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Abstract. We present a new algorithm for generating super condensed
neighbourhoods. Super condensed neighbourhoods have recently been
presented as the minimal set of words that represent a pattern neigh-
bourhood. These sets play an important role in the generation phase of
hybrid algorithms for indexed approximate string matching. An existing
algorithm for this purpose is based on a dynamic programming approach,
implemented using bit-parallelism. In this work we present a bit-parallel
algorithm based on automata which is faster, conceptually much simpler
and uses less memory than the existing method.

1 Introduction and Related Work

Approximate string matching is an important subject in computer science, with
applications in text searching, pattern recognition, signal processing and com-
putational biology.

The problem consists in locating all occurrences of a given pattern string in
a larger text string, assuming that the pattern can be distorted by errors. If the
text string is long it may be infeasible to search it on-line, and we must resort
to an index structure. This approach has been extensively investigated in recent
years [1, 5, 6, 9, 13, 16, 17].

The state of the art algorithms are hybrid, and divide their time into a
neighbourhood generation phase and a filtration phase [12, 9].

This paper is organised as follows: in section 2 we define the basic notation
and the concept of strings and edit distance. In section 3 we present a high level
description of hybrid algorithms for indexed approximate pattern matching. In
section 4 we present previous work on the neighbourhood generation phase of
hybrid algorithms. In section 5 we present our contribution, a new algorithm
for generating Super Condensed Neighbourhoods. In section 6 we describe the
bit-parallel implementation of our algorithm and present a complexity analysis.
Section 7 presents the experimental results obtained with our implementation.
Finally, section 8 presents the conclusions and possible future developments.
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2 Basic Concepts and Notation

2.1 Strings

Definition 1. A string is a finite sequence of symbols taken from a finite al-
phabet Σ. The empty string is denoted by ε. The size of a string S is denoted by
|S|.

By S[i] we denote the symbol at position i of S and by S[i..j] the substring
from position i to position j or ε if i > j. Additionally we denote by S〈i〉 the
point3 in between letters S[i − 1] and S[i]. S〈0〉 represents the first point and
S〈i − 1..j〉 denotes S[i..j].

2.2 Computing Edit Distance

Definition 2. The edit or Levenshtein distance between two strings ed(S, S ′)
is the smallest number of edit operations that transform S into S ′. We consider
as operations insertions (I), deletions (D) and substitutions (S).

For example: D S I

abcd

ed(abcd, bedf) = 3 bedf

The edit distance between strings S and S ′ is computed by filling up a dy-
namic programming table D[i, j] = ed(S〈0..i〉, S ′〈0..j〉), constructed as follows:

D[i, 0] = i, D[0, j] = j
D[i + 1, j + 1] = D[i, j], if S[i + 1] = S ′[j + 1]

1 + min{D[i + 1, j], D[i, j + 1], D[i, j]}, otherwise

The dynamic programming approach to the problem is the oldest approach
to computing the edit distance. As such it has been heavily researched and many
such algorithms have been presented, surveyed in [11].

One particularly important contribution was Myers proposal of an algorithm
to compute the edit distance in a bit-parallel way [10]. The previous algorithm
for computing Super Condensed Neighbourhoods [14] is based on this algorithm.

A different approach for the computation of the edit distance is to use a non-
deterministic automaton(NFA). We can use a NFA to recognise all the words
that are at edit distance k from another string P , denoted N k

P . Figure 1 shows
an automaton that recognises words that are at distance at most one from abbaa.
It should be clear that the word ababaa is recognised by the automaton since
ed(abbaa, ababaa) = 1.

To find every match of a string P in another string T we can build an
automaton for P and restart it with every letter of T . This is equivalent to
adding a loop labelled with all the character in Σ to the initial state. We shall
denote this new automaton by N ′k

P .

3 The notion of point is superfluous but useful since it provides a natural way to
introduce automata states.
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Fig. 1. Automaton for abbaa with at most one error.

3 Indexed Approximate Pattern Matching

If we wish to find the occurrences of P in T in sub-linear time, with a O(|T |α)
complexity for α < 1, we need to use an index structure for T . Suffix arrays [12]
and q-grams have been proposed in the literature [6, 9]. An important class of
algorithms for this problem are hybrid in the sense that they find a trade-off
between neighbourhood generation and filtration techniques.

3.1 Neighbourhood Generation

A first and simple-minded approach to the problem consists in generating all
the words at distance k from P and looking them up in the index T . The set of
generated words is the k-neighbourhood of P .

Definition 3. The k-neighbourhood of S is Uk(S) = {S′ ∈ Σ∗ : ed(S, S′) ≤ k}

Let us denote the language recognised by the automaton N k
P as L(Nk

P ). It
should be clear that Uk(P ) = L(Nk

P ). Hence computing Uk(P ) is achieved by
computing L(Nk

P ), this can be done by performing a DFS search in Σ∗ that
halts whenever all the states of NK

P became inactive.

3.2 Filtration Techniques

The classic idea of filtration is to eliminate text areas, by guaranteeing that there
is no match at a given point, using techniques less expensive than dynamic pro-
gramming. Since this approach has the obvious drawback that it cannot exclude
all such areas, the remaining points have to be inspected with other methods.

In the indexed version of the problem, filtration can be used to reduce the
size of neighbourhoods, hence speeding up the algorithm.

The most common filtration technique splits the pattern according to the
following lemma:

Lemma 1. If ed(S,S′)≤ k and S = S1x1S2x2 . . . Sl−1xl−1Sl then Sh appears
in S′ with at most bk/lc errors for some h.

This lemma was presented by Navarro and Baeza-Yates [12]. Myers had also
presented a similar proposition [9].



4 Neighbourhood Analysis

The k-neighbourhood, Uk(S), turns out to be quite large. In fact |Uk(S)| =
O(|S|k |Σ|k) [15] and therefore we restrict our attention to the condensed k-
neighbourhood [9, 12].

Definition 4. The condensed k-neighbourhood of S, CUk(S) is the largest sub-
set of Uk(S) whose elements S ′ verify the following property: if S ′′ is a proper
prefix of S′ then ed(S, S′′) > k.

The generation of CUk(P ) can be done using automaton Nk
P by testing the

words of Σ∗ obtained from a DFS traversal of the lexicographic tree. The search
backtracks whenever all states of Nk

P became inactive or a final state becomes
active.

The second criterion guarantees that no generated word is a prefix of another
one.

Algorithm 1 generates CUk(P ) by performing a controlled DFS that does
not extend words of L(Nk

P ) found in the process [2]. 4

Algorithm 1 Condensed Neighbourhood Generator Algorithm

1: procedure Search(Search Point p, Current String v)
2: if Is Match Point(p) then

3: Report(v)
4: else if Extends To Match Point(p) then

5: for z ∈ Σ do

6: p′ ← Update(p, z)
7: Search(p′, v.z)
8: end for

9: end if

10: end procedure

11: Search(〈0, 1, . . . , |P |〉, ε)

The search point p is a set of active states of N k
P . The Is Match Point

predicate checks whether some state of p is a final state. The
Extends To Match Point predicate checks whether p is non-empty.
The Update procedure updates the active states of p by processing character
z with NP .

It has been noted [14] that the condensed neighbourhood still contains some
words that can be discarded without missing any matches.

4 We can shortcut the generate and search cycle by running algorithm 1 on the index
structure. For example in the suffix tree this can be done by using a tree node instead
of v.



Definition 5. The super condensed k-neighbourhood of S, SCUk(S) is the
largest subset of Uk(S) whose elements S ′ verify the following property:if S ′′

is a proper substring of S ′ then ed(S, S′′) > k.

In our example ababaa and abaa are in the condensed neighbourhood of abbaa,
but only abaa is in the super condensed neighbourhood.

Figure 2 shows an example of the 1-neighbourhood, the 1-condensed neigh-
bourhood and the 1-super condensed neighbourhood of abbaa. Observe that
SCUk(P ) ⊆ CUk(P ) ⊆ Uk(P ).

SCU1: abaa, abba, abbba, bbaa

CU1: aabaa, ababaa, babbaa, bbbaa, aabbaa

U1: abaaa, abbaa, abbaaa, abbaab, abbab, abbaba, abbbaa

Fig. 2. Figure representing the one-neighbourhoods of abbaa.

The Super Condensed k-neighbourhood is minimal in the sense that we can’t
have a set with a smaller number of words that can be used in the search without
missing matches [14].

H. Hyyrö and G. Navarro [6] presented the notion of artificial prefix-stripped
length-q neighbourhood, that is smaller than the condensed neighbourhood but
it is not minimal.

5 Computing Super Condensed Neighbourhoods using

Finite Automata

We now present the main contribution of this paper, a new approach to compute
super condensed neighbourhoods.

In order to compute the super condensed neighbourhood we define a new
automaton. Consider the automaton N ′′k

P that results from Nk
P by adding a new

initial state with a loop labelled by all the characters of Σ linked to the old
initial state by a transition also labelled by all the characters of Σ. An example
of N ′′k

P is shown in fig. 3. The language recognised by N ′′k
P consists of all the

strings that have a proper suffix S ′′ such that ed(P, S′′) ≤ k.
The set L(Nk

P )\L(N ′′k
P ) is not a super condensed neighbourhood by the fol-

lowing two reasons:

prefixes Some words might still be prefixes of other words. For example both
abaa and abaaa belong to L(Nk

abbaa)\L(N ′′k
abbaa). This can be solved when

performing the DFS traversal of the lexicographic tree, as before.
substrings The definition of L(Nk

P )\L(N ′′k
P ) will yield the subset of L(Nk

P ) such
that no proper suffix is at distance at most k from P . But this is not what
we want, since we desire a subset of L(Nk

P ) that does not contain a string



and a proper substring of that string. In order to enforce this requirement

we must stop the DFS search whenever a final state of N ′′k
P is reached.

-
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Fig. 3. Automaton N ′′k

P for abbaa that matches every proper suffix.

A point p in the DFS search of the lexicographical tree now corresponds to
two sets of states, one for Nk

P and one for N ′′k
P . The Is Match Point predicate

checks that no active state of N ′′k
P is final and that there is one active state of

Nk
P that is final. The Extends To Match Point checks that no active state

of N ′′k
P is final and that there is one active state of Nk

P that is inactive in N ′′k
P .

The Update procedure updates both automata using letter z.
Observe that, in this version of the algorithm, the string ababaa is no longer

reported. In fact the DFS search backtracks after having reached abab. After
reading abab the only active state of Nk

P is the one corresponding to abb on the
second column, since ed(abab, abb) = 1. This state is also active in N ′′k

P since
ed(ab, abb) = 1 and ab is a proper suffix of abab. Interestingly, the dynamic
programming DFS for this same example backtracked only after reaching ababa.
Clearly, the dynamic programming algorithm could be improved to backtrack
sooner but it is conceptually much simpler to use the automata approach.

It was shown by Myers [9] that |CUk(P )| = O(|P |pow(|P |/k)), where:

pow(α) = log|Σ|
(α−1+

√
1+α−2)+1

(α−1+
√

1+α−2)−1
+ α log|Σ|(α

−1 +
√

1 + α−2) + α

We establish no new worst case bound for the size of the super condensed
neighbourhood so |SCUk(P )| = O(|P |pow(|P |/k)). However ours results do show
a practical improvement in speed.

6 Bit Parallel Implementation and Complexity Analysis

We implemented Nk
P and N ′′k

P by using bit-parallelism techniques that have been
proposed for N ′k

P [17, 4].
Algorithm 2 describes the details of implementation of the necessary predi-

cates.
The Fi computer words store the Nk

P for row i. The Si computer words store
the N ′′k

P automata states for row i. The B[z] computer words stores the bit mask
of the positions of the letter z in P .

Our implementation of the Wu and Manber algorithm stores the first column
of the automata. Furthermore for automata N ′′k

P we don’t need to store the



artificial state that was inserted, since it is sufficient to initialise the Si state
vectors to zero.

Algorithm 2 Bit-Parallel of the Algorithm. Nk
P represented by Fi and N ′′k

P by
Si. Bitwise operations in C-style.

1: procedure Is Match Point(Search Point F0, . . . , Fk, S0, . . . , Sk)
2: return Fk&&!Sk

3: end procedure

4: procedure Extends To Match Point(Search Point F0, . . . , Fk, S0, . . . , Sk)
5: return ((F0&˜S0)| . . . |(Fk&˜Sk))&&!Sk

6: end procedure

7: procedure Update(Search Point F0, . . . , Fk, S0, . . . , Sk, letter z)
8: F ′

0 ← (F0 << 1)&B[z]
9: S′

0 ← ((S0 << 1)|1)&B[z]
10: for i← 0, k do

11: F ′

i+1 ← ((Fi+1 << 1)&B[z])|Fi|(Fi << 1)|(F ′

i << 1)
12: S′

i+1 ← ((Si+1 << 1)&B[z])|Si|(Si << 1)|(S′

i << 1)
13: end for

14: return F ′

0, . . . , F
′

k, S′

0, . . . , S
′

k

15: end procedure

Since the Update and Extends To Match Point procedures run in
O(kd|P |/we) the final algorithm takes O(kd|P |/we |P | s) where s =
|SCUk(P )| = O(|P |pow(|P |/k)) and w is the size of the computer word. This
is a conservative bound since it is easy to modify the algorithm so that it runs in
O((kd|P |/we + |P |)s). This is achieved by using the KMP failure links and was
first presented by Myers [9]. Recently Heikki Hyyrö presented way of achieving
the same result in a sequential way that is relevant for bit-parallel algorithms [8].

We also implemented a version based on Navarro and Baeza-Yates [3] vari-
ation of the NFA. The procedures are implemented in a similar way and the
resulting algorithm runs in O(dk(|P | − k)/we |P | s). We improved this to
O((dk(|P | − k)/we + |P |) s) using an approach similar to the one followed by
Myers but found no time difference in practice. Usually O(dk(|P |−k)/we) is ap-
proximately constant for small patterns, which is the case for hybrid algorithms.
We usually split the pattern into pieces of size Θ(logσ |T |).

In previous work [14], we reported a complexity of O(|P |d|P |/wes) which
was too pessimistic, since it did not take into account the possible reduction
in complexity that is possible to achieve by applying the method based on the
KMP failure links of Myers [9].

Once again the Baeza-Yates and Navarro algorithm usually doesn’t store the
states below the first diagonal including the diagonal. We don’t need to keep
track of the states below the diagonal but we do need to keep track of the
diagonal 5.

5 Actually this could be reduced but the gains would be practically none.



7 Experimental Results

We tested our approach by analysing its impact in the hybrid index [12]. Since
we are only interested in the neighbourhood generation phase we set the j option
of the index to 1, preventing the pattern from getting split.

Tests were run in a 800MHz Power PC G3 processor with 512K level 2 cache
640MB SDRAM, Mac Os X 10.2.8 and gcc 3.3.

Our implementation was based on the original implementation of Navarro
and Baeza-Yates. The NFA is also based on the variation presented by Navarro
and Baeza-Yates [3].

For each (|P |, k) combination we tested 100 patterns randomly selected from
the text and computed the average time to search for those patterns. The pat-
terns were taken with sizes 10, 15 and 20. We used two source texts, an English
text [18], that consists of cleaned up newsgroups text and a DNA file of 5.6 Mb,
from the S. cerevisiae (baker’s yeast) genome. Results are shown in figure 4.

We generated random patterns of size 8 for alphabets of size 2 and 4. The
average size results are shown in table 1 and the time to generate the neighbour-
hoods blindly without the text are shown in table 2

Table 1. Average size of CUk vs SCUk.

|Σ| = 2 |Σ| = 4
k = 2 k = 4 k = 2 k = 4

CUk 67 42 810 21430

SCUk 22 14 320 591

Table 2. Bit-parallel and increased bit-parallel algorithms in milliseconds.

|Σ| = 2 |Σ| = 4
k = 2 k = 4 k = 2 k = 4

CUk 0.036 0.013 1.038 20.459

SCUk-CARRY 0.012 0.004 0.297 0.312

SCUk-INC-CARRY 0.009 0.003 0.125 0.142

SCUk-NFA 0.0043 0.0026 0.1048 0.171

The first row shows the times needed to generate Condensed Neighbourhoods,
while the next three rows show the times needed to generate Super Condensed
Neighbourhoods. The second and third rows were obtained using the algorithms
based on dynamic programming while the last line corresponds to the algorithm
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Fig. 4. The left column shows the average time (in seconds) for searching in DNA data
and the right column shows the average time for searching in the Newsgroups data.
The pattern size is indicated by m.



described in this article implemented using Wu and Manber bit-parallel algo-
rithm.

8 Conclusions

In this work we proposed a new algorithm for the generation of super condensed
neighbourhoods and used it to show the practical gains of using super condensed
neighbourhoods instead of condensed neighbourhoods.

We also compared the algorithms we presented with the ones that existed
based on dynamic programming. As expected, results favour this new approach.
However it was pointed out by Heikki Hyyrö [7] that when generating the neigh-
bourhoods the main time factor corresponds to accessing the index in memory
and not in how we compute the edit distance. This means that using NFA’s or
dynamic programming makes little practical difference. This is also an argument
in favour of this algorithm since it is conceptually much simpler than the one
based on dynamic programming.
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