1
2m
. Hence we need another 2m2

steps in expectation to complete the cycle. In summary, RLS

needs an expected number of

2m2
m
∑

k=1

1

k
= 2m2Hm ∈ Θ(m2 log m)

steps.

IV. THE (1+1)-EA

The perhaps simplest evolutionary algorithm is the (1+1)-
EA. In contrast to RLS, it allows for more than one ⊕-
operation in each mutation step. The “classical” (1 + 1)-EA

248

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

on bit-strings of length n independently flips each bit with
probability 1/n. When using more complex representations,
for example permutations [10], this behavior must be simu-

lated. To do this, a number s is chosen at random according
to a Poisson distribution1 Pois(λ = 1) with parameter λ = 1.
Then the mutation step of RLS, namely choosing two pointers

uniformly at random and applying the ⊕-operation, is done
s+1 times instead of just once. The reason why s+1 instead of
s mutations are performed is to prevent steps in which nothing
happens. Figure 5 shows the pseudo-code of the (1 + 1)-EA.

A. An Upper Bound on the Optimization Time of the (1 + 1)-
EA

We now show that the (1+1)-EA is at least as fast as RLS.
To do this, we simply analyze the time it takes to “simulate”

RLS, i.e., we ignore all mutations that do more than one ⊕-
operation.

Theorem 6: The (1+1)-EA will produce an Eulerian cycle
after an expected number of at most O(m2 log m) steps.
Proof: A mutation applying the ⊕-operator more than

once will only be accepted if it does not worsen the fitness

of the individual. Since we are looking for an upper bound

on the expected optimization time, we can thus safely ignore

all mutations that apply more than one ⊕-operation to the
individual.

If s = 0, then the ⊕-operator will be applied exactly once.
This occurs with a constant probability, namely e−1 10

0! = e−1

by definition of the Poisson distribution (cf. [9]). Hence, in

expectation each eth step exactly one mutation is performed.
With this the proof of Theorem 4 can be applied. It

follows that the expected optimization time is at most e ·
O(m2 log m) = O(m2 log m).

B. A Lower Bound on the Optimization Time of the (1+1)-EA

While Theorem 6 shows that the expected optimization time

of the (1+1)-EA is not worse than that of RLS, we will now
show that on the graphCm it indeed needs an expected number

of Ω(m2 log m) steps.
Theorem 7: The expected optimization time of the (1+1)-
EA on Cm is Θ(m2 log m).
Proof: This proof loosely follows a proof of Droste,

Jansen and Wegener [4]. They show that the (1 + 1)-EA
needs an expected optimization time of Ω(n log n) to optimize
any linear function with non-negative weights on {0, 1}n.
Some arguments are similar to the coupon collector’s problem

(cf. Motwani and Raghavan [9]).

Let T denote the random variable describing the number of
steps needed by the (1+1)-EA. The expected value of T can
then be bounded by

E(T) =

∞
∑

i=1

iP (T = i) ≥ tP (T ≥ t)

for a fixed t ≥ 1. The probability P (T ≥ t) that the (1+1)-EA
needs at least t steps, however is the same as the probability

1The Poisson distribution with λ = 1 is used because it is the limit of the
Binomial distribution for n trials with probability 1

n
each.

that the (1 + 1)-EA will not finish after t− 1 steps. Hence if
we can bound this probability by some value p from below for
a given t, we get a lower bound on the expected optimization
time.

To get this bound, first consider a vertex v of Cm and the

two edges e, f containing v. Then the pointers ev and fv

have to be chosen at least once for a particular ⊕-operation to
construct an Eulerian cycle. The probability that exactly this

mutation happens is 2
2m
· 1

2m
= 1

2m2 .

The probability that during a single step exactly s + 1
⊕-operations are performed is 1s

es! by the definition of the

Poisson distribution (cf. [9]). Since each of the s + 1 ⊕-
operations are done independently, the probability that a fixed

⊕-operation is performed in a certain step is at most s+1
2m2 .

Hence the probability that a fixed ⊕-operation is performed in
one mutation is at most

∞
∑

s=0

1

e · s!
·
s + 1

2m2
≤

1

m2

since
∑

∞

s=0
s+1
s! = 2e.

The probability that a fixed combination was not chosen at

all during t − 1 steps is then at least (1 − 1
m2)t−1. But then

the probability that the combination is chosen at least once

in the t − 1 steps considered is at most 1 − (1 − 1
m2)t−1.

Since we have m different combinations, the probability that
all combinations are considered is at most (1−(1− 1

m2)t−1)m.

Hence, the probability that at least one of the combinations

is never chosen during the t − 1 steps considered is at least
1−(1−(1− 1

m2)t−1)m. We now choose t := 1+(m2−1) logm
to obtain

1−

(

1−

(

1−
1

m2

)(m2
−1) log m

)m

≥ 1− e−1.

Hence, for this value of t we have p ≥ 1− e−1.

Thus the expected number of steps needed is bounded from

below by

(1− e−1) · (1 + (m2 − 1) log m) = Ω(m2 log m).

V. CONCLUSIONS

We have given a new edge-based representation for graphs

together with a canonical mutation operator. To show the

benefits of this representation we have rigorously analyzed

a variant of RLS and a simple EA for the Eulerian cycle

problem. Our representation yields much faster randomized

search heuristics than previously studied representations for

this problem (cf. [3], [10]). We expect this type of graph

representation to be useful for other problems as well.

REFERENCES

[1] T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Handbook of Evolutionary
Computation. Oxford University Press, New York, and Institute of
Physics Publishing, Bristol, 1997.

[2] N. Christofides, “Worst-case analysis of a new heuristic for the travelling
salesman problem,” in Algorithms and complexity : New directions and
recent results, J. Traub, Ed. Academic Press, Inc., 1976, p. 441.

249

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

[3] B. Doerr, N. Hebbinghaus, and F. Neumann, “Speeding up evolutionary
algorithms through restricted mutation operators,” in Proceedings of the
9th International Conference on Parallel Problem Solving From Nature

(PPSN), ser. Lecture Notes in Computer Science, vol. 4193. Springer,
2006, pp. 978–987.

[4] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1)
evolutionary algorithm,” Theoretical Computer Science, vol. 276, pp.
51–81, 2002.

[5] J. Edmonds and E. L. Johnson, “Matching, euler tours and the chinese
postman,” Mathematical Programming, vol. 5, pp. 88–124, 1973.

[6] L. Euler, “Solutio problematis ad geometriam situs pertinentis,” Com-
mentarii academiae scientiarum Petropolitanae, vol. 8, pp. 128–140,
1741.

[7] C. Hierholzer, “Ueber die Möglichkeit, einen Linenzug ohne Wieder-
holung und ohne Unterbrechung zu umfahren,” Mathematische Annalen,
vol. 6, pp. 30–32, 1873.

[8] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic,
“Genetic algorithms for the travelling salesman problem: A review of
representations and operators,” Artificial Intelligence Review, vol. 13,
pp. 129–170, 1999.

[9] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
University Press, 1995.

[10] F. Neumann, “Expected runtimes of evolutionary algorithms for the
Eulerian cycle problem,” in Proceedings of the 2004 IEEE Congress
on Evolutionary Computation (CEC). IEEE Press, 2004, pp. 904–910.

[11] F. Neumann and I. Wegener, “Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem,” in Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO),
ser. Lecture Notes in Computer Science, vol. 3102. Springer, 2004, pp.
713–724.

[12] G. R. Raidl and B. A. Julstrom, “Edge sets: an effective evolutionary
coding of spanning trees.” IEEE Trans. Evolutionary Computation,
vol. 7, pp. 225–239, 2003.

[13] C. Witt, “Worst-case and average-case approximations by simple ran-
domized search heuristics,” in Proceedings of the 22nd Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS), ser. Lecture
Notes in Computer Science, vol. 3404. Springer, 2005, pp. 44–56.

250

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

