
MIT Open Access Articles

FASTER: Fast and Safe Trajectory Planner
for Navigation in Unknown Environments

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Tordesillas, Jesus, Lopez, Brett T, Everett, Michael and How, Jonathan P. 2022.
"FASTER: Fast and Safe Trajectory Planner for Navigation in Unknown Environments." IEEE
Transactions on Robotics, 38 (2).

As Published: 10.1109/TRO.2021.3100142

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/145374

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145374
http://creativecommons.org/licenses/by-nc-sa/4.0/

1

FASTER: Fast and Safe Trajectory Planner for
Navigation in Unknown Environments

Jesus Tordesillas1, Brett T. Lopez2, Michael Everett1, and Jonathan P. How1

This paper has been accepted for publication in IEEE Transactions on Robotics

Abstract—Planning high-speed trajectories for UAVs in un-
known environments requires algorithmic techniques that enable
fast reaction times to guarantee safety as more information about
the environment becomes available. The standard approaches
that ensure safety by enforcing a “stop” condition in the free-
known space can severely limit the speed of the vehicle, especially
in situations where much of the world is unknown. Moreover, the
ad-hoc time and interval allocation scheme usually imposed on
the trajectory also leads to conservative and slower trajectories.
This work proposes FASTER (Fast and Safe Trajectory Planner)
to ensure safety without sacrificing speed. FASTER obtains high-
speed trajectories by enabling the local planner to optimize in
both the free-known and unknown spaces. Safety is ensured
by always having a safe back-up trajectory in the free-known
space. The MIQP formulation proposed also allows the solver
to choose the trajectory interval allocation. FASTER is tested
extensively in simulation and in real hardware, showing flights
in unknown cluttered environments with velocities up to 7.8 m/s,
and experiments at the maximum speed of a skid-steer ground
robot (2 m/s).

Index Terms—UAV, Path Planning, Trajectory Optimization,
Convex Decomposition.

Acronyms: UAV (Unmanned Aerial Vehicle), MIQP (Mixed-Integer
Quadratic Program), RRT (Rapidly-Exploring Random Tree), VIO (Visual-
Inertial Odometry), FOV (Field of view).

Code:
• FASTER: https://github.com/mit-acl/faster
• Simulation worlds: https://github.com/jtorde/planning worlds gazebo

Video: https://youtu.be/fkkkgomkX10

I. INTRODUCTION

DESPITE its numerous applications, high-speed UAV
navigation through unknown environments is still an

open problem. The desired high speeds together with partial
observability of the environment and limits on payload weight
make this task especially challenging for aerial robots. Safe
operation, in addition to flying fast, is also critical but diffi-
cult to guarantee since the vehicle must repeatedly generate
collision-free, dynamically feasible trajectories in real-time
with limited sensing. Similar to the model predictive control
literature, safety is guaranteed by ensuring a feasible solution
exists indefinitely.

If we consider R3 = F ∪ O ∪ U where F , O, U are
disjoint sets denoting free-known, occupied-known, and un-
known space respectively, the following hierarchical planning

1The authors are with the Aerospace Controls Laboratory, MIT,
77 Massachusetts Ave., Cambridge, MA, USA {jtorde, mfe,
jhow}@mit.edu
2The author is with the Jet Propulsion Laboratory, California
Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA.
brett.t.lopez@jpl.nasa.gov
Manuscript received in July 2020; revised XXXX, 2020.

Fig. 1: Safety and Speed tradeoff.O is the occupied-known space (),
and U is the unknown space (). A and E are, respectively, the start
and goal locations of the local plan.

architecture is commonly used: a global planner first finds
the shortest piece-wise linear path from the UAV to the goal,
avoiding the known obstacles O. Then, a local planner finds a
dynamically feasible trajectory in the direction given by this
global plan. This local planner should find a fast and Safe Tra-
jectory that leads the UAV to the goal. These two requirements
of safety and speed represent the following tradeoff: on one
hand, safety argues for short trajectories completely contained
in F and end points not necessarily near the global plan.
As a final stop condition is needed to guarantee safety, short
trajectories are generally much slower than long trajectories
because the braking maneuver propagates backwards from the
end to the initial state of the trajectory. On the other hand,
speed argues for longer planned trajectories (usually extending
farther than F) and end points near the global plan.

The typical way to solve the speed versus safety tradeoff
is to ensure safety by planning only in F , and then impose a
final stop condition near the global plan. This can be achieved
by either generating motion primitives that do not intersect
O ∪ U [1]–[4], or by constructing a convex representation of
F to be used in an optimization [5]–[7]. The main limitation
of these works is that safety is guaranteed at the expense
of higher speeds, especially in scenarios where F is small
compared to O ∪ U . This article presents an optimization-
based approach that solves this limitation by solving for two

ar
X

iv
:2

00
1.

04
42

0v
2

 [
cs

.R
O

]
 3

0
A

ug
 2

02
1

https://github.com/mit-acl/faster
https://github.com/jtorde/planning_worlds_gazebo
https://youtu.be/fkkkgomkX10

2

Fig. 2: Interval and Time Allocation when using a convex decompo-
sition (). A and E are, respectively, the start and goal locations of
the local plan.

optimal trajectories at every planning step (see Fig. 1): The
first trajectory is in U∪F and ensures a long planning horizon
with an end point on the global plan. The second trajectory
is in F , starts from a point along the first trajectory, and
it may deviate from the global plan. Only a portion of the
first trajectory is actually implemented by the UAV (therefore
satisfying the speed requirement), while the second trajectory
guarantees safety, since it is contained in F and available
at the start of every replanning step. This second trajectory
is only implemented if the optimization problem becomes
infeasible in the next replanning steps.

A second limitation, specially for the optimization-based
approaches that use convex decomposition, is the choice of the
interval and time allocation method. The interval allocation
decides in which polyhedron each interval of the trajectory
will be located, whereas the time allocation deals with the
time spent on each interval (see Fig. 2). In order to simplify
the interval allocation, a common choice is to set the number
of intervals to be the same as the number of polyhedra
found, forcing each interval to be in one specific polyhe-
dron. This forces the optimizer to select the end points of
each trajectory segment within the overlapping area of two
consecutive polyhedra, and therefore possibly leading to more
conservative or longer trajectories. Moreover, since a different
time for each interval has to be found, the time allocation
calculation is harder, leading to higher replanning times when
using optimization techniques to allocate this time, and to
nonsmooth or infeasible trajectories when imposing an ad-
hoc time allocation. To overcome this limitation, FASTER
allows the solver to decide the interval allocation by using
a number of intervals greater than the number of polyhedra
found [8] and by allocating the same time for all the intervals.
This time allocation method is efficiently found through a line
search algorithm initialized with the solution at the previous
replanning iteration.

The planning framework proposed is called FASTER - FAst
and Safe Trajectory PlannER, and is an extension of our two
published conference papers [4], [9]. In summary, this work
has the following contributions:
• A framework that ensures feasibility of the entire colli-

sion avoidance algorithm and guarantees safety without
reducing the nominal flight speed by allowing the local
planner to plan in F ∪ U while always having a Safe
Trajectory in F .

• Reduced conservatism of the time and interval alloca-
tion compared to prior ad-hoc approaches by efficiently

finding the time allocated from the result of the previous
replanning iteration and then allowing the optimizer to
choose the interval allocation.

• Extension of our previous work [4] by proposing a way to
compute very cheaply a heuristic of the cost-to-go needed
by the local planner to decide which direction is the best
one to optimize toward.

• Simulation and hardware experiments showing agile
flights in completely unknown cluttered environments,
with velocities up to 7.8 m/s, two times faster than
previous state-of-the-art methods [4], [9]. FASTER is also
tested on a skid-steer robot, showing hardware experi-
ments at the top speed of the robot (2 m/s).

In particular, the new contributions of this version with
respect to the conference papers [4], [9] are:

a) Theoretical analysis: Feasibility theorem that guarantees
safety for FASTER.

b) Simulation: Cluttered office simulation, which presents a
major challenge in terms of both clutterness for obstacle
avoidance and limited visibility.

c) Hardware: Duplication of the flight volume, achieving
velocities up to 7.8 m/s.

d) Extension: Skid-steer robot.

Moreover, we also perform a deeper analysis of the role of
the Safe Trajectory in terms of safety and speed, a comparison
of the performance of the interval allocation vs. the time
allocation, and a comparison between the flight corridors
associated with the safe and whole trajectories.

II. RELATED WORK

Different methods have been proposed in the literature for
planning, mapping, and the integration of these two (Fig. 3):

Planning for UAVs can be classified according to the
specific formulation of the optimization problem and the
operating space of the local planner.

As far as the optimization problem itself is concerned, most
of the current state-of-the-art methods exploit the differential
flatness of the quadrotors, and, using an integrator model,
minimize the squared norm of a derivative of the position
to find a dynamically feasible smooth trajectory [10]–[12].
When there are obstacles present, some methods include them
as constraints in an optimization problem, while others take
these obstacles into account either after the optimization or
during a search-based algorithm.

There are approaches where the obstacle constraints (and
sometimes also the input constraints) are either checked after
solving the optimization problem, or imposed during a search-
based algorithm: some of them use stitched polynomial tra-
jectories that pass through several waypoints obtained running
RRT-based methods [10], [12], [13], while others use closed-
form solutions or motion-primitive libraries [1]–[3], [14]–[17].
These methods are usually limited to short trajectories unable
to perform complex maneuvers around obstacles. Sometimes
these primitives are also used to search over the state space
[18]–[20], often benefiting from ESDF representations to guide
the search. However, the search-based methods are usually

3

Fig. 3: Classification of the state-of-the-art techniques for planning,
mapping, and the integration between these two.

computationally expensive, especially in cluttered environ-
ments.

The other approach is to include the obstacles directly as
constraints in an optimization problem. This can be done in
the cost function by penalizing the distance to the obstacles
[21], [22], but this usually leads to computationally expensive
distance fields representations and/or nonconvex optimization
problems. Another option is to encode the shape of the obsta-
cles in the constraints using successive convexification [23]–
[25] or a convex decomposition of the environment [6], [26]–
[30]. The convergence of successive convexification typically
depends on the initial guess, and is usually not suitable for
real-time planning in unknown cluttered environments. The
convex decomposition approach is usually done by decom-
posing the free-known space as a series of P overlapping
polyhedra [5]–[7]. As the trajectory is usually decomposed of
N third (or higher)-degree polynomials, to guarantee that the
Whole Trajectory is inside the polyhedra, Bézier Curves [7],
[31], or the sum-of-squares condition [5], [8] are often used.
Moreover, for a trajectory there is both an interval (in which
polyhedron each interval is) and a time allocation (how much
time is assigned to each interval) problem. For the interval
allocation, a usual decision is to use N = P intervals, and
force each interval to be inside its corresponding polyhedron
[7]. However, this sometimes can be very conservative, since
the solver can only choose to place the two extreme points
of each interval in the overlapping area of two consecutive
polyhedra. Another option, but sometimes with higher com-
putation times, is to use binary variables [5], [8] to allow the
solver to choose the specific interval allocation. For the time
allocation, different techniques have been proposed. One way
is to impose a fixed time allocation using a specific velocity
profile [6], which can be conservative, or cause infeasibility
in the optimization problem if the overlapping area of the
polyhedra is not large enough. Other options are to use line
search or gradient descent to iteratively obtain these times [10],
[12], [32], to use alternating minimization between the spatial
and temporal trajectory [33], or to implement a neural network

trained offline [34]. Another option is to decouple the spatial
and the temporal trajectory [35], but, as noted in this work,
this may cause infeasibility if the initial and final states are
not static.

With regard to the planning space of the local planner,
several approaches have been developed. One approach is
to use only the most recent perception data [2], [3], which
requires the desired trajectory to remain within the perception
sensor field of view. An alternative strategy is to create and
plan trajectories in a map of the environment built using a
history of perception data. Within this second category, in
some works [4], [22], [36], the local planner only optimizes
inside F , which guarantees safety if the local planner has a
final stop condition. However, limiting the planner to operating
in F and enforcing a terminal stopping condition can lead
to conservative, slow trajectories (especially when much of
the world is unknown). Higher speeds can be obtained by
allowing the local planner to optimize in both the free-known
and unknown space (F ∪ U), but with no guarantees that the
trajectory is safe or will remain feasible.

Moreover, two main categories can be highlighted in the
mapping methods proposed in the literature: memory-less

and fused-based methods. The first category includes the
approaches that rely only on instantaneous sensing data, using
only the last measurement, or weighting the data [14], [28],
[37], [38]. These approaches are in general unable to reason
about obstacles observed in the past [2], [3], and are specially
limited when a sensor with small FOV is used. The second
category is the fusion-based approach, in which the sensing
data are fused into a map, usually in the form of an occupancy
grid or distance fields [39], [40]. Two drawbacks of these
approaches are the influence of the estimation error, and the
fusion time.

Finally, several approaches have been proposed for the
integration between the planner and the mapper: reac-

tive and map-based planners. Reactive planners often use a
memory-less representation of the environment, and closed-
form primitives are usually chosen for planning [2], [3]. These
approaches often fail in complex cluttered scenarios. On the
other hand, map-based planners usually use occupancy grids
or distance fields to represent the environment. These planners
either plan all the trajectory at once or implement a receding
horizon planning framework, optimizing trajectories locally
and based on a global planner. Moreover, when unknown
space is also taken into consideration, several approaches are
possible: some use optimistic planners that consider unknown
space as free [41], [42], while in other works an optimistic
global planner is used combined with a conservative local
planner [21], [22].

III. FASTER

The notation used throughout this article is shown in Fig. 4:
M is a sliding map centered on L, the current position of
the UAV. F and O will denote the free-known and occupied-
known spaces respectively. Similarly, FUnknown and OUnknown
will denote the free-unknown and occupied-unknown spaces,
respectively. The total unknown space, denoted as U , is there-

4

Fig. 4: Notation used for the different spaces. L is the current position
of the UAV, and M is the sliding map around the vehicle.

fore U = FUnknown ∪ OUnknown, and F and O are completely
contained inside the map (F ∪ O ⊆ M), and all the space
outside the map is inside U (R3 \ M ⊆ U). Note also that
FASTER is completely in 3-D, but some illustrations are in
2-D for visualization purposes.

A. Mapping

A body-centered sliding map M (in the form of an oc-
cupancy grid map) is used in this work. A rolling map is
desirable since it reduces the influence of the drift in the
estimation error. We fuse a depth map into the occupancy grid
using the 3-D Bresenham’s line algorithm for ray-tracing [43].
Both O and U are inflated by the radius of the UAV to ensure
safety.

B. Global Planner

In the proposed framework, Jump Point Search (JPS) is used
as a global planner to find the shortest piece-wise linear path
from the current position to the goal. JPS was chosen instead
of A* because it runs an order of magnitude faster, while still
guaranteeing completeness and optimality [6], [44]. The only
assumption of JPS is a uniform grid, which holds in our case.

C. Convex Decomposition

A convex decomposition is done around part of the piece-
wise linear path obtained by JPS. To do this convex decompo-
sition, we rely on the approach proposed by [6]: A polyhedron
is found around each segment of the piece-wise linear path by
first inflating an ellipsoid aligned with the segment, and then
computing the tangent planes at the points of the ellipsoid that
are in contact with the obstacles. The reader is referred to [6]
for a detailed explanation. Given a piece-wise linear path with
P segments, we will denote the sequence of P overlapping
polyhedra as {(Ap, cp)}, p = 0 : P − 1.

D. Local Planner

For the local planner, we distinguish these three different
jerk-controlled trajectories (see Fig. 5):
• Whole Trajectory: This trajectory goes from A to E,

and it is contained in F ∪U . It has a final stop condition.
• Safe Trajectory: It goes from R to F , where R is a point

in the Whole Trajectory, and F is any point inside the
polyhedra obtained by doing a convex decomposition of

Fig. 5: Trajectories used by FASTER: The Committed and Safe
Trajectories are inside F , while the Whole Trajectory is inside F∪U .

Fig. 6: Each interval n = 0 : N−1 of the trajectory is a third-degree
polynomial, with a total time of dt per interval. τ ∈ [0, dt] denotes
a local reference of the time inside an interval, and p = 0 : P − 1
denotes the polyhedron.

F . It is completely contained in F , and it also has a final
stop condition to guarantee safety.

• Committed Trajectory: This trajectory consists of two
pieces: The first part is the interval A→ R of the Whole
Trajectory. The second part is the Safe Trajectory. It will
be shown later that this trajectory is also guaranteed to
be inside F . This trajectory is the one that the UAV will
keep executing in case no feasible solutions are found in
the next replanning steps.

The quadrotor is modeled using triple integrator dynamics
with state vector xT =

[
xT ẋT ẍT

]
=
[
xT vT aT

]
and

control input u =
...
x = j (where x, v, a, and j are the vehi-

cle’s position, velocity, acceleration, and jerk, respectively).
In the optimization problem solved by the local planner, the

trajectory is divided in N intervals (see Fig. 6). Let n = 0 :
N−1 denote the specific interval of the trajectory, p = 0 : P−
1 the specific polyhedron and dt the time allocated per interval
(same for every interval n). If j(t) is constrained to be constant
in each interval n = 0 : N−1, then the Whole Trajectory will
be a spline consisting of third-degree polynomials. Matching
the cubic form of the position for each interval

xn(τ) = anτ
3 + bnτ

2 + cnτ + dn, τ ∈ [0, dt]

with the expression of a cubic Bézier curve

xn(τ) =

3∑
j=0

(
3
j

)(
1− τ

dt

)3−j (τ
dt

)j
rnj , τ ∈ [0, dt],

we can solve for the four control points rnj (j = 0 : 3)
associated with each interval n:

rn0 = dn, rn1 =
cndt+ 3dn

3

rn2 =
bndt

2 + 2cndt+ 3dn

3
rn3 = andt

3 + bndt
2 + cndt+ dn

5

Let us introduce the binary variables bnp, with p = 0 :
P − 1 and n = 0 : N − 1 (P variables for each interval
n = 0 : N − 1). As a Bézier curve is contained in
the convex hull of its control points, we can ensure that
the trajectory will be completely contained in this convex
corridor by forcing that all the control points of an interval
n are in the same polyhedron [7], [31] with the constraint
[bnp = 1 =⇒ rnj ∈ polyhedron p ∀j], and at least in
one polyhedron with the constraint

∑P−1
p=0 bnp ≥ 1. With this

formulation, the optimizer is free to choose the specific interval
allocation (i.e., which interval is inside which polyhedron).
The complete MIQP solved in each replanning step for both
the Safe and the Whole trajectories is as follows:

min
jn,bnp

N−1∑
n=0

‖jn‖2 dt (1)

s.t. x0(0) = xinit

xN−1(dt) = xfinal

xn(τ) = anτ
3 + bnτ

2 + cnτ + dn ∀n,∀τ ∈ [0, dt]

vn(τ) = ẋn(τ) ∀n, ∀τ ∈ [0, dt]

an(τ) = v̇n(τ) ∀n,∀τ ∈ [0, dt]

jn = 6an ∀n

bnp = 1 =⇒

Aprn0 ≤ cp
Aprn1 ≤ cp
Aprn2 ≤ cp
Aprn3 ≤ cp

∀n, ∀p

P−1∑
p=0

bnp ≥ 1 ∀n

bnp ∈ {0, 1} ∀n, ∀p
xn+1(0) = xn(dt) n = 0 : N − 2

‖vn(0)‖∞ ≤ vmax ∀n
‖an(0)‖∞ ≤ amax ∀n
‖jn‖∞ ≤ jmax ∀n

This problem is solved using Gurobi [45]. The decision
variables of this optimization problem are the binary variables
bnp and the jerk along the trajectory jn. xinit and xfinal denote
the initial and final states of the trajectory, respectively. The
time dt allocated per interval is computed as:

dt = f ·max{Tvx , Tvy , Tvz , Tax
, Tay

, Taz
, Tjx , Tjy , Tjz}/N (2)

where Tvi , Tai
, Tji are solution of the constant-input motions

in each axis i = {x, y, z} by applying vmax, amax and jmax,
respectively. f ≥ 1 is a factor that is obtained according
to the solution of the previous replanning step (see Fig. 7):
Denoting fworked,k−1 as the factor that made the optimization
feasible in the replanning step k − 1, in the replanning step
k the optimizer will try values of f (in increasing order) in
the interval [fworked,k−1−γ, fworked,k−1+γ

′] until the problem
converges. Here, γ and γ′ are constant values chosen by the
user. Note that, if f = 1, then dt is a lower bound on
the minimum time per interval required for the problem to
be feasible. Therefore, only factors f ≥ 1 are tried. This
approach is essentially a line search for the time allocation,

Fig. 7: Dynamic adaptation of the factor used to compute the heuristic
of the time allocated per interval (dt): For iteration k, the range of
factors used is taken around the factor that worked in the iteration
k−1. As f = 1 is the lower bound that makes the problem feasible,
only factors f ≥ 1 are tried.

Algorithm 1: FASTER
1 Function Replan():
2 k ← k + 1, δt← α∆tk−1

3 Choose point A in Committedk−1 with offset δt from L
4 G← Projection of Gterm into map M
5 JPSa ← Run JPS A→ G
6 S ← Sphere of radius r centered on A
7 C ← JPSa ∩ S, D ← JPSk−1 ∩ S
8 if ∠CAD > α0 then
9 JPSb ← Modified JPSk−1 such that JPSk−1 ∩ O = ∅

10 D ← JPSb ∩ S
11 dta ← Lower bound on dt A→ C
12 dtb ← Lower bound on dt A→ D

13 Ja = N · dta +
‖JPSa(C→G)‖

vmax

14 Jb = N · dtb +
‖JPSb(D→G)‖

vmax
15 JPSk ← argmin

{JPSa,JPSb}
{Ja, Jb}

16 else
17 JPSk ← JPSa

18 JPSin ← Part of JPSk inside S
19 PolyWhole ← Convex Decomposition in U ∪ F using JPSin
20 fWhole ← [fWhole,k−1 − γ, fWhole,k−1 + γ′]
21 Whole← MIQP in PolyWhole from A to E using fWhole
22 H ← Whole ∩ U
23 R← Nearest state to H along Whole that is not in inevitable

collision with U
24 JPSin,known ← Part of JPSin in F
25 PolySafe ←Convex Decomposition in F using JPSin,known
26 fSafe ← [fSafe,k−1 − γ, fSafe,k−1 + γ′]
27 Safe ← MIQP in PolySafe from R to F using fSafe
28 Committedk ← WholeA→R ∪ Safe
29 fWhole,k ← Factor that worked for Whole
30 fSafe,k ← Factor that worked for Safe
31 ∆tk ← Total replanning time

with the goal of trying to obtain the smallest dt that makes the
optimization feasible (leading therefore to faster trajectories),
but at the same time trying to minimize the number of trials
with different dt needed until convergence.

E. Complete Algorithm

Algorithm 1 gives the full approach (see also Figs. 8 and
9). Let L be the current position of the UAV. The point A is
chosen in the Committed Trajectory of the previous replanning
step with an offset δt from L. This offset δt is computed by
multiplying the total time of the previous replanning step by

6

Fig. 8: Illustration for Alg.1. One unknown obstacle is shown with
dotted line.

Fig. 9: Illustration of all the trajectories involved in Alg. 1 and their
associated velocity profiles. U is the unknown space (), and k is
the replanning step.

α ≥ 1 (typically α ≈ 1.25). The idea here is to dynamically
change this offset to ensure that most of the time the solver
can find the next solution in less than δt. Then, the final goal
Gterm is projected into the sliding map M (centered on the
UAV) in the direction

−−−−→
GtermA to obtain the point G (line 4).

Next, we run JPS from A to G (line 5) to obtain JPSa.
The local planner then has to decide which direction is the

best one to optimize toward (lines 7-17). Instead of blindly
trusting the last JPS solution (JPSa) as the best direction for
the local planner to optimize (note that JPS is a zero-order
model, without dynamics encoded), we take into account the
dynamics of the UAV in the following way: First of all, we
modify the JPSk−1 so that it does not collide with the new
obstacles seen (Fig. 10): we find the points I1 and I2 (first
and last intersections of JPSk−1 with O) and run JPS three
times, so A→ I1, I1 → I2 and I2 → G. Hence, the modified
version, denoted by JPSb, will be the concatenation of these
three paths. Note that by using A→ I1, I1 → I2, and I2 → G,
we are forcing the combined path to pass through the points A,
I1, I2, and G (all of which belonged to JPSk−1), and therefore
this gives a close approximation to JPSk−1, while avoiding O.

Then, we compute a lower bound on dt using Eq. 2 for both

Fig. 10: Choice of the direction to optimize. At t = tk−1, the JPS
solution chosen was JPSk−1. At t = tk, JPS is run again to obtain
JPSa, and JPSk−1 is modified so that it does not collide with O,
obtaining JPSb. A heuristic of the cost-to-go in each direction is
computed, and the direction with the lowest cost is chosen as the one
toward which the local planner will optimize. By using A → I1,
I1 → I2, and I2 → G, JPSb will pass through the points A, I1, I2,
and G (all of which belonged to JPSk−1), and therefore, this gives
a close approximation to JPSk−1, while avoiding O.

A→ C and A→ D, where C and D are the intersections of
the previous JPS paths with a sphere S of radius r centered on
A, where r is specified by the user. Next, we find the cost-to-
go associated with each direction by adding this dta (or dtb)
and the time it would take the UAV to go from C (or D) to
G following the JPS solution flying at vmax. Finally, the one
with lowest cost is chosen, so JPSk ← argmin

{JPSa,JPSb}
{Ja, Jb},

which is then the direction toward which the local planner
optimizes. To save computation time, this decision between
JPSa and JPSb is made only if the angle ∠CAD exceeds a
certain threshold α0 (typically 15◦). Note that ∠CAD gives
a measure of how much the JPS solution has changed with
respect to the iteration k − 1. A small angle indicates that
JPSa and JPSk−1 are very similar (at least within the sphere
S), and that therefore the direction of the local plan will not
differ much from the iteration k − 1.

The Whole Trajectory (lines 18-21) is obtained as follows.
We do the convex decomposition [6] of U ∪ F around the
part of JPSk that is inside the sphere S, which we denote as
JPSin. This gives a series of overlapping polyhedra that we
denote as PolyWhole. Then, the MIQP in (1) is solved using
these polyhedral constraints to obtain the Whole Trajectory.

The Safe Trajectory is computed as in lines 22-27. First, we
compute the point H as the intersection between the Whole
Trajectory and U . Then, we have to choose the point R along
the Whole Trajectory as the start of the Safe Trajectory. To
do this, note that, on one hand, R should be chosen as far
as possible from A, so that δt can be chosen larger in the
next replanning step, which helps to guarantee that A is not
chosen on the Safe Trajectory (where the braking maneuver
happens). On the other hand, however, a point R too close to
H may lead to an infeasible problem for the Safe Trajectory
optimizer. We propose two ways to compute R: The first one
is to choose it with an offset δt′ from A, where δt′ is computed

7

by multiplying the previous replanning time by β ≥ 1. The
second (and better) way to solve this tradeoff is the following
one: we can choose R as the nearest state to H (in the segment
A → H of the Whole Trajectory) that is not in inevitable
collision with U . To compute an approximation of this state
in a very efficient way, we choose R as the last point (going
from A to H along the Whole Trajectory) that satisfies

sign [vR,j (xH,j − xR,j)] ·
v2
R,j

2 |amax|
< |xH,j − xR,j |

where vR,j , xR,j and xH,j are, respectively, the velocity of
R, the position of R, and the position of H in the axes
j = {x, y}. Here, we have approximated the system as a
double integrator model in each axis and, hence,

v2
R,j

2|amax| is the
minimum stopping distance. Due to these two approximations
(double integrator and decoupling in axes x and y), this
heuristic may be conservative. We ignore the axis z in this
computation to reduce the conservativeness of this heuristic.

Note that even if this heuristic leads to a choice of R
for which no feasible collision-free (with U ∪ O) trajectory
exists, the optimizer will not find a solution in that replanning
step and, therefore, will continue executing the solution of the
previous replanning step.

After choosing the point R, we do the convex decomposition
of F using the part of JPSin that is in F , obtaining the
polyhedra PolySafe. Then, we solve the MIQP from R to
any point F inside PolySafe (this point F is chosen by the
optimizer).

In both of the convex decompositions presented earlier,
one polyhedron is created for each segment of the piecewise
linear paths. To obtain a less conservative solution (i.e. larger
polyhedra), we first check the length of segments of the JPS
path, creating more vertexes if this length exceeds a certain
threshold lmax. Moreover, we truncate the number of segments
in the path to ensure that the number of polyhedra found does
not exceed a threshold Pmax. This helps reduce the computation
times (see Sec. IV).

Finally (line 28), we compute the Committed Trajectory
by concatenating the piece A → R of the Whole Trajectory,
and the Safe Trajectory. Note that in this algorithm we have
run two decoupled optimization problems per replanning step:
1) one for the Whole Trajectory, and 2) one for the Safe
Trajectory. This ensures that the piece A→ R is not influenced
by the braking maneuver R→ F , and therefore, it guarantees
a higher nominal speed on this first piece. The intervals L→ A
and A→ R have been designed so that at least one replanning
step can be solved within that interval.

The UAV will continue executing the trajectory of the
previous replanning step (Committedk−1) if one of these three
scenarios happens:
• Scenario 1: Either of the two optimizations is infeasible.
• Scenario 2: The piece A−R intersects U .
• Scenario 3: The replanning takes longer than δt.
In Alg. 1, it is required to compute the intersection between

a piece-wise linear path (the solution of JPS) and a voxel grid
(U or O) to obtain the points I1, I2 or M . To do this in an
efficient way, we use Alg. 2, depicted in Fig. 11. We first find

Fig. 11: Illustration of Alg. 2 to efficiently find (an approximation of)
the intersection between a piece-wise linear path and a voxel grid.
U and JPSk are used in this figure, but in FASTER this algorithm is
also used with O and JPSk−1.

Algorithm 2: FIND INTERSECTION
1 Function FindIntersection():
2 while JPSk 6= ∅ do
3 V ← First element of JPSk

4 N ← Find nearest neighbour of V in U
5 r ← ‖N − V ‖
6 if r < ε then
7 return V

8 S ← Sphere of radius r centered on V
9 M ← JPSk ∩ S

10 Remove from JPSk the vertexes inside S
11 Insert M at the front of JPSk

12 return No Intersection

the nearest neighbor N from the beginning of the piece-wise
linear path A (line 4), and compute the intersection M between
the path and a sphere S centered on A with radius equal to
the distance between A and N (line 9). As it is guaranteed
that all the points of the path that are inside S do not intersect
with the voxel grid, we can repeat the same procedure again,
but this time starting from M . This process continues until the
distance to the nearest neighbor is below some threshold ε > 0
(lines 6–7). Note that, instead of Alg. 2, another option would
be to represent F as a voxel grid, and then use standard ray-
tracing (such as the 3-D Bresenham’s line Algorithm [43]) for
each of the segments of the piece-wise linear path. However,
this might be very computationally expensive for grids F with
small voxel sizes.

F. Feasibility Theorem

We can now state the following feasibility theorem for
FASTER, which guarantees that all the Committed Trajec-
tories are completely contained inside free space (known or
unknown), and that, therefore, safety is guaranteed. Here, k
denotes the replanning step.

Assumption 1. The map M is noise-free and the world is
static: Fk ∪ FUnknown,k = Fk+1 ∪ FUnknown,k+1, ∀k.

8

Fig. 12: Forest (left) and bugtrap (right) environments used in the
simulation. The forest is 50 m × 50 m, and the grid in the bugtrap
environment is 1 m × 1 m.

Theorem 1. Under the assumption 1, Alg. 1 achieves

Committedk ⊆ Fk ∪ FUnknown,k ∀k

Proof. This theorem can be proven by induction:
1) Base case: Committed1 is the union of A1 → R1 and

the Safe Trajectory. The interval A1 → R1 is in F1

because it has been checked against collision with U1 and
is contained in a convex corridor that does not intersect
O1. The Safe Trajectory is inside F1 by construction.
Therefore, Committed1 ⊆ F1 ∪ FUnknown,1.

2) Recursion: If Committedk ⊆ Fk ∪ FUnknown,k, two
different situations can happen in iteration k + 1:

a) One of the scenarios 1, 2, or 3 happens. The algorithm
will choose Committedk+1 = Committedk, and by the
assumption 1 we have that Committedk+1 ⊆ Fk+1 ∪
FUnknown,k+1

b) In any other case, the trajectory obtained
(Committedk+1) will be inside Fk+1 by construction
of the algorithm.

Hence, we conclude that

Committedk ⊆ Fk ∪ FUnknown,k

=⇒ Committedk+1 ⊆ Fk+1 ∪ FUnknown,k+1

Remark 1. The theorem does not assume that Fk ⊆ Fk+1.
In other words, it does not assume that the size of the free-
known space always increases: Fk ⊆ Fk+1 is not necessarily
true due to the sliding map. Note, however, that the proof does
not depend on the shape of the map nor on the length of the
history kept in this map. Hence, the theorem is also valid for
the following two cases:
• a nonsliding global map M≡ R3.
• a mapM≡ FOV (Field of View of the sensor), obtained

uniquely by considering the instantaneous sensing data
and, therefore, not keeping history in the map.

Remark 2. By allowing the algorithm to choose
Committedk+1 = Committedk (which occurs when one
of the scenarios 1, 2, or 3 happen), in iteration k + 1 the
UAV may commit to a trajectory that has some parts outside
the map Mk+1. As proven above, it is still guaranteed that
Committedk+1 ⊆ Fk+1 ∪ FUnknown,k+1 . This constitutes a
form of data compression, where the information of a part of
the world being free (which was obtained in iteration k or

TABLE I: Distances obtained in 10 random forest simulations. The
distance values are computed for the cases that reach the goal. All
the results (except the ones of [4] and FASTER) were provided by
the authors of [22].

Method Number of Distance (m)
Successes Avg Std Max Min

Incremental 0 - - - -
Rand. Goals 10 138.0 32.0 210.5 105.6
Opt. RRT? 9 105.3 10.3 126.4 95.5
Cons. RRT? 9 155.8 52.6 267.9 106.2
NBVP 6 159.3 45.6 246.9 123.6
SL Expl. 8 103.8 21.6 148.3 86.6
Multi-Fid. 10 84.5 11.7 109.4 73.2
FASTER 10 77.6 5.9 88.0 70.7

Min/Max improv. (%) 8/51 43/89 20/67 3/43

TABLE II: Comparison between [4] and FASTER of flight times in
the forest simulation. Results are for 10 random forests.

Method Time (s)
Avg Std Max Min

Multi-Fid. 61.2 16.8 92.5 37.9
FASTER 29.2 4.2 36.8 21.6

Improvement (%) 52.3 75.0 60.2 43.0

before) is embedded in the trajectory itself and not directly
in the map Mk+1.

G. Controller

To track the trajectory obtained by FASTER, we used
the cascade controller presented in [46]. The yaw of the
UAV is chosen such that the camera of the UAV points
to M (intersection between JPSk and U , see Fig. 8). This
controller is used in all the UAV simulation and hardware
experiments of this article. In the real hardware experiments,
position, velocity, attitude, and IMU biases are estimated by
fusing propagated IMU measurements with an external motion
capture system.

IV. SIMULATION RESULTS

A. Forest, bugtrap and office simulations

We evaluate the performance of the proposed algorithm in
different simulated scenarios. The simulator uses C++ custom
code for the dynamics engine, integrating the nonlinear differ-
ential equations of the UAV using the Runge-Kutta method.
Gazebo [47] is used to simulate perception data in the form of
a depth map. In all these simulations, the depth camera has a
horizontal FOV of 90◦. The sensing range is 5 m for the first
simulation (corner environment), and 10 m for the rest.

We now test FASTER in 10 random forest environments
with an obstacle density of 0.1 obstacles/m2 (see Fig. 12),
and compare the flight distances achieved against the following
seven approaches:
• Incremental approach (no goal selection).
• Random goal selection.
• Optimistic RRT? (unknown space = free).
• Conservative RRT? (unknown space = occupied).
• “Next-best-view” planner (NBVP) [48].

9

Fig. 13: Velocity profile in a random forest simulation. On the left the results of our previous work [4] and on the right FASTER.

Fig. 14: Velocity profile in the bugtrap simulation. On the left the
results of our previous work [4] and on the right FASTER.

TABLE III: Comparison between [4] and FASTER of flight distances
and times in a bugtrap simulation.

Method Distance (m) Time (s)
Multi-Fid. 56.8 37.6
FASTER 55.2 13.8
Improvement (%) 2.8 63.3

• Safe Local Exploration [22].
• Multi-Fidelity [4].

The first six methods are described in [22] and [4] is
our previous algorithm. The results in Table I highlight that
FASTER achieves a 8−51% improvement in the total distance
flown. Completion times are compared in Table II to [4] (time
values are not available for all other algorithms in Table I).
FASTER achieves an improvement of 52% in the completion
time. The dynamic constraints imposed for the results of this
table are (per axis) vmax = 5 m/s, amax = 5 m/s2, and
jmax = 8 m/s3. The velocity profiles obtained for one random
forest simulation are shown in Fig. 13.

We also test FASTER using the bugtrap environment shown
in Fig. 12, and obtain the results that appear on Table III. Both
algorithms have a similar total distance, but FASTER achieves
an improvement of 63% on the total flight time. For both

Fig. 15: Velocity profile in the office simulation. On the left the results
of [4] and on the right FASTER.

TABLE IV: Comparison between [4] and FASTER of flight distances
and times in an office simulation.

Method Distance (m) Time (s)
Multi-Fid. 41.5 29.73
FASTER 43.9 20.94
Improvement (%) -5.8 29.6

cases, the dynamic constraints imposed are vmax = 10 m/s,
amax = 10 m/s2, and jmax = 40 m/s3. The velocity profile
achieved along the trajectory can be seen in Fig. 14.

Finally, we test FASTER in an office environment, obtaining
the velocity profile shown in Fig 15 and the distances and
flight times shown in Table IV. In this case, the distance flown
by FASTER was slightly longer than the one by [4] (note
that FASTER entered one of the last rooms, and then turned
back), but even with this extra distance, it achieved a 29.6%
improvement on the flight time. The dynamic constraints used
for the office simulation are vmax = 3 m/s, amax = 6 m/s2 and
jmax = 35 m/s3.

The timing breakdown of Alg. 1 as a function of the

10

1 2 3 4 5 6 7
0

50

100

150

200

250

1 2 3

10

20

30

40

Fig. 16: Timing breakdown for the MIQP and Convex Decomposition
of the Whole Trajectory and the Safe Trajectory as a function of the
maximum number of polyhedra Pmax for the forest simulation. Note
that the times for the MIQPs include all the trials until convergence
(with different factors f) in each replanning step. The shaded area is
the 1-σ interval (σ is the standard deviation).

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

10

20

30

40

50

Fig. 17: Runtimes of JPS as a function of the voxel size. The shaded
area is the 1-σ interval (σ is the standard deviation). These results are
for the forest simulation using a sliding map of size 20 m × 20 m.

maximum number of polyhedra Pmax is shown in Fig. 16. The
number of intervals N was 10 for the Whole Trajectory and
7 for the Safe Trajectory. Note that the runtime for the MIQP
of the Safe Trajectory is approximately constant as a function
of Pmax because the Safe Trajectory is planned only in F , and
therefore, most of the time, P < Pmax. For the simulation and
hardware experiments presented here, Pmax = 2− 4 was used.
Fig. 17 shows the runtimes for JPS as a function of the voxel
size of the map, which are always < 10 ms for voxel sizes
≥ 14 cm. All these timing breakdowns were measured using
an Intel Core i7-7700HQ 2.8GHz Processor.

B. Time vs. Interval allocation

As explained in Sec. III, FASTER optimizes the interval
allocation using binary variables, while fixing in each opti-
mization the time allocated per interval. Another possible op-
tion would be to optimize the time allocation, while fixing the
interval allocation. To see the advantages and disadvantages
of each option, we compare the following two approaches:
• TA: Time Allocation is optimized and there are N/P

intervals per polyhedron. We test both the case when the
total time of the trajectory T is free and when it is fixed
at 12.5 s.

• IA (ours): Interval Allocation is optimized and all the
intervals have the same fixed allocated time. IA uses

binary variables to optimize the allocation of the N
intervals. T is fixed at 12.5 s and the time allocated per
interval is 12.5/N .

We use an environment whose free space is defined by 4
overlapping polyhedra (i.e., P = 4, see Fig. 18). The final
state is a stop condition in the centroid of the last polyhedron,
while the initial state is a stop condition in a random position
of the first polyhedron, for a total of 50 runs. Both IA
and TA methods use a weighted sum of the control effort
and the total time as the total cost:

∑N−1
n=0 ‖jn‖

2
dt + ρT ,

where ρ = 0.2 m2/s6. Note that the second term of this
cost is constant for the methods in which T is not a decision
variable. The dynamic constraints imposed are vmax = 2 m/s,
amax = 20 m/s2, and jmax = 50 m/s3. The solver used for the
(nonconvex) problems of TA is fmincon [49], while Gurobi
[45] is used for the MIQP of IA (both interfaced through
YALMIP [50], [51]). The results in Fig. 18 show that IA is
able to succeed in all of the runs, and it obtains smaller total
costs and computation times. The TA methods achieve lower
success rates, though these tend to increase when T is not fixed
and N > P . All these results support the choice of optimizing
the interval allocation (instead of the time allocation) that
FASTER makes. Note also that, as explained in Sec. III-D,
FASTER runs on top of this a line search to choose the time
allocated per interval, see Fig. 7.

C. Role of the Safe Trajectory

1) Speed achieved
We first test FASTER in a simple environment and, for

the same replanning step, we compare the velocities of the
trajectory found by FASTER (that plans in U ∪ F) with the
ones of the trajectory found by a planner that plans only in
F . The environment is shown in Fig. 19, and consists of a
corner, with the goal on the other side of the wall, so that the
UAV has to turn the corner. The initial velocity at A is 4.8
m/s, and the dynamic constraints imposed are vmax = 6.5 m/s,
amax = 6 m/s2, and jmax = 20 m/s3. FASTER achieves a
velocity of 6.02 m/s in the segment A → R (segment that
will actually be flown by the UAV), while planning only in F
achieves a velocity of 5.06 m/s. R→ F is the Safe Trajectory,
and A → R → F is the Committed Trajectory. Safety is
guaranteed by both planners.

2) Safety
We now evaluate what happens if the UAV does not compute

the Safe Trajectory, but instead commits directly to the Whole
Trajectory. We test this in the environment shown in Fig. 20,
which consists of a corner with one obstacle behind it. This
environment is especially challenging due to the presence of
obstacles just behind the corner, which are not fully visible to
the UAV until it turns the corner. The results in Table V show
that the Safe Trajectory is not strictly necessary when flying
at low speeds (≤ 4 m/s), but it is crucial to guarantee safety
when flying at high speeds (≥ 6 m/s). For high speeds, the
planner without the Safe Trajectory collides due to the lack
of time to replan when suddenly discovering an obstacle that
was in the unknown space.

11

0

0.1

0.2

0.3

0.4

0.5

0.6

3

4

5

6

7

8

Fig. 18: Time (TA) vs. Interval (IA) allocation for different number intervals N and different constraints on the total time of the trajectory
T (free vs. fixed). In all the TA methods, there are N/4 intervals per polyhedron, where N is the total number of intervals. IA has a fixed
time allocation, and uses binary variables to optimize the allocation of the N intervals. The plot on the left shows the 2-D projection of the
3-D flight corridor used in the experiments. The initial position is chosen randomly in the first polyhedron, and the end position is fixed
inside the fourth polyhedron. The total cost in these experiments is computed as

∑N−1
n=0 ‖jn‖

2 dt + ρT , where ρ = 0.2 m2/s6. For every
method, a total of 50 runs are performed, and only the successful runs were taken into account for the costs and solve times.

Fig. 19: Trajectories obtained when planning only in F (left) and when planning in F ∪ U (FASTER, right). The velocity at A is 4.8 m/s.
FASTER achieves a velocity of 6.02 m/s in the segment A→ R (segment that will actually be flown by the UAV), while the other planner
achieves a velocity of 5.06 m/s. The ground grid is 1 m × 1 m.

Fig. 20: Environment with an obstacle behind the corner.

TABLE V: Safety with and without the Safe Trajectory. The ratios
represent the successful runs (i.e., without crashes), for a total of 5
runs.

vmax FASTER No safe traj.
4 m/s Yes (5/5) Yes (5/5)
6 m/s Yes (5/5) No (2/5)
8 m/s Yes (5/5) No (0/5)

D. Comparison between PolyWhole and PolySafe

For the corner environment explained in Sec. IV-C (which
uses 4 polyhedra), the top view and the quantitative compar-
ison of the volumes covered are shown in Fig. 21. PolyWhole
covers 145.1 · VUAV of unknown space that extends beyond
PolySafe. Here, VUAV is the volume of the drone (a sphere of
radius 0.3 m).

For the forest and office simulations (which use 2 poly-
hedra), the comparison of the volumes is shown in Fig. 22
and Table VI. Letting VUAV denote the volume of the sphere
that models the UAV, these results show that, on average,
PolyWhole is, respectively, 250.8 · VUAV and 21.9 · VUAV larger
than PolySafe in the office and forest simulations. Moreover,
PolySafe does not cover unknown space, while PolyWhole is able
to cover, respectively, an unknown volume of 122.8 ·VUAV and
5.5 ·VUAV in the office and forest simulations. Note also that in
the office simulation (which is more cluttered than the forest
simulation), PolyWhole covers more unknown volume than in
the forest simulation.

The key conclusion of these results is that, even with a
relatively small number of polyhedra (2-4), the volume of

12

Fig. 21: Comparison of the unknown volume covered by PolySafe
and PolyWhole in the corner environment. As PolySafe ⊂ F , it does
not cover any unknown volume. However, PolyWhole ⊂ U ∪ F , and
the total unknown volume covered is 145.1 ·VUAV, where VUAV is the
volume of a sphere with radius r = 0.3 m that models the UAV. This
makes optimization 1 operate in a completely different space when
using PolySafe than when using PolyWhole.

Fig. 22: Qualitative comparison of the volumes covered by PolyWhole
and PolySafe in the office and forest simulations.

TABLE VI: Quantitative comparison of the volumes covered by
PolyWhole and PolySafe in the forest and office simulations. VUAV
denotes the volume of the UAV, which is modeled as a sphere.

Office simulation Forest simulation
UAV model Sphere of r = 0.20 m Sphere of r = 0.42 m

vol (PolySafe) (390.1± 341.8)VUAV (68.0± 36.1)VUAV

vol (PolyWhole) (640.9± 442.4)VUAV (89.9± 38.8)VUAV

vol (PolySafe ∩U) 0.0 VUAV 0.0 VUAV

vol (PolyWhole ∩U) (122.8± 184.7)VUAV (5.5± 9.8)VUAV

unknown space covered by PolyWhole can be hundreds of times
the volume of the UAV, especially in cluttered environments.
This makes PolyWhole extend much farther than PolySafe, which
is restricted to stay in F . Hence, the Whole Trajectory will
benefit from a longer planning horizon, leading to a higher
nominal speed in the segment A→ R of the Whole Trajectory
used in the Committed Trajectory.

V. HARDWARE RESULTS

The UAVs used in the hardware experiments are shown in
Fig. 23. A quadrotor was used in the experiments 1-4, and a

Fig. 23: Quadrotor (top) used in the experiments 1-4 and hexarotor
(bottom) used in the experiments 5 and 6. Both are equipped with
a Qualcomm® SnapDragon Flight, an Intel® NUC i7DNK, and an
Intel® RealSense Depth Camera D435.

hexarotor was used in the experiments 5 and 6. In both UAVs,
the perception runs on the Intel® RealSense, the mapper and
planner run on the Intel® NUC, and the control runs on the
Qualcomm® SnapDragon Flight.

The six hardware experiments done are shown in Figs. 24–
29. The corresponding velocity profiles are shown in Fig. 30.
The maximum speed achieved was 7.8 m/s, in Experiment
5 (Fig. 28). The first and second experiments (Fig. 24 and
25) were done in similar obstacle environments with the same
starting point but with different goal locations. In the first
experiment (Fig. 24), the UAV performs a 3-D agile maneuver
to avoid the obstacles on the table. In the second experiment
(Fig. 25) the UAV flies through the narrow gap of the card-
board boxes structure, and then flies below the triangle-shaped
obstacle. In these two experiments, the maximum speed was
2.1 m/s.

In the third and fourth experiments (Fig. 26 and 27), the
UAV must fly through a space with poles of different heights,
and finally below the cardboard boxes structure to reach the
goal, achieving a maximum speed of 3.6 m/s. Finally, in
the fifth and sixth experiments (Fig. 28 and 29), the UAV
is allowed to fly in a much bigger space, and has to avoid
some poles and several cardboard boxes structures. In the
fifth experiment (Fig. 28) the UAV achieved a top speed of
7.8 m/s. In the sixth experiment (Fig. 29) the UAV was first
commanded to go to a goal at the other side of the flight space,
and then to come back to the starting position, achieving a top
velocity of 4.6 m/s.

Fig. 30 shows the estimated velocity of the UAV, obtained
by applying finite differences to the ground truth position
measurements of an external motion capture system. This leads

13

Fig. 24: Composite images of Experiment 1. The UAV must fly from start to goal . Snapshots shown every 670 ms.

Fig. 25: Composite image of Experiment 2. The UAV must fly from start to goal . Snapshots shown every 330 ms.

Fig. 26: Composite image of Experiment 3. The UAV must fly from start to goal . Snapshots shown every 670 ms.

Fig. 27: Composite image of Experiment 4. The UAV must fly from start to goal . Snapshots shown every 670 ms.

Fig. 28: Composite image of Experiment 5. The UAV must fly from start to goal . Snapshots shown every 330 ms.

Fig. 29: Composite image of Experiment 6. The UAV must fly from start to goal 1 and then back to goal 2 . Snapshots shown every
330 ms.

14

Fig. 30: Velocity plots of all the UAV hardware experiments. This velocity is the estimated velocity of the UAV, obtained by applying finite
differences to the ground truth position measurements of an external motion capture system. This leads to some noisy estimates, especially
for the high velocities of experiments 5 and 6. Moreover, these positions measurements are not available when the UAV is passing below
an obstacle, which produces also noisy velocity estimates at those points. This happens in experiment 2 at t = 4.0 s and t = 5.9 s and in
experiment 4 at t = 5.0 s.

Fig. 31: Timing breakdown for the forest simulation and for the real
hardware experiments. The parameters used are Pmax = 2, N = 10
for the Whole Trajectory, and N = 7 for the Safe Trajectory.

to some noisy estimates, in particular for the high velocities of
experiments 5 and 6. Moreover, these positions measurements
are not available when the UAV is passing below an obstacle,
which produces also noisy velocity estimates at those points.
This happens in experiment 2 at t = 4.0 s and t = 5.9 s and
in experiment 4 at t = 5.0 s.

For Pmax = 2, the boxplots of the runtimes achieved on the
forest simulation (measured on an Intel Core i7-7700HQ) and
on the hardware experiments (measured on the onboard Intel
NUC i7DNK with the mapper and the RealSense also running
on it) are shown in Fig. 31. For the runtimes of the MIQP of
the Whole and the Safe Trajectories, the 75th percentile is
always below 32 ms.

VI. EXTENSION TO A GROUND ROBOT

We now show how, by generating 2-D trajectories instead
of 3-D, and changing the controller, FASTER can also be
extended for skid-steer robots. To track the trajectory obtained
by MADER, we generate the linear and angular velocities
using a PD controller based on the derivative of the tangential
angle of the trajectory [52] and the desired position and
velocity. The commanded angular velocities of the wheels are
then obtained from the desired angular velocities of the wheels

15

Fig. 32: Composite images of Experiments 7, 8 and 9. The ground robot must go from start to goal . Snapshots shown every 670 ms.
To show the ability of FASTER to get out from bugtraps, only points in the depth image closer than 3 m were used to build the map in
experiment 9.

Fig. 33: Velocity plots of the experiments 7, 8, and 9.

Fig. 34: Ground robot used in the experiments. It is equipped with
an Intel® RealSense Depth Camera D435, and an i7-7700HQ laptop.

using a PID.
Three different experiments were done with the ground

robot (see Figs. 32, 33, and 34). An external motion capture
system was used to estimate the position and orientation
of the robot. Experiments 7 and 8 were done in obstacle
environments similar to the random forest. The maximum
speeds achieved for the experiments 7 and 8 were 1.95 m/s and
2.22 m/s respectively. Note that the maximum speed specified
for this ground robot is ≈ 2 m/s [53].

To test the ability of FASTER to reuse the map built, the
setup for experiment 9 was a bugtrap environment, and only
points in the depth image closer than 3 m were used to build
the map. The robot first enters the bugtrap because it does not
see the end of it. Once the robot detects that there is no exit at
the end of the bugtrap, it turns back, exits the bugtrap, passes
through its left and avoids some new obstacles to finally reach
the goal. The maximum speed achieved in this experiment was
1.70 m/s

VII. CONCLUSIONS AND FUTURE WORK

This work presented FASTER, a fast and safe planner for
agile flights in unknown environments. The key properties of
this planner is that it leads to a higher nominal speed than

other works by planning both in U and F using a convex
decomposition, and ensures safety by having always a Safe
Trajectory planned in F at the beginning of every replanning
step. FASTER was tested successfully both in simulated and in
hardware flights, achieving velocities up to 7.8 m/s. Finally, we
showed how FASTER is also applicable to skid-steer robots,
achieving hardware experiments at 2 m/s.

Our algorithm has also some limitations: In environments
where the planning horizon is not very large (as in all the
experiments shown in this article), 2 − 4 polyhedra usually
suffice, and our algorithm maintains computational tractability.
However, for large known worlds (for example if a map of
the environment already exists beforehand), a long planning
horizon may require more than 4 polyhedra, which, as shown
in Fig. 16, will increase the computation time. One possible
way to address this is to solve the interval allocation only
in the polyhedra that are close to the current position of
the UAV, and force a predefined interval and time allocation
for the polyhedra that are farther in the planning horizon.
Moreover, we also noticed how important the choice of the
point R is: As discussed in Sec. III-E, if the point R is
chosen very close to the unknown space, it may lead to
infeasibility of the optimization problem associated with the
Safe Trajectory. However, if R is chosen very close to A,
then the UAV may not have enough time to replan in the
next iteration, which will lead to keep executing the previous
trajectory, and may eventually decrease the nominal speed of
the flight. Nonheuristic ways to solve this tradeoff seems like
a promising direction for future work. Further future work
includes the relaxation of the assumption 1: we plan to include
the uncertainty associated with the map (due to estimation
error and/or sensor noise) in the replanning function, and
to extend this planner to dynamic environments. We also
plan to use onboard estimation algorithms like VIO instead
of an external motion capture system for the real hardware
experiments.

Finally, another promising future work is the reduction
of the computation times of the time allocation approaches.

16

Experiments in Sec. IV-B use a generic nonconvex solver to
optimize the time allocation, which may be inefficient in some
situations. Exploitation of the structure of the time allocation
problem and/or the use of hierarchical optimization could help
to reduce the associated computation times [54], [55]. This
could potentially avoid the use of binary variables needed
for the interval allocation, or allow the optimization of both
the interval and the time allocation in the trajectory planning
problem.

ACKNOWLEDGMENT

The authors would like to thank Pablo Tordesillas (ETSAM-
UPM) for his help with some figures, to Parker Lusk and
Aleix Paris (ACL-MIT) for their help with the hardware,
and to Helen Oleynikova (ASL-ETH) for the data of the
forest simulation. The authors would also like to thank John
Carter and John Ware (CSAIL-MIT) for their help with the
mapper used. This work was supported in part by Defense
Advanced Research Projects Agency (DARPA) as part of the
Fast Lightweight Autonomy (FLA) program grant number
HR0011-15-C-0110. Views expressed here are those of the
authors, and do not reflect the official views or policies of the
Department of Defense or the U.S. Government. The hardware
was supported in part by Boeing Research and Technology.
The first author of this article was also financially supported
by La Caixa fellowship.

REFERENCES

[1] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally ef-
ficient motion primitive for quadrocopter trajectory generation,” IEEE
Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[2] B. T. Lopez and J. P. How, “Aggressive 3-d collision avoidance for
high-speed navigation,” in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 5759–5765.

[3] ——, “Aggressive collision avoidance with limited field-of-view sens-
ing,” in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2017, pp. 1358–1365.

[4] J. Tordesillas, B. T. Lopez, J. Carter, J. Ware, and J. P. How, “Real-
time planning with multi-fidelity models for agile flights in unknown
environments,” in 2019 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2019.

[5] R. Deits and R. Tedrake, “Efficient mixed-integer planning for uavs
in cluttered environments,” in 2015 IEEE international conference on
robotics and automation (ICRA). IEEE, 2015, pp. 42–49.

[6] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar, “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-D complex environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1688–1695, 2017.

[7] J. A. Preiss, K. Hausman, G. S. Sukhatme, and S. Weiss, “Trajectory
optimization for self-calibration and navigation.” in Robotics: Science
and Systems, 2017.

[8] B. Landry, R. Deits, P. R. Florence, and R. Tedrake, “Aggressive
quadrotor flight through cluttered environments using mixed integer
programming,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 1469–1475.

[9] J. Tordesillas, B. T. Lopez, and J. P. How, “FASTER: Fast and safe tra-
jectory planner for flights in unknown environments,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019.

[10] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 2520–2525.

[11] M. J. Van Nieuwstadt and R. M. Murray, “Real-time trajectory genera-
tion for differentially flat systems,” International Journal of Robust and
Nonlinear Control: IFAC-Affiliated Journal, vol. 8, no. 11, pp. 995–1020,
1998.

[12] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

[13] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation,
control, and planning for aggressive flight with a small quadrotor with a
single camera and IMU,” IEEE Robotics and Automation Letters, vol. 2,
no. 2, pp. 404–411, 2017.

[14] P. Florence, J. Carter, and R. Tedrake, “Integrated perception and control
at high speed: Evaluating collision avoidance maneuvers without maps,”
in Algorithmic Foundations of Robotics XII. Springer, 2016, pp. 304–
319.

[15] N. Bucki and M. W. Mueller, “Rapid collision detection for multicopter
trajectories,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2019, pp. 7234–7239.

[16] M. Ryll, J. Ware, J. Carter, and N. Roy, “Efficient trajectory planning for
high speed flight in unknown environments,” in 2019 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2019.

[17] A. Spitzer, X. Yang, J. Yao, A. Dhawale, K. Goel, M. Dabhi, M. Collins,
C. Boirum, and N. Michael, “Fast and agile vision-based flight with
teleoperation and collision avoidance on a multirotor,” in International
Symposium on Experimental Robotics. Springer, 2018, pp. 524–535.

[18] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on. IEEE, 2017, pp. 2872–2879.

[19] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in SE(3),” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 2439–2446, 2018.

[20] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and effi-
cient quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[21] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and
E. Galceran, “Continuous-time trajectory optimization for online uav
replanning,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on. IEEE, 2016, pp. 5332–5339.

[22] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe local explo-
ration for replanning in cluttered unknown environments for microaerial
vehicles,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
1474–1481, 2018.

[23] Y. Mao, M. Szmuk, and B. Acikmese, “Successive convexification:
A superlinearly convergent algorithm for non-convex optimal control
problems,” arXiv preprint arXiv:1804.06539, 2018.

[24] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 1917–1922.

[25] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[26] C. Liu, C.-Y. Lin, and M. Tomizuka, “The convex feasible set algorithm
for real time optimization in motion planning,” SIAM Journal on Control
and Optimization, vol. 56, no. 4, pp. 2712–2733, 2018.

[27] M. Watterson, S. Liu, K. Sun, T. Smith, and V. Kumar, “Trajectory
optimization on manifolds with applications to SO(3) and R3 × S2,”
Robotics: Science and Systems (RSS), 2018.

[28] F. Gao, W. Wu, W. Gao, and S. Shen, “Flying on point clouds:
Online trajectory generation and autonomous navigation for quadrotors
in cluttered environments,” Journal of Field Robotics, vol. 36, no. 4, pp.
710–733, 2019.

[29] S.-p. Lai, M.-l. Lan, Y.-x. Li, and B. M. Chen, “Safe navigation
of quadrotors with jerk limited trajectory,” Frontiers of Information
Technology & Electronic Engineering, vol. 20, no. 1, pp. 107–119, 2019.

[30] G. Rousseau, C. S. Maniu, S. Tebbani, M. Babel, and N. Martin,
“Minimum-time B-spline trajectories with corridor constraints. appli-
cation to cinematographic quadrotor flight plans,” Control Engineering
Practice, vol. 89, pp. 190–203, 2019.

[31] O. K. Sahingoz, “Generation of Bézier curve-based flyable trajectories
for multi-UAV systems with parallel genetic algorithm,” Journal of
Intelligent & Robotic Systems, vol. 74, no. 1-2, pp. 499–511, 2014.

[32] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation for
quadrotors with limited onboard sensing,” in 2016 IEEE international
conference on robotics and automation (ICRA). IEEE, 2016, pp. 1484–
1491.

[33] Z. Wang, X. Zhou, C. Xu, J. Chu, and F. Gao, “Alternating minimiza-
tion based trajectory generation for quadrotor aggressive flight,” IEEE
Robotics and Automation Letters, vol. 5, no. 3, pp. 4836–4843, 2020.

17

[34] M. M. de Almeida, R. Moghe, and M. Akella, “Real-time minimum
snap trajectory generation for quadcopters: Algorithm speed-up through
machine learning,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 683–689.

[35] F. Gao, W. Wu, J. Pan, B. Zhou, and S. Shen, “Optimal time allocation
for quadrotor trajectory generation,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp.
4715–4722.

[36] T. Schouwenaars, É. Féron, and J. How, “Safe receding horizon path
planning for autonomous vehicles,” in Proceedings of the Annual Aller-
ton Conference on Communication Control and Computing, vol. 40,
no. 1. The University; 1998, 2002, pp. 295–304.

[37] D. Dey, K. S. Shankar, S. Zeng, R. Mehta, M. T. Agcayazi, C. Eriksen,
S. Daftry, M. Hebert, and J. A. Bagnell, “Vision and learning for
deliberative monocular cluttered flight,” in Field and Service Robotics.
Springer, 2016, pp. 391–409.

[38] P. R. Florence, J. Carter, J. Ware, and R. Tedrake, “Nanomap: Fast,
uncertainty-aware proximity queries with lazy search over local 3d data,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 7631–7638.

[39] B. Lau, C. Sprunk, and W. Burgard, “Improved updating of euclidean
distance maps and voronoi diagrams,” in Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010, pp.
281–286.

[40] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D euclidean signed distance fields for on-board mav
planning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017.

[41] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-UAV
motion replanning for exploring unknown environments,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 2452–2458.

[42] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environments,” in
Robotics and Automation (ICRA), 2016 IEEE International Conference
on. IEEE, 2016, pp. 1476–1483.

[43] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems journal, vol. 4, no. 1, pp. 25–30, 1965.

[44] D. Harabor and A. Grastien, “Online graph pruning for pathfinding on
grid maps,” in Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence. AAAI Press, 2011, pp. 1114–1119.

[45] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2021.
[46] B. T. Lopez, “Low-latency trajectory planning for high-speed navigation

in unknown environments,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2016.

[47] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[48] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon “next-best-view” planner for 3D exploration,” in
Robotics and Automation (ICRA), 2016 IEEE International Conference
on. IEEE, 2016, pp. 1462–1468.

[49] “Matlab optimization toolbox,” 2020, the MathWorks, Natick, MA,
USA.

[50] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
matlab,” in In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[51] ——, “Pre- and post-processing sum-of-squares programs in practice,”
IEEE Transactions on Automatic Control, vol. 54, no. 5, pp. 1007–1011,
2009.

[52] W. MathWorld, “Tangential angle,” http://mathworld.wolfram.com/
TangentialAngle.html, 06 2019, (Accessed on 06/02/2019).

[53] Clearpath, “Jackal UGV - Small weatherproof robot,”
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/,
06 2019, (Accessed on 06/15/2019).

[54] W. Sun, G. Tang, and K. Hauser, “Fast uav trajectory optimization
using bilevel optimization with analytical gradients,” in 2020 American
Control Conference (ACC). IEEE, 2020, pp. 82–87.

[55] G. Tang, W. Sun, and K. Hauser, “Enhancing bilevel optimization for
uav time-optimal trajectory using a duality gap approach,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 2515–2521.

Jesus Tordesillas (Student Member, IEEE) received
the B.S. and M.S. degrees in Electronic engineer-
ing and Robotics from the Technical University of
Madrid (Spain) in 2016 and 2018 respectively. He
then received his M.S. in Aeronautics and Astronau-
tics from MIT in 2019. He is currently pursuing the
PhD degree with the Aeronautics and Astronautics
Department, as a member of the Aerospace Controls
Laboratory (MIT) under the supervision of Jonathan
P. How. His research interests include path planning
for UAVs in unknown environments and optimiza-

tion. He held an internship position at the NASA Jet Propulsion Laboratory,
working with the Robotic Aerial Mobility Group. His work was a finalist for
the Best Paper Award on Search and Rescue Robotics in IROS 2019.

Brett T. Lopez (Student Member, IEEE) is a Post-
doctoral Scholar at the NASA Jet Propulsion Labora-
tory in the Robotic Aerial Mobility Group where he
leads a team of engineers and researchers designing
the next generation of autonomous aerial robots for
the DARPA Subterranean Challenge. He obtained
his PhD (2019) and SM (2016) from MIT working
with Prof. Jonathan How. He obtained his BS (2014)
from UCLA where he received the Aerospace En-
gineering Outstanding Bachelor of Science award.
His research establishes performance guarantees for

complex autonomous systems through nonlinear/adaptive control theory and
optimization.

Michael Everett (Student Member, IEEE) is a Ph.D.
Candidate at the Aerospace Controls Laboratory at
MIT. He received the SM degree (2017) and the
SB degree (2015) from MIT in Mechanical Engi-
neering. His research addresses fundamental gaps in
the connection of machine learning and real mobile
robotics. He was an author of works that won the
Best Paper Award on Cognitive Robotics at IROS
2019, the Best Student Paper Award and finalist for
the Best Paper Award on Cognitive Robotics at IROS
2017, and finalist for the Best MultiRobot Systems

Paper Award at ICRA 2017.

Jonathan P. How (Fellow, IEEE) received the
B.A.Sc. degree from the University of Toronto
(1987), and the S.M. and Ph.D. degrees in aeronau-
tics and astronautics from MIT (1990 and 1993).
Prior to joining MIT in 2000, he was an Assistant
Professor at Stanford University. He is currently the
Richard C. Maclaurin Professor of aeronautics and
astronautics at MIT. Some of his awards include
the IEEE CSS Distinguished Member Award (2020),
AIAA Intelligent Systems Award (2020), IROS Best
Paper Award on Cognitive Robotics (2019), and the

AIAA Best Paper in Conference Awards (2011, 2012, 2013). He was the
Editor-in-chief of IEEE Control Systems Magazine (2015–2019), is a Fellow
of AIAA, and was elected to the National Academy of Engineering in 2021.

http://mathworld.wolfram.com/TangentialAngle.html
http://mathworld.wolfram.com/TangentialAngle.html
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

	I Introduction
	II RELATED WORK
	III FASTER
	III-A Mapping
	III-B Global Planner
	III-C Convex Decomposition
	III-D Local Planner
	III-E Complete Algorithm
	III-F Feasibility Theorem
	III-G Controller

	IV Simulation Results
	IV-A Forest, bugtrap and office simulations
	IV-B Time vs. Interval allocation
	IV-C Role of the Safe Trajectory
	IV-C1 Speed achieved
	IV-C2 Safety

	IV-D Comparison between PolyWhole and PolySafe

	V Hardware results
	VI Extension to a ground robot
	VII CONCLUSIONS AND FUTURE WORK
	References
	Biographies
	Jesus Tordesillas
	Brett T. Lopez
	Michael Everett
	Jonathan P. How

